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Abstract
Beyond merely reacting to their environment and impulses, people have the remarkable capacity to proactively set and pursue
their own goals. The extent to which they leverage this capacity varies widely across people and situations. The goal of this article
is to propose and evaluate a model of proactivity and reactivity.We proceed in three steps. First, we model proactivity in a widely
used cognitive control task known as the AX Continuous Performance Task (AX-CPT). Our theory formalizes an important
aspect of proactivity as meta-control over proactive and reactive control. Second, we perform a quantitative model comparison to
identify the number and nature of meta-control decisions that are involved in the regulation of proactive behavior. Our findings
suggest that individual differences in proactivity are governed by two independent meta-control decisions, namely deciding
whether to set an intention for what to do in a future situation and deciding whether to recall one’s intentions when the situation
occurs. Third, we test the assumptions and qualitative predictions of the winning model against data from numerous experiments
varying the incentives, cognitive load, and statistical structure of the task. Our results suggest that proactivity can be understood
in terms of computational models of meta-control. Future work will extend our models from proactive control in the AX-CPT to
proactive goal creation and goal pursuit in the real world.
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Introduction

Neuroscience and psychology have extensively studied how
the brain processes and reacts to external stimuli and how
those propensities are shaped by learning. This has led to
significant progress in our understanding of important pro-
cesses, such as habit formation, and the underlying neural
mechanisms, such as reinforcement learning (Schultz et al.,
1997). However, these theories do not address an essential
element of what makes us human. That is, people do not
merely react to their immediate environment and their drives
and impulses. They also take initiative to set and pursue their
own goals even if nothing in their immediate surroundings
would suggest it. This quality is known as proactivity
(Parker et al., 2010). So far, proactivity has been primarily

studied in organizational studies, management sciences, and
applied psychology, whereas part of its underlying cognitive
mechanisms have been studied in the field of cognitive neu-
roscience (Braver, 2012). Proactivity is strongly associated
with motivation and positive outcomes in real-world settings.
For example, self-reported differences in proactivity in every-
day life have been found to be predictors of job performance,
career success, and career satisfaction (Judge & Kammeyer-
Mueller, 2007). Not surprisingly, proactivity also is correlated
with conscientiousness, self-efficacy, and responsibility for
change (Tornau & Frese, 2013). Despite all the benefits of
proactivity, high levels of proactivity are relatively rare
(Seibert et al., 1999). Whether people think and act proactive-
ly depends on motivational, dispositional, and situational fac-
tors (Parker et al., 2019). In the absence of proactivity, human
behavior is frequently controlled by stimulus-driven habitual
or Pavlovian mechanisms instead of reflective and goal-
directed decision mechanisms (Dolan & Dayan, 2013; van
der van der Meer et al., 2012). We refer to this mode of be-
havioral control as reactivity.

By contrast, we define proactivity as the set of mechanisms
that generate goal-directed behavior through the exertion of
some form of cognitive control. This includes at least two
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distinct classes of mechanisms. The first pathway to proactive
behavior is to set intentions in anticipation of future situations,
actively maintain them in working memory, and then enact
them when the anticipated situation occurs. For instance, if
your fridge is empty, you may anticipate the need to override
your habit to go home straight from work by the goal-directed
behavior of stopping at the supermarket on your way home.
Based on the anticipation that you will pass by the supermar-
ket, youmay start exerting cognitive control while you are still
at work to create and actively memorize the implementation
intention: “When the bus announces the stop next to the su-
permarket, then I will request it to stop and get out.” Recent
research in cognitive neuroscience has begun to study this
capacity under the heading of proactive control (Braver,
2012). Proactive control and its neural underpinnings have
been studied in working memory paradigms (Braver, 2012;
Burgess et al., 2011) and cognitive control tasks (Mäki-
Marttunen et al., 2019a, 2019b). In working memory para-
digms, proactive control manifests as the active maintenance
of the intention to press a button if the test itemmatches one of
the items to be memorized throughout the delay period. In
cognitive control tasks, proactive control manifests as people
initiating their response to an anticipated stimulus before it has
even appeared based on the information provided by a predic-
tive cue. A second pathway to proactive behavior comprises
the stimulus-triggered recall of a goal or intention and the
exertion of cognitive control to resolve conflicts between the
recalled intention and default activities (automaticity). This
mechanism is known as reactive control (Braver, 2012). For
instance, if you are daydreaming on your way home, then the
announcement of the next bus stop might reactivate your goal
to go shopping. This, in turn, might prompt you to exert cog-
nitive control to stop daydreaming, set the intention to stop the
bus, and enact it immediately. Our definitions of proactivity
and reactivity should not be confused with the notions of
proactive control and reactive control as defined in the DMC
framework. Rather, our notion of proactivity subsumes both
proactive and reactive control and reactivity denotes the
stimulus-driven automatic behavior that occurs in the absence
of either form of cognitive control.

Proactive and reactive control have been extensively studied
in a paradigm called the AX Continuous Performance Task
(AX-CPT). As illustrated in Fig. 1, the AX-CPT presents par-
ticipants with a stream of letters that are grouped into pairs. The
first letter of each pair is called the cue, and the second letter is
called the probe. There are two types of cues, called A cues and
B cues, and two types of probes, called X probes and Y probes.
The participant’s task is to detect AX trials, that is trials in
which the pair comprises an A cue and an X probe by pressing
button 1 and to press button 2 for all other pairs. Critically, in
the standard AX-CPT, the frequencies of the four different trial
types (AX, AY, BX, and BY) are such that an A is much more
like to be followed by an X than by a Y, and there is a long

delay between the cue and the probe. This allows participants to
mentally prepare their response to probe even before it appears.
For instance, when a participant sees an A cue, they might
resolve to press button 1 as soon as the probe appears. This is
an example of proactive control. On BX trials, by contrast,
participants often have to engage in reactive control to override
their habit to press button 1 when they see an X probe.

