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Abstract
Enhancing student’s math achievement is a significant educational challenge. Numerous studies have shown that math attitudes
can predict improvement in math performance, but no study has yet revealed the underlying neurocognitive mechanisms
explaining this effect. To answer this question, 50 children underwent functional magnetic resonance imaging (fMRI) when
they were 11 (time 1; T1) and 13 (time 2; T2) years old. Children solved a rhyming judgment and a single-digit multiplication
task inside the scanner at T1. The rhyming task was used to independently define a verbal region of interest in the left inferior
frontal gyrus (IFG).We focused on this region because of previous evidence showingmath attitudes-related effects in the left IFG
for children with low math skill (Demir-Lira et al., 2019). Children completed standardized testing of math attitudes at T1 and of
multiplication skill both at T1 and T2. We performed a cluster-wise regression analysis to investigate the interaction between
math attitudes and improvement in multiplication skill over time while controlling for the main effects of these variables,
intelligence, and accuracy on the task. This analysis revealed a significant interaction in the left IFG, which was due to improvers
with positive math attitudes showing enhanced activation. Our result suggests that IFG activation, possibly reflecting effort
invested in retrieving multiplication facts, is one of the possible neurocognitive mechanism by which children with positive math
attitudes improve in multiplication skill. Our finding suggests that teachers and parents can help children do better in math by
promoting positive math attitudes.
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Introduction

Early education in the fields of science, technology, engineer-
ing, and mathematics (STEM) is crucial in preparing future
workers for the demands for qualified employees in our society.
Besides the importance of cognitive factors in predicting math-
ematics achievement (Geary, 2011), affective factors also play
a role (Lipnevich et al., 2016). The affective domain in

mathematics education comprises attitudes, beliefs, and emo-
tions (McLeod, 1992). Attitudes are defined as “learned predis-
positions or tendencies to respond positively or negatively to
some object, situation, concept, or another person” (Aiken,
1970a). Attitudes towards math have been described as “an
aggregated measure of liking or disliking of math, a tendency
to engage in or avoidmathematical activities, a belief that one is
good or bad at mathematics, and a belief that mathematics is
useful or useless” (Neale, 1969, p. 632).

Correlational studies have shown widely varying associa-
tions between math attitudes and math achievement, from a
meta-analysis reporting a significant but weak effect size,
without accounting for differences in math skill (Xin Ma &
Kishor, 1997), to other studies reporting that math attitudes
accounted for approximately 26% of the variance in arithmetic
performance in a group of first graders (Dowker et al., 2019)
or that math attitudes explained up to 25% of the variance in
math grades even after controlling for math skill (Lipnevich
et al., 2016). Studies have shown that the association between
math attitudes and math achievement remains significant even
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after accounting for age, IQ, working memory, and math anx-
iety (Chen et al., 2018). Correlational studies are limited be-
cause they only show an association between variables, and
do not allow an inference regarding the directionality of the
effects. The question that teachers, parents, and researchers
find of educational relevance is whether having math attitudes
early on can explain children’s improvement in math over
time. This question is particularly important, because, unlike
some variables that impact math achievement, such as
home backgrounds or school characteristics, attitudes are
relatively malleable and amenable to change (Singh et al.,
2002). Therefore, modifying attitudes could be a valuable
tool in helping children do better in math. Mazzocco et al.
(2012) showed that early math attitudes can explain later
math performance even in young children. They found that
second-graders’ beliefs about math likeability, difficulty,
and usefulness, as expressed by children’s spontaneous
conversations, predicted children’s math calculations
scores in third grade. However, this study did not control
for initial levels of children’s math skill.

Controlling for initial levels of the dependent measure in a
longitudinal study is crucial for addressing the role that vari-
able “x” has in predicting improvement in variable “y” over
time. As claimed by Merkley and colleagues, controlling for
initial levels of the dependent measure is important, because it
is very likely that the differences found in the dependent mea-
sure at time 2 (T2; i.e., math achievement at T2) are due to
initial differences in that variable at time 1 (T1; i.e., math
achievement at T1) instead of to the effect of the predictor of
interest (i.e., math attitudes at T1) (Merkley et al., 2017).
Many longitudinal studies have shown that children’s early
math skill strongly predict later math achievement (Aubrey
et al., 2006; Reynolds, 1991; Yates, 2000). Therefore, it is
crucial to determine whether math attitudes explain children’s
math improvement regardless of their initial levels of math
performance.

Several longitudinal studies have found that math attitudes
predict improvement inmath skill over and above initial levels
of math performance. Ai (2002) found that seventh graders’
math attitudes predicted improvement in math performance
from seventh to tenth grade. Hemmings et al. (2011) found
that although 12-year-old’s math ability at T1 was a signifi-
cant predictor of math exam scores 3 years later, adding that
math attitudes at T1 as a predictor in the model resulted in a
larger predictive capacity. Similar results were obtained by
studies looking more broadly at the role of attitudes toward
school in predicting math improvement. Positive school atti-
tudes have been found to predict math improvement across all
four waves of a longitudinal study, from kindergarten to third
grade (Bodovski & Farkas, 2007) and from third to sixth grade
(Borman & Overman, 2004). Studies also have reported that
liking and showing interest in math, which is an important
component of math attitudes, predicted how much children

improved in math. Aunola et al. (2006) measured the liking
of math and math performance at the beginning (T1) and end
(T2) of first grade and once again in second grade (T3). They
found a direct effect of liking of math at T2 on math perfor-
mance at T3, even after accounting for initial levels of math
performance. When comparing changes in interest and
changes in math performance they found that the more
children liked math over time, the more they improved in
math. In a study with even younger children, Fisher et al.
(2012) found that 4-year-old children’s interest in math in
the fall (T1), defined as the eagerness and sophistication when
playing with math toys, predicted later math achievement in
the spring (T2), even after controlling for earlier math skill.
The same eagerness to learn predicted children’s longitudinal
improvement in math achievement from kindergarten to third
grade in the DiPerna et al. (2007) study. Overall, this evidence
corroborates the well-known idea that we learn better what we
like and find interesting and that promoting interest among
students is an excellent way to get them engaged, motivated,
and to help them excel in their learning (Harackiewicz et al.,
2016).

Besides math liking and interest, other crucial components
of math attitudes are perceptions of one’s math skills and
perceptions of the usefulness of math. According to
expectancy-value theory (Wigfield & Eccles, 2000), individ-
uals’ choice, persistence, and performance in a given domain
can be explained by their beliefs about how well they will do
on the activity (i.e., self-perceptions of skill) and the extent to
which they value the domain (i.e., perceived usefulness).
Numerous studies have supported this theory by showing that
children who perceive themselves as good at math and that
math is important to their future are more likely to pursue
advanced math classes than students who perceive themselves
as bad at math or who think that math is useless (Crombie
et al., 2005; Updegraff et al., 1996). Self-perceptions of one’s
math skills have been shown not only to be associated with
math performance (Dowker et al., 2019) but

to predict improvement longitudinally in math skill.
Several studies have found that children’s self-perceptions of
their math abilities in fifth grade (Petersen & Hyde, 2017), at
the beginning of eighth grade (Trautwein et al., 2009), and in
first through fourth grade (Wigfield & Eccles, 2000), predict
math achievement 5 years later at the end of eighth grade and
in high school, respectively, even after accounting for initial
levels of performance. Although perceptions of the usefulness
of math have been shown not to directly predict improvement
in math over and above earlier math performance (Reynolds
&Walberg, 1992), it was reported to be the strongest predictor
of children’s intentions and actual decision to keep taking
math courses (Wigfield & Eccles, 2000), which would even-
tually impact math performance. All of this evidence shows
that regardless of whether math attitudes are studied as a
whole (Ai, 2002; Hemmings et al., 2011), or specifically
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focusing on its interest (Aunola et al., 2006; DiPerna et al.,
2007; Fisher et al., 2012) and perceptions (Petersen & Hyde,
2017; Trautwein et al., 2009; Wigfield & Eccles, 2000) com-
ponents, they predict changes in math performance over time
at different stages of formal math development.

