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Abstract
Learning theories of posttraumatic stress disorder (PTSD) purport that fear-learning processes, such as those that support fear acqui-
sition and extinction, are impaired. Computational models designed to capture specific processes involved in fear learning have
primarily assessed model-free, or trial-and-error, reinforcement learning (RL). Although previous studies indicated that aspects of
model-free RL are disrupted among individuals with PTSD, research has yet to identify whether model-based RL, which is inferential
and contextually driven, is impaired. Given empirical evidence of aberrant contextual modulation of fear in PTSD, the present study
sought to identify whether model-based RL processes are altered during fear conditioning among women with interpersonal violence
(IPV)-related PTSD (n = 85) using computational modeling. Model-free, hybrid, and model-based RL models were applied to skin
conductance responses (SCR) collected during fear acquisition and extinction, and themodel-basedRLmodelwas found to provide the
best fit to the SCR data. Parameters from the model-based RL model were carried forward to neuroimaging analyses (voxel-wise and
independent component analysis). Results revealed that reduced activity within visual processing regions duringmodel-based updating
uniquely predicted higher PTSD symptoms. Additionally, after controlling for model-based updating, greater value estimation
encoding within the left frontoparietal network during fear acquisition and reduced value estimation encoding within the dorsomedial
prefrontal cortex during fear extinction predicted greater PTSD symptoms. Results provide evidence of disrupted RL processes in
womenwith assault-related PTSD,whichmay contribute to impaired fear and safety learning, and, furthermore,may relate to treatment
response (e.g., poorer response to exposure therapy).
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Introduction

Posttraumatic stress disorder (PTSD) is an impairing
anxiety-related disorder that is marked by deficits in several

aspects of learning (Jovanovic et al., 2010; Jovanovic et al.,
2012; Pacella et al., 2013). For example, individuals with
PTSD exhibit overgeneralization of conditioned fear from
threat-related cues to approximations of threat-related cues
that are safe (Kaczkurkin et al., 2017; Lopresto et al., 2016),
impaired inhibition of previously learned fear associations,
and impaired recall of extinction learning (for a review, see
Lissek & van Meurs, 2015). Given the ubiquity of learning
deficits in PTSD, identifying specific learning-related process-
es that are disrupted is an important research endeavor.

Computational methods have enhanced researchers’ ability
to circumscribe cognitive processes with greater sensitivity
and precision (Price et al., 2019; Stephan & Mathys, 2014).
The progression of reinforcement learning (RL) models has
been particularly successful, with computational models in-
creasingly capturing behavior and learning phenomena not
well explained by prior models (Cochran & Cisler, 2019; Le
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Pelley, 2004; Mihatsch & Neuneier, 2002; Redish et al.,
2007). For example, whereas the standard Rescorla-Wagner
(RW)model, which was developed to quantitatively formalize
Pavlovian RL, models simple trial-and-error (“model-free”)
learning, it does not capture more dynamic processes that
occur during conditioning and extinction. Indeed, hybrid
Pearce-Hall/RW learning models, which track trial-by-trial
associability (i.e., the salience of a cue), provide a better fit
for probabilistic (Brown et al., 2018) and fear-related learning
(Homan et al., 2019; Li et al., 2011) than the standard RW
model among healthy controls and individuals with PTSD.

In addition to data-driven model development, alignment
of computational models with psychological theory is para-
mount (Huys et al., 2016), as this will allow for the testing and
refinement of current hypotheses regarding the role of learn-
ing in disorders, such as PTSD. Whereas prior research has
primarily assessed relatively simple trial-and-error learning in
PTSD (Brown et al., 2018; Cisler et al., 2015; Cisler et al.,
2019; Ross et al., 2018), few have included models that cap-
ture higher-level cognitive processes. Importantly, theories of
anxiety and PTSD implicate abstract, higher-order cognition
in fear learning and extinction (Dunsmoor & Murphy, 2015).
For example, the degree to which learned fear is generalized
may depend on individuals’ reasoning about internal concep-
tual representations (Dunsmoor &Murphy, 2015). In addition
to the ability to reason about, integrate, and abstract categor-
ical representations, which is facilitated by the anterior pre-
frontal cortex (Davis et al., 2017), the abstraction of rules and
contextual information is mediated by prefrontal regions
(Cools et al., 2004; Fogelson et al., 2009). Evidence of im-
paired contextual modulation of fear learning among individ-
uals with PTSD further suggests a potentially important role
of complex cognitive functions in the acquisition and revision
of fear (Steiger et al., 2015).

Unlike model-free (e.g., RW) and hybrid RL, which in-
volve trial-and-error revisions of cue-outcome associations,
model-based RL captures structured and dynamically shifting
conditions or “rules” of learning (Daw et al., 2005; Redish
et al., 2007). Model-based RL is theorized to support the de-
velopment of internal models (i.e., cognitive maps)1 that con-
tain hypotheses about different task conditions to allow a
learner to make predictions about future actions within a
changing environment (Daw et al., 2005; Gläscher et al.,
2010). During a situation in which a stimulus is paired with
an aversive outcome (e.g., a circle is paired with a shock), an
individual utilizing model-free RL would develop a single
outcome expectation for that stimulus (e.g., “circles are

dangerous”). By contrast, during a situation in which the
pairing of an aversive outcome and a stimulus can change
depending on situational factors (i.e., the abstract ‘state’ of
the environment), an individual utilizing model-based RL
would develop separate outcome expectations for the various
conditions and would differentially weight their expectations
depending on which situation (i.e., state) was currently rele-
vant (e.g., “circles are dangerous in situation X, but not Y”). In
PTSD, difficulty with the latter may contribute to challenges
with new safety learning, which is common in PTSD (Fani
et al., 2012).

