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with substance use variation in adolescence: A latent profile analysis
of brain imaging data
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Abstract
The present study identified subgroups based on inhibitory and reward activation, two key neural functions involved in risk-
taking behavior, and then tested the extent to which subgroup differences varied by age, sex, behavioral and familial risk, and
substance use. Participants were 145 young adults (18–21 years old; 40.0% female) from the Michigan Longitudinal Study.
Latent profile analysis (LPA) was used to establish subgroups using task-based brain activations. Demographic and substance use
differences between subgroups were then examined in logistic regression analyses. Whole-brain task activations during a
functional magnetic resonance imaging go/no-go task and monetary incentive delay task were used to identify beta weights as
input for LPA modeling. A four-class model showed the best fit with the data. Subgroups were categorized as: (1) low inhibitory
activation/moderate reward activation (39.7%), (2) moderate inhibitory activation/low reward activation (22.7%), (3) moderate
inhibitory activation/high reward activation (25.2%), and (4) high inhibitory activation/high reward activation (12.4%).
Compared with the other subgroups, Class 2 was older, less likely to have parental alcohol use disorder, and had less alcohol
use. Class 4 was the youngest and had greater marijuana use. Classes 1 and 3 did not differ significantly from the other subgroups.
These findings demonstrate that LPA applied to brain activations can be used to identify distinct neural profiles that may explain
heterogeneity in substance use outcomes and may inform more targeted substance use prevention and intervention efforts.
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Substance use increases during adolescence and peaks in
young adulthood (Miech et al., 2019; Schulenberg et al.,
2019). Experimental substance use is normative among youth,
due in part to greater opportunities and social incentives for
use (Schulenberg et al., 2016). However, heavy use contrib-
utes to negative outcomes, such as risky sexual behavior
(Ritchwood et al., 2015) and higher rates of mental health
problems (Conway et al., 2018). Early substance use may
confer long-term risk, as the majority of adults who meet
criteria for a substance use disorder began using substances
as adolescents (Grant & Dawson, 1997; Richmond-Rakerd
et al., 2016). A better understanding of factors differentiating

youth who do versus do not display problematic substance use
is crucial for improving public health.

A substantial body of research has demonstrated that dif-
ferences in brain function, specifically inhibitory control and
reward responsivity, may underlie individual differences in
substance use behaviors. Throughout adolescence and young
adulthood, the brain undergoes dramatic changes to its struc-
ture, connectivity, and physiology (Casey & Jones, 2010;
Gogtay et al., 2004; Spear, 2004) that are thought to make
these age groups particularly susceptible to risk-taking behav-
iors. Heightened risk-taking often is explained through dual-
systems models of brain development (Shulman et al., 2016;
Steinberg et al., 2008), which attribute risk behaviors ob-
served in youth to two complimentary systems: 1) a subcorti-
cal socioemotional-reward system—including the striatum
and amygdala—characterized by responsivity to reward and
novelty; and 2) a cortical cognitive system—including the
prefrontal cortex—characterized by impulse control and emo-
tion regulation. The subcortical reward system matures much
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earlier compared with the prefrontal cognitive control system,
which is unable to fully dampen subcortical impulses during
this time period.

Increased impulsivity and reward-seeking are thought to
contribute to a higher risk for substance use (Dick et al.,
2010; Quinn & Harden, 2013). For example, individuals with
substance use disorders have been found to display poorer
behavioral performance on measures of inhibitory control rel-
ative to healthy individuals (Wright et al., 2014). Prospective
neuroimaging studies have used the go/no-go paradigm, in
which individuals must respond quickly to stimuli but inhibit
their response on a subset of trials, to probe whether abnor-
malities in the neural correlates of inhibitory control are asso-
ciated with substance use in youth. Youth who initiate heavy
substance use during adolescence have generally been found
to display reduced activation in prefrontal and parietal brain
regions during no-go (inhibition) trials earlier in life (Heitzeg,
Nigg, et al., 2014a; Mahmood et al., 2013). Differences in
inhibitory brain activation during the go/no-go task, specifi-
cally in frontoparietal regions, have been documented in youth
who report heavy alcohol use compared with nondrinkers
(Norman et al., 2011; Wetherill, Castro, et al., 2013a;
Wetherill, Squeglia, et al., 2013b). Linkages between nicotine
use and deficits in inhibitory control also have been observed
(Luijten et al., 2014; Smith et al., 2014, for review), including
associations between heavy nicotine use and lower activation
in regions involved in inhibitory control (e.g., bilateral middle
frontal gyrus (MFG), supplemental motor area (SMA);
Galván et al., 2011). In terms of marijuana use, studies have
found greater activation related to inhibitory processing in
frontoparietal and cerebellar regions in youth who use mari-
juana compared with nonusers (Smith et al., 2011; Tapert
et al., 2007). Although the aforementioned studies included
youth who predominately used alcohol or marijuana respec-
tively, other substance use was not exclusionary, and
polysubstance use was relatively common among the sam-
ples. Thus, specific effects of substance type are difficult to
parse.

