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Abstract

The exploration-exploitation trade-off shows conceptual, functional, and neural analogies with the persistence-flexibility trade-
off. We investigated whether mood, which is known to modulate the persistence-flexibility balance, would similarly affect the
exploration-exploitation trade-off in a foraging task. More specifically, we tested whether interindividual differences in foraging
behavior can be predicted by mood-related arousal and valence. In 119 participants, we assessed mood-related interindividual
differences in exploration-exploitation using a foraging task that included minimal task constraints to reduce paradigm-induced
biases of individual control tendencies. We adopted the marginal value theorem as a model-based analysis approach, which
approximates optimal foraging behavior by tackling the patch-leaving problem. To assess influences of mood on foraging,
participants underwent either a positive or negative mood induction. Throughout the experiment, we assessed arousal and valence
levels as predictors for explorative/exploitative behavior. Our mood manipulation affected participants' arousal and valence
ratings as expected. Moreover, mood-related arousal was found to predict exploration while valence predicted exploitation,
which only partly matched our expectations and thereby the proposed conceptual overlap with flexibility and persistence,
respectively. The current study provides a first insight into how processes related to arousal and valence differentially modulate
foraging behavior. Our results imply that the relationship between exploration-exploitation and flexibility-persistence is more
complicated than the semantic overlap between these terms might suggest, thereby calling for further research on the functional,
neural, and neurochemical underpinnings of both trade-offs.
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Introduction

The adaptivity of human behavior often is attributed to cog-
nitive control, the ability to tailor basic cognitive abilities to
the task and situation at hand. Adaptive control often requires
the solution of control dilemmas (Goschke, 2003), of which
several have received substantial attention in the literature.
Among those are the exploration-exploitation dilemma—
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addressing the question whether one should continue using
the currently available knowledge or seek for new
information—and the stability/persistence-flexibility dilemma
(or persistence-flexibility dilemma for short)—tackling the
question whether one should stick to one’s current goal or
trade it for another, more tempting or easier to achieve alter-
native. In the present study, we were interested in possible
functional commonalities between these control trade-offs.
We were motivated by the observation that the exploration-
exploitation and persistence-flexibility dilemmas share many
characteristics with respect to their descriptions in the litera-
ture. For one, the theoretical concepts of exploration and flex-
ibility both imply that the present control settings need to be
overruled and that the competitive strength of alternatives is
increased, whereas the concepts of exploitation and persis-
tence both refer to the continued maintenance of the current
control settings in the more or less active suppression of alter-
native settings. Indeed, previous work within the domain of
cognitive psychology has not drawn a sharp line between
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exploration-exploitation on the one hand and flexibility-
persistence on the other (Hills, 2006; Hills & Dukas, 2012;
Hommel & Colzato, 2017; Markovi¢ et al., 2019). For
instance, and among others, Hills et al. (2008, 2010) have
illustrated that such theoretical overlap is not far-fetched, be-
cause abstract conceptual search can be primed by inducing
explorative or exploitative foraging strategies, with high levels
of exploration (vs. exploitation) boosting flexible (vs. persis-
tent) cognitive search patterns.

Along similar lines, even though both trade-offs have been
addressed from different computational accounts, functional
overlap between these control dilemmas can be inferred. For
instance, the exploration-exploitation dilemma is often
discussed in the context of (food) foraging (Wolfe, 2013).
Exploiting an area that provides known and preferred food
or rewards is typically energy-saving, as prediction-error sig-
nals decrease with increased expectation-outcome matches.
However, at a particular point in time, provided that the avail-
ability of food or reward is subject to time and/or consump-
tion, it might become more efficient to invest time and effort
into moving to another area and start exploring for new re-
sources (however, see Riefer et al., 2017). Hence, to remain
efficient and keep the energy cost optimally low, foraging
calls for an adaptive strategy in balancing the exploration-
exploitation trade-off. In the same vein, an adaptive strategy
can be distilled from the conceptualization of the persistence-
flexibility trade-off. Specifically, having selected and persis-
tently implemented a goal, task, or action is not sufficient for
guaranteeing smooth performance, and might be increasingly
difficult or mentally costly to maintain, especially in the pres-
ence of external stimuli or internal thoughts that promote oth-
er, competing goals, tasks, or actions (Atkinson & Birch,
1970). Protecting the current action goal against such interfer-
ence requires active goal shielding, which would need to re-
sult in the suppression of alternative goals and respective re-
sponse tendencies (Dreisbach & Goschke, 2004). However, in
changing environments it may not always be the most optimal
strategy to persist in the current action goal. Under such con-
ditions, it would be adaptive to open up for other options that
might outcompete the present goal—to become more flexible
that is, reflected in a weak influence of the current goal on
selection and weak competition between alternative codes
(Hommel, 2015; Hommel & Colzato, 2017). Therefore, the
exploration-exploitation and persistence-flexibility dilemma’s
might be comparable in the fact that adaptive control is re-
quired to find an appropriate balance between choosing be-
tween familiar, but sometimes suboptimal alternatives and
novel, often risky alternatives (Cohen et al., 2007).

Finally, in addition to these conceptual, and perhaps even
functional overlaps, commonalities regarding the assumed
neural mechanisms underlying the solution of the two di-
lemmas could similarly be distilled (Hills, 2006). For instance,
tonic levels of norepinephrine (NE), reflecting more enduring
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and less discriminative neural responsiveness (Aston-Jones &
Cohen, 2005), have been claimed to reduce the exploration-
exploitation dilemma by promoting exploratory behavior
(Jepma & Nieuwenhuis, 2011). Analogously, tonic NE levels
have been suggested to play a role for the persistence-
flexibility trade-off by biasing perception and memory in fa-
vor of salient, high priority representations (possibly reflecting
increased persistence) at the expense of lower priority repre-
sentations (possibly reflecting reduced flexibility; Mather
et al., 2016). Similarly, dopamine (DA) has been suggested
to play a central role in resolving both the exploration-
exploitation trade-off (Cohen et al., 2007; Frank et al., 2009;
Frank & Fossella, 2011; Hills, 2006; Hills et al., 2010; Kayser
et al., 2015) as well as the persistence-flexibility dilemma
(Cools & d’Esposito, 2011; Dreisbach et al., 2005;
Dreisbach & Goschke, 2004; Durstewitz & Seamans, 2008;
Hommel & Colzato, 2017).