Whereas model-free and hybrid RL are primarily imple-
mented within regions of the ventral striatum, amygdala, and
the salience network (Beierholm et al., 2011; Brown et al.,
2018; Cisler et al., 2019; Daw et al., 2011; Gläscher et al.,
2010; Ross et al., 2018), model-based RL is primarily imple-
mented within regions of the prefrontal cortex and
frontoparietal network (FPN; Beierholm et al., 2011;
Gläscher et al., 2010). Supporting the possibility that individ-
uals with PTSD may have deficits in model-based RL, prior
research has documented deficits in cognitive functions that
are implemented within brain regions that overlap with those
that support model-based RL, such as dorsolateral prefrontal
cortex, inferior frontal gyrus, and anterior prefrontal cortex
(Leskin & White, 2007; Polak et al., 2012; Stein et al.,
2002; Woon et al., 2017; Alvarez & Emory, 2006; Doll
et al., 2016). Thus, model-based RL may be disrupted in
PTSD to a greater extent than model-free processes.

The primary goal of the present study was to build on
previous work assessing model-based RL during acquisition
and extinction of fear among women with assault-related
PTSD. The study focused on assault-related PTSD because
previous research has consistently shown that assault is a more
potent risk factor for the development of PTSD than other
forms of trauma (Breslau et al., 1998; Cisler et al., 2012;
Frans et al., 2005; Kessler et al., 2017; Resnick et al., 1993).
Additionally, because different forms of trauma predict differ-
ent PTSD symptom profiles (Kelley et al., 2009), we selected
participants with assault-related PTSD to increase the homo-
geneity of our participants, allowing us to avoid potential con-
founds of trauma type. Women were specifically selected for
inclusion, because women are (1) twice as likely as men to
develop PTSD (Kessler et al., 2005; Kilpatrick et al., 2013)
and (2) at higher risk of exposure to many forms of interper-
sonal violence than men, including rape, sexual assault, and
physical assault by an intimate partner (Iverson et al., 2013). It
was hypothesized that the model-based RL model would pro-
vide a better fit for participants’ behavior than the model-free
and hybrid models, which do not allow a learner to develop
sets of cue-outcome associations that are differentially applied
and updated based on inferences about task rules (e.g., rules
that differ for the acquisition and extinction context). It was
further hypothesized that FPN encoding of trial-by-trial

1 The terminology “model-based” and “model-free” refer to whether a learner
develops an internal model of the environment, which occurs during
model-based, but not model-free, RL. The distinction between model-free
and model-based RL are explained in more detail elsewhere (e.g., Daw
et al., 2005; Daw et al., 2011; Gläscher et al., 2010; Van Otterlo & Wiering,
2012; Wunderlich et al., 2012).
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updates of current beliefs about task conditions, which are
specific to the model-based model and contribute to differen-
tial weighting of cue value expectations based on a learner’s
hypotheses, would predict PTSD symptom severity.
Specifically, it was anticipated that reduced FPN encoding
would predict greater PTSD symptom severity, reflecting
poorer contextually derived learning. Because PTSD is related
to difficulties with fear extinction/safety learning (Jovanovic
et al., 2009; Jovanovic et al., 2012), potential differences in
the encoding of model-belief updates during acquisition ver-
sus extinction were explored. Due to high overlap between
belief update and prediction error parameters during extinc-
tion, the acquisition versus extinction analyses focused on
value expectations while controlling for belief updates.

Methods

Participants

A total of 103 women were enrolled as part of a larger ran-
domized clinical trial across two study sites: (1) University of
Arkansas Medical Sciences and (2) University of
Wisconsin-Madison (note: n = 175 participants were assessed
for eligibility, and n = 103 were enrolled; for full recruitment
information, see Cisler et al., 2020). Primary inclusion criteria
included female sex, aged between 21 and 50 years, and a
current diagnosis of PTSD related to sexual or physical as-
sault. Primary exclusion criteria included psychotic symp-
toms, pregnancy, learning disability, and medication, or mag-
netic resonance imaging (MRI) contraindications. Twelve
women were excluded due to task visit no show, claustropho-
bia, or a positive drug screen, yielding 91 subjects. Of these 91
subjects, a total of 85 had either viable skin conductance re-
sponses or neuroimaging data (see Computational Modeling
and Neuroimaging sections below).

Clinical Interview and Measures

The past month version of the Clinician Administered PTSD
Scale for DSM-5 (CAPS-5) was used to assess for the pres-
ence of current PTSD related to interpersonal violence (i.e.,
assault-related PTSD;Weathers et al., 2018). The CAPS-5 is a
30-item structured clinical interview that assesses for PTSD
symptoms across four clusters: reexperiencing, avoidance,
negative cognitions and mood, and hyperarousal. Symptoms
are rated on a scale from 0 (absent) to 4 (extreme/incapacitat-
ing). To meet criteria for current PTSD, individuals must en-
dorse a score of 2 or above for at least one reexperiencing
symptom, one avoidance symptom, two negative cognitions/
mood symptoms, and two hyperarousal symptoms. In addi-
tion to a providing a categorical diagnosis, total symptom
scores provided a dimensional measure of current PTSD

symptoms. Although all participants had a diagnosis of
PTSD, there was substantial variation in the CAPS-5 symp-
tom severity scores (see distribution of scores in Supplemental
Figure S1). The One-Word Receptive Picture Vocabulary
Test, Fourth Edition (ROWPVT-4), was used as a proxy mea-
sure of intelligence quotient (IQ; Martin & Brownell, 2011).
IQ was estimated to account for potential effects of individual
differences in IQ on model-based RL, given that IQ deficits
have previously been found to relate to poorer model-based
RL (Culbreth et al., 2016). During the ROWPVT-4, partici-
pants match vocabulary words that are administered verbally
to illustrations that are presented in a book (Brownell, 2000).
Scores were normed according to chronological age.
Additional clinical and trauma assessments were completed
by participants but were not of primary interest. Follow-up
tests were implemented to account for the potential the impact
of these variables on results (for a description of the assess-
ments and results of the follow-up tests, see the Supplement).

