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Abstract
Cognitive and physical effort are typically regarded as costly, but demands for effort also seemingly boost the appeal of prospects 
under certain conditions. One contextual factor that might influence choices for or against effort is the mix of different types of 
demand a decision maker encounters in a given environment. In two foraging experiments, participants encountered prospective 
rewards that required equally long intervals of cognitive effort, physical effort, or unfilled delay. Monetary offers varied per trial, 
and the two experiments differed in whether the type of effort or delay cost was the same on every trial, or varied across trials. 
When each participant faced only one type of cost, cognitive effort persistently produced the highest acceptance rate compared to 
trials with an equivalent period of either physical effort or unfilled delay. We theorized that if cognitive effort were intrinsically 
rewarding, we would observe the same pattern of preferences when participants foraged for varying cost types in addition to rewards. 
Contrary to this prediction, in the second experiment, an initially higher acceptance rate for cognitive effort trials disappeared over 
time amid an overall decline in acceptance rates as participants gained experience with all three conditions. Our results indicate that 
cognitive demands may reduce the discounting effect of delays, but not because decision makers assign intrinsic value to cognitive 
effort. Rather, the results suggest that a cognitive effort requirement might influence contextual factors such as subjective delay 
duration estimates, which can be recalibrated if multiple forms of demand are interleaved.
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Introduction

Evaluating whether to pursue a desirable outcome often entails 
assessing the time and effort it will require. In psychology and 
economics, demands for both time and effort have traditionally 
been identified as costs that detract from the net subjective 
value of rewards. Decision makers tend to prefer low-effort 
and immediate rewards over larger rewards that demand 
longer delays and higher effort (Ainslie, 1975; Frederick et al., 
2002; Hull, 1943; Kool et al., 2010; Kool & Botvinick, 2018; 

Shenhav et al., 2017; Treadway et al., 2009; Walton et al., 2006; 
Westbrook et al., 2013; Westbrook & Braver, 2015). However, 
people also sometimes appear to favor effortful courses of 
action in everyday decisions. Experimental and theoretical 
work has chiefly explained this phenomenon by suggesting a 
reciprocal relationship between effort and outcomes, whereby 
exerting effort boosts the perceived value of ensuing outcomes 
(Hernandez Lallement et al., 2014; Kacelnik & Marsh, 2002; 
Mochon et al., 2012), and positive outcomes imbue value into 
the preceding effortful behavior (i.e. learned industriousness, 
Eisenberger, 1992). These proposals raise questions about 
what features can make an effortful task attractive in its 
own right, and how contextual factors can alter its perceived 
costs (Inzlicht et al., 2018). Understanding what governs the 
intrinsic costs and rewards of effort could improve our ability 
to motivate completion of effortful daily activities such as 
schoolwork or physical exercise.

Recent work has proposed that the subjective costs of 
delay and cognitive effort are modulated by the value of 
the alternative ways one’s time and cognitive resources 
could otherwise be used, implying that decision makers 
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track opportunity costs (Fawcett et al., 2012; Kurzban et al., 
2013; Otto & Daw, 2019). Preferences for or against effortful 
courses of action could therefore depend on the presence of 
other types of demands and opportunities in the same choice 
environment (Kool & Botvinick, 2018). For example, exerting 
high effort for a reward might be aversive, but the same level 
of work might become appealing if the only alternative is 
the boredom of an equivalent period of passive waiting (for 
instance, a person might choose to take a cumbersome way 
home rather than wait for a delayed train, even if the resulting 
time of arrival is the same). Effects of context on effort 
preferences have been illustrated by experiments on charitable 
giving, in a which high-effort donation method (such as a run) 
attracted larger donations than a low-effort method (such as 
a picnic) when either was available alone (the “martyrdom 
effect”), but the high-effort event was disfavored when both 
options were offered as alternatives (Olivola & Shafir, 2013).

Standard models in neuroeconomics and behavioral eco-
nomics formalize the effects of effort or delay on valuation 
in terms of discounting functions (Ainslie, 1975; Frederick 
et al., 2002; Green et al., 1994; Kable & Glimcher, 2007; 
Klein-Flügge et al., 2015; Kool et al., 2010; Westbrook 
et al., 2013). Discounting functions appear to have a simi-
lar form for delay and effort (Massar et al., 2015; Prevost 
et al., 2010; Seaman et al., 2018), although there is ongo-
ing debate about how the shape of the discounting function 
might vary across types of demands (Arulpragasam et al., 
2018; Białaszek et al., 2017; Chong et al., 2017; Hartmann 
et al., 2013; Klein-Flugge et al., 2016; Kool & Botvinick, 
2018; Prevost et al., 2010) and the degree to which discount 
rates correlate across cost domains (Seaman et al., 2018; 
Westbrook et al., 2013). A limitation of the discounting 
approach is that it does not directly probe how aspects of 
the decision context, such as opportunity costs, might influ-
ence cost evaluation, and constrains the understanding of 
behavioral demands to one in which such demands neces-
sarily reduce the value of prospects.

Single choice foraging paradigms, in which decision 
makers choose to accept or reject individually presented 
prospects, provide a natural way to investigate contextual 
influences on cost evaluation (Constantino & Daw, 2015; 
Garrett & Daw, 2020; Krebs et al., 1977; Mobbs et al., 2018; 
Stephens & Krebs, 1986). Such paradigms require weigh-
ing a prospective reward against the perceived opportunity 
cost of time. Specifically, foragers must decide whether to 
spend their limited time by harvesting a currently available 
resource or by seeking out more profitable (or less costly) 
alternatives instead. This could involve, for example, decid-
ing when to leave a patch of depleting richness (e.g. when 
to quit a job that provides diminishing opportunities for 
growth), or choosing whether to pursue or forgo offers pre-
sented serially (e.g. whether to accept your first job offer or 
wait for new potential ones). Here we focus on this latter 

type of foraging, traditionally called prey selection (Krebs 
et al., 1977), as it provides a means to examine how choices 
to accept or reject individual prospects are influenced by 
contextual knowledge about other potentially obtainable 
alternatives in the same environment.

Foraging has recently attracted high scientific interest due 
to its ecological validity, which is rooted in evolutionarily 
conserved choice behaviors (Hayden, 2018; Mobbs et al., 
2018). The prey selection foraging paradigm allows for the 
estimation of optimal, reward maximizing choice patterns 
on the basis of the opportunity cost of time (Charnov, 1976; 
Krebs et al., 1977). The opportunity cost depends on the 
richness of the environment, which can be experimentally 
manipulated by balancing the amount of time it takes to 
harvest an offer (handling time) and to search for a new one 
(travel time). In nature, this balance is exemplified when a 
squirrel deliberates between the handling time to crack a 
nut open versus the time it takes to travel to a new one. We 
can then interpret observed deviations from such optimal 
behavior, and examine how foraging behavior changes when 
the handling time is filled with cognitive or physical effort in 
comparison with an unfilled delay (thus disentangling effort 
from delay duration). In contrast to multi-alternative eco-
nomic choice paradigms, which often treat choices as inde-
pendent events, the sequential nature of foraging encourages 
individuals to consider both focal and global elements of 
the decision context. Extensive previous work on modeling 
foraging decisions provides computational tools to formal-
ize relevant decision variables (Stephens & Krebs, 1986).

Across two behavioral experiments, we tested the over-
arching hypothesis that preferences would vary depend-
ing on whether individuals faced a single type or multiple 
types of behavioral demands (i.e. cognitive effort, physical 
effort, and delay). Experiment 1 used a between-subject 
design in which each participant foraged for rewards of 
varying magnitudes that imposed varying durations of a 
single form of demand. Experiment 2 used a within-sub-
ject design in which individuals foraged for varying forms 
of demand in addition to varying reward magnitudes. First, 
we examined whether the discounting effects consistently 
observed in multi-alternative economic choice paradigms 
persisted when these options were presented serially, and 
whether the resulting foraging patterns depended on the 
demands imposed to obtain rewards. The existence of a 
well-defined optimal, reward-maximizing choice strategy 
helped us identify when demands boosted or detracted 
from the attractiveness of rewards (signified by tenden-
cies to overharvest poor offers or underharvest advanta-
geous offers, respectively). Second, we probed whether 
the perceived cost (or value) of demands was intrinsic 
or context-dependent. Varying the level of exposure to 
multiple types of demands across experiments allowed 
us to assess whether cost evaluation was dependent on 
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the availability of alternative avenues of action. Further, 
including cognitive demands and physical demands let us 
examine whether such effects might apply differently to 
distinct types of effort.

Our results provided mixed support for our pre-registered 
hypotheses, which are detailed in https:// osf. io/ 2rsgm/ regis 
trati ons. For Experiment 1, we hypothesized that 1) decision 
makers would integrate reward and timing information in 
order to approximate optimal foraging strategies, as reflected 
by acceptance rates (based on previous reports of human 
foragers that approximate optimality, albeit with a tendency 
to overharvest; e.g. Constantino & Daw, 2015; Garrett & 
Daw, 2020); 2) acceptance rates would be higher for tri-
als that demanded physical effort and cognitive effort than 
for unfilled delay or effortless engagement (based on results 
from pilot data and previous findings from single-alternative 
choice paradigms; e.g., Olivola & Shafir, 2013. See also 
Eisenberger, 1992; Inzlicht et al., 2018); and 3) acceptance 
rates for each type of demand would remain stable over time, 
and participants would rarely exhibit within-trial reversals 
(accepting a trial but then quitting without receiving the 
reward). This prediction stemmed from the intuition that 
participants would arrive at a decision strategy that was gen-
erally consistent with the task’s stable statistical structure, as 
seen in previous studies of human foragers. Consistent with 
our predictions, we found that individuals could approximate 
optimality by favoring higher rewards and shorter delays. We 
also found that people in the Cognitive group accepted more 
trials than optimal, whereas Physical and Wait groups under-
accepted, partially matching our predictions but raising the 
possibility that cognitive effort might add value to outcomes 
(or attenuate subjective temporal costs). Finally, acceptance 
rates (and differences in acceptance rates across demands) 
were stable within each cost condition, in line with expecta-
tions. These findings motivated the design of Experiment 
2, in which effort and delay trials were intermixed so that 
rejecting a trial of one type could potentially lead to a trial 
of the other type. For Experiment 2, we hypothesized that 
1) acceptance rates would once again approximate optimal-
ity, and would show effects of reward magnitude similar to 
those seen in Experiment 1; 2) in contrast to Experiment 1, 
participants would accept unfilled-delay trials at a higher 
rate than trials with either form of effort (given that people 
often opt for the easiest way to achieve a desired outcome; 
e.g. Hull, 1943; Kool et al., 2010; Olivola & Shafir, 2013); 
and 3) that choices would once again be consistent and sta-
ble over time. As before, decision makers approached the 
optimal strategy for the foraging environment, resembling 
the pattern observed in Experiment 1. Contrary to our sec-
ond and third hypotheses, we found that acceptance rates 
were initially higher for cognitive effort than for delay, but 
this apparent preference disappeared over time as decision 
makers foraged for types of demands in addition to rewards.