To the best of our knowledge, only two studies have inves-
tigated the underlying neurocognitive mechanisms of the as-
sociation (Chen et al., 2018) and the interaction (Demir-Lira
et al., 2019) between math attitudes and math performance.
First, using functional magnetic resonance imaging (fMRI),
Chen et al. (2018) investigated 7-to-11-year-old children
while they solved single-digit additions. Using structural
equation modeling, they found that the effects between posi-
tive math attitudes and math achievement were mediated by
increased use of retrieval strategy and greater hippocampal
activation, a region involved in learning and memory forma-
tion. However, the authors acknowledged that because of the
cross-sectional nature of their study, they were unable to de-
termine the directionality of the effects. Second, our fMRI
study in 8- to 15-year-old children solving multiplication
problems examined the neurocognitive mechanisms
explaining the interaction between math skill and math atti-
tudes but did not consider change over time (Demir-Lira et al.,
2019). Our regression analysis showed a significant interac-
tion between math attitudes and math skill in the left inferior
frontal gyrus (IFG), which was due to children with low skill
but positive math attitudes showing greater activation in this
region compared with their low skilled peers with negative
math attitudes. Previous studies had suggested that the IFG
is involved in the access to arithmetic facts stored in long-term
memory (Prado et al., 2011), as it shows less activation as fact
retrieval becomes more automatic over development (Prado
et al., 2014; Rivera et al., 2005) and shows greater activation
when the math task is more effortful (Delazer et al., 2003;
Soltanlou et al., 2017; Suárez-Pellicioni et al., 2018). Based
on these studies, we interpreted our results as showing that
children with low skill and positive math attitudes were
exerting more effort in retrieving multiplication facts.

Given that previous neuroimaging studies examining the
relation of math attitudes and achievement were cross-section-
al, they could not determine the neurocognitive mechanisms
involved in predicting math gains. The current study exam-
ined whether enhanced IFG activation associated with posi-
tive math attitudes predicts greater improvement in math over
time, even after accounting for initial levels of skill. We
followed some of the participants in the Demir-Lira et al.
(2019) study longitudinally, which allows inferences about
the directionality of the effects between math attitudes and
math improvement. Our analytical approach focused on a ver-
bal region of interest (ROI) in left IFG suggested in this study
to be related to the effort expended on solving math problems.
If greater activation in left IFG for those with positive attitudes
predicts gains in multiplication skill, then we can be more

confident that this proposed neurocognitive mechanism ex-
plains subsequent changes in math performance.

Methods

Participants

Sixty-five children from third to eighth grade were recruited
from schools in the Chicago metropolitan area to participate in
this study. This longitudinal dataset has been deposited in
OpenNeuro (10.18112/openneuro.ds001486.v1.1.0) and a de-
tailed description of it is given in Suárez-Pellicioni, Lytle,
Younger, & Booth, (2019). Time point 1 of this dataset is
the basis of other publications by our research group, includ-
ing Berteletti et al. (2014), Berteletti and Booth (2015), Demir,
Prado, & Booth (2014), Demir et al. (2015) Prado et al.
(2014). The longitudinal data of this dataset is the basis of
other publications, including Suárez-Pellicioni and Booth
(2018), Suárez-Pellicioni et al. (2018), Suárez-Pellicioni,
Fuchs, and Booth (2019), Suárez-Pellicioni et al. (2020), and
Demir-lira et al. (2016). None of these studies have looked at
the role of attitudes at T1 in predicting longitudinal improve-
ment in multiplication skill over time, which constitutes the
objective of this study.

All participants were native English speakers, right-handed,
were free of past and present psychiatric disorders, including
attention deficit hyperactivity disorder (ADHD), neurological
disease, or epilepsy. According to parental report, no partici-
pant had hearing impairments, uncorrected visual impairment,
was born prematurely (less than 36 weeks), was taking medi-
cation affecting the central nervous system, or had any contra-
indication for being scanned, such as having braces.
Participants had no history of intellectual or reading deficits,
all of them scoring above 80 standard scores (hereinafter, SS)
on the Full IQ scale of the Wechsler Abbreviated Scale of
Intelligence – WASI (Weschler, 1999) and above 80 SS on
the Word Attack subtest from the Woodcock-Johnson III Test
of Achievement (WJ-III; Woodcock et al., 2001), respectively.
Children and their parents or guardians provided written con-
sent to participate in the study. Parents were compensated $20
per hour for their time. All experimental procedures were ap-
proved by the Institutional Review Board at Northwestern
University.

Fifteen of the initial 65 participants had to be excluded
from the final sample for the following reasons: 1) being
left-handed (n = 1); 2) excessive movement in the multiplica-
tion task solved inside the scanner (n = 2) where excessive
movement was defined as more than 10% of the total volumes
replaced or more than five consecutive volumes replaced in a
given run; 3) scoring below 80 SS in the Word Attack subtest
from the WJ-III (Woodcock et al., 2001; n = 2); 4) missing
data from the Comprehensive Mathematical Abilities Test
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(Hresko et al., 2003) at T2 (n = 2); 5) accuracy below 50% for
the small (n = 2) or control (n = 4) conditions of the multipli-
cation task solved inside the scanner; 6) problem with the
program presenting the stimuli (i.e., Eprime) (n = 2). The final
sample consisted of 50 participants1 who were tested longitu-
dinally, with sessions being approximately 2 years apart. The
level of education of the children’s parents was relatively
high, being predominantly graduate (15 mothers and 14 fa-
thers), bachelor's (13 mothers and 11 fathers), and some col-
lege (15 mothers and 10 fathers). A limited number of families
completed high school (2 mothers and 7 fathers) or did not
complete high school (1 mother and 2 fathers).2 More detailed
information about the sample is given in Table 1.

Standardized measures

The following standardized tests were used to assess different
cognitive and attitudinal variables that constituted the covari-
ates of interest, covariates of no interest, or variables that we
used to rule out cognitive deficits before including participants
in the final sample.

Math attitudes

Children’s math attitudes were measured by the math attitudes
subtest of the Test of Mathematical Abilities–Third Edition
(TOMA-3; Brown et al., 2012). The math attitudes subtest
includes 15 items related to children’s liking or disliking of
math (e.g., “I’ve always liked math”), their tendency to en-
gage in or avoid math (e.g., “I’d rather do math than any other
kind of homework”), their self-perception of math skill (e.g.,
“Math tests are usually easy for me”), and how useful they
thought math is (e.g., “I use math a lot outside of school”).
Children were presented with these 15 sentences and were
asked to choose among four options ranging from “yes
definitely” to “no definitely.” Raw scores range from 15 to
60. Higher scores indicate more positive attitudes towards
math. More detailed information about math attitudes raw
scores is given in Table 1. Raw scores in this test at T1 were
included in the cluster-wise regression analysis described in
section 2.7.3, as a covariate of no interest (i.e., control of the
main effect of math attitudes).

Multiplication skill

Multiplication skill was measured by the multiplication sub-
test of the Comprehensive Mathematical Abilities Test
(CMAT; Hresko, Schlieve, Herron, Swain, & Sherbenou,

2003), including 26 items. This is an untimed test including
a wide range of multiplication problems, from very simple
ones, presenting multiplication problems in non-symbolic for-
mat, up to more difficult ones including the multiplication of
4- x 3-digit numbers (e.g. 5,764 x 678) and the multiplication
of fractions. Raw scores ranged from 0 to 26. This test was
administered both at T1 and at T2. Scores in this test were
used to calculate improvement over time in multiplication
skill. This improvement measure was included as a covariate
of no interest in the cluster-wise regression analysis described
in section 2.7.3. (i.e., control of the main effect of
improvement).

Intelligence

Full IQ, including both performance and verbal IQ, was mea-
sured by the Wechsler Abbreviated Scale of Intelligence
(WASI;Weschler, 1999). Performance IQ was measured with
the Block Design and the Matrix Reasoning subtests of the
WASI. The Block Design subtest requires participants to use
red-and-white blocks to re-create the model design shown by
the examiner, within a specified time limit. In the Matrix
Reasoning subtest, the examinee views an incomplete matrix
or series and selects the response option that completes the
matrix or series. Verbal IQ was measured with the Vocabulary
and Similarities subtests of the WASI. In the Vocabulary sub-
test, the participant has to define words, while in the

1 The following participants were included in this study: 2 5 6 7 8 9 10 11 12
16 20 22 23 24 27 34 35 36 40 44 45 46 48 49 50 53 54 55 56 57 60 61 65 66
67 69 70 71 73 74 75 76 86 89 90 93 95 96 103 106.
2 Information was missing for the level of education of 4 mothers and 6
fathers.

Table 1 Sample’s information. Means (standard deviation in
parenthesis) for age, time between sessions, and scores on standardized
tests of math attitudes, multiplication skill, improvement, reading skill,
intelligence (IQ), and accuracy (percentage) and response times (RTs;
sec) for small and largemultiplication problems solved inside the scanner,
for the whole sample (n = 50)

Whole sample (n = 50)

Age at T1 session (yr) 11.1 (1.5)

Age at T2 session (yr) 13.3 (1.6)

Time between sessions (yr) 2.2 (0.3)

Female/male ratio 26/24

Math attitudes at T1a 42.8 (8.3)

Multiplication skill T1a 11.8 (5.6)

Multiplication skill T2a 14.0 (5.7)

Improvement T2-T1a 0.0 (5.2)

Reading skill at T1b 105.2 (10.8)

Full IQ at T1b 112.3 (14.7)

% Accuracy: small 89.5 (12.8)

% Accuracy: large 68.0 (17.1)

RTs (sec): small 1.16 (.36)

RTs (sec): large 1.37 (.39)

a Raw scores; b Standard scores. T1: Time 1; T2: Time 2. See section 2.2.
for a description of the standardized tests.
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Similarities subtest the participants are presented with two
words that represent common objects or concepts and they
have to describe how they are similar. Full IQ at T1 was used
as a covariate of no interest in the cluster-wise regression
analysis described in section 2.7.3.