Fear Conditioning and Fear Extinction Task

Participants completed four task blocks that alternated be-
tween fear acquisition and fear extinction (Fig. 1a). The first
acquisition block was preceded by a baseline (habituation)
period of 12 trials (6 for presentations of each cue) without
any administrations of the unconditioned stimulus (UCS).2

The UCS was an electrotactile stimulation that was delivered
to participants’ lower leg. Stimulation level was set to a max-
imum of 50 mA, and participants’ stimulation level was indi-
vidually calibrated before the task at a level that was uncom-
fortable but not painful (approximately 7 of 10 on a Likert
scale: 0 = not uncomfortable, 10 = extremely uncomfortable/
painful). Triangles and circles served as the conditioned stim-
uli and different colored backgrounds identified the current
context (i.e., the acquisition or extinction block), which were
counterbalanced across participants (i.e., for half of partici-
pants, the CS+ was a triangle and for the other half the CS−
was a triangle).

During each fear acquisition block, 18 conditioned safety
cues (CS−) and 18 conditioned danger/threat cues (CS+) were
presented for 3 seconds, with an intertrial interval of 2-6 sec-
onds. During acquisition, the presentation of the CS+ was
followed by an electrotactile stimulation (UCS) on 50% of
trials, which occurred 2.5 seconds after the CS+ onset for
duration of 500 msec. During each fear extinction block, there
were 18 trials each of the CS− and CS+ cues, which were
presented for 3 seconds, with an intertrial interval of 2-6 sec-
onds. During extinction, no electrotactile stimulations oc-
curred following the presentation of the CS+. The CS− and

2 SCR responses did not differ between the CS+ and CS- cues during habitu-
ation, t(146) = 1.28, p = 0.202. Conditioned responses to the CS+ were sig-
nificantly larger during acquisition than baseline, t(146) = 7.93, p < 0.001.

201Cogn Affect Behav Neurosci (2022) 22:199–213



CS+ stimuli were pseudorandomly presented during each
block, and participants completed a total of 156 task trials.

Skin Conductance Response Acquisition and
Preprocessing

Following an approach used in previous studies (Homan et al.,
2019; Li et al., 2011), participants’ SCR data was used to test
the fit of several RL models. SCR has previously been shown
to map onto value expectations and associability during RL
(Li et al., 2011). More specifically, anticipatory SCR scales
with the degree to which individuals expect that an outcome
will occur for a given cue (e.g., delivery of an electrotactile
stimulation), with larger SCR responses reflecting greater ex-
pectation of an outcome. Model fit was tested by minimizing
the error between model estimated trial-wise value expecta-
tions and participants’ trial-wise SCR.

SCR data were acquired from participants’ left hand with
the BIOPAC MP150 Data Acquisition System using the
EDA100C module with the MECMRI-TRANS (MRI com-
patible) cable system. BIOPAC AcqKnowledge 4.3 software
recorded SCR data at a rate of 2,000 Hz at the Arkansas site
and 1,000 Hz at the Wisconsin site. Data were preprocessed
using an approach that is consistent with our prior studies
(Cisler et al., 2020; Privratsky et al., 2020) and contemporary
recommendations on modeling skin conductance data (Bach,
2014; Bach et al., 2010; Bach et al., 2013; Bach & Friston,
2013). This pipeline used a 10-ms median filter, unidirectional
butterworth filter with 0.0159 hz and 5-hz low- and high-pass
frequencies, and by downsampling to 10 hz. Next,
trial-by-trial SCR responses were estimated using a forward
convolution model of SCR and were normalized to individ-
uals’ maximum SCR response. Seventeen participants were
excluded from computational modeling analyses due to flat

responding, an excessive number of artifacts, or missing SCR
data, yielding 74 participants whose data were included in the
computational modeling. The amount of SCR data loss (19%)
is comparable to prior fear extinction studies using SCR
(Garfinkel et al., 2014; Haaker et al., 2013; Raij et al., 2018).

Computational Models

To identify whether a model-free, hybrid, or model-based RL
model (from here on referred to simply as model-free, hybrid,
and model-based models) provided a better fit to participants’
SCR data, several models were tested. The primary set of
models that were tested against the model-based model in-
cluded a standard RW model and a hybrid model, both of
which have previously been used to estimate learning param-
eters from SCR data during fear conditioning tasks and the
latter of which has been found to provide a better fit than the
standard RW model (Li et al., 2011). Additional versions of
the standard RW model were tested for completeness (see the
Supplement).