Studies attempting to characterize reward system function-
ing in the context of substance use risk have relied heavily on
the monetary incentive delay task (MID; Knutson et al., 2000)
during functional magnetic resonance imaging (fMRI), which
categorizes reward processing into an anticipatory phase and a
consummatory phase. The anticipatory component of the task
robustly activates the ventral striatum (VS), which is a central
component of the brain’s dopaminergic reward system. With
regard to substance use risk, there is an ongoing question as to
the direction of effect. Some argue for a “reward deficiency”
model, wherein activation to reward anticipation is reduced in
those who are at risk for problem substance use (Blum et al.,
2000; Whelan et al., 2014). Others instead have found height-
ened activation in the VS to be associated with later alcohol
problems (Heitzeg, Villafuerte, et al., 2014b) and early

substance use initiation in substance-naïve children (Cope
et al., 2019). Furthermore, nicotine has been found to increase
activation in reward-related areas, such as the VS and anterior
insula (Moran et al., 2018). Nicotine administration creates an
influx of dopamine to the nucleus accumbens (NAcc), and in
turn, an effect on anticipatory reward responding (Wang et al.,
2020). There also are questions in the literature pertaining to
substance-specific effects on reward responding. A cross-
sectional study compared groups of alcohol-, tobacco-, and
marijuana-only using, nonusing, and polysubstance using ad-
olescents, finding that the tobacco-only group uniquely
showed blunted anticipatory reward activation (Karoly et al.,
2015). More recently, work using the Michigan Longitudinal
Study (MLS) sample found a significant longitudinal associ-
ation between greater marijuana use and reduced anticipatory
reward activation in the NAcc over time when controlling for
concomitant tobacco and alcohol use (Martz et al., 2016).
Important methodological differences may account for these
seemingly conflicting findings. Specifically, whileMartz et al.
(2016) looked at longitudinal associations between substance
use and anticipatory reward responding within-subjects,
Karoly et al. (2015) conducted a cross-sectional study com-
paring groups of participants based on their substance use
behavior in relation to reward activation. Additional research
is needed to better understand group-level variation and
substance-specific associations with inhibitory and reward
activation.

Although the current literature suggests that inhibitory con-
trol and reward responsivity each play a role in substance use
vulnerability, it remains unclear how the interplay between
these two systems—as posited by dual-systems models of
brain development—is related to varying levels of drug and
alcohol use displayed by youth. Examining individual differ-
ences in brain function associated with both inhibitory control
and reward responsivity may help identify youth at risk for
heavy substance use. Latent profile analysis (LPA), a person-
centered approach used to identify latent subgroups derived
from multiple observations across different dimensions
(Lanza & Rhoades, 2013), may be useful to identify neural
profiles based on both inhibitory control and reward
activation.

Unlike confirmatory factor analysis (CFA), a method that
uses measurement items to determine latent constructs, LPA
uses individual data points to identify groupings of people
(Ferguson et al., 2020). The approximate equivalent of a factor
loading in LPA is probability of class membership. Whereas
CFA uses multiple variables to find homogeneity (i.e., a com-
mon factor), LPA uses indicator variables to find heterogene-
ity (i.e., different classes) among participants. LPA also differs
from other grouping analyses, such as cluster analysis, by
using a model-based, probabilistic approach. Compared with
variable-centered approaches, LPA does not assume that the
study sample shows a similar pattern of behavior (or neural
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activation). Group-based means provide useful information,
but only if observed data display minimal variance across
the study sample. Individual differences often are viewed as
statistical noise rather than variables of interest (Foulkes &
Blakemore, 2018). Thus, LPA is a useful tool to uncover
subgroups that group averages may fail to capture. Indeed,
LPA has been identified as a robust tool to characterize het-
erogeneity not only in children with ADHD (Fair et al., 2012;
van Hulst et al., 2015) but also in relation to other behaviors,
such as substance use (Evans-Polce et al., 2016).

Furthermore, LPA is relatively agnostic in terms of data
entered into the model to determine class groupings; data
can include parameter estimates, means, or even beta weights
from brain activation during fMRI tasks. Identifying sub-
groups based on brain function has important implications
for research aimed at better understanding correlates of psy-
chological phenomena or behaviors of interest and related
clinical efforts. A strength of LPA over other approaches to
examining brain-behavior associations, such as regression, is
that it can provide a data-driven approach to test for latent
subgroupings across multiple tasks. Specifically related to in-
hibitory control and reward responsivity, LPA has been used
to create neuropsychological profiles based on behavioral per-
formance during go/no-go and MID tasks in individuals with
attention deficit hyperactivity disorder (ADHD) (van Hulst
et al., 2015). As an exploratory follow-up to the van Hulst
et al. (2015) study, Lecei et al. (2019) identified latent sub-
groups based on functional imaging data within a relatively
small sample of children reporting ADHD symptoms (N =
56). However, few studies to-date have used LPA with neu-
roimaging data. This gap in the literature is concerning given
findings suggesting individual differences in brain function
are likely linked to various behavioral outcomes
(Anandakumar et al., 2018; Foulkes & Blakemore, 2018;
Hariri, 2009).

The present study extends the application of LPA to imag-
ing data by using an emerging adult sample and focusing
specifically on substance use in participants from the MLS,
a longitudinal, developmental study of the emergence of risk
for alcohol and other substance use disorder (AUD; SUD).
Two key objectives of this study were to: (1) conduct LPA
with mean beta weights from regions showing significant task
activation in go/no-go and MID tasks, respectively; and (2)
examine demographic and substance use variation in adoles-
cence as predictors of latent subgroup membership. Substance
use measures examined in the present study were alcohol,
marijuana, and cigarette use, due to these substances being
the most commonly used drugs of abuse in adolescents and
young adults (Schulenberg et al., 2019) and also the most
prevalent substances among the study sample. Youth are typ-
ically opportunistic rather than specialists in terms of their
substance use behavior (Maggs et al., 2011; Schulenberg
et al., 2016), and yet there is some evidence for specific effects

of substance type on brain activation (Coronado et al., 2020;
Karoly et al., 2015). Thus, associations between profiles of
brain activation and substance use were examined first in
models including all substance use types together to determine
whether there were effects of each substance over and above
the others, and then in substance-specific models to account
for the potential for collinearity to mask findings for a partic-
ular substance.