Reading skill

Reading skill was measured by the Word Attack subtest from
the Woodcock-Johnson III Test of Achievement (WJ-III;
Woodcock et al., 2001), which requires reading phonological-
ly regular nonsense words. This measure was used to make
sure that participants did not have reading deficits, with all
participants included in the final sample scoring above 80
SS in this test.

Scanner tasks

Rhyming judgment localizer task to identify verbal regions
in frontal cortex

In the rhyming judgment task, two written monosyllabic
English words were sequentially presented. Participants were
asked to decide whether the words rhymed or not. To ensure
that participants did not rely on orthography to solve the task,
four conditions were created in which pairs of words had: 1)
similar orthography and similar phonology (i.e., O+P+; e.g.,
dime–lime; 12 trials); 2) similar orthography but different pho-
nology (i.e., O+P-; e.g., pint–mint; 10 trials); 3) different or-
thography but similar phonology (i.e., O-P+; e.g., jazz–has;
10 trials); 4) different orthography and different phonology
(i.e., O-P-; e.g., press–list; 14 trials). The O+P+ and O-P-
constituted the nonconflicting conditions, given that ortho-
graphic information was consistent with the right answer,
whereas the O-P+ and O+P- conditions constituted the con-
flicting conditions because orthographic information was in-
consistent with the correct answer. Including these conditions
ensured that participants could not do the task based on visual
information alone, but rather had to access the pronunciation.
Figure 1a shows an example of the O-P+ condition of the
rhyming judgment task and its timing. The control condition
consisted of a blue square that was presented for the same
duration as the experimental conditions. For the control con-
dition, shown in Fig. 1b, children were asked to press a button
when the square turned red. All participants received stimuli
in the same order and in a single run, which lasted approxi-
mately 7 minutes.

Experimental task: Single-digit multiplication verification
task

Participants were presented with two runs of a single-digit
multiplication verification task. Each run comprised 12 small

problems and 12 large problems. Operands were smaller or
equal to 5 for small problems and larger than 5 for large
problems. The proposed solution could be correct or incorrect.
Incorrect proposed solutions were the result of multiplying the
first operand plus or minus 1 and the second operand (e.g., 6 x
3 = 15 or 21, which are the solutions for 5 x 3 and 7 x 3,
respectively). Problems involving 0 or 1 and ties (e.g., 3 × 3)
were not included in the main experiment but were used in the
practice session.

Each run consisted of 36 problems: 12 small problems with
correct solutions, 12 large problems with correct solutions, 6
small problemswith false solutions, and 6 large problemswith
false solutions.3 Figures 2C and D show an example of small
and large multiplications, respectively, and their timing. A
total of 72 problems were presented in two runs.
Participants’ task was to decide, employing button press,
whether the proposed solution was correct or incorrect. Each
run also included 12 control trials, which consisted of a blue
square that was presented for the same time as the stimulus in
the experimental conditions, and participants were asked to
press the response button with their index finger when it
turned red (Fig. 1b). The duration of each run was approxi-
mately 4 minutes. Twelve problems with a correct proposed
solution and 12 problems with an incorrect proposed solution
were included in the practice session. Different sets of stimuli
were used in the practice and the scanning sessions.

Experimental protocol

Subjects participated in a practice session after informed con-
sent was obtained and standardized tests were administered.
During this session, they practiced all trials and learned to
minimize headmovement in a mock fMRI scanner. The actual
scanning session took place within a week of the practice
session. In the fMRI scanner, participants performed two runs
of the multiplication task and one run of the rhyming judg-
ment task. Stimuli were projected onto a screen that was
viewed by the participants through a mirror attached to the
head-coil. The order of the tasks was counterbalanced across
participants. The timing and order of trial presentation within
each run was optimized for estimation efficiency using optseq
(http://surfer.nmr.mgh.harvard.edu/optseq/). Behavioral
responses were recorded using an MR-compatible keypad

3 We included a greater proportion of problems with true than false solutions
because we anticipated that false problems would be associated with error
detection and conflict monitoring mechanisms. Despite the different propor-
tion of problems with correct and incorrect proposed solutions, we did not
observe any bias towards answering “yes” in the task, with 90% of the partic-
ipants answering above chance level to problems with incorrect proposed
solutions (i.e., which required a “no” answer). As indicated in section 2.7.2.,
given that problems with correct and incorrect proposed solutions showed no
differences in activation in the region of interest, the two problems were ana-
lyzed together in the fMRI analysis to increase statistical power and equate
number of items across time and improvement.
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and participants responded with their right hand. In the multi-
plication task, participants responded with their index finger if
the proposed solution was correct and with the middle finger if
the proposed solution was incorrect. As for the rhyming judg-
ment task, participants responded with their index finger if the
words rhymed and with the middle finger if the words did not
rhyme.

Stimulus timing

Stimulus timing was identical in all tasks. A trial started with
the presentation of a first stimulus (i.e., multiplication problem
or first word, depending on the task) for 800 ms, followed by a
blank screen for 200 ms. A second stimulus (i.e., multiplica-
tion proposed solution or second word, depending on the task)
was then presented for 800 ms, followed by a red fixation
square for 200 ms. Variable periods of fixation, lasting
2,200, 2,600, or 3,000 ms (i.e. 400 ms jitter), were added after
each trial, during which the red square was presented. Each
run ended with 22 s of passive visual fixation to help with the
deconvolution of the final trials.

fMRI acquisition

Images were collected using a Siemens 3T TIM Trio MRI
scanner (Siemens Healthcare, Erlangen, Germany) at

Northwestern University’s Center for Advanced MRI. The
fMRI blood oxygenation level dependent (BOLD) signal
was measured with a susceptibility weighted single-shot echo
planar imaging (EPI) sequence. The following parameters
were used: TE = 20 ms, flip angle = 80°, voxel size: 1.7 x
1.7 x 3 mm, matrix size = 128 × 120 x 37, field of view = 220
× 206.25 x 111 mm, slice thickness = 3 mm (0.48 mm gap),
number of slices = 32, TR = 2,000 ms. Before functional
image acquisition, a high resolution T1weighted 3D structural
image was acquired for each subject, with the following pa-
rameters: TR = 2,300 ms, TE = 3.36 ms, matrix size = 256 ×
256, field of view = 240 mm, slice thickness = 1 mm, number
of slices = 160.

fMRI data analysis

Preprocessing

Data analysis was performed using SPM12 (www.fil.ion.ucl.
ac.uk/spm). The first six images of the run were discarded to
allow for T1 equilibration effects. The remaining functional
images were corrected for slice acquisition delays and
realigned to their mean functional image across runs. The
anatomical image was then segmented and warped to the
default tissue probability map (TPM) template to get the trans-
formation field. An anatomical brain mask was created by

Fig. 1 Tasks solved inside the scanner. (a) The rhyming judgment task
was used to localize verbal regions of the brain in inferior frontal cortex.
In this task, participants had to respond to whether pairs of words rhymed
or not. (b) The control condition common to all tasks solved inside the

scanner, in which participants had to press a button when the blue square
turned red. Multiplication task: Single-digit multiplication verification
task, including (c) small and (d) large multiplication problems
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combining the segmentation products (i.e., grey, white and
cerebrospinal fluid), and then applied to its original anatomi-
cal image to produce a skull-stripped anatomical image. After
that, the mean functional image and all functional images were
co-registered to the skull-stripped anatomical image. Images
were then normalized to the standard T1 Montreal
Neurological Institute (MNI) template and spatially smoothed
with a Gaussian filter equal to twice the voxel size (4 × 4 × 8
mm3 full width at half maximum). To reduce movement ef-
fects on brain signal, Art-Repair (https://cibsr.stanford.edu/
tools/human-brain-project/artrepair-software.html; Mazaika
et al., 2009) was used to identify outlier volumes, defined as
those with volume-to-volume head movement exceeding 1.
5 mm in any direction, head movement greater than 5 mm in
any direction from the mean functional image across runs, or
deviations of more than 4% from the mean global signal in-
tensity. The outlier volumes were repaired by interpolation
between the nearest nonoutlier volumes. Subjects included
in our study had no more than 10% of the volumes repaired
in each run and no more than 5 consecutive volumes repaired
in each run. Six motion parameters estimated in the

realignment step were entered in the first level modeling as
regressors and the repaired volumes were deweighted
(Mazaika et al., 2009).

fMRI analysis: First-level

Event-related statistical analysis was performed according to
the general linear model. Activation was modeled as epochs
with onsets time-locked to the presentation of the first stimulus
in each trial. To equate for power in the analysis and because no
differences in activation were found between problems with a
correct or incorrect proposed solution, all children's responses
(i.e., correct and incorrect) were included in the model. All
epochs were convolved with a canonical hemodynamic re-
sponse function. The time series data were high-pass filtered
(1/128 Hz), and serial correlations were corrected using an
autoregressive AR model.