Model-Free Model

Model-free RL was assessed with several versions of the
Rescorla-Wagner (RW) model. The standard RW assumes
that a learning agent keeps track of associative strengths
representing the learner’s expectations for an outcome follow-
ing the presentation of a cue. For a learning agent, we let a
continuous variable Vt,c denote the associative strength (i.e.,
value expectation) on trial t for observed cue c. We also let a
binary variable outcomet denote the outcome on trial t, with
outcomet equal to 1 if the participant received a shock and 0
otherwise. Associative strengths are updated via prediction
errors (PE), given by the difference between what happened

A. B.

Fig. 1 a Schematic representation of the acquisition and extinction blocks
of the Fear Conditioning and Fear Extinction Task. b Representation
showing the temporal mapping of value estimations (V), prediction
errors (PE), and latent state belief updates (dB) during the no shock and

shock trials. For the neuroimaging analyses, the onset phase was para-
metrically modulated by trial-by-trial value expectations (Vt,c) and the
outcome phase was parametrically modulated by trial-by-trial PEs (pos-
itive and negative; PEt,c) and latent-state belief updates (dBt,c)
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(outcome) and what was expected, scaled by the learning rate.
If cue c is presented on trial t, then the PE is denoted by δt =
outcomet – Vt,c, and the associative strength of cue c is updated
as follows: Vt+1,c= Vt,c + αt δt, where αt is a constant on trial t
known as a learning rate. For the standard RW model, the
same learning rate is used for all trials and associative
strengths are only updated for presented cues, i.e., αt = α for
all t and Vt+1,c= Vt,c for cue c not presented on trial t.

Hybrid Model

The hybrid model builds on the RW model: Vt+1,c=Vt,c + καt

× δt, where Vt,c is the value expectation of cue (c) on the
current trial (t), κ is a learning rate, αt is the associability for
the current trial, and δt is the PE for the current trial (Le Pelley,
2004; Li et al., 2011). As with the RWmodel, δt = outcomet –
Vt,c. Unlike the RW model, a constant learning rate (κ) scales
an associability parameter that changes from trial to trial and is
defined as αt+1 = η|δt| + (1-η)αt. The free parameter, η, scales
the prior magnitude of PE and its additive inverse scales the
prior associability (i.e., weighted PE). A higher η reflects
greater weighting of the prior PE relative to the prior
associability.

Model-Based Model

The latent state (LS) model was used to capture model-based
RL (Cochran & Cisler, 2019; Letkiewicz et al., 2020). This
model was previously found to explain learning phenomena
characterized by contextually based learning better than other
widely used models (e.g., renewal, spontaneous recovery).
Latent states are unobserved task rules/conditions that, in ag-
gregate, define a learning environment. Each latent state con-
tains sets of associations between cues and outcomes and a
learner must infer which associations are currently most ap-
plicable. The LS model builds on the RW model by using
integer l (i.e., the latent state) to index these sets of associa-
tions, where Vt,c,l is the current value strength of option c for
latent state l: Vt+1,c,l= Vt,c,l + αt,c,l × δt,l. For the LS model, the
learning rate (αt,c,l) is specific to the cue (c) on the current trial
(t) for latent state l. The learning rate is proportional to a
quantity that captures the degree to which a learner
believes that the current task conditions are captured
by a given latent state, referred to as latent-state beliefs,
pl,t. The PE is specific to the latent state, whereby δt,l =
outcomet – Vt,c,l for cue c on trial t for latent state l.
Trial-by-trial expectations Vt,c of cue c are computed by
taking a weighted average of Vt,c,l with weights pl,t.
Following an outcome on a given trial, beliefs about
current task conditions are updated (delta beliefs, dB).
Larger updates in latent-state beliefs reflect larger
changes in a learner’s internal model of the current task
rules (see Supplement for additional details).

Analyses

Computational Modeling

Skin conductance responses that were acquired during the
Fear Conditioning and Extinction Task were used to identify
optimal participant model parameter estimates. For each par-
ticipant, model parameters were estimated by fitting compu-
tational models to SCR data from participants without any
missing data (n = 74) via maximum likelihood estimation.
Following convention, a square root transformation was ap-
plied the SCR (prior to the transformation, SCR values were
rescaled between 0 and 1). Normalized, square root trans-
formed SCR values were regressed onto trial-by-trial linear
value estimation terms (Vt,c). Skin conductance responses
were also regressed onto associability (αt) for the hybrid mod-
el and onto updates in latent state beliefs (dBt) for the LS
model. Regression error was assumed to follow a normal dis-
tribution with mean zero and unknown variance. Maximum
likelihood estimation was performed by minimizing squared
regression error summed only over trials in which a shock was
omitted (Li et al., 2011) using fmincon in Matlab (The
MathWorks, Inc., Natick, MA). For each participant and RL
model, estimation yielded regression coefficients and RL
model parameters. Resulting log-likelihood values were com-
pared to identify the best-fitting model. Additional regression
parameters were included in exploratory analyses to identify
whether the inclusion of non-linear terms would capture large
trial-by-trial changes in SCR not readily captured by linear
terms, thereby yielding better model fit (results provided in
the Supplement).

Neuroimaging

All neuroimaging analyses focused on the LS model parame-
ters (see Supplement for neuroimaging acquisition and
preprocessing details). Trial-by-trial dBs, which characterize
model-based RL updates, were carried forward to voxelwise
and independent component analysis (ICA) to identify brain
regions and networks that support implementation/encoding
of latent-state updates among women with PTSD.
Additionally, analyses focused on identifying whether PTSD
symptom severity modulated dB-related encoding. Because
individual-level parameters have previously been shown to
be too noisy to yield reliable neuroimaging results (i.e., they
exhibit high levels of error variance), learning parameters
(e.g., V, PE, dB) were averaged across participants and the
resulting trial-by-trial mean parameters were used in the neu-
roimaging analyses in accordance with previous research
(Daw et al., 2005; Daw et al., 2011; Li et al., 2011;
Schönberg et al., 2007; Schönberg et al., 2010). Of the 91par-
ticipants who were eligible for the present study, 77 partici-
pants had viable neuroimaging data. However, one participant
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was excluded due to missing clinical variables (final sample: n
= 76; see the Supplement for information regarding the over-
lap between the computational modeling and neuroimaging
samples). See Table 1 for demographic and clinical character-
istics of participants included in the computational modeling
and/or neuroimaging analyses (n = 85).