Altogether, these commonalities seem to suggest that the
semantic, functional, and perhaps even neural mechanisms
responsible for finding the best balance between exploration
and exploitation might, at least to some extent, overlap with
those responsible for balancing flexibility and persistence. We
admit that by theoretically equating these concepts, we do not
do full justice to the tremendous amount of work that has been
dedicated to the systematic study of both control dilemmas.
For instance, research within the domain of decision making
has shown that the operationalization of exploration and ex-
ploitation is dependent on the field of study, especially when it
comes to its application in foraging behavior. While models of
the explore-exploit dilemma differentiate between explicitly
seeking out information versus acting on known rewards
(Cohen et al., 2007), models of foraging center on probabilis-
tically estimating average- and current reward rates (Charnov,
1976). However, even though these conceptualizations are
often conflated (Todd & Hills, 2020), this does not render
the core premise any less valid. In both instances, the goal of
the organism is to maximize reward. In any case, we point out
that a full-fledged discussion on these exact
operationalizations, as well as a formalization of consensual
definitions, is beyond the scope of this study and admit that
our understanding of the two trade-offs as sharing semantic,
functional, and neural commonalities is not necessarily con-
sistent with all available explicit and implicit definitions of
exploration/exploitation and persistence/flexibility. Taking
these caveats into consideration, we speculated that factors
that are known to have a systematic impact on people’s ten-
dency to engage in more flexible or more persistent behavior
should have a similar effect on the probability to show more
explorative or more exploitative behavior.

Here we focused on a factor that has successfully been used
to bias behavior away from persistence towards greater flexi-
bility: mood. While the personal experience of mood is un-
likely to have a causal impact on cognitive control processes
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(Hommel, 2019), the neurochemistry underlying mood
changes has been found to systematically covary with changes
in control policies. Moreover, induced positive mood, com-
pared with negative or neutral mood, has been shown to pro-
mote cognitive flexibility and reduce persistence in a cogni-
tive set-switching task (Dreisbach & Goschke, 2004), to re-
duce goal refreshing after conflict trials (Van Steenbergen
etal., 2010), to promote divergent thinking in a creativity task
(Akbari Chermahini & Hommel, 2012), and to reduce proac-
tive control in a working memory updating task (Frober &
Dreisbach, 2014). Provided that all these observations can
be validly taken to indicate that positive mood tends to shift
control away from persistence and towards greater flexibility
(Dreisbach & Goschke, 2004; Goschke & Bolte, 2014;
Hommel & Colzato, 2017), we hypothesized that—if
exploration-exploitation would show overlap conceptually
and mechanistically with flexibility-persistence—inducing
positive mood before presenting a task that is sensitive to
exploration-exploitation tendencies should generate a stronger
bias towards exploration. Such expectations are in line with
observations as reported within the domain of affect and de-
cision making, in which positive-going mood states have been
shown to favor exploratory behavior (Vinckier et al., 2018),
while negative-going mood states potentially result in overex-
ploitation (Lenow et al., 2017).

Provided that mood induction is known to affect both per-
ceived arousal and perceived valence measures, we also were
interested to see whether these measures would differentially
affect possible biases in exploration/exploitation, especially
because arousal and valence have received a considerably
different emphasis within accounts on the exploration-
exploitation trade-off compared with literature on the
persistence-flexibility balance. Specifically, according to
Cohen et al. (2007), NE, which is assumed to be associated
with mood-related arousal (Terbeck et al., 2016), plays an
important role in regulating exploration and exploitation. In
contrast, in persistence-flexibility accounts, valence is often
explicitly or implicitly assumed to be the key player (Van
Steenbergen et al., 2010).

Taken altogether, the main goal of the present study was to
test whether and how the mood-related regulation of the
exploration-exploitation balance relates to the regulation of
the persistence-flexibility trade-off. To this end, we designed
a foraging task that was adopted from Hills et al. (2008, 2010),
who originally had used it to induce explorative and exploit-
ative foraging strategies. Given that we did not intend to in-
duce or promote a particular control mode, but rather to assess
the way our mood induction manipulation would shift the
relative emphasis on exploration and exploitation, we adjusted
the task to provide participants the freedom to explore or ex-
ploit the task environment following their individual tenden-
cies instead of specific task-conditions. We compared perfor-
mance in this foraging task pre-mood induction with

performance after positive versus negative mood induction,
which we assumed to modulate the trade-off between explo-
ration and exploitation the same way as it has been shown to
modulate the balance between persistence and flexibility.

In particular, we tested the following hypotheses: First, and
foremost, we expected mood induction to affect the
exploration-exploitation trade-off. Second, given that positive
mood has been found to promote flexible task performance
(Dreisbach & Goschke, 2004; Frober & Dreisbach, 2014; Van
Steenbergen et al., 2010), we expected a positive-going mood
to promote exploration, whereas a negative-going mood
should promote exploitation. Finally, given the differential
roles of arousal and valence in modulating the exploration-
exploitation versus persistence-flexibility trade-offs, we tested
whether arousal, valence or both measures would orthogonal-
ly modulate foraging behavior.