Computational modeling results suggested that the nor-
mative predictions of traditional foraging models were 
insufficient to explain our data. Instead, the data supported 
a model in which demands imposed a bias on the estimated 
opportunity cost of time, which converged as individuals 
gained experience with interleaved types of demands. We 
hypothesize that this bias arises from modulations of subjec-
tive time. For instance, cognitive effort could have become 
appealing by virtue of compressing the perceived trial time, 
a perception that could be recalibrated with exposure to 
alternative demands. A subjective shortening of experienced 
durations during cognitive effort could be due to the ongoing 
recruitment of working memory (e.g. preventing individuals 
from estimating the elapsed time), or because the discrete 
events within the cognitive task subdivided the time interval. 
These results expand our understanding of the attractiveness 
of effort, suggesting potential reward-independent factors 
that could be leveraged to motivate effort engagement in 
diverse, everyday scenarios.

Experiment 1: Between‑subject 
Manipulation of Subjective Costs During 
Foraging

Methods

Participants

The study was preregistered with the Open Science Frame-
work (https:// osf. io/ 2rsgm/ regis trati ons). The data and 
code for all analyses can be found in https:// github. com/ 
ctoro serey/ Cost_ studi es. All experimental procedures were 
approved by the Boston University Institutional Review 
Board, and written consent was acquired for all partici-
pants. For Experiment 1, we recruited individuals until the 
planned number of 84 eligible participants was achieved 
(58 Female, median age = 21, range = 18 - 31; number 
excluded before reaching goal = 8). The sample size was 
determined by means of power analysis (ANOVA), using 
a significance level of 0.05, power of 0.8, an effect size of 
f = 0.45 (estimated from a pilot study), and three groups 
(one for each cost type). The resulting per-group sample 
was 20, which we increased to 21 in order to match three 
possible block orders. Therefore, this power analysis gave 
us an initial sample size goal of 63 total participants. We 
then added a fourth group of 21 participants who experi-
enced a minimally effortful condition in order to determine 
whether effort or mere task engagement was driving our 
results, bringing the total sample size to n=84.

Participant data sets could be excluded on the basis of 
any of the following preregistered criteria: 1) Withdrawal: 
if the participant did not complete the study (1 participant); 
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2) Inattentiveness: a catch trial was placed at the end of each 
experimental block, asking participants to press a key within 
3 seconds (time requirement based on pilot study response 
times). A participant who failed two or more of these checks 
was excluded and replaced (5 participants). 3) Improbable 
choice behavior: The task was structured so that the largest 
reward amount should always be accepted. A participant 
who quit every trial in at least one block was assumed not 
to have followed or understood task instructions, or to have 
disengaged from the task altogether (0 participants). 4) Per-
formance: Participants were forced to travel if they made 
2 mistakes in a cognitive effort trial (see task procedures 
below), or if they gripped below threshold during physical 

trials. Any participant with more than 30% forced travels 
was excluded (1 participant).

Foraging Task

The experimental task was run using PsychoPy 2 (v1.85.1, 
Peirce et al., 2019) on a Macbook Pro laptop. Participants 
foraged for monetary rewards in an environment in which 
each trial required physical effort, cognitive effort, or pas-
sive waiting for a set period of time (the “handling time”) 
in order to obtain the reward (Fig. 1A). Their goal was to 
maximize their gains within a fixed total amount of playing 
time (six 7-minute blocks). On each trial, a monetary offer 

Fig. 1  Task design and optimal behavior. A: General foraging trial 
structure. On each trial, participants were offered an opportunity to 
earn money by sustaining effort or waiting during the handling time 
(2, 10, or 14 s). The end of a trial was followed by a travel time (han-
dling and travel times always added up to 16 s). Participants could 
skip unfavorable trials and immediately start traveling to a potentially 
better offer. In Experiment 1, the type of demand was fixed per partic-
ipant and handling time varied per block. In Experiment 2, handling 

time was fixed at 10 s, but a combination of effort and delay trials 
changed per block. B: Possible earnings per second for each accept-
ance threshold (i.e. the smallest amount accepted) for each handling 
time in Experiment 1. Circles denote the reward-maximizing thresh-
old for each block, which is described in the table. Experiment 2 pre-
sented only the 10 s handling time, for which it was optimal to skip 
all 4-cent offers

Cognitive, Affective, & Behavioral Neuroscience (2022) 22:509–532512
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was displayed for 2 s, and participants had the opportunity to 
expend time and/or effort during the handling time in order 
to earn it. Upon completion of a trial, participants saw a 2 
s feedback message displaying the reward obtained, which 
was followed by a travel time to the next offer. Alternatively, 
the participant could quit at any point during the handling 
time by pressing the spacebar, and immediately start trave-
ling. Participants received their earnings in the form of a 
real monetary bonus that was added to a fixed $12 partici-
pation amount (possible range of task-based earnings = $0 
- $15.50, rounded up to the nearest quarter).

Participants were divided into four groups. Each partici-
pant in the first three groups was assigned to one of three 
types of costs (cognitive effort, physical grip-force effort, or 
delay), and a fourth group experienced a low-effort physical 
task that required gripping above a negligible force level. 
This last condition was added to test the possibility that any 
differences in acceptances between effort and delay were 
driven by task engagement alone. Each group was unaware 
that other cost conditions existed. Participants exerted physi-
cal effort by gripping a handheld dynamometer (Biopac Sys-
tems, United States) using their dominant hand. Gripping 
requirements in the physical effort condition were calibrated 
at 20% of maximum voluntary contraction (acquired at the 
beginning of the session). Participants could maintain any 
force level above this threshold to remain in the trial. The 
low-effort condition was equivalent except that the grip-
force threshold was set to 5%. Cognitive effort entailed 
switching among Stroop, dot motion judgment, and flanker 
tasks. Task switching has previously been shown to impose 
subjective costs (Kool et al., 2010). In the Stroop task, one 
of three color names was displayed on the screen (red, blue 
or green), with a font color that was either congruent (e.g. 
the word red presented in red) or incongruent (e.g. the word 
red presented in blue). Participants had to select the color 
of the font (i.e., they had to suppress their tendency to read 
the word). For the motion judgment task, 100 solid white 
dots moved on the screen. A fraction of these dots moved 
coherently to the left or right, while the rest moved in ran-
dom directions (coherence could be either 30% or 40%, 
uniformly sampled). Participants had to respond with the 
direction of the coherent movement. In the flanker task, rows 
of arrowheads pointed either to the left or the right (maxi-
mum of 3 rows, 3 to 13 arrowheads per row). Participants 
responded with the direction of the center arrowhead, which 
could point in the same or opposite direction of its neigh-
bors. The tasks were configured so that responses always 
involved a left or right key press (e.g. for Stroop, two colored 
circles were presented at each side of the screen). During 
the handling time, cognitive tasks and their configurations 
were randomly sampled, and were presented for 1 s followed 
by a 1 s inter-stimulus interval. Participants were asked to 
respond within each task’s presentation time (i.e., there was 

a 1 s response deadline). Before the experiment, participants 
trained in each cognitive task until they correctly performed 
six consecutive trials of each type. While in the handling 
time, if participants failed to maintain an above-threshold 
grip during the physical effort task (following the 1 s grace 
period) or made two mistakes during the cognitive task, they 
were forced to travel and missed the reward.

There were three block types, in which handling times of 
2, 10, or 14 seconds were paired with travel times of 14, 6, 
and 2 seconds, respectively. All combinations added up to 16 
seconds, meaning that accepted trials took the same amount 
of time in all conditions, but rejected trials were shorter in 
environments with shorter travel times. Timing parameters 
were held constant within each 7-min block. Each block type 
was presented twice in pseudorandom order (total session 
length = 42 minutes). Reward amounts varied per trial (4, 
8, or 20 cents with equal probability), with the constraint 
that every reward was presented twice every six trials. This 
prevented sequences from being dominated by a single 
amount during any window of time. Timing information was 
disclosed at the beginning of each block, and each trial’s 
reward amount was displayed during a 2 s offer window 
before the trial began. Participants received training prior 
to the experimental session and were told about all possible 
timing conditions and reward amounts in order to avoid any 
biases that could arise through experience-dependent learn-
ing (Dundon et al., 2020; Garrett & Daw, 2020). Finally, we 
encouraged participants to carefully evaluate their options by 
informing them that accepting all offers would not maximize 
their rewards.