Proactivity has been found to be highly variable in labora-
tory paradigms (Braver, 2012) and in the real-world (Seibert
et al., 1999). The Dual Mechanisms of Control framework
(Braver, 2012) seeks to explain this variability in terms of
differences in the extent to which people rely proactive control
and reactive control. Despite initial modeling work (De
Pisapia & Braver, 2006; Reynolds et al., 2006), the computa-
tional principles and algorithmic mechanisms of how people
decide when to engage proactive control and when to engage
reactive control remain unknown, and several theoretical co-
nundrums remain to be resolved. For instance, it is still debat-
ed whether proactive control and reactive control are compet-
ing or complementary forms of control (Gonthier et al., 2016;
Mäki-Marttunen et al., 2019a). Furthermore, it remains un-
clear how many and which meta-control decisions govern
the variability in cognitive control within and across people.
For instance, it is currently controversial whether people in-
hibit the intentions they have set in anticipation of one event
when another event occurs that renders their intentions mal-
adaptive (Mäki-Marttunen et al., 2018). The findings
reviewed by Braver (2012) suggested that the frequency with
which people engage proactive control increases with factors
that make it more valuable (e.g., incentives) and decreases
with factors that make it costlier (e.g., working memory load).
These findings are congruent with the theory that people make
rational use of their limited cognitive resources (Lieder &
Griffiths, 2020) and the rational cost-benefit analysis postulat-
ed by the Expected Value of Control theory (Lieder et al.,
2018; Shenhav et al., 2017). According to this theory, the
identity and intensity of cognitive control signals are chosen
tomaximize the expected reward of performing the task minus
the cost of control. The optimal control signal usually has an
intermediate intensity, because stronger control signals are
costlier. We hypothesize that the exertion of proactive and
reactive control is governed by an equivalent rational cost-

Fig. 1 Illustration of the AX Continuous Performance Task
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benefit analysis. Whether this hypothesis holds up to the scru-
tiny of testing its quantitative predictions remains to be seen.
Last but not least, there is still a large gap between the low-
level concepts of proactive and reactive control studied in
cognitive neuroscience and the high-level concepts of
proactivity and reactivity studied in organizational psycholo-
gy and the management sciences.

We address these open theoretical questions by formalizing
the foundational ideas of the Dual Mechanisms of Control
framework (Braver, 2012) with a formal computational model
of meta-control over proactive control and reactive control in
the AX-CPT and testing its predictions against human perfor-
mance in five previously conducted experiments. Our model
builds on previous findings suggesting that the brain selects
between alternative control mechanisms (meta-control) ac-
cording to some kind of cost-benefit analysis (Boureau et al.,
2015; Daw et al., 2005; Keramati et al., 2011; Lieder et al.,
2018; Lieder & Griffiths, 2017; Shenhav et al., 2017).
Viewing proactive control and reactive control as two com-
plementary mechanisms of proactivity and goal-directed be-
havior, we developed and tested a formal computational mod-
el of the meta-control decisions that determine whether, when,
and how a person engages proactive and/or reactive control,
and how those meta-control decisions depend on situational
and personal factors. The resulting meta-control model
allowed us to explain individual differences in proactivity
and how people’s propensities to engage proactive control
and reactive control depend on incentives for speed and accu-
racy (Mäki-Marttunen et al., 2019b), cognitive load (Mäki-
Marttunen et al., 2019b), the statistical structure of the task
environment (Gonthier et al., 2016; Redick, 2014), and work-
ing memory capacity (Redick, 2014).

The outline of this paper is straightforward: we first intro-
duce four alternative meta-control models of proactivity. We
then test these models against each other and apply the best
model to explain the findings of numerous experiments that
investigated proactive control using the AX Continuous
Performance Task (AX-CPT). We find that the available data
is best explained by the assumption that people make two
independent meta-control decisions about the engagement of
proactive control and reactive control, respectively. Our find-
ings suggest that individual differences in proactivity can be
understood in terms of formal, rational models of how people
tradeoff the costs and benefits of engaging in cognitive con-
trol. We close the paper by discussing directions for future
work.

Modeling the meta-control mechanisms
of proactivity in the AX-CPT

The coexistence of proactive and reactive control in the AX-
CP task makes it a good testbed for modeling proactive

control, reactive control, and the meta-control processes that
determine whether a person acts proactively or reactively. We
therefore formulate our meta-control model of proactivity for
the AX-CPT.

To understand the meta-control mechanisms in the AX-
CPT, we developed a computational-level theory model of
meta-control over proactive and reactive control. Proactive
control has costs and benefits. Following previous work
(Griffiths et al., 2019; Lieder et al., 2018; Shenhav et al.,
2017), we model the function of meta-control over
proactive/reactive control as performing a cost-benefit analy-
sis to determine whether the benefits of proactive control out-
weigh its costs. In this section, we develop a model of how
people make meta-control decisions about i) whether to set an
intention during the cue presentation and ii) whether to engage
reactive control when the probe is present. To illustrate these
meta-decisions, we return to the grocery shopping example
from the introduction. In this example, the meta-control deci-
sion whether to set an intention to go shopping in the evening
might be made when remembering the shortage of food at
noon. This decision will be informed by the subjective impor-
tance of having more groceries, the expected increase in the
probability of going grocery shopping if an intention is set,
and the cost of setting the intention and remembering through-
out the day. The meta-decision whether to boost or inhibit this
intention occurs when the bus stop near the supermarket is
announced. This decision will depend on whether the encoun-
tered situation matches the anticipated situation or not (e.g.,
supermarket closed or medical emergency), the cost of
exerting control, and how likely it is that the intention will
be enacted without boosting or inhibiting it. Finally, the
meta-decision whether to engage reactive control would be
made when a person who did not set an intention is reminded
of their shortage of groceries when they see the supermarket.
This meta-decision would be informed by the expected benefit
of exerting control to stop daydreaming and hit the stop button
and the effort that this would take. The meta-decision whether
to engage reactive control might also occur when the presence
inhibited their intention to go grocery shopping due to an
unforeseen event (e.g., a medical emergency) and now faces
a new situation that they were not prepared for.

We based the model of proactivity in the AX Continuous
Performance Task on previous studies suggesting that reactive
and proactive control are independent (Mäki-Marttunen et al.,
2019a; Mäki-Marttunen et al., 2019b) and that people use
different strategies in different trial types (Irlbacher et al.,
2014). Furthermore, Mäki-Marttunen et al. (2019b) found that
people’s performance in the AX-CPT decreases with the par-
ticipant’s cognitive load, which they manipulated by varying
whether there were 1, 2, or 3 letters that could instantiate the
A-cue (load = 1, load = 2, and load = 3, respectively).