Methods

Participants

Participants were 145 right-handed 18- to 21-year-olds (mean
age 19.80; SD = 1.22; 40.0% female) from the MLS, a com-
munity-based, longitudinal study of families with parental
AUD (FH+) and a contrast sample of FH− families (Zucker
et al., 2000). Families who had a child with symptoms of fetal
alcohol syndrome were excluded. Exclusion criteria for the
neuroimaging protocol were neurologic, acute, uncorrected,
or chronic medical illness; treatment with centrally active
medications either currently or within the last 6 months; his-
tory of psychosis or schizophrenia in first-degree relatives; or
the presence of Axis I psychiatric or developmental disorders.
Conduct disorder, ADHD, substance use disorder, and history
of, or current unmedicated depression or anxiety were not
exclusionary due to their association with AUD risk.
Diagnosis was determined using the Diagnostic Interview
Schedule (Version IV; Robins et al., 2000). Participants who
were taking medication for ADHD were required to stop tak-
ing their medication at least 48 hours before fMRI scanning. A
five-panel multidrug urine screen occurred before each scan.
Participants who tested positive for marijuana but self-
reported abstinence within 48 hours before the scan were not
excluded due to Δ9-tetrahydrocannabinol metabolites being
detectable in urine for a week or longer. Self-reported drug use
within the past 48 hours and/or a positive test for drugs other
than marijuana were exclusionary. All participants provided
written consent, which was approved by the University of
Michigan Medical School Institutional Review Board.

Participant Measures

Substance use The self-report Drinking and Drug History
Form (DDH; Zucker et al., 1990; Zucker et al., 1994) was
conducted annually beginning at age 11 years to assess quan-
tity, frequency, and variability of alcohol consumption, fre-
quency of drug use, and consequences associated with the
use of these substances. Previous work using the DDH sup-
ports its validity (Noll et al., 1992). To measure substance use
before the fMRI scan session, cumulative alcohol, marijuana,
and cigarette use from age 11 years until the date of the scan
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were computed. Cumulative alcohol use was computed by
taking the sum of drink volume (number of drinking days
per month and drinks per day across different types of alcohol)
at each assessment age (Weiland et al., 2014; Weiland et al.,
2017). The MLS originated as a study with a predominant
focus on alcohol use, and as a result, there is greater precision
for alcohol-related questions compared to other types of sub-
stance use. Marijuana and cigarette use were assessed via
frequency of use report, rather than precise number of use
occasions. For cumulative marijuana use, participants were
asked to report the number of occasions they used marijuana
over the past 12months. Response options ranged from 0 = no
occasions to 8 = 1,000+ occasions. For cumulative cigarette
use, participants were asked to report their regularity of using
cigarettes over the past 12 months. Response options ranged
from 0 = never to 4 = regularly now. Due to the high variance
of substance use among study participants, these variables
were log transformed to improve the normality of the response
distribution. See Supplemental Materials for detailed informa-
tion on calculations for cumulative substance use variables.

Externalizing behavior Due to the association between early
externalizing behavior and later substance use outcomes
(Zucker et al., 2011), mean externalizing behavior from ages
9 to 14 years was assessed using T-scores from the aggression
and delinquency subscales of the Youth Self Report (YSR;
Achenbach, 1991).

Imaging Tasks

An event-related fMRI go/no-go task (Durston et al., 2002;
Hardee et al., 2014; Heitzeg, Nigg, et al., 2014a) was used to
measure blood oxygen level-dependent (BOLD) response as-
sociated with inhibitory control. Participants were instructed
to respond as quickly and accurately as possible to target stim-
uli (letters other than “X”) during go trials via button press, but
to withhold their response to infrequent non-target stimuli
(“X”) during no-go trials. Stimulus duration was 500 ms,
followed by 3,500 ms of a fixation cross. There were a total
of 5 runs of 49 trials, each lasting 3.5 min. To focus on suc-
cessful inhibitory control, analyses in the present study were
conducted using the contrast for correct rejection (correct no-
go trials) versus go trials. Hit accuracy, reaction times to hits,
and correction rejection rates were calculated as task perfor-
mance measures. Observed hit rates indicated that perfor-
mance was well-above chance (>63%) for all individuals in
the study.

To assess BOLD response during reward anticipation, par-
ticipants performed a modified version of the MID task
(Knutson et al., 2001; Martz et al., 2016; Yau et al., 2012).
An incentive cue was displayed for 2,000 ms during each trial.
Cues consisted of a large reward (win $5.00), large loss (lose
$5.00), small reward (win $0.20), small loss (lose $0.20), or

neutral condition (no money at stake). A fixation cross was
then shown for 2,000 ms, followed by a variable-duration
target, during which participants were instructed to press a
button as quickly as possible. Pressing the button while the
target was on the screen signified a correct response.
Participants were then shown feedback indicating whether
they won money, failed to win money, lost money, avoided
losingmoney, or nomoney was at stake. Trials were presented
in pseudorandom order in two 5 min runs, each of which
included 20 gain trials (10 large reward, 10 small reward),
20 loss trials (10 large loss, 10 small loss), and 10 neutral
trials. Analyses were conducted using the contrast for com-
bined large and small reward cue anticipation versus neutral
cue anticipation trials. Hit rates and reaction times for reward
anticipation and neutral trials were calculated as task perfor-
mance measures.

fMRI Acquisition

Whole-brain BOLD functional images were acquired on a
3.0-T GE Signa scanner (GE Healthcare, Milwaukee, WI)
using a T2*-weighted single-shot combined spiral in–out se-
quence (Glover & Law, 2001) with the following parameters:
repetition time (TR) = 2,000 ms, echo time (TE) = 30 ms, flip
angle = 90°; field-of-view (FOV) = 200 mm; matrix size = 64
x 64; in-plane resolution 3.12 x 3.12mm; and slice thickness =
4 mm. A high-resolution, anatomic, T1-weighted scan was
obtained for spatial normalization (three-dimensional spoiled
gradient-recalled echo, TR = 25 ms, min TE, FOV = 25 cm,
256 x 256 matrix, slice thickness = 1.4 mm).