Voxelwise Analyses Participants’ voxelwise time courses were
regressed onto the design matrix using AFNI (3dREML; Cox,
1996). The design matrix included the stimulus onset and
outcome phases of the task. The onset phase was parametri-
cally modulated by trial-by-trial value expectation (Vt,c) from
the LS model, and the outcome phase was parametrically
modulated by trial-by-trial PE (positive and negative; PEt,c)
and latent-state belief updates (dBt,c) from the LS model (Fig.
1b). To account for the potential impact of the electrotactile
stimulation on neural activity, the design matrix also included
a “shock” regressor. Because PE and the occurrence of the
shock are highly correlated (Erdeniz et al., 2013), PE-related
neural activity was not interpreted. Beta coefficients for the
onset phase modulated by V and the outcome phase modulat-
ed by dB were included in the second-level analyses. Linear
mixed effects models (LMEs) were implemented using
MATLAB (fitlme; The MathWorks, Inc., Natick, MA) to test
for main effects of neural activity during dB and V, control-
ling for age, IQ, and study site:

dB ∼ageþ IQþ study siteþ 1jsubjectð Þ ð1Þ
V ∼ageþ IQþ study siteþ 1jsubjectð Þ ð2Þ

Additionally, a model tested for potential unique effects of
dB and V-related neural activity on CAPS-5 symptom sever-
ity. PE was included as a predictor, but PE results were not

interpreted (for the reasons stated above):

CAPS∼V þ dB þ PE þ ageþ IQþ study site

þ 1jsubjectð Þ ð3Þ

A set of follow-up analyses assessed for differential effects
of acquisition versus extinction on the results of models 2 and
3. The design matrix included separate regressors for trial
onset modulated by value expectation during acquisition
(Vta,c) and extinction (Vte,c), and separate regressors for out-
come modulated by dB during acquisition (dBta,c) and extinc-
tion (dBte,c). Because correlations between PE during extinc-
tion (PEte,c) and Vte,c and between PEte,c and dBte,c were high-
ly correlated (|r| > 0.70), PE was not included in these analy-
ses. Additionally, given that outcome-related neural activity
associated with PE could not be separated from that of dB,
LME tests focused on whether neural activity during V sig-
nificantly differed during acquisition versus extinction (con-
trast coded: acquisition = 1, extinction = −1), controlling for
age, IQ, and study site:

V ∼contrast þ ageþ IQþ study siteþ 1jsubjectð Þ ð4Þ

Separate models tested for potential unique effects of V and
dB-related neural activity on CAPS symptom severity during
acquisition and extinction.

CAPS∼V acquisition þ dB acquisition þ ageþ IQ

þ study siteþ 1jsubjectð Þ ð5Þ
CAPS∼V extinction þ dB extinction þ ageþ IQþ study site

þ 1jsubjectð Þ ð6Þ

Table 1 Participant demographic and clinical characteristics

Participants Arkansas site Wisconsin site

n 85 39 46

Age, mean (SD) 33.7 (8.7) 36.1 (8.4)* 31.6 (8.5)

Race/ethnicity (%)

White 74 69 78

Black/African American 17 23 11

Asian 0 0 0

Hispanic, Latina 4 0 7

Pacific Islander 0 0 0

Native American 0 0 0

Other 5 8 4

IQ, Mean (SD) 98.8 (20.6) 88.1 (21.6)* 107.5 (15.0)

CAPS symptom severity, mean (SD) 42.4 (11.2) 42.2 (11.5) 40.9 (10.9)

CAPS current # symptoms 14.3 (2.8) 13.8 (2.7) 14 (2.9)

PCL-C 43.6 (13.8) 45.6 (13.7) 41.9 (14.7)

IQ Intelligence Quotient, One-Word Receptive Vocabulary Test,CAPSClinician- Administered PTSD Scale,PCL-C PTSDChecklist - Civilian Version

204 Cogn Affect Behav Neurosci (2022) 22:199–213



Voxelwise comparisons were implemented within a sam-
ple specific grey matter mask and cluster-level thresholding
controlled for voxelwise comparisons using an uncorrected p
< 0.001 and cluster size k ≥ 18, which was identified using
AFNIs 3dClustSim.

Independent Component Analysis ICA was used to identify
temporally coactivated spatially distributed neural large-scale
networks and was implemented using the Group ICA of fMRI
Toolbox (GIFT; Calhoun et al., 2001) in Matlab R2016a. A
model order of 35 was selected to balance the tradeoff be-
tween component estimation reliability and interpretability.
Thirteen of the 35 components were identified as functional
networks theoretically related to learning or PTSD, including

a left and right FPN that were of primary interest (22 networks
that represented either motion artifact, CSF, or networks of
non-interest such as motor cortex were excluded).
Additionally, follow-up analyses were implemented with the
remaining 11 networks (see Supplemental Figure S2). ICA
timecourses were regressed onto the same design matrices
described above using AFNI (3dREML; Cox, 1996) and
resulting beta coefficients were included in the second-level
analyses. The same series of LMEs described above were
implemented for 1) each FPN and 2) follow-up networks
using Matlab (fitlme; The MathWorks, Inc.). Bonferroni cor-
rection was applied for the two FPN networks (p < 0.025) and
for the post-hoc analyses across the eleven additional net-
works (p < 0.005). Additionally, following an approach used
by Erdeniz et al. (2013), several GLMs were fitted to partici-
pants’ ICA time courses to identify whether the inclusion or
removal of the PE and/or shock regressors altered the main
effects of dB and/or V (see Supplement).