Reward‑maximizing Strategy

Foraging theory posits that the decision to accept a delayed 
reward should depend on the opportunity cost of time to 
be incurred in obtaining it, which in turn depends on the 
richness of the environment (Charnov, 1976; Stephens & 
Krebs, 1986). In this study, the richness of the environment 
was manipulated by the length of the handling and travel 
times. Shorter travel times produced richer environments 
by making it possible to save more time by skipping low-
reward trials. Since time combinations were fixed per block, 
we calculated each block’s optimal accept/reject strategy by 
computing the expected rate of gain (g(*)) from all decision 
strategies according to the following equation:

where R and p are the reward magnitude and acceptance 
probability of offer i, respectively, Thandling is the handling 
time for the block, Ttravel is the travel time, Toffer is the dura-
tion of the offer window (2 s), and Treward is the duration of 

g(∗) =

∑
piRi

3Toffer +
∑

pi
�
Thandling + Treward

�
+ 3Ttravel

, p ∈ {0, 1}
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the window displaying the reward earned (2 s, only presented 
for completed trials). This gives the average reward per sec-
ond attainable in each block as a function of the acceptance 
threshold (i.e. the lowest amount the participant is willing to 
accept in a given timing environment). Since an ideal forager 
should always either accept or reject any given category of 
prey (Krebs et al., 1977), probabilities other than 0 and 1 
were not considered. The resulting possible strategies were 
to accept only 20 cents, accept 8 and 20 cents, or accept eve-
rything. Fig. 1B shows possible earnings per second for each 
choice strategy, as well as the lowest amount participants 
should accept in order to maximize their rewards (circled 
dots). For example, a participant in a 10 s handling-time 
block should accept 8-cent and 20-cent rewards (and reject 
4-cent rewards) to maximize their reward rate; a participant 
in a 14 s handling-time block should accept only 20-cent 
rewards, and a participant in a 2 s handling-time block 
should accept everything. Note that accepting every offer 
was often detrimental to earnings.

Analyses

All analyses were performed in R 3.5.2 (R Core Comput-
ing Team, 2017). First we tested whether decision makers 
integrated delay and reward information. To address the 
prediction that participants would be more likely to accept 
higher reward and shorter handling time trials, we fit a 
mixed-effects logistic regression to predict trial-wise accept-
ances (using the lme4 package, Bates et al., 2015), giving 
a random intercept to each subject to account for biases in 
participant behavior. We included continuous regressors for 
handling time and reward, as well as two covariates that 
probed the influence of recent history on choices. The first 
was a term containing the number of consecutive unobtained 
offers prior to a given trial (unobtained offers could be due 
to quits or forced travels). The second regressor tracked the 
sum of the reward amounts on the previous n offers. We 
identified the n that minimized Akaike’s Information Cri-
terion (AIC) among 6 versions of the model (ranging from 
2 previous trials up to 7, beyond which the model failed 
to converge), and report all coefficients from the winning 
model, which used the sum of the previous 6 offers.

Our foraging task was configured such that over- and 
under-accepting were detrimental to total earnings. To 
confirm this, we fit a general linear model with constant, 
linear, and quadratic terms to estimate the correspondence 
between proportion of trials completed (independent vari-
able) and total earnings (dependent variable). A significant 
quadratic coefficient thus would signal that the task statistics 
operated generally as expected. Next, to determine the opti-
mality of the group’s decisions, we examined whether each 
cost type produced a bias to over or under-accept offers of 
4 and 8 cents (assuming that 20cent-offers would always be 

accepted, given our design). The reward-maximizing strat-
egy was to always reject these offers for handling times of 14 
s, reject 4 cents and accept 8 cents for 10 s, and accept both 
for 2 s, yielding a combined optimal overall acceptance rate 
of 50%. We performed a two-sided one-sample chi-squared 
test of proportions against the null probability of 0.5 for each 
type of cost (with trials pooled across participants in each 
group). Therefore, a significant difference indicated that par-
ticipants either over- or under-accepted rewards.

The analyses above differed slightly from the pre-regis-
tered plan. Rather than pooling coefficients from individual 
logistic regressions, we favored obtaining a single coefficient 
from a mixed model that accounted for participant-level 
random effects. The chi-squared test was adopted from the 
Experiment 2 preregistration, as we found it better suited to 
the question than the original formulation (i.e. individual 
tests for each combination of experimental parameters).

Next, we compared acceptance rates across cost condi-
tions. We first performed a one-way ANOVA on the pro-
portion of trials accepted using group as a factor. We then 
compared the proportion completed across all 4 groups using 
non-parametric permutation contrasts (6 tests). For each test, 
on each of 5000 permutation iterations, participants’ group 
labels were randomly shuffled without replacement, and the 
difference in mean acceptance rates across iterations cre-
ated an empirical null distribution. The unpermuted group 
mean difference was then evaluated against this permuted 
distribution. The same approach was used to test differences 
in total earnings.

In order to further look at the effect of handling time, 
offer amount, and cost condition, we computed the prob-
ability of accepting a trial with a mixed-effects logistic 
regression. Our a priori model of interest included all three 
variables as fixed main effects, and a random intercept per 
subject. Cost condition was modeled with three categorical 
terms, with the fourth condition as the reference condition. 
We ran three versions of the model with different reference 
conditions, in order to test all pairwise differences among the 
four cost conditions. We then examined whether this a priori 
model outperformed both simpler and more complex mod-
els. We used both AIC and Bayesian Information Criterion 
(BIC) to determine the model that minimized the negative 
log-likelihood while penalizing the addition of parameters. 
The regressors included in the 8 candidate models were: 1) 
intercept only; 2) cost condition only; 3) handling time only; 
4) offer amount only; 5) handling time and offer amount; 6) 
cost condition, handling time, and offer amount main effects 
(a priori model from above); 7) adding a handling-time-by-
offer-amount interaction; and 8) all possible two-way inter-
actions. We predicted that model 6 would have the lowest 
AIC and BIC, as it was the simplest model that included 
information about all three trial-varying factors (reward 
amount, timing, and effort). Nested models with similar AIC 
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were statistically compared using an analysis-of-deviance. 
The significance test was computed as the probability of 
the reduction in deviance, based on a chi-square distribu-
tion with degrees of freedom equal to the difference in the 
number of parameters between models.

Reward-maximizing prey foragers should either accept 
or reject offers based on their profitability relative to the 
available alternatives (Krebs et al., 1977; Stephens & Krebs, 
1986). However, decision makers often curtail persistence 
before reaching a delayed prospect based on a continuous 
reevaluation of the prospect’s value or a lapse in self control 
(Ainslie, 1975; McGuire & Kable, 2012, 2015; Mischel & 
Ebbesen, 1970). Therefore, we examined whether partici-
pants were consistent (not quitting trials that were originally 
accepted) and stable (maintaining similar acceptance rates 
over time) in their choices. To evaluate consistency, we visu-
ally examined survival curves indicating at what point dur-
ing the handling time participants quit a trial; large numbers 
of late quit times would indicate a lack of consistency. We 
interrogated stability by computing each participant’s total 
proportion of acceptances in the first and second half of 
the experiment for every block type, comparing the mean 
proportion of acceptances using paired permutations (5000 
iterations). We then tested whether the observed differences 
in costs were still present in each half of the experiment by 
applying the winning model from the mixed-effects logistic 
regression analysis to each half separately.

Results

Decision Makers Integrate Delay and Reward Information

Four groups of participants faced with different behavio-
ral demands (physical effort, cognitive effort, low-effort 
task engagement, or passive delay) chose their preferred 
strategy to maximize rewards in foraging environments of 
varying richness. We will refer to the four groups below 
as Physical, Cognitive, Easy, and Wait. Environmen-
tal richness was dictated by the time it took to obtain a 
reward (the handling time) and the time between trials (the 
travel time). We hypothesized 1) that participants would 
approximate reward-maximizing behavior by preferen-
tially accepting higher rewards and shorter delays; 2) that 
participants confronted with effortful demands would be 
more likely to accept trials than those faced with passive 
delay, regardless of handling time and reward amount; and 
3) that choices would be stable over time and consistent 
within trials.

We performed a mixed-effects logistic regression to 
address the first hypothesis, pooling across the four condi-
tions. Since participants in the effort groups were forced 
to travel when they failed to perform above threshold 
(see Methods), we distinguish between acceptances (not 

explicitly quitting a trial during the handling period) and 
completions (successfully obtaining a reward). Even so, the 
proportion of forced travels was low for the Cognitive group 
(5% on average across participants) and 0 for the Physical 
group (i.e. no forced travels in this group). Overall, partici-
pants accepted an average of 64% of trials (SD = 17%, range 
= 35% to 100%). In line with our predictions, larger reward 
amounts significantly increased acceptance probabilities 
(β = 0.49, SE = 0.01, p < 0.001), whereas longer delays 
decreased them (β = -0.34, SE = 0.01, p < 0.001). Two 
additional regressors showed that having missed out on con-
secutive rewards decreased the probability of acceptance (β 
= -0.06, SE = 0.03, p < 0.001), and that participants became 
more selective when recent offer history was richer (β = 
-0.01, SE = 0, p < 0.001). The counterintuitive reduction 
in acceptances following consecutive unobtained rewards 
was driven by the Wait group (removing this group from the 
model yielded a p > 0.1).