According to our model the process of response selection
includes two stages. The first stage begins with the
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presentation of the cue and the second stage begins with the
presentation of the probe. Figure 2 illustrates the meta-control
decisions that our model makes in the first stage and in the
second stage, respectively. In the first stage, the meta-
controller decides whether to proactively set an intention for
how to respond to the probe (X or Y) while the cue (A or B) is
being presented. In the second stage, the model’s behavior
depends on whether an intention was set in the first stage. If
no intention was set in the first stage, then the second stage
decides whether to recall the rules and the cue and apply the
rules or to react automatically to the probe based on habit.
Regardless of whether an intention was set, the second stage
decides whether to recall the rules or to enact the intention
previously set. Thus, according to our model, there are several
qualitatively different levels of proactivity in the AX-CPT and
a person’s level of proactivity depends on two meta-control
decisions that they make during each trial. In the remainder of
this section, we detail our mathematical model of these meta-
control decisions and the resulting response distributions.

Figure 2 illustrates how these meta-control decisions (i.e.,
intention setting and recalling the cue and rules) work together
to determine the response to a cue-probe pair. According to
our model, the probability of making the correct choice (C =
1) is the weighted average of the accuracies entailed by having
set an intention (I = 1) versus not having set an intention (I = 0)
given the model parameters θ, that is

P C ¼ 1j probe; cue; load; θð Þ ¼ P I ¼ 1 j cue; probe; θð Þ
� P C ¼ 1 j I ¼ 1; load; cue; probe; θð Þ
þP I ¼ 0 j cue; probe; θð Þ

�P C ¼ 1 j I ¼ 0; load; cue; probe; θð Þ:
ð1Þ

The model parameters θ = (u+, u−, uΔt, λ, γ, δ) are summa-
rized in Table 1 and will be explained one by one as we
develop the model throughout the remainder of this section.
Whether or not an intention is set (P(I = 1 | cue, probe,
load, θ)) is determined by the meta-control decision made in
response to the cue (Stage 1). Upon the presentation of the
probe, the model makes a meta-control decision about wheth-
er or not to recall the rules (Stage 2). These meta-control
decisions jointly determine the predicted accuracies in the
scenario where an intention was set (P(C = 1 | I = 1, load,
cue, probe, θ)) and the scenario where no intention was set
(P(C = 1 | I = 0, load, cue, probe, θ)).

Stage 1: Deciding whether to proactively set an
intention

To model the first stage (Fig. 2), we assume that, during the
presentation of the cue, the person have the decision to set or
not a behavioral intention, to respond affirmatively or not
when the probe will be presented (e.g., set the intention to

Fig. 2 Our model of meta-control over proactive and reactive control. The variable I denotes whether the participant set an intention during the
presentation of the cue. C is participant’s intended choice, that is the response that they will give unless their finger slips

Table 1 Explanation of the model’s parameters θ = (u+, u−, uΔt, λ, γ)

Parameters Explanation

u+ subjective utility of correctly detecting an AX trial.

u− subjective utility of correctly reporting that a trial was not an AX trial.

uΔt subjective utility of responding quickly.

λ intensity of the deleterious effect of cognitive load on controlled processing

γ cost of setting an intention and maintaining it in working memory
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press “left” if a B cue is presented). We formalize this as a
binary decision whether or not to proactively set an intention
(I = 1 vs. I = 0) based on the cue (A or B)made according to an
approximate cost-benefit analysis in which the meta-
controller evaluates whether the expected value (E ) of the
benefits of engaging in proactive control outweighs its costs,
that is whether

E Benefit I ¼ 1ð Þ j cue; uþ; u−; uΔt; load½ � > cost I ¼ 1ð Þ;
where the parameters u+ and u− determine the utility or reward
of making an accurate response specifically for AX or other
trial types respectively and uΔt determines the utility of

making a fast response, and load is the contextual load deter-
mined by the number of A-cues.

The benefit and the cost of proactively setting an intention
(I = 1) are measured relative to the reward and cost of not
setting an intention (I = 0). According to our model, the
meta-control decision should be based on the expected benefit
of proactive control given the information provided by the
cue. Given that the cost-benefit analysis is approximate and
that there is uncertainty about the relevant values, we model
the probability that the meta-control system decides to engage
in setting an intention as

P I ¼ 1jcue;θ; loadð Þ ¼ exp E Benefit I ¼ 1ð Þ j cue; uþ; u−; uΔt; load½ �−cost I ¼ 1ð Þð Þ
1þ exp E Benefit I ¼ 1ð Þ j cue; uþ; u−; uΔt; load½ �−cost I ¼ 1ð Þð Þ : ð2Þ

The cost-benefit analysis and the resulting probabilities of
setting an intention in response to the A cue and the B cue are
presented in the Supplementary Material.

Figure 3 shows our model’s predictions of the probability
that people will proactively set an intention when they see a
cue depending on the identity of the cue, cognitive load, and
the reward for accuracy, u+ and u−, assuming that the cost of
setting an intention and maintaining it in working memory is
γ ¼ 1

3 and the utility of responding faster is uΔt = 0.2. Note
that the addition of reward for accurate responses increases the
probability to set an intention for B cues and decreases it for A
cues because B cues are more informative of the correct re-
sponse for that trial. Overall, it increases the model’s propen-
sity towards proactive control. Thus, overall, proactivity
should increase with reward and decrease with cognitive load.

Our cost-benefit analysis model predicts that if people can
switch between proactive and reactive control on a trial-by-
trial level, then we should expect to see more proactive inten-
tion setting in response to B-cues than to A-cues. Furthermore,
the cost-benefit analysis suggests that there could be interac-
tion effects between cost and reward such that for very high
and very low reward, the effect of load should be smaller than
for intermediate levels of reward for B trials. Furthermore, the
effect of cognitive load on intention setting should be higher
on A-trials than on B-trials.