fMRI Preprocessing

Functional images were reconstructed using an iterative algo-
rithm (Noll et al., 2005; Sutton et al., 2003). Subject head
motion and slice-acquisition timing were corrected using
FSL 4.0 (Analysis Class, FMRIB, Oxford, United Kingdom;
Jenkinson et al., 2002). Analysis of estimated motion param-
eters confirmed that overall head motion within each run did
not exceed 3-mm translation or 3° rotation in any direction.
All remaining image processing and statistical analysis were
completed using statistical parametric mapping (SPM8;
Wellcome Trust Center for Neuroimaging, London, United
Kingdom). Functional images were spatially normalized to a
standard stereotactic space as defined by the Montreal
Neurological Institute. A 6-mm, full-width, half-maximum
Gaussian spatial smoothing kernel was applied to improve
signal-to-noise ratio and to account for individual differences
in anatomy. One-sample t-tests were completed in SPM to
examine whole-brain task activation (go/no-go: correct
rejection>go; MID: reward anticipation>neutral). For both
go/no-go and MID tasks, motion parameters and white matter
signal intensity were modeled as nuisance regressors to
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remove residual motion artifacts and capture nontask-related
noise.

Analytic Plan

Three steps comprised the analytic plan of the present study.
First, ROIs were selected based on significant whole-brain
task activation during a single session of the go/no-go task
and the MID task. Beta weights for regions showing signifi-
cant task activation (Figure 1) were extracted using MarsBaR
(Brett et al., 2002). Because ROIs from two separate tasks
were input into LPA, a level of thresholding was selected that
was equal across both tasks. Thresholding also was deter-
mined by ROIs that were comprised of discreet brain regions
showing adequate cluster size and that were corrected for
multiple comparisons to control for false positives.

Second, LPAwas performed inMplus version 7.4 (Muthén
& Muthén, 2015) using extracted ROIs. LPA involves itera-
tively running a succession of models, beginning with a one-
class model, then two-class model, then three-class model,
and so on. Both theoretical and statistical considerations are
used to determine the appropriate number of classes (Collins
& Lanza, 2010). Lower values for Bayesian Information
Criteria (BIC) and Akaike Information Criteria (AIC) typical-
ly suggest better model fit. However, this strategy for model
selection is somewhat exploratory, in that substantive or inter-
pretation concerns also guide decision-making. These con-
cerns also led to the use of a threshold of 5% as the smallest
class size in determining the number of classes (Ferguson
et al., 2020 ). As is done in factor analysis, scree plots provide
a helpful visualization of where BIC values begin to display

diminishing value for each additional class. The class number
at the “elbow” of the plot where BIC values level out provides
another indicator of best fitting number of classes (Nylund-
Gibson & Choi, 2018). Regarding interpretability, it is often
best to select a model that shows greater differentiation in data
patterns (Nylund et al., 2007).

Third, estimated class assignments were exported into
SPSS v24 to examine descriptive data and predictors of each
latent class. Output of LPA provides a posterior probability
assigned to each individual, with values closer to 1 indicating
greater confidence in individual class assignments. Predictors
of each class were examined using multivariable logistic re-
gression analyses with latent class as the dependent variable.
Analyses were conducted first with all substances (i.e., alco-
hol, marijuana, cigarettes) modeled together to test for poten-
tial effects of certain substances over and above other types.
Second, each substance type was included in separate models
to test for influences of particular substances on class
membership.

Results

Latent Profile Analysis

LPA was conducted using extracted beta weights from eight
clusters from the go/no-go task and seven clusters from the
MID task (Table 1), resulting in fifteen variables correspond-
ing to the mean extracted beta weights entered into LPA
models. A threshold of p < 0.0000005, family-wise error
(FWE) corrected for multiple comparisons, >10 voxel extent,

Fig. 1 Whole-brain task activations during go/no-go and monetary in-
centive delay tasks. Significant whole-brain task activations during the
(A) correct rejection vs. go contrast from the go/no-go task, shown by
coordinates x = 40, y = 42, z = 22 and the (B) combined large and small
reward anticipation vs. neutral contrast from the monetary incentive delay

task, shown by coordinates x = 0, y = −4, z = −4. Regions are significant at
a family-wise corrected threshold of p < 0.0000005 and voxel extent >10.
Coordinates are in Montreal Neurological Institute (MNI) space, and the
color bar represents t-values
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was used for extractions. Model fit indices showed that the 4-
class model was superior (Figure 2), as indicated by the best fit
to the data when comparing models with increasing numbers
of classes (Supplemental Table 4) and examination of the
scree plot of BIC values (Supplemental Figure 1). Class 1

was comprised of 39.68% of the total sample and was quali-
tatively characterized by low BOLD activation during inhibi-
tory control and moderate activation during reward anticipa-
tion compared to the other three classes. Class 2 (22.72%)
showed moderate inhibitory control and low reward

Table 1 Task activation for go/no-go and monetary incentive delay tasks for all participants

Brain region Cluster size (k) MNI coordinates (x, y, z) Peak T

Go/No-Go task: CR vs. GO

Right middle frontal gyrus 6,402 40, 42, 22 13.19

Right supramarginal gyrus 4,540 60, −42, 26 13.07

Right supplemental motor area 1,451 6, 0, 58 11.16

Left supramarginal gyrus 887 −60, −48, 34 9.76

Left middle frontal gyrus 70 −34, 38, 26 8.03

Left insula 53 −34, 16, 4 8.03

Left precentral gyrus 28 −34, −12, 56 8.01

Right putamen 11 32, −22, 2 7.87

MID task: reward anticipation vs neutral

Bilateral ventral striatum 5,684 12, 12, −6 17.28

Left inferior occipital cortex 1,990 4, −86, −10 15.65

Right supplemental motor area 1,049 6, 4, 56 11.34

Left precentral 469 −38, −16, 48 9.96

Bilateral vermis 398 0, −48, −24 11.30

Right middle frontal gyrus 117 44, −6, 54 7.67

Left cerebellum 11 −32, −68, −24 7.88

CR = correct rejection; MID = monetary incentive delay; go/no-go and MID threshold p < 0.0000005 (FWE), >10 voxel extent.