The next set of analyses examined the hypothesis that 
both Cognitive and Physical groups would uniformly accept 
more trials than the Wait and Easy groups. Fig. 2A shows 
that the Cognitive group consistently accepted more offers, 
which resulted in lower earnings (middle). One-way ANO-
VAs showed that differences among groups were signifi-
cant both for overall proportion accepted (F(3, 80) = 6.94, 
p < 0.001), and total earnings (F(3, 80) = 8.07, p < 0.001). 
Post-hoc permutations (5000 iterations) comparing mean 
acceptance rates between every pair of costs confirmed that 
acceptance rates of the Cognitive group (mean = 0.74, SD 
= 0.13) were higher than those of the Physical (mean = 0.6, 
SD = 0.15; p = 0.003, Cohen’s D = 1.02) and Wait groups 
(mean = 0.55, SD = 0.11; p < 0.001, Cohen’s D = 1.55). 
It also showed that those faced with the easy task accepted 
more than those in the Wait group, although responses from 
the Easy group were more variable (mean Easy = 0.68, SD 
= 0.19; p = 0.01, Cohen’s D = 0.85) (all other p > 0.05). In 
line with its higher acceptance rates, the Cognitive group 
had significantly lower earnings (mean = 13.55, SD = 0.84) 
than either the Physical group (mean = 14.03, SD = 0.53; 
p = 0.035, Cohen’s D = 0.69) or the Wait group (mean = 
14.5, SD = 0.58; p < 0.001, Cohen’s D = 1.32). In addition, 
the Wait group earned more than the Physical (p = 0.007, 
Cohen’s D = 0.85) and Easy groups (mean Easy = 13.94, 
SD = 0.52; p = 0.002, Cohen’s D = 1.02).

We next examined the optimality of these decisions. 
The foraging task was configured so that there was a single 
reward-maximizing strategy per block type, and participants 
were informed that accepting everything would not maximize 
their gains. Accordingly, participants who over- or under-
accepted earned the least (Fig. 2C; general linear model 
with quadratic term, F = 25.65, β = -8.99, SE = 2.42, R2 
= 0.39, p < 0.001). We performed group-level chi-squared 
tests of proportions (with trials pooled across participants) to 
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examine whether each cost biased decision makers to under- 
or over-accept 4 and 8 cent offers, which collectively should 
have been accepted 50% of the time across the three timing 
environments. We found a significant over-acceptance of these 
trials by the Cognitive group (proportion accepted = 0.59; χ2 
= 73.89, p < 0.001), but under-acceptances by the Physical 
group (proportion accepted = 0.39; χ2 = 123.81, p < 0.001) 
and Wait group (proportion accepted = 0.31; χ2 = 359.13, p 
< 0.001), with no significant difference for the Easy group. 
Together, the findings discussed so far indicate that although 
participants reacted appropriately to reward and timing 
contingencies, departures from optimality were systematically 
influenced by what form of cost was at stake. The findings 
raise the possibility that cognitive effort can boost the value 
of an offer, as reflected by higher acceptances at the expense 
of earnings.

We next probed whether these results held uniformly 
across reward and timing parameter combinations. Fig. 3A 
shows the mean proportion of acceptances (± SEM) per 
combination of handling time, reward, and cost type, with 
reward-maximizing acceptance rates depicted by the gray 
circles. Qualitatively, the figure confirms two important 
predictions. First, participants adapted to the richness 
of each timing block, gravitating towards optimality 
regardless of the cost they faced. Second, effects of cost 
type were consistent across the three timing conditions, 
and acceptances were uniformly highest for the Cognitive 
group. We tested these observations with a mixed-effects 
logistic regression model, which estimated the probability 
of accepting an offer as a function of handling time, reward 
amount, and cost type (see Methods for details). The model 
showed significant main effects of handling time (β = -0.34, 

SE = 0.01, p < 0.001) and offer amount (β = 0.49, SE = 
0.01, p < 0.001). Comparisons among all conditions are 
shown on Fig. 3B. The Cognitive group was significantly 
more likely to accept offers than the Physical group (β = 
1.5, p = 0.005) or the Wait group (β = 2.11, p < 0.001), 
but not the easy group.

These observations were not better explained by simpler 
or more complex regression models. Fig. 3C shows AIC 
and BIC values for models of increasing complexity, start-
ing with an intercept-only configuration (see Methods for 
details). Here we focus on AIC, as both metrics yielded 
comparable results. As predicted, the a priori model with 
all main effects performed better than those relying on a 
single parameter (a priori model pseudo R2 = 0.82), as 
well as the model with only main effects for handling time 
and reward amount  (AICa-priori = 3416,  AIChandling/reward = 
3427, χ2(3) = 16.87, p < 0.001).

Contrary to our expectations, the a priori model 
was outperformed by models that added an interaction 
between handling and reward  (AICHR_interaction = 3394, 
χ2(1) = 24.16, p < 0.001) as well as one that considered 
all possible interactions  (AICall_interactions = 3300, χ2(7) = 
129.58, p < 0.001). However, upon examination, neither of 
these models offered further interpretable insights on the 
observed differences across costs. The overall pattern of 
results supported the hypotheses that handling and reward 
amounts were integrated in the expected fashion, and that 
the rate of acceptances was affected by the demand faced. 
The results offered only partial support for the hypothesis 
that effort would induce higher acceptance rates; higher 
acceptance rates were observed for cognitive effort but not 
for physical effort.

Fig. 2  Overall choice behavior in Experiment 1. A: Proportion 
accepted per cost. B: Total number of dollars earned by each group 
by the end of the experiment (not including the participation reward). 
C: The relationship between proportion accepted and total earned. 

Consistent with the foraging design, participants who over and under 
accepted earned the least. These results suggest that people were will-
ing to pursue cognitively effortful actions at the expense of earnings
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Consistency and Stability of Choices

Next, we tested the hypothesis that foragers would exhibit 
within-trial consistency and across-trial stability in their 
choices. Participants were deemed consistent if they tended 
not to quit after engaging in a trial (that is, if they pressed 
the spacebar to reject a trial either quickly or not at all). To 

examine this, we plotted survival curves of trial rejection 
times across all participants (Fig. 4A), with black crosses 
signaling censored observations either for completed tri-
als (at 2 s, 10 s, and 14 s) or forced travels. These curves 
show that most decisions to quit happened within the first 
second into the handling time, and participants rarely quit 
afterwards (only 4% of quits occurred later than 1 s). The 

Fig. 3  Comparison of acceptance rates across cost types for each 
combination of reward amount and handling time. A: Mean accept-
ance rate in each group for every combination of handling time and 
reward (with SEM). Grey points indicate the reward-maximizing 
acceptance rate for each combination, which was always either 0 or 
1. B: Matrix of coefficients that resulted from switching the reference 
cost condition in a mixed-effects logistic regression model. Each ele-

ment represents how much more likely a group was to accept offers 
compared to the reference condition (row). White asterisks denote the 
p-value for significant comparisons (one, two, and three askterisks 
correspond to p-values under 0.05, 0.01, and 0.001, respectively). C: 
AIC and BIC values for a mixed-effects model comparison, ranging 
from a baseline intercept-only model to a full-interaction model. Both 
metrics yielded similar values across models
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pattern of results in the Physical and Easy groups reflected 
that participants sometimes quit by letting the 1 s initial 
grace period expire without gripping (rather than by press-
ing the spacebar); such trials were coded as quits rather than 
as forced travels. Plotting the quitting time distributions 
across blocks for the first 1 s of the handling time (ECDFs 
on Fig. 4A) showed that participants in the Wait and Cogni-
tive groups responded faster as the experiment progressed. 
These response time observations suggested clarity in par-
ticipant choices.

Stability was defined as the maintenance of similar 
acceptance rates throughout the experimental session. 
The scatterplot in Fig. 4C shows the overall proportion 
accepted by each participant before and after the midpoint 
of the session. Paired permutations showed no change in 
acceptance rates for the Wait and Easy groups (p > 0.05), 

but we found significantly lower acceptance rates in 
the second half of the session for the Physical group 
(p = 0.024, Cohen’s D = 0.27) and the Cognitive 
group (p < 0.001, Cohen’s D = 0.56). Fig. 5A shows 
that the reduction in acceptance rates in effort groups over 
time was steeper for longer handling times, a hallmark 
of effortful demands (Treadway et al., 2009). We then 
replicated the mixed-effects logistic regression from the 
previous section separately for each half of the session, 
which confirmed that differences among demands were 
mostly stable (Fig. 5B; a significant difference between 
Physical and Easy groups during the second half of the 
session was due to the decrease in acceptance rates by the 
Physical group). Together, the consistency and stability 
of behavior suggested that decision makers had a clear 
representation of the environment.

Fig. 4  Choice consistency and stability in Experiment 1. A: Survival 
curve plots of trial rejection times. B: Distributions of trial rejection 
times within the first 1 s of the handling time. C: Acceptance rate 

in the second half of the session as a function of acceptance rate in 
the first half of the session. Dashed lines indicate the mean for each 
group. D: proportion accepted over time per group
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Experiment 2: Within‑subject Comparison 
of Costs

Experiment 1 demonstrated that human decision makers 
could appropriately integrate reward and timing information 
to make single-alternative accept/reject decisions in a forag-
ing environment. In addition, acceptance rates were higher 
in a group of participants for whom rewards were associated 
with demands for cognitive effort than in groups for whom 
rewards were associated with physical effort or mere delay. 
One possible interpretation of the findings of Experiment 1 
might be that cognitively effortful trials were intrinsically 
rewarding, either because participants placed value on effort 
per se or because they found the cognitive tasks more inter-
esting than a boring, unfilled delay or hand-grip task. An 
alternative possible interpretation is that cognitive effort led 
to higher acceptance rates by altering the task context in a 
more general way, such as by influencing the perception of 
temporal durations or opportunity costs. We reasoned that 
if the effortful tasks were truly preferred, participants ought 
to continue preferentially accepting cognitive effort trials in 
an environment in which effort and non-effort trials were 
randomly intermixed within-subject, where rejecting a delay 
trial would potentially lead to an opportunity to accept a 
subsequent effort trial. On the other hand, if cognitive effort 
were not preferred, interleaving different types of demand 
in the same environment might reveal a pattern of effort 

avoidance, given that participants now could effectively sub-
stitute low-effort trials for high-effort trials. Experiment 2 
tested which types of trials decision makers would preferen-
tially accept when they were allowed to forage for different 
types of demand in addition to different sizes of rewards. 
The objective was to address how the presence of multiple 
alternative forms of demand in the same choice environment 
would impact the subjectively assessed costs of effort and 
delay.