Methods
Participants

A total of 119 participants (78 females; Mg, = 21.83, 8D 0, =
1.97) was recruited via the Research Participation System of
the Leiden Institute of Psychology (Leiden University,
Netherlands). Participants were in good mental and physical
health and did not have a history of psychiatric or neurological
conditions (as assessed by the Mini International
Neuropsychiatric Interview; Shechan et al., 1998), had normal
or corrected-to-normal eyesight and were between ages 18
and 27 years. Participants provided written, informed consent
and were naive to the purpose of the experiment. An experi-
mental session took approximately 45 minutes. In return for
their participation, participants received either 2 course credits
or €5. The study protocol was approved by the local ethics
committee (Leiden University, Institute of Psychological
Research; CEP19-0221/116).

Due to the novelty of our approach, it was challenging to
properly estimate the best sample size before data collection.
We did consult literature incorporating similar mood induc-
tion procedures in combination with cognitive control assess-
ment (Jefferies et al., 2008; Van Steenbergen et al., 2010),
which informed us that such manipulations typically include
20-25 participants per condition. However, such small sam-
ples sizes likely result in low statistical power. Indeed, we
calculated that with an effect size of np2 = 0.05 (Van
Steenbergen et al., 2010, personal correspondence) a power
0f <0.5 would be obtained. Therefore, based on the effect sizes
estimated from Van Steenbergen et al. (2010), we performed a
priori power calculations in GPower (Erdfelder et al., 1996) to
estimate the minimum sample size for this study. Results in-
dicated that a total sample size of 115-120 participants would
be sufficient to detect such low effect sizes (i.e., np2 =0.05)

@ Springer



552

Cogn Affect Behav Neurosci (2021) 21:549-560

with a power of 0.80, and an alpha level of 0.05 (one-sided).
Additionally, we included Bayesian analysis methods, be-
cause such approaches allow for explicit testing of the null
versus the alternative hypothesis and provide possibilities for
the post-hoc assessment of statistical power. Notably, we
omitted data of two participants, because these participants
indicated that they did not understand the structure of the
foraging task, and hence showed inactivity in the task for a
substantial amount of time. Consequently, the sample size for
our analyses was reduced to a total of 117 participants.

Procedure

After arrival, participants were comfortably seated in front of a
computer, at a distance of approximately 60 cm from the
screen (AOC 12475PXQU monitor: 1920 x 1080, 23.8 inch).
They read and signed the informed consent, and demo-
graphics were assessed through standardized questions. On-
screen instructions guided them through a sequence of four
tasks: (1) a practice navigation task, (2) a pre-mood induction
run of the foraging task, (3) a mood induction procedure (ex-
cited vs. sad, counterbalanced between participants), and (4) a
post-induction run of the foraging task. In order to dynamical-
ly capture changes in mood state, a 9 x 9 arousal by valence
mood grid (Russell et al., 1989) was presented at multiple time
points throughout the experiment. Upon completion of the
experiment participants were debriefed and received their
payment.

Materials

Practice navigation task Before the presentation of the exper-
imental sequence, participants completed a navigation task to
familiarize themselves with the joystick they would use within
the foraging task runs. To this end, participants had to move a
character (19 x 23 pixels) through a two-dimensional maze
(600 x 600 pixels). The character’s speed (0—60 pixels per
second) and angle (0°-359°) could be adjusted by means of
the joystick. The goal was to successfully navigate the char-
acter to the exit of the maze. The trial was reinitialized if
participants hit any of the maze’s walls. No time restrictions
were set. Average duration spent on this practice task was
23.05 seconds (SD = 8.07 seconds).

Foraging task The design of our foraging paradigm was in-
spired by the foraging task as described by Hills et al. (2008,
2010). However, while the original task by Hills and col-
leagues included two separate conditions aimed at inducing
either exploitative or explorative foraging behaviour between-
subjects (i.e., clumpy vs. diffuse resource distributions, re-
spectively), the set-up of our task was aimed at measuring
individual foraging tendencies within-subjects. Therefore,
we designed a task with as few task constraints as possible
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to reduce paradigm-related impact, enabling us to measure
individual’s, task-unconstrained tendency to explore versus
exploit.

To effectively capture dynamic adjustments in foraging
strategies, we provided participants with a “zoom-in to patch
view/zoom-out to aerial view” feature, which allowed them to
approach the foraging task as preferred. Specifically, this fea-
ture enabled participants to, at their own pace and as much as
they preferred, freely explore the foraging environment in
order to locate new resource patches, or return to already dis-
covered resource patches. Moreover, it allowed participants to
start exploiting previously unentered resource patches, or to
start re-exploiting previously entered resource patches. Hence,
we assume that the small adjustments we made with respect to
the original task enable us to measure inter-individual differ-
ences in foraging strategies, with foraging behavior largely
depending on individuals’ internal foraging preference or
strategy, which one could continuously update (e.g., from
exploration to exploitation), unconstrained by task conditions.
The foraging paradigm was coded in Python 2.7.

Participants were instructed to find as many resources (i.e.,
berries) within a restricted period of 5 minutes. Resources
were hidden in patches (i.e., bushes), which in turn were hid-
den in a game environment (600 x 600 pixels). Each trial
comprised nine unique patches (radii of 57 pixels), each con-
stituting 40 to-be-discovered resources. The patch-positions
were randomly drawn from two uniform distributions (for
the x- and y-coordinates, respectively), with the notable ex-
ceptions that (i) the minimum distance between patches was
set to 9 pixels, (ii) patches were to be located at a minimum
distance of 15 pixels from any of the environment’s borders,
and (iii) the minimum distance between the center of the en-
vironment and a patch constituted at least 57 pixels. The dis-
tribution of the patches thereby conceptually mirrored the
clumpy resource distribution as described by Hills et al.
(2008, 2010).