Fig. 2 Latent profiles of neural activations during go/no-go and monetary
incentive delay tasks. Four-class model fit indices: AIC = 5164.53, BIC =
5396.71, Entropy = 0.92; Percentage of total sample (N = 145): Class 1:

39.68%; Class 2: 22.72%; Class 3: 25.20%; Class 4: 12.40%; CR =
correct rejection;MID =monetary incentive delay;MFG =middle frontal
gyrus; SMA = supplemental motor area; OCC = occipital cortex

1106 Cogn Affect Behav Neurosci (2021) 21:1101–1114



Table 2 Descriptive statistics by class

Class 1: low inhibition,
moderate reward

Class 2: moderate inhibition,
low reward

Class 3: moderate inhibition,
high reward

Class 4: high inhibition,
high reward

% Total sample 39.7% n = 58 22.7% n = 32 25.2% n = 37 12.4% n = 18

Scan age (SD) 19.71 (1.20) 20.15 (1.16) 19.88 (1.25) 19.32 (1.21)

Sex (% male) 51.7% 59.4% 64.9% 77.8%

Parental AUD 81.0% 56.3% 75.7% 77.8%

Externalizing mean 48.24 (8.18) 49.98 (10.82) 50.56 (7.66) 47.08 (6.78)

Cumulative alcohol use

Mean (SD) 1056.21 (1580.88) 778.50 (1259.45) 1379.84 (1771.00) 1149.00 (1298.56)

Range 0–7,428 0–4,494 0–7,728 0–4,446

Cumulative marijuana use

Mean (SD) 8.30 (12.01) 6.77 (13.61) 8.67 (13.41) 9.97 (9.16)

Range 0 – 43.00 0 – 49.55 0 – 44.11 0–33.00

Cumulative cigarette use

Mean (SD) 5.11 (8.10) 4.88 (8.29) 5.08 (7.12) 3.68 (5.07)

Range 0–31 0–28.33 0–27.47 0–16.96

Substance use initiation

Mean age at first drink
(SD)

15.78 (3.53) 16.46 (3.67) 15.05 (3.51) 15.81 (3.10)

Mean age at first marijuana
use (SD)

16.65 (2.88) 17.21 (3.93) 17.45 (4.06) 16.30 (2.37)

Mean age at first cigarette
use (SD)

17.69 (2.37) 18.39 (3.05) 17.29 (3.76) 17.39 (2.46)

Positive marijuana drug
screen

n = 4 n = 0 n = 1 n = 4

AUD = alcohol use disorder; SD = standard deviation; mean externalizing behavior was measured from approximately 9-14 years old; cumulative
substance use was measured from approximately 11-20 years old; alcohol use is measured in number of drinks and marijuana use and cigarette use are
measured in estimated regularity of use.

Table 3 Behavioral task performance by class

Class 1: low inhibition,
moderate reward

Class 2: moderate inhibition,
low reward

Class 3: moderate inhibition,
high reward

Class 4: high inhibition, high
reward

Go/No-Go task performance

Hit accuracy 96.9% 97.7% 96.7% 97.2%

Hit reaction time
(ms)

444.43 (71.27) 455.53 (77.94) 435.37 (49.79) 432.93 (59.95)

Correct rejection
rate

68.3% 69.0% 77.2% 72.5%

MID task performance

Hit accuracy

Reward target
trials

63.3% 58.0% 64.5% 56.8%

Neutral target
trials

48.8% 44.9% 48.0% 45.0%

Reaction time (ms)

Reward target
trials

208.39 (32.42) 193.53 (37.25) 192.80 (35.97) 176.13 (57.71)

Neutral target
trials

208.67 (32.92) 197.44 (35.08) 192.47 (39.11) 183.81 (65.35)

MID = monetary incentive delay. Parentheses indicate standard deviations.
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activation, whereas Class 3 (25.20%) had moderate inhibitory
control and high reward activation. Class 4 (12.40%) had the
highest inhibitory control and reward anticipation compared
to the other classes. Labels to describe levels of activation
across classes (e.g., low, moderate, high) are strictly descrip-
tive rather than quantitative in order to aid in interpreting
characterizations of each profile.

Class Comparisons

Descriptive data across the four classes are shown in Table 2.
Behavioral performance for go/no-go and MID tasks in each
class is reported in Table 3. The MID task is designed so that

success rate is individually calibrated in order to achieve com-
parable behavioral performance across subjects. For reaction
time, however, results from Tukey’s HSD test to examine
class differences showed that Class 4 was significantly faster
during reward trials compared to Class 1 (p = 0.013). For the
go/no-go task, Class 3 had a significantly higher correct rejec-
tion rate compared to Class 1 (p = 0.049) during the go/no-go
task. There were no other significant differences between clas-
ses in relation to behavioral task performance.