Fig. 2 Covariates in the cluster-wise regression analyses. Illustration of
the covariates of interest and covariates of no interest (i.e., controls) in-
cluded in the two cluster-wise regression analyses carried out to study the
association between math attitudes and improvement in multiplication
skill while children solved small and large multiplication problems inside
the scanner. All variables were continuous. For the two regressions, the
covariate of interest was the interaction between math attitudes and im-
provement in multiplication skill over time. The main effects of math

attitudes, the main effect of improvement in multiplication skill, and
children’s full IQ were included as covariates of no interest in the two
regressions. When we studied this interaction with small multiplication
task solving, we included accuracy in small multiplication problems
solved inside the scanner as the fourth covariate of no interest. When
the interaction was studied with large multiplication problems inside the
scanner, accuracy in solving large problems was included as the fourth
covariate of no interest.
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fMRI analysis: Second-level

We evaluated the interaction between math attitudes and im-
provement in multiplication skill over time while children
solved multiplication problems inside the scanner. Given pre-
vious evidence reporting an interaction of math attitudes by
math skill only for small multiplication problems (Demir-Lira
et al., 2019), we studied this interaction separately for small and
large multiplication problems, using the “small vs. control” and
“large vs. control” contrasts, respectively. This resulted in two
regression analyses, one for each problem size. First, we stud-
ied brain activation during small multiplication problems by
carrying out a cluster-wise regression analysis, including the
interaction between math attitudes and improvement in multi-
plication skill, as the covariate of interest. The main effects of
attitudes and improvement in multiplication skill were included
as covariates of no interest (i.e., controls). Given that improve-
ment groups showed significant differences in full IQ and in
accuracy for small multiplication problems solved inside the
scanner (Table 4), these two measures were also included as
covariates of no interest in the model. Second, the same cluster-
wise regression analysis was carried out to study the interaction
between math attitudes and improvement in multiplication skill
while children solved large multiplication problems, but in this
case, we included accuracy on large multiplication problems
solved inside the scanner as the covariate of no interest. All
these measures were continuous variables. Figure 2 shows an
illustration of the covariates of interest and no interest included
in the regression analyses.

Definition of the region of interest (ROI)

To localize verbal regions in the brain we identified, for each
participant, the clusters that showed greater activation for all
word pairs of the rhyming judgment task compared with the
control condition, at T1. In a second-level analysis, these in-
dividual contrasts were submitted to a one-sample t-test across
all participants. Given that the study by Demir-Lira et al.
(2019) showed a cluster in left IFG being associated with
the interaction between math attitudes and math skill in a
multiplication task (Demir-Lira et al., 2019) and the exten-
sive evidence that suggested that the left IFG is responsible
for accessing verbal representations (Andin et al., 2015;
Bookheimer, 2002; Booth et al., 2003, 2004; Fedorenko
et al., 2012; Poldrack et al., 1999; Pollack & Ashby,
2017; Prado et al., 2011, 2014; Rickard et al., 2000), we
constrained the brain activation elicited by the contrast “all
word pairs vs. control” of the rhyming task within the ana-
tomical left IFG.

Statistical significance for this anatomical left IFG was de-
termined using Monte Carlo simulations in AFNI’s
3dClustSim program (December, 2015; see http://afni.nimh.
nih.gov/, with SPM’s data smoothness parameters,

autocorrelation function [ACF] = 0.45, 4.14, 11.02).
3dClustSim carries out a user-specified number of Monte
Carlo simulations of random noise activations at a particular
voxel-wise alpha level within a masked brain volume.
Following the suggestions made by Eklund et al. (2016) re-
garding the inflated statistical significance achieved using
some packages (i.e., SPM, FSL, and AFNI), we used
3dClustSim’s most recent version (December 2015). We
used 3dFWHMx to calculate the smoothness of the data
for every participant, using a spatial ACF, and then aver-
aged those smoothness values across all participants. This
averaged smoothness value was then entered into
3dClustSim to calculate the cluster size needed for signifi-
cance for a given anatomical mask. A cluster size of 46 was
needed to reach significance for the anatomical left IFG
region. Clusters exceeding this threshold, at a cluster-wise
threshold of p = 0.05 and voxel-wise threshold of p = 0.005,
were deemed significant.

The combination of the functional contrast “all words vs.
control” within the anatomical left IFG resulted in a cluster of
3668 voxels, shown in Fig. 3. More information about this
cluster is given in Table 2.

We then ran the 3dclustSim estimation for this combined
ROI to determine the cluster size needed for significance with-
in this region (k = 3668). A cluster size of 38 voxels was
needed for significance, at a cluster-wise threshold of p =
0.05 and voxel-wise threshold of p = 0.005.

Whole-brain level analysis

To investigate nonpredicted effects outside the ROI in frontal
cortex, we also performed a whole-brain analysis. We looked
at clusters outside our left IFG ROI showing activation for the
regression analyses described in section 2.7.3. and depicted in
Fig. 2. Statistical significance for the whole-brain was also
defined using 3dClustSim. A cluster of at least 202 voxels
was needed to reach significance at the whole-brain level, at
corrected level cluster-wise threshold of p = 0.05 and voxel-
wise threshold of p = 0.005.

Results

Association between math attitudes and other
variables

There were no sex-related differences in math attitudes at T1
(t(48) = 0.35, p = 0.73) or T2 (t(48) = −0.66, p = 0.51). Math
attitudes at T1 showed a significant positive correlation with
math attitudes at T2 (r = 0.63, p < 0.001) and with multipli-
cation performance at T1 (i.e., standardized test; r = 0.37, p =
0.008), but not with any of the following variables: age at T1
(r = 0.10, p = 0.51), age at T2 (r = 0.09, p = 0.54),

924 Cogn Affect Behav Neurosci (2021) 21:917–935

http://afni.nimh.nih.gov/
http://afni.nimh.nih.gov/


multiplication performance at T2 (r = 0.23, p = 0.11), im-
provement in multiplication skill (r = 0.09, p = 0.55), IQ (r
= 0.22, p = 0.13), reading skill (r = −0.04, p = 0.76), or
performance on the multiplication task solved inside the scan-
ner (all p values > 0.11). We did not observe any tendency of
math attitudes becoming more negative with age in our sam-
ple, the two variables were not significant correlated (r = 0.10,
p = 0.51).

Behavioral results: Performance on the rhyming
judgment localizer task

We calculated accuracy (i.e., percentage of correctly solved
trials) and response times (i.e., for correctly solved trials) for
the rhyming judgment localizer task solved inside the scanner,
for every participant. We then ran a repeated-measures
ANOVAs including Conflict and Rhyming as two within-
subjects factors. Conflict referred to whether orthography
was consistent (i.e., nonconflicting) or inconsistent (i.e., con-
flicting) with the correct answer. Rhyming referred to whether
word pairs rhymed or not. Post-hoc tests, using Bonferroni
correction, were calculated when an effect was found
significant.

The Rhyming by Conflict interaction was significant for
accuracy (F(1,49) = 44.71, p < 0.001, partial η2 = 0.47), and
it was due to significant differences between all the word pairs
(all above p = 0.03) except between O-P+ and O-P- (p = 1).
The easiest condition in terms of accuracy was the O+P+
(mean = 94.8, SEM = 1.2) whereas the hardest condition
was the O+P- (mean = 57.0, SEM = 4.0) consisting of word
pairs that did not rhyme and for which orthography did not
help solve the task. Accuracy was intermediate for the condi-
tions O-P+ (mean = 87.0, SEM = 2.2) and O-P- (mean = 85.0,
SEM = 3.0), the two conditions that did not show significant
difference between one another.

The Rhyming by Conflict interaction was also significant
for response times (F(1,45) = 6.69, p = 0.01, partial η2 = 0.13),
and it was due to a significant difference between the conflict-
ing and non-conflicting conditions among the non-rhyming
pairs (t(45) = 4.64, p < 0.001; O+P- and O-P-), and nonsig-
nificant differences between conflicting and nonconflicting
conditions among the rhyming pairs (t(49) = −1.64; p =
0.11; O+P+ and O-P+).