Methods

Participants

We collected data from a new sample of 48 participants (39 
Female, median age = 21, range = 18 - 36; number excluded 
before reaching goal = 6). Sample size was once again deter-
mined by means of a power analysis (repeated measures 
ANOVA), using a significance level of 0.05, power of 0.8, 
an anticipated effect size of f = 0.5, and four factors (one 
for each demand-type condition; see below for details). The 
resulting sample size was 45, which we increased to 48 in 
order to balance the potential order of blocks. We excluded 
participants using the same criteria as in Experiment 1 (4 
participants were excluded because they failed the inter-
block attention checks).

Fig. 5  Acceptance behavior over time in Experiment 1. A: Offer 
acceptance rates per handling time, reward amount, cost type, and 
session half, showing that effortful demands (Cognitive and Physi-
cal) were less frequently accepted over time, especially for the long-
est handling time (14 s). B: Mixed-effects logistic regression model 

coefficients denoting the comparison of acceptance rates across cost 
conditions for each half of the experimental session separately (mir-
rored along the diagonal). Even though acceptance rates decreased in 
the effort groups, the differences in acceptance rates across cost con-
ditions were preserved
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Within‑participant Manipulation of Cost Type

The original between-subjects task from Experiment 1 was 
modified so that participants foraged for cost types in addi-
tion to rewards. Every participant experienced all forms 
of cost (delay, physical effort, and cognitive effort). There 
were two block types, in which delay trials were interspersed 
with either physical-effort or cognitive-effort trials. This 
setup prevented participants from having to rapidly switch 
between response modalities across trials (i.e. keyboard and 
handgrip). Each block combination (Physical/Wait and Cog-
nitive/Wait) was experienced three times by each partici-
pant in 7-minute-long, interleaved blocks, for a total session 
duration of 42 minutes. Half of the participants experienced 
a block sequence that started with the Physical/Wait block 
and the other half experienced a sequence that started with 
the Cognitive/Wait block. Timing parameters were held 
fixed throughout the experiment and were matched to the 
middle condition from Experiment 1 (10 s handling time 
and 6 s travel time). Participants were informed that this 
timing combination would be constant prior to beginning 
the experiment. The upcoming effort type was disclosed at 
the beginning of each block, and reward/cost offers were 
displayed at the start of each trial (e.g. “8 cents for physical 
effort”). Unlike the previous experiment, participants could 
express their decision to quit by pressing the spacebar dur-
ing the offer window (not only during the handling time), 
in which case the travel time would begin immediately at 
the end of the 2 s offer window. Participants were trained in 
each type of demand until they reached the same criteria as 
in Experiment 1.

Analyses

The analytical pipeline was mostly preserved from Experi-
ment 1. We first tested whether decision makers integrated 
reward information. We performed a mixed-effects logis-
tic regression with regressors for offer amount, number of 
consecutive offer misses, and the sum of the n previously 
observed offers (we identified n by comparing the AIC of 
different history lengths). We then confirmed that under- 
and over-acceptance were detrimental to total earnings by 
fitting the same quadratic linear model discussed above. 
The optimal strategy was to reject 4-cent offers and accept 
8-cent offers, yielding an ideal overall acceptance rate of 
50% (not counting 20-cent offers, which should have always 
been accepted). For these trials, we performed a two-sided 
one-sample chi-squared test of proportions against the null 
probability of 0.5 for each cost condition.

To compare acceptance rates among cost conditions, we 
first estimated acceptance probabilities using a mixed-effects 
logistic regression. The model included cost condition and 
reward amount as fixed main effects, and participant as a 

random intercept (handling time was not modeled, as par-
ticipants experienced a single time combination). Cost con-
dition was modeled with three categorical terms, with the 
fourth condition as the reference condition (two effort con-
ditions, and a delay condition paired with each effort type). 
We ran three versions of the model with different reference 
conditions, in order to test all relevant pairwise differences 
among the four cost conditions. We compared the a priori 
model to alternative parameterizations using AIC and BIC, 
varying model complexity as follows: 1) intercept only; 2) 
cost condition only; 3) reward only; 4) cost condition and 
reward main effects (a priori model); and 5) adding a two-
way interaction of cost condition and reward. We predicted 
that model 4 would have the last appreciable decrease in the 
negative log-likelihood, as it was the simplest model that 
contained information about both reward and effort. Models 
with similar AIC were formally compared using the analy-
sis-of-deviance approach from Experiment 1.

Next, we probed within-trial consistency and across-trial 
stability of choice behavior. First, we visualized the number 
of quit responses during the handling time with a survival 
curve, and plotted the quit response time distribution as a 
function of block to examine choice consistency over time. 
Next, we computed the proportion of quits that occurred 
during the choice window versus during the handling time. 
Earlier quits were seen as signifying greater consistency. We 
then computed each participant’s total acceptance rate in the 
first two and last two blocks, and compared them using a 
paired permutation analysis (5000 iterations). This analysis 
did not include the third and fourth block because the alter-
nating, counterbalanced sequence of block types would have 
led to unequal numbers in the first three and last three blocks 
for individual participants.

Results

Decision Makers Integrate Reward Information

In Experiment 2, we tested decision makers’ preferences for 
cognitive effort or physical effort relative to unfilled delay. 
We modified the prey-selection foraging task, so each par-
ticipant experienced every type of demand in blocks that 
interleaved wait trials with either physical or cognitive effort 
(with a fixed 10 s handling time and 6 s travel time, to allow 
for comparisons between experiments). We separately ana-
lyzed Wait trials from the two block types, labeling the two 
sets of Wait trials according to the type of effort with which 
they were paired (“Wait-C” for cognitive, and “Wait-P” for 
physical). We hypothesized that 1) reward offer amounts 
would influence decisions in the same way as in Experi-
ment 1; 2) interleaving effort and delay would produce 
higher acceptance rates for wait trials than for cognitive or 
physical effort trials, in contrast to the pattern observed in 
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Experiment 1. and 3) that choice patterns would remain sta-
ble over time and consistent within trials.

We first tested the hypothesis that participants would suc-
cessfully integrate reward and timing information. A mixed-
effects logistic regression showed that larger reward amounts 
significantly increased acceptance probabilities (β = 0.762, 
SE = 0.024, p < 0.001), and that participants became more 
selective if they had recently observed large offers (β = 
-0.015, SE = 0.002, p < 0.001). Model comparisons sug-
gested that participants were influenced by the 7 most recent 
rewards. Unlike Experiment 1, participants were unaffected 
by the preceding number of consecutive unobtained rewards 
(p = 0.434). As before, a linear model predicting earnings 
showed that participants who completed too few or too many 
trials earned the least, in line with the experimental design 

(Fig. 6A; general linear model with quadratic term, F = 
11.21, β = -5.53, SE = 2.71, R2 = 0.33, p = 0.047). When 
assessing the optimality of acceptances for 4 and 8 cents 
(99% of 20 cent offers were correctly accepted), chi-squared 
tests against the optimal rate of 50% showed that participants 
under-accepted physical effort trials (proportion accepted = 
0.46, χ2 = 6.53, p = 0.01; all other p > 0.05). Despite this 
deviation, participants earned a similar total amount per cost 
condition on average (mean Cognitive = 3.13, SD = 0.52; 
mean Wait-C = 3.56, SD = 0.27; mean Physical = 3.44, 
SD = 0.25; mean Wait-P = 3.59, SD = 0.24). These results 
convey that, in contrast to Experiment 1, participants were 
similarly successful across the different cost conditions.

Next, we addressed the hypothesis that passive waiting 
trials would be preferentially accepted relative to effortful 

Fig. 6  Within-subject acceptance behavior. A: Quadratic relationship 
between trial completions and total earnings. B: Proportion of accept-
ances of each reward per cost condition. C: Matrix of mixed-effects 
coefficients showing comparisons among cost conditions (while con-
trolling for reward amount). Cognitive and Physical trials were com-
pared to one another and were each compared to Wait trials from the 
same block (Wait-C and Wait-P, respectively). We omitted compari-

sons to Wait trials in the opposite block type (gray cells), which have 
little interpretability and were not addressed in our predictions. Aster-
isks mark statistically significant comparisons. D: AIC and BIC val-
ues for models of increasing complexity (AllMain refers to the a pri-
ori model which included main effects of cost condition and reward 
offer amount.)
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trials, reflecting a pattern of effort minimization. Even 
though the overall reward acceptance pattern was similar to 
the 10 s handling time condition in Experiment 1 (Fig. 6B), 
differences among cost conditions were less evident. Moreo-
ver, these differences contradicted our predictions, as cog-
nitive effort continued to be accepted at the highest rate. 
A mixed effects logistic regression confirmed once again 
that increases in offer amount made acceptances signifi-
cantly more likely (β = 0.76, SE = 0.02, p < 0.001), but 
that the only significant difference across cost conditions 
was a higher acceptance rate for cognitive-effort offers than 
physical-effort offers (Fig. 6C; β = 0.38, p < 0.001). Nei-
ther Cognitive trials nor Physical trials had significantly 
different acceptance rates from the Wait trials that were 
interleaved in the same block (Cognitive versus Wait-C: β 
= 0.06, p = 0.565; Physical versus Wait-P: β = -0.18, p 
= 0.11). Model comparisons showed that a model with all 
main effects explained a large portion of the variance (R2 = 
0.82), and there were similar AIC and BIC values for any 
model including reward amount (Fig. 6D). An analysis of 
deviance among the three models showed that adding cost 
condition to reward amount significantly improved the fit 
 (AICreward = 1859,  AICa-priori = 1852, χ2(3) = 13.24, p = 
0.004) and that including a term for the interaction between 
reward amount and cost condition improved the fit still 

further  (AICInteraction = 1830, χ2(3) = 28.34, p < 0.001). 
These results contradicted our hypothesis that Wait trials 
would be favored, but also did not indicate participants had 
a straightforward preference for Cognitive trials relative to 
the corresponding Wait-C trials. Instead, cost condition had 
only relatively small effects on acceptance rates when cost 
conditions varied within-participant. To shed further light 
on the dynamics underlying the small overall effect, we next 
examined how it varied over the course of the experimental 
session.