If the meta-control process has determined that an intention
should be set, then intention setting proceeds by predicting the
next stimulus and initiating the response to the predicted stim-
ulus before it has even appeared. For instance, because the A
is followed by an X in 87.5% of the time, proactive control
will usually predict that the next stimulus will be an X and
initiate an affirmative response to the upcoming probe. We
therefore formally model proactive control as follows:

1. Make a prediction bs about a future state (e.g., St + 1) by
s a m p l i n g f r o m t h e p r e d i c t i v e m o d e l ϑ
(bs∼P Stþ1jSt ¼ bst;ϑð Þ ) that has been learned through ex-
perience1 (Vul et al., 2014).

2. Plan one or more actions, At + 1, to be taken in the predict-
ed future state(s),bs, bymaximizing the expected utility,E,
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Fig. 3 Probability of proactive intention setting in response to the cue (A
vs. B) across low, medium, and high cognitive loads (load = 1, 2, and 3,
respectively) depending on the reward for responding accurately (u+ and
u−), assuming γ ¼ 1

3 , λ = 0.05, and uΔt = 0.2

1 This learning process can be formally modeled as Bayesian inference on the
probabilities θj, k of the transitions from state sj (e.g., stimulus A) to state sk
(e.g., stimulus X). This inference is drawn from all previously observed state
transitions (E1, ⋯, t − 1) according to Bayes theorem (i.e.,

P θjEð Þ ¼ P Ejθð Þ�P θð Þ
P Eð Þ ). The likelihood function can be modeled in terms

of one multinomial distribution for each previous state (i.e., P(St + 1| St =
si) = Multinomial(θi, 1,⋯, θi, n)) and the prior distribution can be
modelled as a Dirichlet distribution (i.e., P(θi) = Dirichlet(1,⋯, 1)). In
this way, the learning process can be modelled according to the analytic
update equations of the Dirichlet-multinomial model.
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of the resulting outcomes, Ot + 1, (e.g., Atþ1 ¼ argmaxaE
u Otþ1ð ÞjStþ1 ¼ bs; a½ � ). To simulated the AX-CPT, we
model the utility of correctly detecting the AX stimulus
by the free parameter u+, and we model the utility of
correctly withholding that response in its absence by the
free parameter u−, assuming that the utility of incorrect
responses is 0.

3. Exert cognitive control to create the intention to execute
the planned action(s) (e.g., take action a when the next
stimulus appears), commit it to working memory, and
actively maintain the memory of that intention.

For instance, upon seeing an A-cue in the AX-CPT with
70% AX trials and 10% AY trials, there is a 7 out of 8 chance
that our model will predict that the probe will be an X. In that
case, it will set the intention to give an affirmative response
(e.g., “When the probe appears, I will click the button for
reporting an AX-trial”). Alternatively, there is also a 1 in 8
chance that our model will predict that the A cue will be
followed by a Y probe. In that case, it will set the intention
to respond negatively (e.g., “When the probe appears, I will
click the button for reporting that this is NOT an AX-trial”).

Stage 2: Meta-control over the response to the probe

When participants encounter the probe, they may recall the
cue and apply the rule for how to respond to the observed

cue-probe (crecall = 1) or not (crecall = 0). We postulate that
which of these two modes govern people’s responding is
determined by a rational cost-benefit analysis (see
Section 1.3 of the Supplementary Material). In brief, we
model the meta-control decision whether or not to recall
the cue and rules (reactive control) according to the soft-
max decision rule

P crecall ¼ 1jprobe; uþ; u−;γ; uΔt; loadð Þ ¼ exp E Benefit crecall ¼ 1ð Þ j probe; uþ; u−; uΔt; load½ �−γð Þ
1þ exp E Benefit crecall ¼ 1ð Þ j probe; uþ; u−; uΔt; load½ �−γð Þ ; ð3Þ

where γ is the cost of recalling the cue and rules. The deriva-
tion of the benefit term is presented in the Supplementary
Material. Since recalling and relying on the cue and the rules
is a binary event, the probability of responding habitually is
P(crecall = 0| probe; u+, u−, γ, uΔt, load) = 1 − P(crecall = 1|
probe; u+, u−, γ, uΔt, load).

Figure 4 shows our model’s predictions of the probabil-
ity of recalling the cue and rules across different rewards
for being accurate (u+ and u−) for a fixed reward for being
fast (uΔt = 0.2) and a fixed cost of holding information in
working memory (γ ¼ 1

3 ). The probability of recalling in
response to X probes is always predicted to be higher than
for Y probes, since recalling the rules has no benefit when
the automatic response would be correct as well. The model
also predicts a higher probability of recalling for low con-
textual load conditions, since the probability of recalling
the correct response decreases as the contextual load
increases.

Predicting people’s accuracy in the AX-CPT

To complete our model, we specify how likely the response is
to be correct depending on whether or not an intention was set
in response to the cue. The probability that the choice will be
correct, P(C = 1), after an intention has been set (I = 1) is

P C ¼ 1jI ¼ 1; cue; probe; load; θð Þ
¼ P crecall ¼ 1jprobe; uþ; u−;γ; uΔt; loadð Þ
⋅P CR ¼ 1jcue; probe; loadð Þ
þ P crecall ¼ 0jprobe; uþ; u−;γ; uΔt; loadð Þ
⋅P CI ¼ 1jcue; probe; loadð Þ−λ⋅ load−1ð Þ;

ð4Þ

where CI = 1 means that the intention was correct and the term
−λ · (load − 1) models the deleterious effect of cognitive load
on cognitive control with the parameter λ measuring the

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ilit

y
of

R
ec

al
l

X, Low Load
X, Medium Load
X, High Load
Y, Low Load
Y, Medium Load
Y, High Load

Fig. 4 Probability of recalling the cue and rules in response to the probe
(X vs. Y) across low, medium and high cognitive loads (load = 1, 2 and 3,
respectively), depending on the reward for responding accurately (u+ and
u−) assuming γ ¼ 1

3 , λ = 0.05, and uΔt = 0.2
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severity of this effect. The probability of the choice being
correct given that an intention was set is given in Table 2.
The probability that a correct choice will be made in the ab-
sence of an intention is

P C ¼ 1j I ¼ 0; cue; probe; load; θð Þ
¼ P crecall ¼ 1jprobe; uþ; u−;γ; uΔt; loadð Þ

� P CR ¼ 1jcue; probe; loadð Þ
þ P crecall ¼ 0jprobe; uþ; u−;γ; uΔt; loadð Þ
� P CM ¼ 1jcue; probe; loadð Þ−λ � load−1ð Þ;

where CR = 1 means successfully recalling and applying the
rule and CM = 1 is the accuracy of probability matching. The
probabilities of the choice being correct given successfully
recalling and applying the rule are given in Table 2.