Behavioral results: Performance on the multiplication
verification task

We calculated accuracy (i.e., percentage of correctly solved
trials) and means of response times (i.e., for correctly solved
trials) separately for small and large multiplication problems,
for every participant. We then calculated a repeated mea-
sures ANOVA including Problem size (i.e., small, large)
as within-subjects factor for accuracy and for RTs. For
accuracy, we found a main effect of Problem Size
(F(1,49) = 109.39, p < 0.001, partial η2 = 0.69), with small
problems having higher accuracy than large problems. The
main effect of Problem Size was also significant for re-
sponse times (F(1,49) = 109.39, p < 0.001, partial η2 =
0.69), showing that small problems were solved faster than
large problems. More specific information about perfor-
mance on the multiplication task for the whole sample is
given in Table 1.

Table 2 Localizer task contrast and anatomical constraint used to create the combined region of interest (ROI) implicated in verbal processing

Localizer contrast Anatomical constraint K aal ~BA MNI coordinate Z value

X Y Z

All word pairs > control Left IFG 3668 IFG Operularis,
IFG Triangularis,
IFG Orbitalis

44, 45, 46, 47 −46 10 24 Infinite

−48 34 10 Infinite

−46 28 16 6.92

Detailed information of the combined ROI including cluster size (K), corresponding region based on anatomical automatic labeling (aal), approximate
Brodmann areas (~BA), MNI coordinates of the peaks, and Z values.

Fig. 3 Region of interest resulting from constraining brain activation
elicited by comparing all word pairs of the rhyming judgment localizer
task with the control condition within the anatomical left inferior frontal
gyrus (IFG)
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Behavioral results: the role of math attitudes in
predicting improvement in multiplication skill

We ran a hierarchical regression analysis to test whether math
attitudes at T1 predicted multiplication skill at T2, after ac-
counting for initial levels of multiplication skill (i.e., T1) and
full IQ at T1. Multiplication skill at T1 was the only predictor
inModel 1. InModel 2, both multiplication skill and full IQ at
T1 were included as predictors. Model 3 included multiplica-
tion skill, full IQ, and math attitudes, all at T1, as predictors.
The dependent measure in all three models was multiplication
skill at T2.4

As shown in Table 3, results showed that multiplication
performance at T2 was significantly explained by multiplica-
tion performance at T1 and by full IQ, but that math attitudes
at T1 was not a significant predictor over and above these two
cognitive factors.

fMRI results

Math attitudes by improvement in multiplication skill
interaction in the left IFG

The regression analysis revealed a significant cluster (Fig. 5A;
cluster in blue) showing activation for the interaction between
math attitudes and improvement in multiplication skill while
children solved small multiplication problems inside the scan-
ner. More information about this cluster is given in Table 5.
As shown in Fig. 5D, this cluster overlapped the cluster

showing a math attitude by math skill interaction at T1, as
found by Demir-Lira and colleagues (2019; cluster in cyan5),
the peaks from the two clusters being within 24mmEuclidean
distance from each other. Follow-up analyses were performed
to understand the interaction of math attitudes by improve-
ment in multiplication skill (see Sections 4.2. and 4.3).

No cluster reached significance for the main effect of math
attitudes or the main effect of improvement in multiplication
skill. No significant result was obtained for the analysis
looking at brain activation elicited when children solved large
multiplication problems inside the scanner.

Exploring the interaction: no improvement-related
effects in left IFG for math attitude groups

This follow-up effect analysis consisted of running a cluster-
wise regression analysis looking for clusters showing an asso-
ciation with improvement in multiplication skill separately for
negative and positive math attitudes groups. Full IQ and ac-
curacy in the multiplication task solved inside the scanner also
were included as covariates of no interest. To this aim, two
groups were formed based on the median-split of raw scores
on the math attitudes subtest of the Test of Mathematical
Abilities (Brown et al., 2012) at T1. For more information
about this test, see Section 2.2.1. The negative math attitudes
group comprised 25 children scoring below the median and
whose standard scores corresponded to “below average”math
attitudes. The positive math attitudes group comprised 25 chil-
dren scoring above the median and whose standard scores
corresponded to “above average” math attitudes. Math atti-
tudes groups did not differ in age at T1 (t(48) = −0.50, p =
0.62), age at T2 (t(48) = −0.40, p = 0.69), time between ses-
sions (t(48) = 0.40, p = 0.69), multiplication skill at T1 (t(48) =
−1.60, p = 0.12), multiplication skill at T2 (t(48) = −0.37, p =
0.71), improvement in multiplication skill (t(48) = 0.28, p =
0.78), full IQ at T1 (t(48) = −1.36, p = 0.18), sex distribution
(χ2 = 0, p = 1), level of education of the mother (χ2 = 2.73, p =

4 The same results were found if residuals of the change in multiplication skill
over time after accounting for T1was used as the dependent measure, with full
IQ significantly predicting improvement in multiplication skill whereas math
attitudes at T1 did not.

Table 3 Regression results with behavioral measures

Model Predictor Stand. β t R2 ΔR2 F ΔF

1 Multiplication skill T1 0.407 3.089** 0.166 0.166 9.539** 9.539

2 Multiplication skill T1 0.314 2.631* 0.359 0.193 13.171** 14.182
Full IQ T1 0.449 3.766**

3 Multiplication skill T1 0.307 2.397* 0.360 0.000 8.606** 0.024
Full IQ T1 0.447 3.658**

Math attitudes T1 .020 0.156

Results for the three regression models used to predict multiplication skill at T2 frommultiplication skill at T1 (model 1), multiplication skill, and full IQ
at T1 (model 2), and multiplication skill, full IQ, and math attitudes at T1 (model 3).

T1: Time 1; T2: Time 2; * Significant at p < 0.05; ** Significant at p < 0.005. Dependent measure: Multiplication skill at T2.ΔR2 : change in R2 .ΔF:
Change in F. No multicollinearity was found in these analyses, with the VIF values ranging from 1.04 to 1.19.

5 Note the difference in brain orientation in our figure and the one in
Supplementary Figure 2 in Demir-Lira et al., (2019) paper.
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0.60), or level of education of the father (χ2 = 2.42, p = 0.66).
As expected, groups significantly differed in math attitudes
(t(48) = −10.83, p < 0.001). Group differences in math atti-
tudes at T1 are shown in Fig. 4A. More detailed information
about these two groups is given in Table 4. As shown in
Table 4, these groups did not differ in their performance on
the multiplication task solved inside the scanner.6

We then carried out two separate cluster-wise regression
analyses, for the negative math attitudes (n = 25) and the
positive math attitudes (n = 25) groups, looking for clusters
within the ROI that showed an association with improvement
in multiplication skill over time while children solved small
multiplication problems inside the scanner. No cluster reached
significance for this analysis.

Exploring the interaction: math attitudes effects in
left IFG only for improvers

This follow-up effect analysis consisted of running a cluster-
wise regression analysis looking for clusters showing an asso-
ciation with math attitudes separately for improvers and non-
improvers groups. Full IQ and accuracy in the multiplication
task solved inside the scanner were also included as covariates
of no interest. Two groups were formed based on the median-
split of the time difference (T2-T1) in raw scores on the mul-
tiplication subtests of the Comprehensive Mathematical
Abilities Test (CMAT; Hresko et al., 2003), after accounting
for initial differences in the test (i.e. residuals after accounting
for T1). For more information about this test see section 2.2.2.
The nonimprovers group comprised 25 children showing less
improvement in multiplication skill over time and the im-
provers group comprised 25 children showing greater im-
provement in multiplication skill over time. Groups did not
differ in age at T1 (t(48) = 1.69, p = 0.10), age at T2 (t(48) =
1.68, p = 0.10), time between sessions (t(48) = 0.58, p = 0.56),
math attitudes at T1 (t(48) = −0.65, p = 0.52), multiplication
skill at T1 (t(48) = −0.23, p = 0.82), sex distribution (χ2 =
0.32, p = 0.78), level of education of the mother (χ2 = 3.43, p
= 0.49) or level of education of the father (χ2 = 2.76, p = 0.60).
As expected, groups differed in multiplication skill at T2
(t(48) = −7.70, p < 0.001) and improvement in multiplication
skill (t(48) = −9.21, p < 0.001). Groups also differed in full IQ

Table 4 Information on the groups created to study the interaction

Math attitudes groups (median-split) Improvement groups (median-split)

Negative attitudes (n = 25) Positive attitudes (n = 25) Improvers (n = 25) Nonimprovers (n = 25)

Age at T1 session (yr) 11.0 (1.5) 11.2 (1.4) 10.8 (1.3) 11.5 (1.6)

Age at T2 session (yr) 13.2 (1.7) 13.4 (1.5) 12.9 (1.4) 13.7 (1.7)

Time between sessions (yr) 2.2 (0.3) 2.2 (0.2) 2.2 (0.2) 2.2 (0.3)