Consistency and Stability of Choices

Consistent with Experiment 1, a survival analysis showed 
that participants made most of their choices quickly within 
the offer window (Fig. 7A). The median percentage of quits 
during the handling time was 2.61% (SD = 7.67), with only 
2 participants quitting over 20% of trials during the han-
dling time. Cumulative quitting time distributions showed 
that responses during the offer window became faster over 
time (Fig. 7B). Once in the handling time, the overall per-
centage of forced travels was low for both Cognitive trials 
(median = 5.99%, SD = 9.59) and Physical trials (median 
= 0%, SD = 3.62). The results suggest that decision makers 

Fig. 7  Choice consistency and stability in Experiment 2. A: Survival 
curves showing trial rejection times for each cost condition. B: Distri-
bution of trial rejection times within the offer window. C: Acceptance 

rate in the last two blocks as a function of acceptance rate in the first 
two blocks. Dashed lines indicate the mean for each cost. D: Accept-
ance rates in the three successive occurrences of each block type
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were consistent in their adopted strategies, and were able to 
perform the tasks well.

However, contrary to our prediction that choices would 
reflect a stable cognitive representation of task structure, 
participants accepted significantly fewer trials in the sec-
ond half of the experiment, regardless of cost condition 
(paired permutations; Cognitive:  meanpre = 0.76,  SDpre = 
0.17,  meanpost = 0.65,  SDpost = 0.21, p < 0.001, Cohen’s 

D = 0.6; Physical:  meanpre = 0.71,  SDpre = 0.2,  meanpost = 
0.65,  SDpost = 0.21, p = 0.011, Cohen’s D = 0.27; Wait-C: 
 meanpre = 0.73,  SDpre = 0.2,  meanpost = 0.66,  SDpost = 0.22, 
p = 0.004, Cohen’s D = 0.31; Wait-P:  meanpre = 0.72,  SDpre 
= 0.2,  meanpost = 0.66,  SDpost = 0.22, p = 0.01, Cohen’s D 
= 0.3; Fig. 8). The reduction in acceptances was not driven 
by a performance decline, as the proportion of forced travels 
was not significantly different between the first and second 

Fig. 8  Acceptance rates over time in Experiment 2. A: Propor-
tion accepted in the first two and last two blocks of the experiment. 
An initial preference for cognitive effort trials faded amid a global 
decrease in acceptance rates. B: Mixed effects coefficient matrix for 
early and late trials separately. The pattern for early trials – but not for 

late trials – resembled what was observed in Experiment 1 (Fig. 3B). 
C: Results presented separately for participants who experienced the 
Cognitive/Wait block type first or who experienced the Physical/Wait 
block type first
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half of the experiment (paired permutation with 5000 itera-
tions, p = 0.141). Notably, the pattern of choices from the 
first part of the experiment resembled that from the cor-
responding 10 s handling-time condition in Experiment 1 
(compare Fig. 5A, middle to Fig. 8A). Mixed effects logistic 
regressions performed on each half separately confirmed that 
the relative preference for cognitive effort seen previously 
was preserved at the beginning of the experiment (Fig. 8B, 
lower triangle), but that it became undetectable over time 
amid an overall decline in acceptance rates as participants 
gained experience with cognitive effort, physical effort, and 
passive waiting trials (upper triangle). This fading prefer-
ence for cognitive effort was observed regardless of which 
block participants experienced first, although its magnitude 
appeared to be reduced for those who experienced the physi-
cal block first (Fig. 8, bottom)

Together, our findings show that the stable preferential 
acceptance of cognitive effort trials that we observed during 
single-demand foraging slowly faded if alternative demands 
were introduced. This finding raises the question of how 
features of the cognitive task might be re-evaluated as a 
function of other experiences in the same decision context. 
We probed this question by fitting a series of computational 
models to data from both Experiments 1 and 2.

Computational Modeling of Foraging 
Behavior

We developed a computational model to identify cognitive 
operations that could explain the complex patterns observed 
across Experiments 1 and 2. We identified four key aspects 
of the behavioral results that an adequate computational 
model should be able to capture: 1) modest under- and 
over-harvesting of offers relative to the optimal strategy as 
a function of reward offer amount (e.g. Fig. 3A); 2) depend-
ence of choices on recent offer history; 3) higher accept-
ance rates if all reward offers were associated with cogni-
tive effort (Experiment 1); and 4) gradual abolishment of 
the tendency to over-accept cognitive effort trials if other 
forms of demand were interleaved in the same environment 
(Experiment 2). These conditions excluded a number of 
potential explanatory candidates that were not modeled, such 
as learned industriousness, boredom, fatigue, or asymmetric 
learning of environmental richness (see Discussion).

Methods

Model Fitting and Model Comparison Procedures

For each model, both population-level and individual 
subject-level parameters were fit simultaneously using an 
Expectation-Maximization algorithm (Huys et al., 2011, 

2012). Briefly, it was assumed that, at the population level, 
subject-level values for each parameter were distributed 
according to a Gaussian distribution, defined by a mean 
and standard deviation. Accordingly, point estimates for the 
individual subject parameters were found via maximum a 
posteriori (MAP) estimation using the population distribu-
tion for each parameter as the priors, and the variance in 
each individual subject parameter estimate was calculated 
by taking the inverse of the Hessian matrix at the MAP esti-
mate. Next, the mean of the prior was updated by taking the 
weighted mean of individual subject estimates, and the vari-
ance of the prior was updated by taking the weighted vari-
ance across the parameter estimates of individual subjects. 
This process was repeated until the mean and variance of 
the prior for all parameters converged (a change of less than 
.1% across successive iterations). Full mathematical details 
of the algorithm can be found in Huys et al. (2011, 2012), 
and the algorithm was implemented using a custom written 
R package, GaussExMax, available on GitHub (github. com/ 
gkane 26/ Gauss ExMax).

Model comparison was performed by calculating Bayes-
ian Information Criterion at the group level (integrated BIC 
or iBIC, Huys et al., 2011, 2012; Kane et al., 2019). iBIC 
penalizes the likelihood of the data given model parameters, 
p(d| model), for model flexibility (the number of parameters, 
k), and the size of the penalty depends on the number of 
observations o:

A Laplace approximation was used to find the log mar-
ginal likelihood, the likelihood of the data for each subject 
given the population level distribution over each parameter 
(Huys et al., 2011; Huys et al., 2012; Kane et al., 2019).

Model Definitions

We began by fitting a base model derived from the nor-
mative predictions of the Marginal Value Theorem (MVT, 
Charnov, 1976), which states that a delayed reward should be 
accepted if its magnitude surpasses the opportunity cost of 
time incurred in obtaining it (see Reward-maximizing Strat-
egy for details). This evaluation rule can be expressed as

such that the reward R of trial i is favorable if it is larger 
than the average amount one could earn per second in the 
environment γ (the opportunity cost) during the handling 
time Thandlingi , with high values of γ promoting selectivity. 
We fit this and all subsequent models using a softmax deci-
sion rule to determine the probability of accepting the offer 
on a given trial

iBIC = logp(d|model ) + k

2
log(o)

(1)Vbasei
= Ri − �Thandlingi
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The value of γ in this base model was computed as an 
individual’s empirical rate of earnings by the time of each 
offer, with the free temperature parameter β indexing deci-
sion noise. Differences among the between-subject cost con-
ditions in Experiment 1 could then be due to the impact of 
each cost on decision noise, which could have also driven the 
gradual convergence of acceptance rates in Experiment 2.

A second possibility is that individuals updated the esti-
mate of gamma at different rates when faced with different 
demands. Previous accounts have demonstrated biases that 
can impact the learning of the opportunity cost in forag-
ing paradigms (Dundon et al., 2020; Garrett & Daw, 2020). 
We therefore tested a second candidate model, an adaptive 
model that allowed γ to evolve over time, adapting a learning 
rule from Constantino and Daw (2015)

where Ai is an acceptance indicator (0 or 1), and τi is the 
duration of the trial. The duration was given by

such that the handling time was counted only for accepted 
trials. Higher values of the learning rate α (ranging from 0 to 
1) resulted in a larger update toward the current trial’s rate of 
earnings weighted by its duration (first term in the equation). 
Free parameters for this adaptive model were the learning 
rate α and the initial value of γ in addition to the temperature 
β. These modifications allowed for the tracking of recent 
reward history, while maintaining the same evaluation rule

where values of γ were now updated on each trial i according 
to Eq. 3, rather than by the empirical rate of earnings.