At the start of a trial, participants were presented with a
game environment depicting this so-called aerial view (Fig.
la). A character (19 x 23 pixels) was positioned in the center
of the environment, facing a random location in space. The
character could be moved by means of the joystick with a
speed of 0-60 pixels per second and an angle of 0°-359°. If
the character was navigated to a position where a patch was
hidden, the part of the patch that was present within a 15-pixel
radius of the character’s center location became visible. Once
a patch was encountered, it could be entered by pressing a key
on the back-side of the joystick. Upon patch entry, a new
game environment (600 x 600 pixels) was rendered, which
displayed a zoomed-in view of the entered patch (i.e., patch
view; Fig. 1b). Within each patch, resources (15 x 15 pixels)
were randomly distributed, with the precondition that re-
sources were not allowed to be in a 30-pixel vicinity of any
other resource. Hence, the distribution of resources within
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Fig. 1 Visual representation of the two layers of the foraging task, displaying the aerial-view (a) and patch-view (b)

patches conceptually mirrored the diffuse resource distribu-
tion as described by Hills et al. (2008, 2010). The character
was replaced by the image of a hand (49 x 44 pixels), which
could, by means of the joystick, be moved with a speed of 0-
90 pixels per second and an angle of 0°-359°. If the hand was
navigated to a position where a resource was hidden (i.e.,
within a 30-pixel radius of the hand’s center location), the
resource became visible. Each found resource, equaling 1
point, was displayed on screen as a red berry (33 x 33 pixels).
Importantly, before the start of the foraging trial, participants
were informed that resources could only be found once a patch
was entered (i.e., in patch view), while new patches could only
be discovered in aerial view. Moreover, they were informed
that the three participants that, overall, collected most re-
sources, were rewarded with an additional voucher of €15.

In line with the task design of Hills et al. (2008, 2010), a
counter was presented in the top-right corner of the environ-
ment. The counter started at a value of 18,000 (i.e., the max-
imum speed in pixels per second within the aerial view mul-
tiplied by the 300-second duration of a foraging run) and
decreased with a value of 60 units per second. Adjacent to
this counter, a sweeping clock-hand was presented.
Together, these tools informed participants that time was run-
ning out, without providing direct information on the actual
time that remained. Finally, the total amount of resources
found was continually updated and presented in the upper-
left corner of the screen.

Marginal value theorem To investigate participants’ general
tendencies to explore/exploit in the foraging task, we adopted
the marginal value theorem (MVT; Charnov, 1976), which
aims to characterize and provide an approximation of optimal
foraging behavior by tackling the patch-leaving problem.
The marginal value theorem posits that during foraging in a
patchy environment, the amount of food gained for time T’
spent in a patch is f(7), with f{T) rising from zero at a nega-
tively accelerated rate to an asymptote representing the total
amount of food present in a patch. As the first derivative of

f(T), the current rate of food intake, approaches zero, an or-
ganism will not derive any benefit from staying in that partic-
ular patch as it will have exploited all its resources. When
exactly should an organism move away from its current patch
to the next? In the original case of multiple patch types, the
average time 7 spent to use one patch is the travel time plus the
time spent in the patch:

T=t+Ps -Thr+Pp-Tp
and the average amount of food £ taken from a patch is
E=Py-f(Ta)+Pp-f(Ts)

in which P4 and Pjp are the proportion of patches visited that
are of type A or B. In the current paradigm, this can be sim-
plified to

T=t+TpE=f(Tp)

in which Tp is the time spent in any patch. It follows then that
E/T reflects the average rate of food intake, which an organism
should try to maximize. To find this maximum, we can find
the partial derivative of E/T using the quotient rule, setting

S(E/T)
oTp

:07

we then find that this is the case when

9 (Tp)
0T p

=E/T,

or, in other words, when the current food intake rate f(7p) is
identical to the average food intake rate E/T. In the current
paper, we will refer to these variables as the current reward
rate CRR and the average reward rate ARR, respectively.
Following MVT, exploitation should be preferred over explo-
ration whenever the CRR is higher than the ARR. In other
words, one should shift from an exploitative to a more explor-
atory foraging mode whenever the instantaneous reward rate
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becomes lower than the average expected reward rate.
Because in the present paradigm rewards are received in a
discrete instead of a continuous manner (i.e. the actual re-
ceived reward is either 0 or 1), the CRR parameter was calcu-
lated over a short time interval.

Optimal window for calculating the CRR To determine an
interval over which to calculate the CRR, we iteratively fitted
the data of the first foraging run of each participant for multi-
ple time windows (Supplementary Figure 1). Our fitting pro-
cedure extracted, separately for each participant and each
patch visit, the interval for which, on average, the difference
between the optimal leave time (OLT) and participants’ actual
leave time (ALT) was closest to 0 (i.e., leave time difference;
LTD). In Fig. 2, OLTs are reflected as moments where the
CRR and ARR intersect after a peak in the CRR signal is
detected.

By adopting this normalization step, deviations from 0 on
the LTD parameter on the foraging run following the mood
induction procedure would thereby likely reflect effects in-
duced by the manipulation, with a negative LTD reflecting
an emphasis on exploitation over exploration (OLT < ALT)
and a positive LTD implying a more exploratory foraging
mode (OLT > ALT). We acknowledge that this is only one
method for determining what interval to use to determine the
CRR, but considering we are interested in changes to foraging
behavior the exact definition of CRR should not matter.