Results

Model Fit

The standard RW and hybrid models, which are nested
models, were formally tested using a log-likelihood ratio test.
Similar to previous studies (Boll et al., 2013; Homan et al.,
2019; Li et al., 2011), the hybrid model outperformed the
standard RW model, χ2 = 515.43, df = 148, p < 0.001. It also
outperformed the additional RW models that were tested (see
Supplement). Because the LS model does not contain the
terms included in the hybrid model, a log-likelihood ratio test

Fig. 2 Summed Akaike Information Criterion (AIC) values across par-
ticipants showing that the Latent State model outperformed the Rescorla
Wagner and Hybrid models (note: lower AIC values reflect better model
fit)

Table 2 Regions associated with
trial-by-trial changes in latent-
state beliefs (dB) ouring outcome

Region Cluster size (mm3) Peak t-value Center of mass coordinates

X Y Z

R. IFG/Insula 1664 11.60 42 -8 16
R. Paracentral Lobule 1600 9.53 1 -23 59
L. Insula Lobe 1132 12.81 -34 -6 10
R. Calcarine Gyrus 153 6.81 18 -60 7
L. Postcentral/Precentral Gyrus 149 7.13 -43 -7 48
R. Inferior Occipital Gyrus 135 -5.51 41 -75 -3
L. Cerebellum 125 6.74 -5 -38 -20
Superior Orbital Gyrus 103 -6.89 -4 59 -21
L. Calcarine Gyrus 70 6.09 -15 -68 7
L. Superior Frontal Gyrus 63 -5.43 -14 39 47
Precuneus 57 -6.15 -2 -56 27
Cerebellum 34 5.47 1 -58 -36
L. Cerebellum 31 5.18 -31 -53 -28
R. Cuneus 29 4.61 13 -77 33
L. Inferior Occipital Gyrus 24 -6.48 -46 -70 -9
L. Middle Frontal Gyrus 23 -4.58 -33 15 47
L. Angular Gyrus 23 -4.72 -46 -66 29
L. Postcentral Gyrus 18 -4.60 -38 -28 53
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was not performed to compare these models. A comparison
between Akaike Information Criterion values, which were
summed across participants, revealed that the LS model pro-
vided a better fit than the standard RW and hybrid models
(Fig. 2), as well as the additional RW models that were tested
(Supplemental Figure S2).

Main Effects

Voxelwise Analyses

Table 2 lists the brain regions in which neural activation pre-
dicted latent-state belief updates. Activity in the left inferior
frontal gyrus, left and right insula, right paracentral lobule, left
and right calcarine gyrus, left postcentral/precentral gyrus,
cerebellum, and right cuneus were positively related to
latent-state belief updates (Fig. 3a). Activity in left and right
inferior occipital gyrus, superior orbital gyrus, left superior
frontal gyrus, precuneus, left middle frontal gyrus, and left
angular gyrus were negatively related to latent-state belief
updates. Table 3 lists the brain regions in which neural acti-
vation predicted value expectation. Greater value
expectation-related activity emerged in the paracentral lobule,

right middle frontal gyrus, and left thalamus (Fig. 3b). Lower
value expectation-related activity emerged in the left
precuneus.

Tab le 4 l i s t s the bra in reg ions in which the
parameter-related neural activity uniquely predicted PTSD
symptom severity. Figure 3c shows that lower latent state
update-related activation within the right calcarine gyrus/
right posterior cingulate cortex predicted higher CAPS scores.
As shown in Fig. 3d, greater value expectation-related activa-
tion within the left angular gyrus/inferior parietal lobule pre-
dicted higher CAPS scores.

ICA

Table 5 lists the ICA networks that predicted trial-by-trial
latent-state belief update encoding. Reduced encoding was
evident in the left frontoparietal network (FPN), as well as
the limbic, dorsomedial prefrontal cortex/posterior cingulate
cortex, and hippocampal networks (Fig. 4a). Increased
encoding was evident in the pre-supplementary motor area
and striatal networks. Table 5 lists the ICA networks that
predicted trial-by-trial value estimation encoding. Increased
encoding emerged in the pre-supplementary motor area and

Table 3 Regions associated with
trial-by-trial associative strength
(V) during stimulus onset

Region Cluster size (mm3) Peak t-value Center of mass coordinates

X Y Z

Paracentral Lobule 252 6.64 4 -23 66

R. Middle Frontal Gyrus 29 4.99 43 -3 50

L. Thalamus 26 5.42 -6 -19 7

L. Precuneus 21 -5.16 -7 -65 44

L R RL

D

A B

C

Fig. 3 Brain regions associated with (a) latent-state belief updates (dB) and (b) value estimations (V). Parameter-related neural activity that uniquely
predicted PTSD symptom severity for (c) latent-state updates and (d) value estimations. L = left. Warm colors = positive z-values
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striatal networks (Fig. 4b). Results for all networks are pro-
vided in the Supplement. A similar pattern of results emerged
across study sites (Figure S5).

Table 6 lists the networks in which parameter-related
encoding uniquely predicted PTSD symptom severity on the
CAPS. Increased encoding of value expectation within the left
FPN predicted greater PTSD symptom severity, t(68) = 3.58,
p < 0.001. No other results held above correction.