Female/male ratio 13/12 13/12 12/13 14/11

Math attitudes at T1a 35.8 (4.7) 49.6 (4.3) 43.5 (9.4) 42.0 (7)

Multiplication skill T1a 10.6 (6) 13.0 (4.9) 12.0 (6.1) 11.6 (5.1)

Multiplication skill T2a 13.7 (6) 14.3 (5.5) 18.2 (3.7) 9.8 (4)

Improvement T2-T1a 0.2 (5.3) -0.2 (5.2) 4.1 (2.7) -4.1 (3.5)

Reading skill at T1b 107.4 (9.9) 106.0 (12.7) 106.8 (10.3) 103.6 (11.2)

Full IQ at T1b 109.5 (13.8) 115.1 (15.3) 118.5 (14) 106.1 (12.8)

% Accuracy: small 87.1 (14.2) 91.8 (11.1) 93.2 (8.8)* 85.7 (15.2)*

% Accuracy: large 67.0 (17.2) 69.0 (.02) 74.3 (17.8)** 61.7 (14)**

RTs (sec): small 1.21 (.37) 1.11 (.35) 1.19 (.34) 1.14 (0.38)

RTs (sec): large 1.37 (.37) 1.36 (.41) 1.44 (.38) 1.29 (0.39)

Means (standard deviation in parenthesis) for age, time between sessions, and scores on standardized tests of math attitudes, multiplication skill,
improvement, reading skill, intelligence (IQ), and accuracy (percentage) and response times (RTs; sec) for small and large multiplication problems
solved inside the scanner, for the math attitudes groups (i.e., negative attitudes; positive attitudes; n = 25 each) and for the improvement groups (i.e.,
improvers; nonimprovers; n = 25 each) created to study the math attitudes by improvement interaction.
a Raw scores; b Standard scores. T1: Time 1; T2: Time 2. See section 2.2. for a description of the standardized tests included in this table. * Significant
differences between improvement groups for small problems (t(48) = −2.13, p = 0.04). ** Significant differences between improvement groups for large
problems (t(48) = −2.76, p = 0.008).

6 We performed a repeated measures ANOVA including Problem size (i.e., small,
large) as within-subjects factor and Math attitudes groups (i.e., low, high) as the
between-subjects factor, for accuracy and for response times. As for accuracy, we
found a main effect of Problem size (F(1,48) = 108.10, p < 0.001, partial η2 =
0.69), but no interaction of Problem size byMath attitudes groups (F(1,48) = 0.42,
p = 0.52, partial η2 = 0.009). Themain effect ofMath attitudes group did not reach
significance (F(1,48) = 0.82, p = 0.37, partial η2 = 0.02). As indicated in Table 4,
the main effect of Problem Size was due to higher accuracy for small problems as
compared to large ones. As for response times, we found a main effect of Problem
Size (F(1,48) = 30, p< 0.001, partial η2 = 0.38), but no interaction of ProblemSize
by Math attitudes groups (F(1,48) = 1.38, p = 0.25, partial η2 = 0.03). The main
effect of Math attitudes group did not reach significance (F(1,48) = 0.29, p = 0.59,
partial η2 = 0.006). As shown in Table 4, the main effect of Problem Size was due
to faster response times for small problems than for large ones.
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at T1 (t(48) = −3.26, p = 0.002), so this variable was controlled
for in the cluster-wise regression analysis (see Section 2.7.3.).
Changes in multiplication skill over time for improvers and
non-improvers are shown in Fig. 4B. More detailed informa-
tion about these two groups is given in Table 4. As shown in
Table 4, these groups differed on accuracy in the task solved
inside the scanner.7

We then performed two separate cluster-wise regression
analyses, for improvers (n = 25) and nonimprovers (n = 25)
groups, looking for clusters within the ROI that were associ-
ated with math attitudes at T1 while children solved small
multiplication problems inside the scanner. This analysis re-
vealed a significant cluster showing an association with math
attitudes only for the improvers group. This cluster is shown in
green in Fig. 5B. As shown in Fig. 5D, this follow-up cluster
(i.e., in green) overlapped the cluster showing the interaction

of math attitudes by improvement in multiplication skill (i.e.,
in blue), the peaks from the two clusters being just 2-mm
Euclidean distance from each other. This follow-up cluster
also overlapped the cluster that Demir-Lira et al., (2019) found
to be significant for the interaction of math attitudes by math
skill at T1 (i.e., in cyan in Fig. 5), with the peaks from the two
clusters being within 24-mm Euclidean distance from one
another. More specific information about this cluster is pro-
vided in Table 5.

For illustration purposes, we then extracted brain activation
from this follow-up cluster from children showing improve-
ment and plotted it against math attitudes scores. As shown in
Fig. 6’s scatterplot for the improvers groups, the more positive

7 We performed a repeated measures ANOVA including Problem size (i.e.
small, large) as within-subjects factor and Improvement groups (i.e., im-
provers; nonimprovers) as the between-subjects factor, for accuracy and for
response times. As for accuracy, we found a main effect of Problem Size
(F(1,48) = 110.60, p < 0.001, partial η2 = 0.70), showing higher accuracy
for small problems than for large ones, but no interaction of Problem Size by
Improvement groups (F(1,48) = 1.54, p = 0.22, partial η2 = 0.03). The main
effect of Improvement groups was significant (F(1,48) = 8.17, p = 0.006,
partial η2 = 0.15). As indicated in Table 4, the main effect of Improvement
groups was due to improvers showing higher accuracy than nonimprovers,
both for small and large multiplication problems. For this reason, accuracy
in small and large multiplication problems at T1were included as covariates of
no interest (i.e. control variables) in the cluster-wise regression analyses de-
scribed in section 2.7.3. As for response times, we found a main effect of
Problem Size (F(1,48) = 29.79, p < 0.001, partial η2 = 0.38), but no interaction
of Problem Size by Improvement groups (F(1,48) = 1.46, p = 0.23, partial η2 =
0.03). The main effect of Improvement groups did not reach significance
(F(1,48) = 1.03, p = 0.31, partial η2 = 0.02). The main effect of Problem
Size was due to faster response times to small problems compared with large
ones.

Table 5 Interaction and follow-up cluster information

K aal ~BA MNI
coordinate

Z value

X Y Z

Math attitudes by improvement in multiplication skill interaction

58 IFG Triangularis; IFG Operularis 45, 44 −40 12 28 3.27

−32 6 30 3.24

Follow-up: Main effect of math attitudes for improvers

57 IFG Triangularis;
IFG Operularis

45, 44 −42 12 28 3.74

−50 8 28 2.99

Cluster size (K), corresponding region based on anatomical automatic
labeling (aal), approximate Brodmann areas (∼BA), MNI coordinates of
the peaks, and Z-values for the cluster showing the interaction of math
attitudes by improvement in multiplication skill (K = 58) and for the
cluster showing the main effect of math attitudes only for the improve-
ment group (K = 57)

Fig. 4 Math attitudes and improvement groups. (A) Illustration of the
math attitudes raw scores at T1 for the math attitudes subtest of the Test
of Mathematical Abilities (Brown, Cronin, & Bryant, 2012), separately
for the groups of children with negative and positive math attitudes
(created based on median-split). (B) Illustration of the changes over

time in the raw scores for the Comprehensive Mathematical Abilities
Test (Hresko, Schlieve, Herron, Swain, & Sherbenou, 2003) used to
measure multiplication skill, separately for improvers and non-
improvers children (created based on median-split). Error bars show stan-
dard error of the mean.
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their math attitudes, the more they activated this cluster in left
IFG to solve small multiplication problems inside the scanner.

No cluster reached significance for the nonimprovers
group.

Nonimprovers with positive math attitudes decreased
math attitudes over time

As indicated above, the follow-up analysis showed no signif-
icant effect of attitudes for the nonimprovers. We were inter-
ested in the subgroup of children showing initial positive
levels of math attitudes but not showing improvement in mul-
tiplication skill over time.8 We considered that this lack of
improvement might be because, despite their positive math
attitudes at T1, these children may have decreased their math
attitudes over time. To explore this, we ran a paired-sample T-
test comparing math attitudes scores at T1 and T2 for the
subgroup of nonimprovers with positive math attitudes at
T1. We found a significant change in math attitudes over time
(t(12) = 3.60, p = 0.004) for this group, with children decreas-
ing math attitudes scores from T1 (mean = 47.15; SD = 3.10)
to T2 (mean = 41; SD = 5.58).