Furthermore, we assume that a random error, in which the
motor slips cause the button press to be incorrect, R = 0, even
if the participant’s choice was correct (C = 1) and vice versa.
We therefore model the probability that the button press is
correct as

Pmodel R ¼ 1jcue; probe; θð Þ ¼ P C ¼ 1jprobe; cue; θð Þ � 1−pslip
� �

þ P C ¼ 0jprobe; cue;θð Þ � pslip:

ð5Þ

Finally, we assume that the probability that the partic-
ipant’s hand slips is equal to the error rate in BY trials,
that is pslip = 0.0125 for the Mäki-Marttunen et al. (2019a)
dataset. This model formalizes the key assumption of the
dual mechanisms of control (DMC) framework that people
make two independent meta-control decisions about
whether to engage proactive control and whether to en-
gage in reactive control according to a rational cost benefit
analysis. We therefore refer to this model as our DMC
model (mDMC).

Alternative meta-control mechanisms

Inhibition of prepotent intentions

Recent physiological data and reaction time data suggest that
there might be an additional control mechanism influencing
people’s responses in the AX-CPT, namely the inhibition of
prepotent responses (Mäki-Marttunen et al., 2018; Mäki-
Marttunen et al., 2019b). This means that a participant might
see an A cue and set the prepotent intention to report an AX
trial in anticipation of an X probe and then inhibit that inten-
tion when they see the Y probe. In support of this view, the
pupillometry findings ofMäki-Marttunen et al. (2018) and the
Locus Coeruleus and dlPFC activation found by Mäki-
Marttunen et al. (2019a, 2019b) support the involvement of
inhibitory control in the AX-CPT. Furthermore, the especially
long response times on AY trials might suggest that partici-
pants sometimes override their intention to report an AX pair
when they see the Y probe (Mäki-Marttunen et al., 2018;
Mäki-Marttunen et al., 2019b). For these reasons, we devel-
oped an extension of the model illustrated in Fig. 2 that in-
cludes an additional meta-decision about whether to inhibit
the proactively set intention when it encounters the probe.

As illustrated in Fig. 6a, this model assumes that if people
have proactively set an intention in response to the cue (A or
B) then the control system may boost or inhibit reactive con-
trol in response to the probe (X or Y). For instance, if the
participant set the intention “Click the button for AX trials
when the probe appears” in response to the A-cue, then they
might inhibit this incorrect intention when they see the Y
probe. We assume that the probability that a participant will
do this increases with the benefits of being correct and de-
creases with the cost of control. Conversely, when the partic-
ipant encounters the anticipated X probe, they might boost
their intention to report an AX trial to further increase their
probability of being correct if they are highly motivated to be
fast and accurate. Furthermore, inhibition might be especially
important on no-go trials where a third type of probe signals
that the response should be withheld.

Table 2 Probability that the response is correct if it is driven by an
intention (2nd column), by automaticity based on probability matching
(3rd column), or reactive control (4th column) depending on the trial type.
In this example there are 70% AX trials, 10% AY trials, 10% BX trials,
and 10% BY trials. The first term of the accuracy of proactive control

(e.g., 78 ) is the probability that the person predicted the more likely probe
when they set their intention. The second term is the loss in accuracy due
to cognitive load. load is the intensity of the cognitive load given by the
number of different letters that could serve as the A-cue (i.e., 1, 2, or 3).

Cue, probe Accuracy of proactive control
P(CI=1| cue, probe, load)

Accuracy of automaticity
P(CM=1|cue, probe)

Accuracy of reactive control
P(CR=1|cue, probe, load)

AX 7
8−λ � load−1ð Þ P AX jXð Þ ¼ 7

8 1−λ ·(load−1)
AY 1

8−λ � load−1ð Þ P(AX′|Y)=1 1−λ ·(load−1)
BX 1−λ ·(load−1) 1−P AX jXð Þ ¼ 1

8 1−λ ·(load−1)
BY 1−λ ·(load−1) P(AX′|Y)=1 1−λ ·(load−1)

496 Cogn Affect Behav Neurosci  (2021) 21:490–508



We model this decision as the specification of a control
signal c ∈ [−c0, 1 − c0] that shifts the probability that the deci-
sion will be determined by the proactively formed intention
away from its default probability of c0 = 0.7. A positive con-
trol signal boosts the effect of the proactively formed inten-
tion, whereas a negative control signal inhibits it. We further
assume that cognitive load has an interference cost, λ, that
affects the probability to successfully inhibit a proactively
set intention. Formally, we assume that the probability that
the intention will be inhibited is P(Inhibit = 1| c) = (1 − (c0 +
c)) · (1 − λ · load).

According to our model, the intensity of the control signal c
is chosen according to a cost-benefit analysis. This cost-
benefit analysis assumes that the control signal intensity c
linearly interpolates between the expected performance of
responding with versus without the intention (see
Section 1.2 of the Supplementary Material). Following previ-
ous work, we model the cost of inhibition as an exponential
function of the absolute value of the control signal intensity, in
which δ is the control cost parameter that determines how
quickly the cost of control increases with the absolute value
of the control signal, that is

cost c; δð Þ ¼ exp δ � jcjð Þ−1:

Therefore, the optimal control signal c⋆ is

c⋆ probe; uþ; u−; uΔt; δð Þ
¼ argmax

c
E Benefit cð Þj probe; uþ; u−; uΔt; load½ �−cost c; δð Þð Þ:

Assuming that the cognitive control system chooses the
optimal control signal, the probability that the person will
inhibit the intention is

P Inhibitjprobe; load; θð Þ
¼ 1− 0:7þ c⋆ probe; uþ; u−; uΔt; δð Þð Þð Þ � 1−λ � loadð Þ: ð6Þ

Figure 5 shows the optimal control signal intensity as a
function of the subjective utility of correct and fast responses
depending on the currently presented probe. The plot shows
that, given a sufficiently high reward, the model boosts the
effect of the proactively set intention for X probes and inhibits
the intention for Y probes. The optimal control signal intensity
remains zero for a wide range of values for u+ = u− = uΔt for
which the cost of control outweighs any potential benefits.