Task Phase Effects (Acquisition vs. Extinction)

Voxelwise Analyses

Table 7 lists the brain regions in which neural activation dif-
ferentially predicted value expectation during the acquisition
versus extinction task phases. Greater activity during extinction
than acquisition emerged in the middle cingulate cortex, thala-
mus, left fusiform gyrus, right lingual gyrus, left calcarine gy-
rus, left middle occipital gyrus, cuneus, and right lingual gyrus.

ICA

Table 8 lists the ICA networks that exhibited differential value
expectation encoding during the acquisition versus extinction
task phases. A significant effect of task phase emerged for
value expectation encoding within both FPNs. Specifically,
greater value expectation encoding was evident in the left

and right FPN during acquisition relative to extinction,
t(146) = 2.53, p = 0.013, and t(146) = 2.62, p < 0.010, respec-
tively (Fig. 5). Significantly greater value expectation
encoding was also evident in medial/lateral prefrontal cortex
network during acquisition versus extinction, t(146) = 3.38, p
< 0.001, whereas lower value estimation encoding was evi-
dent in hippocampal network during acquisition versus extinc-
tion, t(146) = −2.92, p < 0.004. Results followed a similar
pattern across study site (Figure S6).

Table 9 lists the networks in which value expectation-
related encoding uniquely predicted PTSD symptom severity
on the CAPS during acquisition and extinction. As shown in
Fig. 6a, during acquisition, but not extinction, greater value
expectation encoding in the left FPN uniquely predicted
higher PTSD symptom severity, t(69) = 2.99, p = 0.004. As
shown in Fig. 6b, during extinction, but not acquisition, lower
value expectation encoding in the dorsomedial prefrontal
cortex/posterior cingulate cortex network uniquely predicted
higher PTSD symptom severity, t(69) = −4.05, p < 0.001. A
similar pattern of results was evident across study site
(Figure S7).

Discussion

Results in this sample of adult women with IPV-related PTSD
revealed that the latent-state model provided a better fit for

Table 4 Parameter-related activity uniquely predictive of clinician-administered PTSD scale severity

Region Parameter Cluster size (mm3) Peak t-value Center of mass coordinates

X Y Z

Left Angular Gyrus/IPL V 27 4.68 -46 -66 36

Right Calcarine Gyrus/Right PCC dB 22 -3.75 8 -62 15

Table 5 Networks associated
with trial-by-trial encoding of
latent-state updates (dB) and val-
ue estimation (V)

Parameter ICA Network t-
value

p-
value

dB L. Frontoparietal -3.64 <0.001

Pre-Supplementary Motor Area 6.70 <0.001

Limbic -7.44 <0.001

Hippocampus -3.14 0.003

Dorsomedial PFC/Posterior Cingulate Cortex -6.26 0.001

Insula/Middle Frontal Gyrus 2.45 0.017

Striatum 10.66 <0.001

V Pre-Supplementary Motor Area 4.28 <0.001

Limbic -2.24 0.029

Striatum 3.86 <0.001

Note: Networks in gray font did not survive Bonferroni correction
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participants’ physiological responses during the fear condi-
tioning task than the standard RW and hybrid models.
Notably, the latter model is considered a “gold standard” for
modeling fear conditioning responses, because it has been
found to fit fear conditioning responsivity better than standard
RW models in several previous studies (Homan et al., 2019;
Li et al., 2011), which was replicated in the current study.
However, it was outperformed by the latent-state model in

the present study. This suggests that the latent-state model
captures learning dynamics during fear conditioning and ex-
tinction that are not readily measured by the hybrid model,
such as learning that varies as a function of task conditions.

Contrary to predictions, latent-state belief updates were as-
sociated with reduced (as opposed to increased) activity in
regions previously associated with model-based RL and cog-
nitive control, including the left FPN and left superior frontal

Fig. 4 Depiction of the main effects of encoding during trial-by-trial changes in (a) latent-state beliefs (dB) and (b) value estimation (V) for GLMmodel
1 (full model: dB, PE, V, and shock regressor included)

Table 6 Parameter-related
activity uniquely predictive of
clinician-administered PTSD
scale severity

ICA Network Parameter t-
value

p value

L. Frontoparietal V 3.58 0.0007

Default mode V 2.01 0.049

Dorsomedial PFC/posterior cingulate cortex V 2.02 0.048

Inferior frontotemporal V -2.37 0.021

Note: Networks in gray font did not survive Bonferroni correction

Table 7 Regions associated with
trial-by-trial value expectation
(V) during stimulus onset, acqui-
sition versus extinction

Region Cluster size (mm3) Peak t-value Center of mass coordinates

X Y Z

Middle Cingulate Cortex 107 -5.68 -1 -40 35

Thalamus 62 -5.05 -1 -21 9

L. Fusiform Gyrus 60 -4.56 -40 -51 -14

R. Lingual Gyrus 49 -5.13 9 -44 3

L. Calcarine Gyrus 47 -4.45 -18 -64 9

L. Middle Occipital Gyrus 36 -5.27 -31 -84 5

Cuneus 28 -4.53 6 -67 24

R. Lingual Gyrus 27 -3.89 17 -58 3
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gyrus. Similar to previous research on model-based RL,
latent-state belief updates were related to increased striatal
network activity (Daw et al., 2011; McDannald et al., 2011;
but also see Gläscher et al., 2010). Latent-state belief updates
were also related to increased activity of the left and right
insula, which are implicated in punishment and loss-related
learning (Palminteri et al., 2012). Although the bilateral ante-
rior insula are components of the salience network, which is
often associated with model-free PE encoding (Cisler et al.,
2019; Preuschoff et al., 2008), this is not the first study to
identify insula activation during model-based RL (Lee et al.,
2014). Heightened insula activity during updates to
latent-state beliefs may reflect sensitivity to unexpected
and changing environmental demands that signal in-
creased need for cognitive control processes during
learning (Jiang et al., 2015).