Whole-brain results

Four clusters reached significance for the regression analysis
with small multiplication problems at the whole-brain level.
Two of these clusters were located in the lingual gyrus (k =
314; peak coordinates: x = −12, y = −64, z = −6; Z = 3.80 and
k = 393; peak coordinates: x = 30, y = −76, z = −16; Z = 3.66).
The third cluster (k = 216) involved the sub-gyral (peak coor-
dinates: x = 30, y = −80, z = 20; Z = 3.61) and the cuneus
(peak coordinates: x = 26, y = −82, z = 28; Z = 3.45). The
fourth cluster (k = 237) included the extra nuclear (peak co-
ordinates: x = 6, y = −6, z = 2; Z = 3.51) and the thalamus
(peak coordinates: x = −4, y = −18, z = 12; Z = 3.40). No
cluster reached significance for the regression analysis with
large multiplication problems.

Discussion

To succeed in our technological society, students need to de-
velop their capabilities in science, engineering, and mathemat-
ics to levels beyond what was considered acceptable in the
past (National Science Board, 2007). Because math achieve-
ment is the result of both cognitive (Geary, 2011) and non-
cognitive factors (McLeod, 1992), both must be addressed
when considering how to improve children’s math learning
and education.

Several longitudinal studies have shown that math attitudes
can predict math improvement, above and beyond initial
levels of math skill (Hemmings et al., 2011; Wigfield &
Eccles, 2000). The investment of effort, usually defined as
the mobilization of resources that are associated with an action
(Hepler & Albarracin, 2014), is considered one of the possible
mechanisms by which math attitudes impact math perfor-
mance. Hemmings and Kay (2010) found a positive

8 These subgroups resulted in 12 participants being classified as nonimprovers
with negative math attitudes, 13 participants as nonimprovers with positive
math attitudes, 13 participants as improvers with negative math attitudes, and
12 participants as improvers with positive math attitudes. The four subgroups
did not differ in age at T1, age at T2, time between sessions, reading skill, or
multiplication skill at T1 (all p values of Bonferroni-corrected post hoc tests
being above 0.42). In addition, the subgroups did not differ in sex distribution
(X2 = 0.41, p = 0.94). The two negative attitudes groups did not differ from one
another in attitudes (p = 1.0), but the two positive attitudes groups did differ (p
= 0.20), with the positive attitudes improver’s group having more positive
attitudes (mean = 52.3, SD = 3.8) than their nonimprovers counterparts (mean
= 47.2, SD = 3.1). As expected, the subgroups also differed in improvement,
with the two improvement subgroups differing from the two non-improvement
ones (all p values < 0.001). The two subgroups showing improvement (i.e.
with positive and negative attitudes) did not differ from each other and the two
subgroups showing non-improvement did not differ from one another (all
p values = 1.0). The two subgroups differed from each other in full IQ (p =
0.007). The improvers with positive math attitudes showed higher IQ (mean =
121.1, SD = 15.0) than the group of nonimprovers with negative attitudes
(mean = 102.3, SD = 10.8).

Fig. 5 Clusters showing significance for the interaction and the follow-up
analyses. (A) Cluster showing significance for the interaction between
math attitudes and improvement in multiplication skill over time (i.e., in
blue; K = 58). (B) Cluster found for the follow-up analysis showing math
attitudes-related activation only for improvers (i.e., in green; K = 57). (C)
Cluster found byDemir-Lira et al. (2019) showing an interaction between
math attitudes and math skill at T1 (i.e., in cyan; K = 127). (D) Overlap of
the three clusters: Cluster showing the follow-up activation for improvers
(i.e., in green; K = 57), overlaid on the cluster showing the interaction of
math attitudes by improvement in multiplication skill (i.e., in blue; K =
58), and on the Demir-Lira et al. (2019) cluster showing the interaction of
math attitudes by math skill at T1 (i.e., in cyan; K = 124).
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correlation (r = 0.55) between effort investment and math
attitudes in 16-year-old students. In a study with college stu-
dents, Cole et al. (2008) found that attitudinal aspects, such as
interest and perceived usefulness of a test, led to better math
achievement through more effort invested in the test, as mea-
sured by self-report measures. Trautwein et al. (2009) studied
eighth graders and found that math attitudes at T1 predicted
math achievement at T2 through more academic effort, as
measured with items referring to working hard to do better
in math. Balfanz and Byrnes (2006) found that effort was an
important factor explaining the reduction of the math achieve-
ment gap in high poverty middle schools, with students that
indicated that they were working “as hard as I can in math
class” having a 19% greater probability of catching up than
those who said they were “not working hard at all.” Overall,
this evidence suggests that effort investment might be the
mechanisms explaining the predictive relation between math
attitudes and math achievement.

Despite the extensive literature on the relationship between
math attitudes and math performance using behavioral mea-
sures, very little is known about the neurocognitive mechanisms
explaining this association. Only two studies have investigated
the brain correlates of their association (Chen et al., 2018) and
interaction (Demir-Lira et al., 2019) using fMRI. The correla-
tional study by Chen et al. (2018) found that the association
between math attitudes and math performance was mediated
by increased use of a retrieval strategy and greater hippocampal
activation. In another study, Demir-Lira et al. (2019) found an
interaction between math attitudes and math skill while children
solved a multiplication task. The interaction was due to low
skilled children with positive math attitudes activating the left
IFG to a greater degree as compared with the other groups.

Greater activation in the left IFG was interpreted as reflecting
the investment of more effort in retrieving multiplication facts
from memory. However, because of the cross-sectional nature
of these studies, neither was able to establish the directionality of
the effects betweenmath attitudes andmath achievement. In this
study, we examined predictive relations between math attitudes
and math improvement using longitudinal data, which move us
one step closer to establishing the directionality of the effects
between these variables.

No longitudinal study has yet investigated the underlying
neurocognitive mechanisms by which positive math attitudes
lead to improvements in math skill over time, which was the
objective of the current study. While Demir-Lira et al. (2019)
showed that positive math attitudes were associated with low-
er skill children’s activation in the left IFG, the current study
was designed to answer whether this same brain mechanism
could explain children’s improvement in multiplication skill
over time, regardless of initial levels of performance. We first
identified a region of interest in the left IFG implicated in
verbal processing using a rhyming judgment task. We then
performed a regression analysis within this ROI during mul-
tiplication problem-solving. Our analysis showed an interac-
tion of math attitudes by improvement in multiplication skill,
which overlapped the IFG cluster found by Demir-Lira et al.
(2019). Follow-up analyses showed that this interaction was
due to an association between math attitudes and left IFG
activation only for improvers, with more positive math atti-
tudes related to greater left IFG activation. In other words, the
interaction was due to improvers with positive math attitudes
showing greater activation in the left IFG comparedwith those
with negative math attitudes. This result confirms our hypoth-
esis that enhanced left IFG activation is not only the neural

Fig. 6 Association between math attitudes and brain activation for the
improvers group shown for illustration purposes. Scatterplot showing the
positive correlation betweenmath attitudes, in the X-axis, and the average

brain activation extracted from the cluster showing significance in the
follow-up analysis (i.e., K = 57; in green in Fig. 5B), in the Y-axis.
Error bars show standard error of the mean.
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correlate of positive attitudes in children with lower skill
(Demir-Lira et al., 2019), but also the mechanism by which
positive math attitudes explain improvement in multiplication
skill over time.

As with Demir-Lira et al. (2019), we interpreted the greater
left IFG activation as reflecting effort invested in problem-
solving. Neuroimaging studies have shown that children show
reduced activation of this region with more years of math
instruction (Prado et al., 2014) and that young adults show
less IFG activation compared with children (Rivera et al.,
2005). These results suggest less effortful retrieval of arith-
metic facts as math expertise develops. However, longitudi-
nal studies have shown that brain activation of the left IFG
during verbal processing was a significant predictor of
gains in multiplication skill over time, with improvement
being associated with less initial activation in this region
(Suárez-Pellicioni, Fuchs and Booth, 2019).9 Does our cur-
rent finding, showing greater activation in IFG at T1
predicting larger longitudinal gains, contradict this evi-
dence? While some studies have focused on age (Rivera
et al., 2005), years of math instruction (Prado et al.,
2014), or improvement (Suárez-Pellicioni, Fuchs, &
Booth, 2019) as their variables of interest, in the present
study we focused on the interaction between math attitudes
and multiplication improvement. Other possible explana-
tions for the lack of age-related effects in our findings could
be that: 1) There was no deterioration in math attitudes with
age (Ma & Kishor, 1997) in our sample (r = 0.10, p = 0.51).
This could have contributed to not finding an age-related
effect when studying the interaction between math attitudes
and improvement. 2) There was a significant correlation
between age at T1 and multiplication skill at T1 (r = 0.39,
p = 0.006). This was due to older children showing higher
achievement at T1 compared with younger ones. It is pos-
sible that by accounting for initial levels of skill when cal-
culating our measure of improvement (i.e., residuals), we
may have in part accounted for these age-related effects. 3)
There was a significant negative correlation between age at
T1 and improvement in multiplication skill (r = −0.30, p =
0.04). This was due to younger children showing more im-
provement than older ones. This is potentially due to youn-
ger children showing lower performance at T1, so they had
more “room” for improvement over time. We included the
main effect of improvement as a covariate of no interest in

the regression analyses, so we may have in part controlled
for these age-related effects. These methodological aspects
may have contributed to the fact that we did not find age-
related IFG effects as reported by other studies (Prado et al.,
2014; Rivera et al., 2005).