A third possibility was that rather than impacting the learn-
ing rate, features specific to each cost condition additively 
biased the estimate of γ. Such bias could remain stable if only 
one type of demand was experienced (Experiment 1), but 
adjust over time as biases from other tasks were experienced 
(Experiment 2). For example, such biases could reflect an indi-
vidual’s global estimation of the richness of the environment, 
could reflect any direct utility or disutility of the experience 
during the handling time, or could reflect a focal estimation of 
the passage of time experienced during performance of each 
task (e.g. how long 10 seconds subjectively feels). Altered 
perceived time durations have occasionally been associ-
ated with levels of cognitive engagement (Csikszentmihalyi, 
2014; Wearden, 2016), and would be expected to impact the 

(2)P(accept)i =
1

1 + e
−(1∕�)

(
Vbasei

)

(3)�i+1 =
(
1 − (1 − a)�i

)RiAi

�i
+ (1 − α)�i�i

(4)�i = ThandlingiAi + Ttraveli

(5)Vadaptivei
= Ri − �iThandlingi

subjective estimate of a trial’s reward rate. Intuitively, the sub-
jective duration of a fixed handling time could be recalibrated 
toward a consensus estimate as decision makers experienced 
different types of pre-reward demands. Our third candidate 
model, biased model, added a demand-specific term to γ that 
was gradually integrated across tasks for those participants 
who experienced multiple cost conditions. The overall model 
took the following form

where γ was the mean total rate of earnings per subject 
(mean = 0.55 cents per second, SD = 0.02). Negative values 
of Ci would therefore suggest a boost in offer value produced 
by a particular form of demand. On each trial i, Ci was the 
cost bias produced by each demand cdemand weighted against 
a global bias estimate cglobal

with wi controlling how early participants started integrat-
ing the consensus cost cglobal into their decisions. The value of 
this weight was given by

where the term in parentheses was the proportion of the 
experiment completed so far (note that the organization of the 
experimental session was fully disclosed), with high values 
of the free parameter αw denoting a late integration of the 
global converging bias. Since participants in Experiment 1 
experienced a single type of demand, the values of cdemand 
and cglobal where the same and αw did not play a role. This 
resulted in fitting only two free parameters, cdemand and β, for 
that data set. For Experiment 2, we fixed each value of cdemand 
(i.e. ccognitive, cwait, and cphysical) to the mean of the fitted param-
eters from each demand group from Experiment 1, and fit three 
free parameters: the global bias cglobal, the convergence rate 
αw, and temperature β. This dynamic allowed for differences 
in acceptance rates across cost conditions to remain stable in 
Experiment 1 but gradually collapse in Experiment 2.

Finally, we asked if the biases imposed by each form of 
demand could be isolated from a flexible computation of 
the opportunity cost of time. Our fourth candidate model, 
an adaptive + biased model, combined the main features of 
the adaptive model and the biased model, such that γ was 
estimated on each trial per Eq. 3, with demands imposing 
distinct and potentially converging biases as described in 
Eq. 6-8. The form of this fourth model was

We fit four free parameters to Experiment 1 data (the 
temperature β, learning rate α, initial value of γ, and 

(6)Vbiasedi
= Ri −

(
� + Ci

)
Thandlingi

(7)Ci = CglobalWi − Cdemand

(
1 −Wi

)

(8)Wi =

(
i

max(i)

)�w

(9)Vataptive+biasedi
= Ri −

(
�i + Ci

)
Thandlingi
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demand-specific bias cdemand) and five free parameters to 
Experiment 2 data (the temperature β, learning rate α, ini-
tial value of γ, consensus bias cglobal, and the rate of bias 

integration αw). The resulting parameters were compared 
across cost groups (in Experiment 1) and across experi-
ments using ANOVAs, and the cdemand biases computed in 
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Experiment 1 were compared against 0 using one-sample 
t-tests.

Results

The fourth model produced the lowest iBIC in both experi-
ments (Fig. 9A; Experiment 1 iBIC = 3552.2; Experiment 2 
iBIC = 1818.57), indicating that the tenets of the Marginal 
Value Theorem were necessary but not sufficient to explain 
the observed adaptive behavior. Fig. 9B-C show parameter 
fits from the winning model for both experiments. The learn-
ing rate α and the bias cdemand were of particular interest, as 
these parameters distinguished whether different forms of 
demand globally affected the integration of the environmen-
tal richness or directly modulated an offer’s perceived cost, 
respectively. Analyses of variance showed significant dif-
ferences among Experiment 1 groups only for cdemand (F(2, 
60) = 7.01, p = 0.002), with α being similar for all groups. 
Pairwise post-hoc permutations confirmed that the Cognitive 
group (mean = -0.08, SD = 0.14) had lower values for the 
bias parameter than either the Wait group (mean = 0.11, SD 
= 0.18; p < 0.001; Cohen’s D = 1.16) or the Physical group 
(mean = 0.09, SD = 0.21; p = 0.006; Cohen’s D = 0.95). 
Parameter estimates were significantly greater than zero for 
the Wait group (t(20) = -2.51, p = 0.021), and marginally 
significantly lower than zero for the Cognitive group (t(20) 
= 1.99, p = 0.06).

The mean values of cdemand from each group were carried 
over to the model of Experiment 2, and were aggregated 
over time according to a weighted decay into a final cglobal 
value. As can be seen in Fig. 9C, other parameter values 
were comparable across experiments, pointing to consist-
ency in the way decision makers approached our foraging 
scenarios. In addition, values of αw suggested that cdemand 
estimates converged towards the second half of the experi-
ment (mean = 1.75, SD = 2.07), gradually reducing bias by 
the end of the experimental session (cglobal mean = -0.02, SD 
= 0.06). Model fits provided good qualitative resemblance 

to the observed choice dynamics in each experiment. This 
is illustrated in Fig. 9, in which 95% confidence intervals 
from within-subject fits are overlaid on empirical choices 
from Experiment 2.

Discussion

Understanding the sporadic attractiveness of effort remains 
elusive. In this study, we sought to identify factors underly-
ing this phenomenon, and tested the hypothesis that the per-
ceived cost or value of effort could depend on whether the 
decision environment contains opportunities to achieve the 
same outcome through different means. We conducted two 
foraging experiments that exposed individuals to a single 
or intermixed types of demands (cognitive effort, physical 
effort, or passive delay). We found a tendency toward engag-
ing with cognitively effortful prospects when individuals 
faced a single form of demand in Experiment 1, whereas an 
initially similar choice pattern faded over time in Experiment 
2 when other costs were also experienced.

Our findings provided partial support for our pre-reg-
istered hypotheses (https:// osf. io/ 2rsgm/ regis trati ons). In 
accord with our predictions, decision makers in both experi-
ments successfully approximated reward-maximizing strate-
gies, as evidenced by acceptance rates near optimal levels. 
This is in line with previous foraging experiments, where 
the main deviation from optimality has been a tendency to 
overharvest (Cash-Padgett & Hayden, 2020; Constantino & 
Daw, 2015; Garrett & Daw, 2020; Le Heron et al., 2020; 
Wikenheiser et al., 2013). In contrast, our prediction that 
effort requirements would lead to greater acceptance rates 
only held for the Cognitive group, and this tendency did 
not reverse as predicted in Experiment 2. These hypotheses 
originally stemmed from prevalent proposals that incentiv-
ized work should become more appealing when presented in 
isolation (Eisenberger, 1992; Inzlicht et al., 2018), but that 
people would opt for the easiest way to achieve desired out-
comes when multiple alternatives are available (Hull, 1943; 
Kool et al., 2010; Olivola & Shafir, 2013). Instead, our novel 
use of foraging paradigms, in addition to our inclusion of 
types of effort that are often studied separately, highlighted 
that reward-independent task characteristics can promote or 
inhibit the pursuit of effortful prospects.

The observed choice dynamics ruled out a number of can-
didate explanations. For instance, if the subjective costs and 
benefits of effort or delay were intrinsic (or if participants 
merely found the cognitive tasks enjoyable), we would not 
have expected to observe the gradual convergence in accept-
ances when all three forms of demand were intermixed in 
the same environment. This line of reasoning also speaks 
against a direct role of boredom in our results. The aversive-
ness of boredom can lead people to attempt any available 

Fig.9  Computational modeling results. A: iBIC values for four can-
didate models of choice behavior for both experiments. Lower values 
indicate better fit. B: Estimates of the bias parameter c-demand for 
participants in the Physical, Cognitive, and Wait cost conditions of 
Experiment 1. Negative values suggest the Cognitive group acted as 
if cognitive demands attenuated the perceived opportunity cost of the 
delay. C: Estimates of other model parameters indicated consistent 
foraging behavior across conditions and experiments. D: Synthetic 
behavior for Experiment 2 generated by the winning model. Error 
bars correspond to the empirical mean acceptance rate ± SEM per 
cost type, whereas lines and shaded areas show the model-generated 
mean acceptance rate and its SEM, respectively. The model’s behav-
ior recapitulated the initial apparent preference for cognitive effort 
and the eventual convergence of acceptance rates by the end of the 
session

◂
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activity in order to avoid it (Westgate, 2020; Wilson et al., 
2014). In our paradigm, such a tendency would have been 
expected to lead to a persistent preference for either effort-
ful condition. Lastly, the gradual convergence of acceptance 
rates across cost conditions rules out the possibility that our 
sample was mostly composed of demand seekers. Some 
individuals express a strong need for cognition, which can 
bias studies of mental labor (Cacioppo et al., 1996; Sayalı & 
Badre, 2019). Even though the prevalence of this trait in our 
college-level population could have driven the preferences 
for cognitive effort observed in both experiments, we would 
have expected such individuals to maintain this preference in 
the face of alternatives. Similarly, it is possible that people 
were driven to improve in the cognitive tasks, a motiva-
tion that might have boosted acceptance rates. The consist-
ently high performance shown in the cognitive tasks (i.e., 
relatively few forced travels) reduces the likelihood of this 
possibility in our view, but it cannot be ruled out. Another 
potential explanation worth considering is fatigue. Previ-
ous accounts have distinguished between short term fatigue, 
which operates in short term bursts that require interleaved 
rest, and long-term fatigue, which produces a slow decay in 
performance that is unrecoverable (Bächinger et al., 2019; 
Meyniel et al., 2013; Müller et al., 2021). On one hand, we 
found no sequential effects of quitting on choices, speak-
ing against the type of periodic rest that is characteristic 
of short-term fatigue. In terms of long-term fatigue, even 
though participants decreased their acceptance rates for 
effort in both experiments (a hallmark of effortful exertion), 
we would have expected fatigued participants in Experiment 
2 to increase engagement with Wait trials, substituting Wait 
trials for effort trials in order to preserve their earnings. Fur-
thermore, our observations are unlikely to be due to the risk 
of failing to successfully complete effortful trials, as partici-
pants remained accurate throughout both experiments, and 
efficacy was consistent across cost conditions and experi-
ments (Frömer et al., 2021). Finally, we cannot conclude that 
cognitive effort gained value from its rewarding outcomes, 
as has been proposed in the past (Eisenberger & Cameron, 
1996). This phenomenon would not have been expected to 
benefit a single type of demand differentially because cogni-
tive effort, physical effort, and unfilled delay were rewarded 
at the same rate.