One can think of this second step as modulating the inten-
sity of the effect of setting a proactive intention in the first
step. The control signal can diminish the increase in
proactivity or enhance it further. Regardless of the chosen
control signal, the level of proactivity should always be higher
when a proactive intention was formed in the first step than
when it was not.

The inclusion of this additional meta-control decision leads
to the following equation for the probability of making a cor-
rect choice:

P C ¼ 1ð j I ¼ 1; cue; probe; load; θ
�

¼ 1−P Inhibit j probe; θ; loadð Þð Þ

� P CI ¼ 1ð j cue; probe; load
�

þ P Inhibit jprobe; θ; loadð Þ
� P C ¼ 1jI ¼ 0; cue; probe; load; θð Þ−λ
� load−1ð Þ:

0 2 4 6 8 10
-0.7

-0.6
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0

0.3

X, Low Load
X, Medium Load
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Fig. 5 Optimal control signal intensity depending on the reward for responding accurately (u+ and u−) across low, medium and high cognitive loads (load
= 1, 2, and 3, respectively) assuming δ ¼ 1

2, γ ¼ 1
3, λ = 0.05, and uΔt = 0.2

497Cogn Affect Behav Neurosci  (2021) 21:490–508



Models according to which proactive and reactive control are
mutually exclusive

A key assumption of the model illustrated in Fig. 2 is that
people can always override the intention that they have set
in response to the cue (proactive control) by invoking reactive
control in response to the probe (reactive control). According

to the extended meta-control model illustrated in Fig. 6a, this
is possible only when the proactively set intention is inhibited
first. A third alternative is that proactive control and reactive
control might be mutually exclusive in the sense that people
have choose between one or the other but cannot use both. The
mutual exclusivity models illustrated in Fig. 6b-c formalize
this assumption in two different ways. According to the

Fig. 6 Alternative models. a Extended meta-control model according to
which intentions can be inhibited and reactive control is not considered
when the person has an active intention. b Simpler model according to
which the meta-control decision about recalling the rules (reactive

control) is only made when no intention was set (exclusivity model with-
out inhibition). c An extension of the model shown in Panel b according
to which the proactively set intention can be inhibited (exclusivity model
with inhibition)
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mutual exclusivity model without inhibition (Fig. 6b) the par-
ticipant either sets an intention and then enacts it (proactive
control) or does not set an intention and then chooses whether
to recall the rules (reactive control). According to the mutual
exclusivity model with inhibition (Fig. 6c), a participant who
has set an intention can choose to inhibit it, but when they do
their response is determined by their habits (no control).

Summary

Our model postulates that meta-control over proactivity is
governed by two rational cost-benefit tradeoffs that governed
whether intentions are set proactively, and whether the cue
and rules are recalled and followed. The first meta-decision
is made based on the cue, whereas the second one is made
based on the probe. All meta-decisions are informed by the
incentives for speed and accuracy, cognitive load, and the cost
of control. Before testing the predictions of the meta-control
model, we will present and test the assumptions about the
proactive process.

Results: Explaining variability of control
in the AX Continuous Performance Task

Our meta-control model of the variability in proactive behav-
ior comprises three components: 1) its assumptions about
which meta-control decisions govern the variation in people’s
proactivity, 2) its predictions of the accuracies given the out-
comes of those meta-control decisions, and 3) its predictions
of the meta-control decisions about intention setting and
recalling the rules. In this section, we leverage previously
published empirical data to examine each of these three com-
ponents in turn. Each time we use the method described in
Section 2 of the Supplementary Material to fit the parameters
of our models to the data.

Testing alternative theories of meta-control over
proactivity

To identify which of the four models introduced above best
describes meta-control over proactivity in the AX-CPT, we
performed a formal model comparison. The distinguishing
feature of two of our models is that they inhibit a previously
set intention. This feature is most relevant when the task in-
cludes no-go trials. We therefore compared the four models on
the data set from Experiment 2 by Gonthier et al. (2016).
Assuming that the mechanisms of meta-control might differ
across participants, we performed one formal quantitative
model comparison for each individual participant. To select
between the models, we used the Bayesian Information
Criterion (Schwarz, 1978). As summarized in Table 3, the
results of our model comparison strongly support the DMC
model according to which people make two independent
meta-control decisions about invoking proactive and reactive
control respectively. In fact, the DMC model was the best
model for all 92 participants when compared to the extended
model and the exclusivity model with inhibition and for
73.9% of the participants compared with the exclusivity mod-
el without inhibition.

Testing the model’s predictions about the effects of
meta-control

If our model of how people set intentions and how intentions
affect behavior is correct, then people’s response frequencies
on AY trials and BX trials should be a weighted average of the
response frequencies that our model predicts for the case when
an intention is set (proactive control) and the case when no
intention is set (no proactive control). As illustrated in Fig. 7a,
the data from Mäki-Marttunen et al. (2019a) confirmed this
prediction. This suggests that we can understand the average
response frequencies across people and experimental

Table 3 Results of the participant-level (N = 92) model comparison on the data set by Gonthier et al. (2016) between the DMCmodel (mDMC) shown
in Fig. 2 and the alternative models (malternative) shown in Fig. 6a-c. The model comparisons were performed based onΔBIC ¼ BICmDMC−BICmalternative .