We interpreted IFG activation as effort invested in the
task,10 in line with previous math research showing greater
IFG activation in situations that require more effortful pro-
cessing, such as when adults solved untrained multiplication
problems as compared to trained ones (Delazer et al., 2003),
when children solved two-digit multiplications as compared to
single-digit ones (Soltanlou et al., 2017), or when
nonimproving children relied on less efficient strategies
to solve multiplication problems inside the scanner
(Suárez-Pellicioni et al., 2018). In addition to the litera-
ture on math cognition, many studies have shown that the
left IFG is critical for tasks with effortful demands
(Massar et al., 2015). A meta-analysis of 53 fMRI studies
investigating auditory perception found that the left IFG
was associated with effortful listening under different
speech manipulations (Alain et al., 2018). In a study
looking at verbal learning of easy and hard words after
normal sleep and following 36 hours of sleep deprivation,
the left IFG was one of the regions associated with better
free recall performance of hard words after sleep depriva-
tion, the condition reported as requiring greater effort
(Drummond et al., 2005). The IFG was activated while
participants rated the level of difficulty of a memory task
with different load conditions, with difficulty level corre-
lating with self-reported ratings of mental effort invested
in the task (Otto et al., 2014). Aben et al. (2020) asked
participants to detect faces in noisy images, with effort
demands being manipulated by adding noise to them.
They found that the IFG was activated when comparing
the high effort versus low effort conditions. Finally,
Poldrack et al. (2001) presented participants with a veri-
fication task including speech with different degrees of
temporal compression. They found that the left IFG
showed increased activation with increasing speech com-
pression, suggesting more effortful processing.

The above-mentioned literature shows greater frontal acti-
vation for more challenging tasks/conditions. Why did we
find the effects for small, but not large, multiplication prob-
lems solved inside the scanner? This could be due to the fact
that we aimed to study improvement regardless of initial levels
of performance. After accounting for skill-related differences,
the effect of math attitudes was not found for large multipli-
cation problems because skill plays a more important role in
difficult tasks. In other words, our results suggest that
attitudes-related effects are more evident in conditions in
which skill plays a less important role and that for more
challenging conditions, in which skill level may play a
more dominant role, the effects of attitudes may be harder

9 Note that Suárez-Pellicioni, Fuchs, and Booth (2019) focused on the role
IFG in phonological processing in predicting math skill and found that less
activation in this region predicted math gains only for younger children (ages
8-11 at T1).
10 It also is possible that the enhanced IFG activation for the improvers could
be instead reflecting motivation in participants with positive math attitudes.
Future studies should directly measure effort and motivational aspects in order
to provide stronger conclusions regarding the underlying mechanisms
explaining the effects of positive math attitudes on math improvement.
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to detect. In contrast to the scanner task, the test used to
measure improvement included a wide range of difficulty.
This test was also untimed, because we aimed to measure
what children were willing to do when there were no time
constraints. We expected untimed tests to be more sensitive
to perseverance- and effort-related effects, whereas timed
tests may be more vulnerable to the effect of anxiety
(Beilock & Carr, 2005). Math anxiety, which was not mea-
sured in this study, shows a detrimental effect on math
performance (Ashcraft, 2002; Suárez-Pellicioni et al.,
2016). Studies have reported negative correlations between
math anxiety and math attitudes as a whole (ranging from r
= −0.47 to r = −0.88; Hembree, 1990) and with its interests
and perceptions components (r = −0.45 to r = −0.70;
Malanchini et al., 2020), indicating that children with pos-
itive math attitudes usually score low in math anxiety.
Considering the negative correlation between these vari-
ables and given the untimed nature of the test used, we
think it is unlikely that the enhanced IFG activation we
found for the improvers with positive math attitudes is
due to anxiety.

The longitudinal nature of our study allowed us to provide
evidence that better speaks the directionality of the effects
between math attitudes (T1) and improvement (T2-T1), sug-
gesting that engaging left IFG early on by those children with
positive math attitudes drives gains in multiplication skill over
time. Our study suggests that investing effort in retrieving
multiplication facts from memory, as shown by enhanced left
IFG activation, is a possible mechanism by which children
with positive math attitudes improve in an untimed standard-
ized test of multiplication skill. However, not all children with
positive math attitudes at T1 showed improvement in multi-
plication skill. Although we found no neural correlate of lack
of improvement for those children with positive attitudes, our
analysis revealed that attitudes became more negative over
time for this group. It is possible that attitudes becoming more
negative impacts math performance, and explains our finding
of lack of improvement. This interpretation is consistent with
evidence showing that math attitudes may play a causal role in
performance (Ma & Kishor, 1997). Alternatively, it could be
the case that lack of improvement led to math attitudes be-
coming more negative over time. This interpretation is consis-
tent with evidence suggesting that math achievement causes
changes inmath attitudes (Ma&Xu, 2004). A third possibility
is that math attitudes and math achievement show a reciprocal
relationship, affecting one another (Ganley & Lubienski,
2016; Pinxten et al., 2014).

Despite our finding that brain measures predict outcomes,
our regression analysis with behavioral measures showed that
initial levels of math attitudes did not predict multiplication
skill at T2, after accounting for multiplication skill and intel-
ligence at T1. Our lack of behavioral prediction supports pre-
vious behavioral results suggesting that the effect of math

attitudes were minimal (Hemmings & Kay, 2010; Reynolds
&Walberg, 1992). Our findings go in line with previous fMRI
evidence showing that brain measures were significant predic-
tors of skill gains in math (Demir-lira et al., 2016) and in other
domains, such as reading (Hoeft et al., 2011), whereas behav-
ioral measures were not. Neural measures may be more sen-
sitive in predicting outcomes than self-reported measures of
math attitudes. However, our questionnaire of math attitudes
asked about liking, engagement/avoidance, self-perceptions
of math skill, and perceived usefulness of math in general.
Some researchers have argued for more precise measures of
attitudes toward different math domains, such as arithmetic,
geometry, and problem-solving (Aiken, 1970b). Studies have
shown, for example, negative attitudes toward fractions but
positive attitudes toward whole numbers both for children
and adults, regardless of math achievement levels (Sidney
et al., 2019). This specificity of our brain measure compared
with the more broadly defined measure of math attitudes ob-
tained from the standardized test may explain the discrepancy
between behavioral and fMRI results. We predict that left IFG
activation is a good candidate for predicting gains in opera-
tions that are solved by retrieving facts from memory, but not
for subtraction operations that rely on quantity processing in
parietal cortex (Prado et al., 2011; Prado et al., 2014; Suárez-
Pellicioni et al., 2020).

Our study proposes that greater left IFG activation is asso-
ciated with the investment of effort and represents the
neurocognitive mechanisms by which positive math attitudes
lead to improvement in multiplication skill over time. Studies
have shown that students are more likely to work harder if
they attribute success or failure to effort rather than to ability
(Schunk, 1983). Cultural differences have been found in suc-
cess attributions. Students in the United States tend to believe
that ability is the main cause of achievement, whereas students
in Japan tend to attribute success to effort (Holloway, 1988).
Changing students’ success attributions, perhaps emphasizing
Thomas Edison’s idea that “Genius is 1% inspiration and 99%
perspiration,” could have a positive impact on children’s will-
ingness to invest effort in math. Teachers and parents could
promote the importance of effort and practice for mastering
math instead of emphasizing ability and should pay attention
to how they praise children. Studies have shown that praising
effort led to greater task persistence, more task enjoyment, and
better task performance compared with praising intelligence
(Mueller & Dweck, 1998).

Because of the malleable nature of math attitudes,
teachers and parents can help children make the most out
of their potential by targeting their math attitudes. Simple
school interventions, such as working in cooperative
groups where students help each other, has been shown
to improve math attitudes (Leikin & Zaslavsky, 1997).
These interventions might bring greater benefits if they
take place early in elementary school, certainly, before
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children have the chance to avoid mathematics in their high
school curricular choices (Singh et al., 2002). Studies also
have shown that interventions to improve both math skill
and student’s attitudes are more effective than those focus-
ing only on math skill (Marsh & Craven, 2006; Seaton
et al., 2014). Only the study of both the cognitive and
affective components involved in math learning will pro-
vide a comprehensive explanation of why and how some
children excel in math while others are left behind, which
will help teachers and parents in their work of preparing
children to become productive members of society.
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