Within the first iteration, the LTD parameter was calculated
for a total of 200 unique time windows (0-20 seconds in steps
of 100 milliseconds). The analysis revealed that, on average,
LTD was smallest for an interval of exactly 9.00 seconds (i.e.,
OLT - ALT =-0.024). To confirm that we extracted the most
optimal time window over which to calculate the CRR, we
repeated this procedure in a second iteration by estimating the

---- Average reward rate (ARR)

©  Optimal leave times  ©
0.030
0.025
0.020 °
0.015 ‘

Reward rate

0.010 ‘
0.005

0.000 —

Current reward rate (CRR)

LTD parameter for another 50 unique time windows (8.75—
9.25 seconds in steps of 10 milliseconds). Once again, the
analysis revealed that, on average, LTD was smallest for the
9.00-second time window. Importantly, a between-subjects
ANOVA confirmed that, pre-mood induction, the LTD pa-
rameter for participants in the excited and sad mood induction
conditions (see below) did not significantly differ (F(1, 115)=
0.30, p = 0.59, np> < 0.01).

Mood induction The mood induction protocol used music to
manipulate mood, a procedure that has successfully been used
before (Eich et al., 2007; Van Steenbergen et al., 2010). Our
induction protocol incorporated two conditions to which par-
ticipants were randomly assigned: a positive (excited; high
arousal, high valence) or negative (sad; low arousal, low va-
lence) induction condition (Zexciteq = 57, Hsag = 60). During the
mood induction procedure, participants listened to classical
music congruent with the mood condition whilst writing down
a memory or hypothetical situation in which they have expe-
rienced or would hypothetically experience the intended
mood of the condition. The design was a double-blind study
design, in the way that participants were not informed before-
hand that we tested two different mood conditions, and the
experimenter did not know the condition participants were in,
as the induction happened using headphones, and the written
stories were not read by the experimenter. The mood induc-
tion phase lasted 10 minutes. Participants in the sad condition
that indicated to still be in a negative mood during the
debriefing were given the option to go through the positive
mood induction.

Mood grid Participants’ arousal and valence were assessed by
means of a two-dimensional (9 cells x 9 cells) Likert scale
(Russell et al., 1989). Participants were instructed to mark 1

Patch entered Patch left

Peak value current reward rate (CRR)

100

150

200 250 300

Time spent in seconds

Fig. 2 ARR/CRR fitting procedure for one specific participant. To
approximate optimal foraging behavior (following MVT), we
calculated, separately for each participant and each time point, the
current reward rate (CRR) and average reward rate (ARR) of the envi-
ronment. Instances where the CRR and ARR intersect after a peak in the
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CRR signal is detected (displayed as circles) reflect optimal leave times
(OLTs; displayed as diamonds). These time points were compared with
participants’ actual leave times (i.e., ALTs; vertical red lines), which
defined the leave time difference (LTD) parameter
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of 81 unique cells in the matrix. From left to right and from
bottom to top, arousal and valence were scored from very
sleepy (—4) to highly aroused (+4) and from very unpleasant
(—4) to very pleasant (+4), respectively. For example, if par-
ticipants placed a cross in the upper-right corner of the grid,
this would indicate feelings of excitement (high valence, high
arousal). This relatively simple instrument has been found to
have adequate reliability and validity (Russell et al., 1989).
Participants were asked to fill out the mood grid a total of 6
times: before and after each of the foraging task runs (i.e., time
points 1, 2, 5, and 6), and before and after the mood induction
procedure (i.e., time points 3 and 4). The direct effect of the
mood induction on mood was assessed by the arousal and
valence ratings on the third and fourth mood grid.

Statistical analyses

All analyses were performed in the analysis software R (R
Core Team, 2019; Version 3.6.0), with the critical alpha value
for significance being set to p = 0.05, while correcting for
multiple comparisons. Bayesian analyses with an uninforma-
tive model prior were additionally conducted to assess the
strength of observed results. These analyses were performed
using the BayesFactor package (Morey & Rouder, 2018).

To assess whether mood ratings were significantly modu-
lated by our mood induction manipulation, we subjected par-
ticipants’ arousal and valence ratings to two separate repeated-
measures ANOVAs (ezZANOVA from the R package ez) with
Condition (excited vs. sad) as a between-subject factor and
Time point (1 vs. 2 vs. 3 vs. 4 vs. 5 vs. 6) as a within-
subject factor. In case of a violation of the sphericity assump-
tion, Greenhouse-Geisser corrected df and p values are report-
ed and error-terms are provided. For those analyses for which
we had specific expectations regarding the directions of ef-
fects, one-tailed #-tests were performed. Associated df values
were corrected by means of Welch’s approximation in case of
a violation of the assumption of homogeneity of variances,
and p values were accordingly corrected for multiple compar-
isons (Holm, 1979). To check whether groups did not differ in
mood before the mood induction manipulation (time points 1
through 3), each of the RM-ANOVAs was followed up with
planned post-hoc t-tests.

To assess whether (changes in) arousal and valence modu-
lated behavior in the foraging task, we conducted three hier-
archical multiple linear regression analyses. For the first anal-
ysis, we calculated the mean ratings provided on the mood
grids presented at time points 1 and 2 (i.e., pre-mood induction
ratings) and used these continuous variables to predict LTD
scores for the first foraging run, while the mean ratings at time
points 5 and 6 (i.e., post-mood induction ratings) were extract-
ed as a measure of these parameters for the analysis on the
LTD data of the foraging run post-mood induction. In order to
test whether changes in arousal and valence were related to

adjustments in foraging behavior, we fitted the third multiple
linear regression model using difference scores for each of the
abovementioned parameters; delta arousal (post-mood induc-
tion arousal minus pre-mood induction arousal), delta valence
(post-mood induction valence minus pre-mood induction va-
lence), and delta LTD (post-mood induction LTD minus pre-
mood induction LTD).