Each class was then compared to the remaining three
groups together in four separate multivariable logistic regres-
sion models (e.g., Class 1 vs. 2, 3, 4; Table 4). Class was the
dependent variable, and scan age, sex, parental AUD,

Table 4 Multivariable logistic regression models predicting class membership – full model

Class 1 vs. 2, 3, 4
OR (95% CI)

Class 2 vs. 1, 3, 4
OR (95% CI)

Class 3 vs. 1, 2, 4
OR (95% CI)

Class 4 vs. 1, 2, 3
OR (95% CI)

Scan age 0.97 (0.71, 1.33) 1.59* (1.06, 2.35) 0.96 (0.68, 1.37) 0.54* (0.33, 0.90)

Sex 0.58 (0.28, 1.20) 1.01 (0.42, 2.42) 1.20 (0.52, 2.74) 2.49 (0.73, 8.53)

Parental AUD 2.12 (0.92, 4.89) 0.37* (0.15, 0.89) 1.07 (0.42, 2.67) 1.00 (0.27, 3.65)

Mean externalizing 0.97 (0.93, 1.02) 1.01 (0.96, 1.06) 1.04 (0.99, 1.09) 0.96 (0.89, 1.04)

Cumulative alcohol 0.90 (0.76, 1.07) 0.85 (0.70, 1.04) 1.22 (0.99, 1.49) 1.17 (0.87, 1.57)

Cumulative marijuana 1.09 (0.76, 1.58) 0.82 (0.52, 1.30) 0.72 (0.48, 1.08) 1.99* (1.10, 3.60)

Cumulative cigarette 1.14 (0.75, 1.74) 1.19 (0.70, 2.04) 1.02 (0.64, 1.60) 0.56 (0.30, 1.06)

OR = odds ratio; CI = confidence interval; AUD = alcohol use disorder; mean externalizing behavior was measured from approximately 9-14 years old.
Cumulative substance use was measured from approximately 11-20 years old. *p < 0.05.

Table 5 Multivariable logistic regression models predicting class membership – substance-specific models

Class 1 vs. 2, 3, 4
OR (95% CI)

Class 2 vs. 1, 3, 4
OR (95% CI)

Class 3 vs. 1, 2, 4
OR (95% CI)

Class 4 vs. 1, 2, 3
OR (95% CI)

Alcohol-only model

Scan age 0.98 (0.72, 1.34) 1.58* (1.07, 2.35) 0.96 (0.68, 1.35) 0.56* (0.34, 0.92)

Sex 0.57 (0.28, 1.16) 1.04 (0.44, 2.47) 1.28 (0.56, 2.88) 2.39 (0.72, 8.00)

Parental AUD 2.20 (0.96, 5.02) 0.35* (0.14, 0.84) 0.98 (0.40, 2.39) 1.20 (0.34, 4.20)

Mean externalizing 0.98 (0.94, 1.02) 1.01 (0.96, 1.06) 1.03 (0.98, 1.08) 0.98 (0.91, 1.04)

Cumulative alcohol 0.95 (0.83, 1.08) 0.84* (0.72, 0.99) 1.11 (0.95, 1.30) 1.27* (1.00, 1.61)

Marijuana-only model

Scan age 0.93 (0.69, 1.25) 1.44* (1.00, 2.06) 1.09 (0.78, 1.50) 0.58* (0.36, 0.93)

Sex 0.56 (0.27, 1.13) 0.96 (0.41, 2.28) 1.29 (0.58, 2.91) 2.60 (0.77, 8.79)

Parental AUD 2.13 (0.93, 4.89) 0.38* (0.16, 0.91) 1.05 (0.43, 2.59) 1.16 (0.33, 4.10)

Mean externalizing 0.98 (0.94, 1.02) 1.01 (0.96, 1.07) 1.04 (0.99, 1.09) 0.96 (0.89, 1.03)

Cumulative marijuana 1.04 (0.80, 1.35) 0.76 (0.55, 1.05) 0.90 (0.67, 1.20) 1.73** (1.14, 2.60)

Cigarette-only model

Scan age 0.92 (0.68, 1.24) 1.39 (0.97, 1.99) 1.05 (0.76, 1.45) 0.69 (0.43, 1.06)

Sex 0.56 (0.27, 1.13) 0.98 (0.42, 2.30) 1.31 (0.59, 2.95) 2.51 (0.77, 8.21)

Parental AUD 2.15 (0.94, 4.91) 0.35* (0.15, 0.83) 1.01 (0.41, 2.45) 1.30 (0.38, 4.44)

Mean externalizing 0.98 (0.94, 1.02) 1.01 (0.96, 1.06) 1.03 (0.99, 1.08) 0.98 (0.92, 1.04)

Cumulative cigarette 1.06 (0.78, 1.45) 0.84 (0.57, 1.22) 1.01 (0.72, 1.42) 1.12 (0.70, 1.78)

AUD = alcohol use disorder. Mean externalizing behavior was measured from approximately 9-14 years old. Cumulative substance use was measured
from approximately 11-20 years old. *p < 0.05; **p < 0.01.
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externalizing behavior, cumulative alcohol use, cumulative
marijuana use, and cumulative cigarette use were independent
variables. Class 2 was significantly older and had a lower
likelihood of parental AUD. Class 4 was younger and more
likely to have greater marijuana use. Results from regression
analyses showed that there were no significant predictors dif-
ferentiating Classes 1 and 3 from all other classes.

Alcohol use was highly correlated with both marijua-
na use (r = 0.58, p < 0.001) and cigarette use (r = 0.57,
p < 0.001). Marijuana and cigarette use were also highly
correlated (r = 0.58, p < 0.001). To account for potential
effects of multicollinearity, we conducted separate mul-
tivariable logistic regression models for alcohol, marijua-
na, and cigarette use (Table 5). In the alcohol-only mod-
el, Class 2 was older, less likely to be FH+, and less
likely to use alcohol compared with the other classes.
Class 4 was younger and had higher alcohol use. In
the marijuana-only model, Class 2 was older and less
likely to be FH+. Class 4 was younger and more likely
to have greater marijuana use. In the cigarette-only mod-
el, there were no class differences in cigarette use, but
Class 2 was less likely to be FH+. For all substance use
specific models, there were no significant differences in
any predictors between Class 1 versus all other classes
and Class 3 versus all other classes.