Traditional foraging models, in which a reward is weighed 
against the earnings foregone by pursuing it (Charnov, 
1976), were also not sufficient to explain our results, con-
sistent with previous evidence for systematic suboptimalities 
in human and primate foraging behavior (Cash-Padgett & 
Hayden, 2020; Constantino & Daw, 2015; Garrett & Daw, 
2020; Le Heron et al., 2020). Instead, our results were con-
sistent with a computational model in which each type of 
demand distinctly biased the estimation of the opportunity 
cost, and such biases could be gradually recalibrated over 

time as decision makers gained experience with additional 
demands. In this formulation, passive delay and physical 
effort added to the opportunity cost, whereas cognitive effort 
reduced it. This raises the question of how these biases arise. 
We hypothesize that demands altered the perceived duration 
of the delay interval. Immersive activities can subjectively 
speed up the passage of time (Csikszentmihalyi, 2014), and 
this effect appears to scale with the amount of cognitive 
processing required by a task (Wearden, 2016). Moreover, 
adjusting for time sensitivity has been shown to improve 
fits for delay discounting models (Mckerchar et al., 2009). 
Therefore, even though participants knew the nominal han-
dling times, cognitive effort might have promoted higher 
acceptance rates by subjectively compressing the perceived 
durations. We speculate that this construal of elapsed time 
could then be adjusted with the experience of alternative 
demands, as participants learned how long the 10-second 
handling time felt in the context of various activities. This 
could help explain why preferences for cognitive effort 
were smaller for those participants in Experiment 2 who 
started with the physical effort block, as they had already 
begun to form an estimate of the handling time before they 
experienced their first cognitive effort trial. The cogni-
tive effort task might have shortened subjective durations 
for several reasons, either because it divided the handling 
time into discrete, 2 s trials, or because taxing cognitive 
resources distracted individuals from estimating the passage 
of time (Zakay & Tsal, 1989). Future iterations of the same 
foraging experiment could adapt the configuration of each 
effortful task in order to test this idea directly. For example, 
if participants estimated the elapsed duration of a trial by 
counting each sub-task within cognitive effort trials rather 
than by tracking time continuously, it should be possible to 
influence acceptance rates by manipulating the number of 
discrete sub-tasks performed during a fixed handling time 
for either cognitive or physical effort trials. Alternatively, if 
the biases were produced by an inability to direct cognitive 
resources to the estimation of elapsed time (Zakay & Tsal, 
1989), increasing working memory load during the handling 
time should modulate the opportunity cost biases from our 
computational model. This could be done, for example, by 
assigning a different level of n-back load to each participant.

Existing foraging models have incorporated energetic 
costs into evaluations of prospective rewards (Charnov, 
1976; Stephens & Krebs, 1986). Whereas physical effort 
indeed demands such an energy expenditure, cognitive effort 
is not clearly associated with differential caloric costs (Inzli-
cht et al., 2014; Kurzban et al., 2013). This physiological 
distinction could have contributed to the differences between 
cognitive and physical effort observed here. However, a 
number of features complicate the potential role of caloric 
costs as an explanatory factor for our findings. First, the 
effects of behavioral costs on acceptance rates deviated from 
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optimality in different directions (a difference in kind, not 
just degree). Second, in contrast to traditional models that 
focused primarily on animal behavior, the rewards in our 
study were non-caloric. Third, wait trials did not demand 
elevated energy consumption, yet had similar acceptance 
rates to physical effort trials in both experiments.

Relying on foraging paradigms enabled us to address sev-
eral gaps in the existing literature of effort-based decision 
making. For example, even though engaging with a demand-
ing offer encompasses the evaluation, pursuit, and receipt of 
the outcome, investigations of the pursuit and receipt stages 
have been limited. While some previous demonstrations 
of effort discounting have involved effort undertaken dur-
ing the task (Bonnelle et al., 2016; Hartmann et al., 2013; 
Klein-Flugge et al., 2016; Klein-Flügge et al., 2015; Le 
Heron et al., 2019; Lockwood et al., 2017), many others 
have strategically isolated the evaluation stage by presenting 
individuals with offers that are not realized until the end of 
the experimental session (Apps et al., 2015; Chong et al., 
2016; Kable & Glimcher, 2007; Massar et al., 2015). Given 
that discrepancies between expected and experienced value 
(Kahneman & Thaler, 2006) could affect choice dynam-
ics over time, our studies sought to probe how the ongoing 
experience of costs and outcomes would affect subsequent 
choices by providing participants with an opportunity to 
actively experience the demands they accepted, and giving 
them full knowledge of the available options. Another chal-
lenge in comparing effort and delay is that increments in 
the required effort are often paired with a longer execution 
time. We avoided this issue by imposing consistent handling 
times for all demands, allowing us to manipulate temporal 
durations and demands for effort independently. Finally, 
the existence of well-defined optimal strategies provided a 
useful reference point for evaluating choice behavior. The 
apparent attractiveness of cognitive effort was reflected both 
by a higher proportion of acceptances at the expense of earn-
ings, and by parameter estimates capturing bias in the esti-
mation of opportunity costs.

A potential limitation of this work is that we examined 
only a single combination of cognitively effortful tasks, 
and we cannot be sure that the intensities of cognitive and 
physical effort were perceived as equivalent. Previous stud-
ies have attempted to match different cost types by titrating 
the amount of each cost that yielded equivalent monetary 
discounting prior to the experiment (Massar et al., 2015). 
This type of procedure could be extended in future studies 
to investigate whether commensurate intensities of cogni-
tive and physical effort might impose different subjective 
costs during decision making. For example, one possible 
strategy might be to match the subjectively rated intensity 
or difficulty of two qualitatively different effort manipula-
tions and then test the effect of each manipulation on deci-
sions. Another possibility would be to match the costliness 

of two effort manipulations in a discounting task and then 
test whether they nevertheless differed in their impact on 
foraging-style decisions. An intensity-matching procedure 
would be more feasible in a within-participant experiment 
(like our Experiment 2). In a between-participant experiment 
in which participants were intended to be kept unaware that 
other cost types existed (like our Experiment 1), intensity 
matching might need to rely on group-average responses. 
Yet another valuable future direction would be to test mul-
tiple intensity levels for both cognitive and physical effort 
within-participant.

Our approach to calibrating the intensity of effort manip-
ulations was to adjust the physical gripping threshold to 
people’s maximum strength and to train participants in the 
cognitive tasks until they reached criterion. Training might 
have improved response automaticity and reduced error-
related risk. In addition, attributes such as the efficacy to 
complete a task, or the diversity of its components, have 
been reported to promote engagement (Bandura, 2010; 
Eisenberger & Cameron, 1996). However, hand grip tasks 
have frequently been used to probe physical effort in previ-
ous work (Chong et al., 2017; Hogan et al., 2018; Prevost 
et al., 2010), and task switching has been shown to impose 
subjective costs (Kool et al., 2010; Shenhav et al., 2017). 
Furthermore, the observed decrease in acceptance rates over 
time for both effort domains is consistent with patterns seen 
for other forms of effortful exertion (Treadway et al., 2009) 
and the decrease was similar for both effort conditions. Even 
so, future work should investigate whether other ways of 
operationalizing cognitive and physical effort would be more 
aversive or more engaging and would resultingly have differ-
ent effects on decision making. For example, manipulating 
the temporal organization and surface features of the tasks 
could further help us evaluate the possibility that the cogni-
tive effort tasks were preferred because incidental factors 
such as novelty or variety made them fun or interesting.

The present findings have important implications for eve-
ryday and clinical scenarios. Excessive aversion to delay and 
effort can manifest as impulsivity and apathy, respectively 
(Ainslie, 1975; Bonnelle et al., 2016; Chong et al., 2016; 
Cummings, 1993), fluctuations in which are hallmark symp-
toms of various mental illnesses and substance use disorders 
(Paulus, 2007). Lack of motivation to exert effort or wait for 
delayed prospects is a distinguishing factor of conditions 
such as depression and schizophrenia (Barch et al., 2019). In 
depression, medicated patients in remission are more sensi-
tive to effort than control participants, and this sensitivity 
is predictive of relapse (Berwian et al., 2020). Encouraging 
patients to engage in activities has been found to be a helpful 
treatment for depression (Dimidjian et al., 2006). Tailored 
reward schedules can successfully achieve this (Eisenberger 
& Cameron, 1996). However, since depressed patients also 
show insensitivity to rewards (Huys et al., 2013), identifying 
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what makes effort appealing in its own right can help address 
treatment-resistant cases. Our work suggests that voluntary 
effortful engagement can be encouraged by removing cog-
nitively less-effortful paths to reward from the immediate 
decision context, and suggests it would be useful for future 
work to test directly for effects of effortful tasks on concur-
rent time estimation. These same principles can potentially 
be applied to increasing productivity at work or adherence 
to physical exercise routines.

Conclusion

In this study, we have examined the factors that motivate 
engagement with different behavioral demands, emphasizing 
how engagement can be influenced by features of the deci-
sion environment. Complementing work that has focused on 
the role of incentives and retrospective justifications (Eisen-
berger & Cameron, 1996; Inzlicht et al., 2018), our work 
highlights outcome-independent and task-specific features 
that can motivate the pursuit of effortful courses of action.
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