For each of the regression analyses, as a first step, a simple
regression model was fitted. In a second step, these models
were updated with the predictors’ higher-order interaction
term. These hierarchical models were compared using the
anova function from the R package car. In case a more com-
plex model did not outperform a more parsimonious model,
we selected the model with the lowest BIC score. All models
reported below adhered to the assumptions of independent
errors (durbinWatsonTest from the R package car),
multicollinearity of residuals (vif from R package car), nor-
mality of residuals, linearity of residuals, and homoscedastic-
ity (Tabachnick & Fidell, 2012).

Finally, for each of the foraging runs, we ran multiple hi-
erarchical linear regression analyses to identify whether gen-
eral foraging metrics were modulated by Condition (excited
vs. sad) and arousal and valence scores. In particular, we fo-
cused on (1) the ratio of unique to total amount of patches
visited, (2) the median time spent in patches, (3) the variability
in patch leave times, (4) the mean travel time between patches,
(5) the time elapsed before the first patch was entered, (6) the
total area of the environment that was explored, and (7) the
total amount of berries collected. Because these analyses are
not within the main scope of the paper, these results can be
consulted within the Supplementary Material.

Results
Arousal ratings

The RM-ANOVA on the arousal data with factors Condition
(excited vs. sad) and Time point (1 vs. 2 vs. 3 vs. 4 vs. 5 vs. 6)
showed a main effect of Condition (F(1, 115) = 26.51, p <
0.001, np2 = 0.19) and a main effect of Time point (¥(3.57,
575)=8.42, p <0.001, e = 0.71, np* = 0.07) (Supplementary
Table 2). Overall, arousal ratings were higher for participants
in the excited condition (M = 1.47, SD = 1.40) compared with
participants in the sad condition (M = 0.52, SD = 1.46, see
Supplementary Figures 2a-f for the associated 2D-heatmaps).
Moreover, and as expected, a significant Condition x Time
point interaction was observed (F(3.57, 575) = 24.07, p <
0.001, ¢ =0.71, np2 = 0.17, Fig. 3). Along similar lines, the
Bayesian RM-ANOVA showed strong evidence in favor of
the alternative hypothesis (BF o = 1.51x10%7). More precisely,
the estimated Bayes factor suggests that the data are 1.51x10%7
times more likely under the alternative hypothesis—namely
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—eo— Excited --=-- Sad
Arousal Valence
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Start 05:00 07:00 17:00 19:00 24:00

Start 05:00 07:00 17:00 19:00 24:00

Time point and average time spent in minutes since first mood/arousal grid

Fig. 3 Self-reported arousal and valence ratings before and after each of
the foraging runs (time points 1, 2, 5 and 6), and before and after the mood
induction procedure (time points 3 and 4). The light-grey boxes indicate
the moments at which participants performed the pre-mood induction
(i.e., first light-grey box) and post-mood induction foraging runs (i.e.,
second light-grey box). The dark-grey box indicates the moment where

that the factors Condition and Time point affect arousal
ratings—compared with the null hypothesis.

Post-hoc #-tests (Holm-corrected) revealed that arousal rat-
ings for the excited and sad conditions did not significantly
differ preceding the mood induction manipulation (time points
1 through 3, [f|s < 1.62, ps,,,-> 0.16, ds < 0.30, 0.3 < BFs¢; <
3). In contrast, for time points 4, 5, and 6, arousal ratings were
significantly larger in the excited condition compared with the
sad condition (|f|s > 2.57, pScor < 0.024, ds > 0.47, BFs;q >
7.25; Supplementary Table 4).

Finally, one-tailed paired-sample #-tests on the ratings pro-
vided at time points 3 and 4 confirmed that arousal ratings
significantly increased for participants in the excited condition
(J11(56) = 2.85, p = 0.003, d = 0.45, 95% confidence interval
[CI] [0.07, 0.82], BF ;o = 5.48), whereas these ratings signifi-
cantly decreased for participants in the sad condition (|¢|(59) =
8.01, p < 0.001, d = —1.22, 95% CI [-0.82, —1.61], BFq =
1.83x10%).

Valence ratings

The RM-ANOVA on the valence data with factors Condition
(excited vs. sad) and Time point (1 vs. 2 vs. 3 vs. 4 vs. 5 vs. 6)
showed a main effect of Condition (F(1, 115) = 94.20, p <
0.001, np2 = 0.45) and a main effect of Time point (F(3.73,
575)=39.25,p <0.001, e =0.75, np* = 0.25) (Supplementary
Table 3). Overall, valence ratings were higher for participants
in the excited condition (M = 2.24, SD = 0.99) compared with
participants in the sad condition (M = 0.73, SD = 1.87,
Supplementary Figures 2a-f for the associated 2D-heatmaps).
Moreover, the analysis showed a significant Condition x Time
point interaction (F(3.73, 575) = 115.22, p < 0.001, ¢ = 0.75,
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the mood induction procedure was presented. Each of these time points
has additionally been labeled as the average amount of elapsed minutes
since the presentation of the first mood grid (i.e., time point 1). Individual
data points are reported. Error bars represent 95% between-subject Cls.
*p < 0.05, #*p < 0.001, Holm-corrected for multiple comparisons

np> = 0.50; Fig. 3). Along similar lines, the Bayesian RM-
ANOVA showed strong evidence in favor of the alternative
hypothesis (BF;( = 8.89x10''%). The estimated Bayes factor
suggests that the data are 8.89x10"'* times more likely under
the alternative hypothesis—namely that the factors Condition
and Time point affect valence ratings—compared with the
null hypothesis.

Post-hoc t-tests (Holm-corrected) revealed that valence rat-
ings for the excited and sad conditions did not significantly
differ preceding the mood induction manipulation (time points
1 through 3, |£|s < 0.52, pS.,->0.91, ds < 0.10, BFsy; > 3.28).
In contrast, for time points 4, 5, and 6, valence ratings were
significantly larger in the excited condition compared with the
sad condition (|f|s > 7.86, ps.,,,- < 0.001, ds > 1.44, BFs;( >
3.82x10°%; Supplementary Table 4).