Extended model
(Fig. 6a)

Exclusivity without inhibition
(Fig. 6b)

Exclusivity with inhibition
(Fig. 6c)

% participants whose data is best explained by this model: 0% 26.1% 0%

% participants for whom the evidence for mDMC over malternative is

very strong (ΔBIC>10) 7.6% - 8.7%

strong (6<ΔBIC<10) 50.0% - 46.7%

positive (2<ΔBIC<6) 40.2% 10.9% 41.3%

weakly positive (0<ΔBIC<2) 2.2% 63.0% 3.3%

weakly negative (−2<ΔBIC<0) - 26.1% -

negative ( −6<ΔBIC< −2) - - -

strongly negative (−10<ΔBIC< −6) - - -
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conditions as a mixture between these two modes of control.
To gauge the relative contributions of proactive control and
reactive control, we used maximum likelihood estimation to
fit the parameters pintention, and precall to the accuracies of in-
dividual participants. As Fig. 7b shows, this model achieves
an impressively good fit with the most likely pintention = 0.58.
This suggests that, on average, people engage in proactive
control in about 58% of the trials of this task. Consistent with
the dual mechanisms of control framework (Braver, 2012), we
found substantial interindividual differences in the propensity
to engage proactive control. Concretely, individual partici-
pants’ propensities to set intentions ranged from 0.0001% to
100% (M = 0.58, SD = 0.30) Participants’ propensity to en-
gage in reactive control appeared to be less variable. That is,
people’s propensity to recall the rules when the encountered
the probe without a prepared intention ranged from 54% to
100% with a mean of 93% and a standard deviation of 9% (M
= 0.9281, SD = 0.09).

Testing the model’s predictions about when people
set intentions

To test whether our model can capture when people set inten-
tions, we simulated the experiments conducted by Mäki-
Marttunen et al. (2019a), Redick (2014), and Gonthier et al.
(2016). Each time, we compare how often people should set
an intention or recall the rules according to our model to how
often they actually do. To estimate how often people engage
in these processes, we estimate the parameters pintention and

precall of a simple measurement model from people’s re-
sponses. This measurement model describes participants’ re-
sponse probabilities, R, by

Pmeasurement Rjcue; probe; load; θ;mð Þ
¼ ∑

I;recall∈ 0; 1f g
P Ið Þ � P recallð Þ

� P Rjcue; probe; θ; I; recall; load;mð Þ;

where P(I = 1) = pintention, P(Recall = 1) = precall, and m is our
model of how proactive and reactive control affect people’s
accuracies.

Prediction 1: Effect of incentives on proactivity

The reward condition of the experiment reported by Mäki-
Marttunen et al. (2019a) incentivized fast accurate responses
in a standard AX-CPT task with 70% AX trials, 10% AY
trials, 10% BX trials, and 10% BY trials. Assuming that these
incentives increase the subjective reward for identifying AX
pairs (u+) and responding faster (uΔt) by one unit, Equation 2
of our model predicts that incentivized participants should be
more likely to proactively set intentions than unincentivized
participants on A-trials (Figs. 8a and 12) as well as on B-trials
and become more proactive overall. Concretely, our model
predict that incentives should increase the probability of in-
tention setting on A trials from 20% to 22% and increase the
probability of intention setting on B trials from 80% to 84%.
To test our meta-control model’s prediction about the proba-
bility of proactive intention-setting, we used the maximum
likelihood estimation method described in Section 2 of the
Supplementary Material to estimate the relative frequencies
with which participants proactively set intentions (pintention)
separately to A-trials and B-trials, respectively. As shown in
Fig. 8b, the maximum likelihood estimates showed that the
incentives increased the probability of intention setting on A-
trials from 20% (SD = 0.06) to 27% (SD = 0.15; t(264) = 4.91,
p < 0.001). The incentives’ effect on the probability of inten-
tion setting on B-trials was very close to the model’s predic-
tion (80% (SD = 0.23) vs. 83% (SD = 0.22)), but this effect
was not statistically significant (t(264) = 0.97, p = 0.33).

Prediction 2: Effect of incentives on accuracy on AY trials

To predict the effect of incentivizing participants to rapidly
generate correct responses, we first fitted the parameters of our
meta-control model to individual participants’ accuracies in
the nonreward condition of the experiment by Mäki-
Marttunen et al. (2019a) using the method described in
Section 2 of the Supplementary Material and then used our
model to simulate what their accuracies would have been if
each participant’s subjective utilities for responding fast (uΔt)
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Fig. 7 The plot on the left compares the accuracies of people to the
accuracies that our model predicts if people were to always set
intentions (pintention = 1) or never set intentions (pintention = 0) for low
contextual load (load = 1), and assuming and precall= 0.93. On the right,
mean accuracy when fitting the model across trials of the no reward and
low cognitive load condition for each participant with pintention, (M = 0.58,
SD = 0.30) and precall (M = 0.93, SD = 0.09) as free parameters. All error
bars in this article convey the standard error of the mean
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and correctly identifying AX pairs (u+) had been one unit
higher. As illustrated in Fig. 9a, our model predicts that an
increased reward for accurately identifying AX pairs (u+) and
responding faster (uΔt) should have a negative effect on peo-
ple’s performance on AY trials (Fig. 9a). Consistently with
this prediction, Mäki-Marttunen et al. (2019a) found that re-
ward incentives decreased people’s performance on AY trials
(78% vs. 92%, t(264) = −6.43, one-tailed p < 0.0001; Fig. 9b).
As our model had predicted (see Fig. 9a), this inverted the
relationship between people’s performance on AY trials ver-
sus AX trials. That is, people’s average performance in the
experiment by Mäki-Marttunen et al. (2019a) was higher on
AY trials than on BX trials in the no-reward condition (92%
vs. 89%; t(260) = 1.41, p = 0.0799), but the opposite was the
case in the reward condition (78% vs. 91%; t(268) = −4.90, p
< 0.0001; Fig. 9b).