Although the latent-state model provided a better overall fit
to the SCR data than the other computational models that do
not capture model-based RL processes, PTSD symptom se-
verity was not predicted by FPN-related encoding of
latent-state belief updates. Instead, higher PTSD symptom
severity was uniquely related to reduced activity during
latent-state updates in the right calcarine gyrus/posterior

cingulate cortex, which are implicated in visual processing,
visual imagery, and the focus of attention (Klein et al., 2000;
Leech & Sharp, 2014). By contrast, increased value
estimation-related encoding in the left FPN and activity of
the angular gyrus/intraparietal lobule uniquely predicted
greater PTSD symptom severity. It was further revealed that
increased encoding within the left FPN during acquisition
predicted greater PTSD symptom severity during acquisition,
whereas reduced encoding within the dorsomedial prefrontal
cortex (dmPFC/PCC) predicted greater PTSD symptom se-
verity during extinction. Atypical FPN and dmPFC/PCC ac-
tivity have been identified in previous studies of PTSD, in-
cluding fear conditioning and extinction studies (for a review,
see Suarez-Jimenez et al., 2020), although the direction of
these effects is somewhat mixed in PTSD. It is important to
note that, in contrast with prior studies that did not separate RL
and non-RL sources of variance, we were able to identify
effects for distinct RL processes using our model-based mod-
el. Heightened encoding of value estimation during the acqui-
sition blocks (i.e., when threat expectancies are high) among
cognitive control regions may contribute to enhanced repre-
sentation of fear, while reduced encoding of value estimation
during the extinction blocks (i.e., when threat expectancies are
low) of the dmPFC/PCC may contribute to difficulties revis-
ing stimulus-outcome associations within a safe environment
(Wang et al., 2014).

A notable limitation of the present study is the lack of a
control comparison group. Although altered neural activity
during latent-state belief updates did not emerge within cog-
nitive control regions or networks in relation to PTSD

Table 8 Networks associated
with trial-by-trial encoding of
value estimation (V) during ac-
quisition versus extinction

Parameter ICA Network t-
value

p value

V L. Frontoparietal 2.53 0.013

R. Frontoparietal 2.62 0.010

Medial/Lateral PFC 3.38 <0.001

Medial PFC/Striatum -2.44 0.016

Limbic 2.78 0.006

Hippocampus -2.92 0.004

Dorsomedial PFC/Posterior Cingulate Cortex 2.51 0.013

Note: Regions in gray font did not hold above Bonferroni correction

*

*
* * * *

*

Fig. 5 Depiction of the effects of acquisition versus extinction on
encoding during trial-by-trial changes in value estimation (V)

Table 9 V-related activity uniquely predictive of clinician-administered
PTSD scale severity

ICA Network t-value p value

Acquisition

L. Frontoparietal 3.45 0.001

Extinction

Dorsomedial PFC/PCC -4.05 <0.001
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symptoms, we did not test whether individuals with PTSD
exhibit poorer encoding of latent-state belief updates within
FPNs relative to individuals without PTSD. It is possible that
PTSD symptoms scaled with value expectations, rather than
latent-state belief updates, within the left FPN because overall
individuals with PTSD generally had difficulty engaging contex-
tual learning processes during fear conditioning. It will be impor-
tant to establish the typical pattern of neural activity and encoding
of value expectations and latent-state belief updates to further
contextualize the meaning of present results. It also will be im-
portant to establish whether results extend to non-IPV related
PTSD.

Overall, results provide some evidence that model-based
RL processes that are altered during fear conditioning are
re la ted to PTSD symptoms among women wi th
assault-related PTSD. While research has primarily been de-
voted to examining relatively simplistic learning processes,
model-free and hybrid models cannot capture higher-level,
context-related learning (e.g., learning when a stimulus is dan-
gerous vs. safe), the latter of which can be captured by the
model-based model and may be particularly important in the
acquisition and revision of human fear. Although disruptions
in model-based processes that scaled with PTSD symptoms
occurred within brain regions or networks that were not antic-
ipated (e.g., reduced encoding within visual processing re-
gions during latent-state belief updates), our results provide
preliminary evidence of model-based RL-related impairments
in PTSD that are separate from other learning processes (e.g.,
value estimation). Our latent-state model also identified a pat-
tern of value estimation encoding that is distinct from latent-
state update encoding that may disrupt normative fear and
safety learning among individuals with assault-related
PTSD. Critically, exposure-based therapy, which is a “gold
standard” treatment for PTSD, depends on learning processes
to extinguish fear (Hermans et al., 2005), and RL deficits
identified in this study may affect treatment response. Given
that even the best available treatments for PTSD have limited
efficacy, with remission occurring for approximately half of
individuals who receive treatment (Morina et al., 2014; Resick
et al., 2002; Schnurr et al., 2007), it is proposed that future
research examine the role of RL impairment in
treatment-related outcomes among individuals with PTSD
(IPV and non-IPV) using a model-based framework.

Open Practices Statement None of the data or materials for the experi-

ments reported here is available, and none of the experiments was

preregistered.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13415-021-00943-4.
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