Finally, one-tailed, paired-sample #-tests on the ratings pro-
vided at time points 3 and 4 confirmed that valence ratings
significantly increased for participants in the excited condition
(J#/(56) =7.42, p < 0.001, d = 1.04, 95% CI1 [0.64, 1.43], BF
= 1.54x107), whereas these ratings significantly decreased for
participants in the sad condition (|£/(59)=15.42, p<0.001,d =
—2.53,95% CI [-2.04, —3.01], BF ;o = 1.88x10').

Validity of condition classifications

Interestingly, as can be distilled from Fig. 3, arousal and va-
lence levels were fairly high for participants in the sad mood
condition, both before and after mood induction. Specifically,
although ratings of most participants in the excited mood con-
dition fell into the expected upper half of the scores, indicating
high arousal and valence (50/57 participants), a dissimilar
pattern was observed for participants in the sad mood
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condition, as most participants still scored in the upper half of
the grid, indicating high arousal and valence, and only a small
part (14/60 participants) scored relatively low on these mea-
sures. Put differently, although our manipulation was success-
ful in inducing variability in mood between groups, partici-
pants’ arousal and valence ratings did not necessarily conform
to the pattern of ratings as expected from the predefined clas-
sifications (Van Steenbergen et al., 2010). Because we were
interested in interindividual adjustments of control states as
induced by our mood manipulation, we treated the self-
reported arousal and valence ratings as continuous predictors
within all subsequent analyses, rather than comparing discrete
groups based on mood induction conditions. However, the
interested reader can consult the Supplementary Material for
all analyses incorporating the factor Condition. It is worth
mentioning that, irrespective of whether the factor Condition
was added to the models, the below described effects of inter-
est remain unaltered.

Foraging task metrics as predicted by mood

Three hierarchical multiple linear regression analyses were
conducted to reveal whether (changes in) arousal and/or va-
lence modulated participants’ LTD scores. Before model
specification, four participants were removed, as their LTD
value on either the pre-mood induction or post-mood induc-
tion foraging run exceeded the interquartile range by factor
2.2. Even though the below reported results did not change
when including these LTD outliers, we nevertheless decided
to exclude these observations as such omissions eliminated
violations of model assumptions. Importantly, for each of
the analyses reported below, ANOVAs revealed that updating
the models did not significantly increase the model fits (all
Fs(1, 109) < 3.88, all ps > 0.051). All below-reported p values
have been multiplied by a factor 3 to correct statistically for
the total amount of performed regression analyses.

The regression analysis on the relationship between LTD
and arousal and valence ratings pre-mood induction did not
reveal any significant association (F(2, 110) = 3.05, p.o,r =
0.15, R = 0.04; B = —0.14, 95% CI [-0.33, 0.04], |£/(110) =
1.51, peorr=0.39; p =—0.16, 95% CI [—0.34, 0.03], |1 (110) =
1.67, peorr = 0.30, for arousal and valence ratings, respective-
ly). The Bayesian linear regression analysis did not reveal
sufficient evidence (0.3<BF<3) in favor of the null nor the
alternative hypothesis (BF;o = 0.80).

Similarly, the second regression analysis did not reveal any
relationship between the mood predictors and LTD post-mood
induction (F(2, 110) =0.41, p.,,,-= 1.0, R>=-0.01; § =0.00,
95% CI [-0.21, 0.21], |#/(110) = 0.01, peoy- = 1.0 and B =
—0.09, 95% CI [—0.30, 0.12], |1(110) = 0.82, p.,,.- = 1.0 for
arousal and valence ratings, respectively). The Bayesian linear
regression analysis showed strong evidence (BFy, = 11.79) in
favor of the null hypothesis. Specifically, the estimated Bayes

factor suggested that the data were 11.79 times more likely
under the hypothesis that post-mood induction LTD and
arousal and valence ratings post-mood induction were not
related.

Finally, and interestingly enough, the third regression anal-
ysis revealed that delta LTD scores were significantly predict-
ed by both delta arousal and delta valence ratings (F(2, 110) =
6.79, peorr=0.005, R’ =0.09). Specifically, while an increase
in arousal was associated with an increase in exploratory for-
aging behavior (3 =0.24, 95% CI[0.05, 0.44], [¢/(110) =2.51,
Peorr = 0.041), an increase in valence was associated with an
increase in exploitative behavior ( = —0.33, 95% CI [-0.53,
—0.14], |4(110) = 3.45, peorr = 0.002; Fig. 4). Importantly, the
Bayesian linear regression analysis showed strong evidence in
favor of the alternative hypothesis (BF ;o = 17.65). More pre-
cisely, the estimated Bayes factor suggested that the data were
17.65 times more likely under the alternative hypothesis—
namely the hypothesis that changes in arousal and/or valence
significantly correlated with adjustments in foraging
behavior—compared with the null hypothesis.

Discussion

Our main research goal was to study whether and how the
regulation of exploration and exploitation relates to the regu-
lation of the persistence-flexibility trade-off. To fill this gap,
we induced, between-participants, two types of mood that are
assumed to differ in arousal and valence (i.e., excited vs. sad),
and subsequently tested whether these mood states differen-
tially affected individual tendencies towards exploration/
exploration as measured by means of a foraging task. As pre-
viously alluded to, our research aim can be divided into three
questions, which we will address in turn.