Discussion

The present study identified heterogeneous subgroups
based on brain activation associated with inhibitory control
and reward anticipation—two neural functions integral to
dual-systems models of brain development and underlying
substance use behavior—and then examined the extent to
which age, sex, behavioral and familial risk, and substance
use varied among latent classes. Importantly, findings from
the present study demonstrate the potential utility of using
LPA with brain imaging data to differentiate subgroups
linked to addiction-related behaviors. Among the four dis-
tinct classes identified, Classes 2 and 4 showed the most
striking differences between the other classes in regression
analyses. Class 2 was older, less likely to be FH+, and
had lower cumulative alcohol use, whereas Class 4 was
younger and had greater alcohol and marijuana use. The
lack of significant subgroup differences in regression
models that included cigarette use was likely due to the
relatively high incidence rate of cigarette use in the MLS
sample. Class 4 was arguably the highest risk group and
Class 2 the lowest risk group compared with the other
classes; as such, these two classes are the focus of the
discussion.

Despite displaying greater substance use, Class 4
showed the greatest inhibitory activation compared to the

other classes during the go/no-go task, particularly in
frontoparietal regions (e.g., bilateral MFG, precentral gy-
rus, insula, SMA). This finding is consistent with prior
work showing an association between marijuana use and
greater inhibitory activation in these regions (Smith et al.,
2011; Tapert et al., 2007), especially considering that
Class 4 had higher rates of marijuana use compared to
the other classes. However, a great extent of inhibitory
control activation may not necessarily equate to stronger
impulse control, which is generally believed to be protec-
tive against substance use. Instead, inhibitory activation
displayed by Class 4 may indicate a compensatory neural
effort to perform the go/no-go task successfully rather than
an elevated extent of top-down cognitive control. Prior
research using MLS data has found significant differences
between low- and high-risk substance use groups in brain
activation despite equivocal behavioral task performance
(Hardee et al., 2014; Heitzeg et al., 2010), suggesting that
different brain regions may be recruited—and to varying
extents—in order to perform the task successfully. For
example, Hardee et al. (2014) found that FH+ youth
showed a developmental increase in brain activation with-
in regions involved in response inhibition from childhood
to adolescence, whereas FH− youth had decreased activa-
tion in these regions over the same time span. Except for
one difference in go/no-go task performance between
Classes 1 and 3 and in MID task performance between
Classes 1 and 4, no other significant differences in task
performance between classes were not detected in the pres-
ent study. However, Class 4 showed the fastest mean re-
action times for both reward and neutral targets during the
MID task and for hits during the go/no-go task, indicating
a tendency toward impulsive responding that is consistent
with a behavioral pattern of higher substance use.

In the same vein, it also is possible that the relatively high
level of inhibitory control activation in Class 4 may be a
result of heavy substance use, reflecting increased engage-
ment of inhibitory circuitry in order to successfully withhold
a prepotent response. Wetherill, Squeglia, et al. (2013b)
assessed a sample of adolescents before and after substance
use initiation and found that future heavy substance users
had blunted activation during no-go trials of a go/no-go task
at the baseline scan in frontoparietal regions, which were
also areas that showed inhibitory activation in the present
study. These results also mirror findings by Heitzeg, Nigg,
et al. (2014a) that found lower inhibitory activation in the
left MFG during late childhood predicted problem substance
use in adolescence. However, when youth from the
Wetherill, Squeglia, et al. (2013b) study were assessed three
years later and had transitioned into heavy substance use,
they showed greater activation compared to nondrinking
controls, supporting the possibility of compensatory neural
function to perform the inhibitory control task successfully.
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Also related to compensatory neural function, Mahmood
et al. (2013) described unexpected activation in the
supramarginal gyri specifically in the highest frequency sub-
stance users as a possible indicator of a “verbally mediated
calculation strategy” used during the go/no-go task.
Coinciding with findings reported by Mahmood et al.
(2013), the present study found greater activation in bilateral
supramarginal regions among participants in Class 4. In
sum, evidence from previous studies and the present study
highlight the importance of considering both maturational
changes and potential effects of cumulative use that may
impact brain function underlying inhibitory control.

Class 4 not only had greater brain activation involved
in inhibitory control compared with the other classes, but
also had heightened activation in anticipation of monetary
rewards. Given the greater likelihood of Class 4 to engage
in marijuana use and alcohol use compared with the other
classes, this level of reward responsivity, especially in the
VS, may reflect increased dopaminergic response to
rewarding stimuli. Class 3 showed a similarly high level
of VS activation. Of note, Class 3 had the next highest
mean rates of marijuana use after Class 4. Nestor et al.
(2010) found that young adults who used marijuana
showed heightened activation in the VS during the reward
anticipation condition of the MID task. Considering that
approximately 22% of individuals in Class 4 tested posi-
tive for marijuana during their urine drug screen (but were
still eligible for the scan because they self-reported use at
least 48 hours beforehand) it is possible that recent mar-
ijuana use contributed to this level of reward activation.
Indeed, marijuana has been found to increase neural blood
flow for up to a month after last use (Herning et al.,
2005).

Reward sensitivity may even exist prior to the onset
of substance use, as evident by findings from recent
studies using MLS data. Cope et al. (2019) reported that
greater activation in the NAcc during monetary reward
anticipation measured in childhood predicted substance
use initiation in early adolescence. Thus, continued sub-
stance use may disrupt the brain’s natural ability to
produce dopamine and respond to non-drug rewards.
In a cross-lagged analysis spanning ages 20 to 24, mar-
ijuana use was associated with blunted NAcc activation
during the anticipation of monetary rewards, suggesting
a decrease in reward responsivity to non-drug rewards
(Martz et al., 2016). Although results from the present
study showed an association between greater substance
use—particularly marijuana use—and elevated anticipa-
tory reward responding in the VS, it is important to
note that LPA was conducted with cross-sectional brain
imaging data. It is possible that with age and continued
substance use, reward-related brain activation in Class 4
may decrease over time.