The answer to the first question, whether changes in arous-
al and/or valence systematically affect exploration and exploi-
tation, is clearly yes: not only did we manage to successfully
induce the expected mood changes in our participants, but we
also were able to show that these changes had an effect on
participants’ tendency to explore/exploit in the foraging task.
Specifically, adjustments in both arousal and valence were
associated with changes in foraging behavior: while increases
in arousal significantly correlated with increased levels of ex-
ploration, increases in valence substantially increased exploit-
ative foraging behavior. From a computational perspective,
the induction of a positive or negative mood could modulate
either information integration or the decision mechanism.
There is evidence from other domains to suggest that primacy
and recency effects are affected by mood (see Forgas, 2011 for
a social psychology approach), which may cause the differ-
ence in foraging behavior. However, such a conclusion seems
problematic, as it can be argued that exploratory behavior
from this point of view could be induced by an overestimation
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Arousal

Valence
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)
e ey

Delta Leave Time Difference (LTD)

Fig. 4 Delta arousal and valence ratings (post-mood induction ratings
minus pre-mood induction ratings) predict delta leave time differences
scores (post-mood induction LTD minus pre-mood induction LTD).
Specifically, while increases in arousal are associated with increases in

of the average reward rate or an underestimation of the current
reward rate. As the current study found that an increase in
arousal is associated with more explorative behavior, this
would suggest that an increase in arousal leads to an overes-
timation of the average reward rate or an underestimation of
the current reward rate. This suggests that a recency effect
may be at play, as the average reward rate increases slowly
overall starting the integration process at zero, while the liter-
ature suggests that increased arousal is associated with in-
creased primacy effects (Cahilla & Alkireb, 2003).
However, it is unclear if this translates to the current paradigm.
Therefore, these observations only partly matched our initial
expectation that positive-going mood states would, for both
arousal and valence dimensions, promote exploration and
negative-going mood would induce exploitation.

As a consequence thereof, the second question, asking
whether possible effects on exploration/exploitation are con-
ceptually similar to the effects one typically observes when
regulating the persistence-flexibility balance by means of a
mood induction procedure, can be denied: while the semantics
and functional descriptions of the conceptual pairs suggest a
strong commonality and possible overlap between exploration
and flexibility on the one hand, and between exploitation and
persistence on the other (Cohen et al., 2007; Hills, 2006),
positive-going mood did not result in more exploration, but
in more exploitation. This stands in contrast to the semantic
and theoretical considerations that have previously been pro-
posed (Hills et al., 2008, 2010; Hommel & Colzato, 2017) and
suggests that flexibility cannot simply be equated with explo-
ration and persistence not with exploitation, at least not with
respect to the behavioral measures as included within this
particular study design.

The lack of such a conceptual overlap directly taps into the
third question, namely whether effects reflect the impact of
arousal, a key player in exploration-exploitation accounts, or
of valence, which is often considered the key player in studies
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Delta rating

exploratory behavior, increases in valence are correlated with increases in
exploitative behavior. Individual data points are reported. The band-
widths represent 95% between-subject Cls

on flexibility and persistence, or both. Even though we did not
directly assess physiological arousal in the current study, our
findings suggest that both arousal and valence differently and
uniquely contribute to the tendency to explore or exploit. If we
speculate arousal is indicative of the noradrenergic system
(Aston-Jones & Cohen, 2005), whereas valence may reflect
changes in the dopaminergic system (Goschke & Bolte,
2014), our findings would be consistent with Cohen et al.
(2007), who speculated that both systems might be involved
in regulating control biases. This proposition fits well with
increasing evidence from neurochemical and physiological
studies suggesting interesting interactions between NE and
DA and their sources (i.e., locus coeruleus and the ventral
tegmental area) in regulating various kinds of processes
(Ranjbar-Slamloo & Fazlali, 2020). However, as the function-
al role of these interactions still remains to be better under-
stood, and the current study does not provide data to substan-
tiate direct inferences on the involvement of neuromodulators,
future work should focus on filling these gaps by including
direct manipulations of catecholaminergic activity (Buffalari
& Grace, 2007; Frank et al., 2009; Frank & Fossella, 2011;
Kayser et al., 2015). This is particularly advised when consid-
ering the results presented here: a modulation of foraging be-
havior was only observed when accounting for participants’
performance pre-mood induction, an observation that empha-
sizes the importance of studying inter- and intra-individual
differences in control processes (Mekern et al., 2019).

When interpreting our results, one important caveat has to
be addressed. Specifically, although our experimental para-
digm enabled us to examine the potential role of both arousal
and valence in modulating the exploration-exploitation bal-
ance, mood induction protocols traditionally incorporate four
conditions, reflecting excited (high arousal, high valence), sad
(low arousal, low valence), anxious (high arousal, low va-
lence), and calm (low arousal, high valence) induction condi-
tions (Van Steenbergen et al., 2010). Because our main
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rationale to use the mood induction paradigm was to maxi-
mize the variance of mood impact on the exploration-
exploitation trade-off, our protocol merely incorporated those
two (out of four) unique dimensions that most likely resulted
in the largest variability in arousal and valence scores. This
might have resulted in an underestimation of the distinct con-
tributions of, and interactions between, arousal and valence.
However, even though the observed effects call for a more
systematic investigation of the contributions of both NE and
DA in regulating both the exploration-exploitation and
persistence-flexibility balance, this does not render the current
results any less interesting.

Concluding, our study shows that mood plays some role in
the level of exploration-exploitation during foraging behavior,
but that the directions of effects do not directly map onto the
mood effects observed for modulation of flexible-persistent
control tendencies. Together, this provides first insights into
how processes related to arousal and valence differentially
modulate foraging behavior. Considering links between mood
and catecholaminergic neural mechanisms, our results might
suggest a role of both noradrenaline and dopamine in regulat-
ing the exploration/exploitation trade-off, and signify that the
relationship between exploration-exploitation and flexibility-
persistence might be more complicated than previously
assumed.
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