Class 2 was the only subgroup identified in the pres-
ent study to show lower reward activation compared to
inhibitory control activation. Furthermore, compared to
the other classes, Class 2 displayed the lowest activation
during reward anticipation. This pattern may be associat-
ed with lower substance use, which is consistent with
findings here. In addition to being older, Class 2 also
was less likely to have parental AUD compared with
the other classes. In relation to anticipatory reward acti-
vation, FH+ individuals tend to show either no signifi-
cant differences or blunted activation compared to FH−
individuals. Consistent with the reward deficiency hy-
pothesis, Andrews et al. (2011) found that FH+ individ-
uals showed lower activation in the VS, orbitofrontal
cortex, and insula during reward anticipation compared
to FH- individuals. In contrast, Müller et al. (2015)
found no differences between FH+ and FH− individuals
both in analyses focused specifically on the VS and in
exploratory whole-brain analyses. Similarly, Bjork et al.
(2008) reported no FH differences in anticipatory reward
responding in the VS. Our results, however, showed that
Class 2 was less likely to be FH+ and had lower activa-
tion across reward circuitry compared to the other clas-
ses. A possible explanation for this discrepancy with pri-
or literature is that the present study did not directly
compare FH+ and FH− individuals. While Class 2 did
indeed have lower odds of being FH+, more than half of
Class 2 were classified as FH+ due to the entire study
sample being enriched for parental AUD. Results from
the present study suggest that even within a predominate-
ly FH+ sample, there appears to be heterogeneity in both
inhibitory control and anticipatory reward activation, as
well as substance use behavior.

Strengths and Limitations

A key strength of the present study is its application of LPA to
functional brain imaging data measured through go/no-go and
MID tasks. This work has important implications for research
on dual-systems models of brain development by identifying
subgroups based on inhibitory and reward activation.
Linkages between substance use behavior and brain function
based on profiles of activation across multiple tasks may help
researchers better characterize individuals based on heteroge-
neity across dimensions of risk (e.g., low levels of inhibitory
control coupled with elevated reward responsivity). This ana-
lytic approach differs from studies examining differences in
brain function between predefined subgroups classified by
their substance use (e.g., Karoly et al., 2015), although both
approaches have merit.

The only previous studies to include inhibitory control and
reward responsivity in the same latent modeling approach
were focused on childhood samples. Van Hulst et al. (2015)
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and Lecei et al. (2019) focused on ADHD symptoms.
Although potentially limited in generalizability, Lecei et al.
(2019) demonstrated the feasibility of identifying latent sub-
groups based on brain activation during go/no-go and MID
tasks. Thus, other strengths of the present study are its use of
brain activation during emerging adulthood, when substance
use is most prevalent, and its inclusion of prospective exter-
nalizing and substance use data from late childhood through
adolescence to test for potential influences of these earlier
indicators on brain function. However, additional work in
larger, longitudinal samples with a wider range of substance
use behavior is needed to better assess substance-specific ef-
fects on the brain.

One limitation of the present study is generalizability.
MLS is relatively homogenous in race/ethnicity, sex, and
parental AUD, so results may be limited in their general-
izability to other populations. It is important to note that
the MLS was originally designed to focus predominately
on alcohol use. As such, questions pertaining to alcohol
use are much more detailed regarding type, quantity, and
frequency of use compared with marijuana and cigarette
use. This may impact the extent to which comparisons can
be made across substances. Furthermore, ROI selection in
the present study was based on whole-brain task activa-
tion, which was then examined through LPA. This ap-
proach was chosen to extract an optimal amount of infor-
mation given the relatively small sample. However, as a
data-driven, model-estimation approach, class estimates
found through LPA are dependent upon the sample from
which they are derived. Using LPA to examine latent
subgroups based on neuroimaging data should be replicat-
ed in larger and more diverse samples. Even though LPA
modeling is not strictly limited to large sample sizes, a
greater N allows for improved model stability and accu-
racy in detecting small classes (Nylund-Gibson & Choi,
2018). It also is possible that individual variation in brain
activation may impact which ROIs show significant acti-
vation in group-level main effects maps. However, an
advantage of LPA applied to fMRI data is that it allows
for individual variation to be identified through latent
classes based on group-level activation.

Another limitation of the current work is that imaging data
was only available for this sample beginning approximately at
age 18 years and assessed at a single time point. Additional
work, such as the Adolescent Brain Cognitive Development
(ABCD) study that begins at ages 9 and 10 years and then
follows participants through the onset and progression of sub-
stance use, will be useful to disentangle aspects of brain func-
tion impacting substance use vulnerability and later impacts of
substance use on the brain. In the present study, substance use
data were collected over time, but brain imaging data were
conducted cross-sectionally. Thus, causation cannot be in-
ferred from our results.

There are limitations of conducting analyses of indepen-
dent variables predicting class membership based on posterior
probabilities. The BCH method in Mplus is often used to
conduct regression analyses predicting class membership, be-
cause this method accounts for classification error, and latent
class measurement parameters are held fixed (Nylund-Gibson
& Choi, 2018). However, using extracted class assignments
from posterior probabilities as a categorical grouping variable
is appropriate if entropy of the model is adequate (i.e., >0.80;
Ferguson et al., 2020). The entropy of the final model used in
the present study was 0.92, indicating confidence in classifi-
cation certainty.

Conclusions

Using a novel analytical approach, the present study ap-
plied LPA to brain imaging data in a sample of emerging
adults. Based on the theoretical perspective of the dual-
systems model of brain development and subsequent cri-
tiques that this perspective may not capture potential het-
erogeneity within a given age group, we sought to iden-
tify subgroups based on brain activation during inhibitory
control and reward tasks. Indeed, we found four distinct
classes with varying activation patterns and also differ-
ences in age and substance use behaviors across adoles-
cence. Examining how inhibitory control and reward cir-
cuitry are associated with substance use behavior has the
potential to help uncover individual differences in neural
function associated with differential risk-outcomes, which
may be beneficial to better understand at-risk groups and
create more individualized intervention and prevention
efforts.
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