Prediction 3: Effect of the relative frequency of AX trials
on proactive intention setting

As illustrated in Fig. 14a, our meta-control model predicts that
people’s propensity to engage proactive control should de-
crease as the relative frequency with which an A is followed
by anX drops to 50%. This is intuitive because the proactively
set intention in the AX-CPT is correct only when the A is
followed by an X. Because proactive control increases the
frequency of errors on AY trials, decreasing the frequency
of AX trials therefore should increase participants’ accuracy
on AY trials, as illustrated in the top row of Fig. 10. As shown
in the bottom row of Fig. 10, the experiments reported in
Redick (2014) confirmed this prediction. Furthermore, people
remain highly accurate on AY trials as their frequency ex-
ceeds the frequency of AX trials. According to our model, this
is because people will then prepare to respond to Y when they
see the A.
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Fig. 8 Predicted and estimated effects of incentivizing fast, accurate responses on the probability of proactive intention setting
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Fig. 9 Comparison of predicted versus observed effects of incentivizing fast, accurate responses in the behavioral experiment by Mäki-Marttunen et al.
(2019a). a Prediction of our meta-control model. b Human performance
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Prediction 4: Effect of no-go trials

To predict the effect of adding no-go trials on people’s per-
formance on AX, AY, BX, and BY trials, we fitted our
model’s parameters to data from a standard AX-CPT without
no-go trials (i.e., the control condition of Experiment 1 from
Gonthier et al., 2016) and then used the estimated parameters
to simulate how the accuracies should change when no-go
trials are added (i.e., Experiment 2 of Gonthier et al., 2016).
If a participant set an intention on a no-go trial, then they either
have to inhibit that intention in response to the no-go probe,
which costs time and effort, or accept the penalty for giving an
incorrect response. This is why the possibility of no-go trials
reduces the expected benefit of intention setting and reduces
its expect cost. Therefore, our rational model predicts that
adding no-go trials should decrease proactive intention setting
in response to both A cues and B cues (Fig. 11a). Figure 11b
shows that this is indeed the case. Because of this effect our

model also predicts that no-go trials should increase people’s
accuracy on AY trials and decrease their accuracy on BX and
BY trials (Fig. 11c). As Fig. 11d shows, Experiment 2 from
Gonthier et al. (2016) confirmed this prediction.

Prediction 5: Intention setting on BX versus AY trials

According to our meta-control model, on BX trials the prob-
ability to set an intention should be higher and responses
should be the faster than on AY trials according to our model.
This is because B cues induce the highest probability of en-
gaging proactive control and X probes boost proactive control,
whereas A cues induce a lower probability of engaging pro-
active control and Y probes trigger an inhibition of the proac-
tively prepared intention (Fig. 12).

Confirming our model’s prediction, the reaction times re-
ported byMäki-Marttunen et al. (2019a) are significantly low-
er for BX trials than for AY trials across all six experimental
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Fig. 10 Mean predicted (upper) and observed (lower) accuracies for Redick (2014) datasets
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conditions (t(530) = −3.67, p < 0.001), and the average prob-
ability of intention setting was significantly larger for BX
trials (M = 0.7846; SD = 0.2138) than for AY trials (M =
0.2630, SD = 0.1418; t(530) = 33.1610, p < 0.0001).

Prediction 6: Effect of contextual load on accuracy

To predict the effect of contextual load on accuracy, we fitted
our model’s parameters the individual participants’ response
in the condition of the experiment by Mäki-Marttunen et al.

(2019a) that had a contextual load of 2 while constraining λ to
be at least 0.025. We then simulated how the accuracies
should change when the contextual load is increased to 3 or
decreased to 1.We performed this procedure separately for the
reward condition and the no reward condition. As shown in
Fig. 13, our model predicted that cognitive load should reduce
people accuracy on AX trials, BX trials, and BY trials, but not
on AY trials.

Confirming this prediction, Mäki-Marttunen et al. (2019b)
found that on AX, BX, and BY trials people’s accuracy was
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Fig. 12 Estimates of the probability to set an intention and the probability
of recalling the rules by trial type and experimental condition. These
estimates were obtained by fitting our meta-control process model to all

accuracies of individual participants using the method described in
Section 2 of the Supplementary Material.
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significantly lower for high cognitive load than for low cog-
nitive load andMäki-Marttunen et al. (2019a) found this effect
for AX and BX trials when comparing the high load condition
to either the low load condition or the intermediate load con-
dition. We found that to obtain this prediction with our model,
it is critical to assume that there is a direct interference of load
on the accuracy of controlled processing (λ > 0). As our model
predicted, no effect of load was found for AY trials. The
model-based estimates shown in Fig. 12 suggest that the effect
of cognitive load on accuracy might be mediated by a reduc-
tion in intention setting in the high load condition.

Discussion

In this article, we introduced and validated a computational
level theory of the meta-control decisions that determine peo-
ple’s level of proactivity in the AX-CPT. In doing so, we have
instantiated the dual mechanisms of control framework
(Braver, 2012) in terms of a precise computational model of
the meta-control decisions that drive variability in cognitive
control. Our model predicts when people engage proactive
control, reactive control, or both. Our model captures that
proactivity involves setting intentions based on predictions
about the future, allocating control to those intentions when
opportunities arise, and inhibiting competing automatic re-
sponses. The basic idea of our model is that proactivity is
governed by the allocation of control according to a rational
cost-benefit analysis. Empirical data from previous experi-
ments supported numerous predictions of our model, includ-
ing its predictions about the effects of incentives, contextual

load, adding no-go trials, and changing the ratio of AX trials to
AY trials. This suggests that our model is a promising step
towards unraveling the computational mechanisms of
proactivity. Understanding proactivity, in turn, is an important
step towards understanding what it takes to live a successful
life and how we can assist people in this challenging process
(Lieder & Prentice, 2020).

Implications for our theoretical understanding of
proactivity in the AX-CPT

Our model formalizes central ideas of the Dual Mechanisms
of Control framework (Braver, 2012) in terms of rational
tradeoffs between the costs of exerting cognitive control and
its benefits (Lieder & Griffiths, 2020; Shenhav et al., 2017).
Its success in predicting the effects of adding incentives and
increasing cognitive load (Mäki-Marttunen et al., 2019b), re-
ducing the frequency of AX-trials (Redick, 2014), adding no-
go trials (Gonthier et al., 2016), therefore lends some support
to viability of those theoretical assumptions. Most strikingly,
our model’s generalization at predicting the effects of chang-
ing the statistical structure of the task by reducing the frequen-
cy of AX trials (Redick, 2014) or adding no-go trials
(Gonthier et al., 2016) supports its central assumption that
people engage proactive control according to a rational cost-
benefit analysis. This lends further support to the Dual
Mechanisms of Control framework (Braver, 2012), the ex-
pected value of control theory (Shenhav et al., 2013), and
the theory of resource-rationality (Lieder & Griffiths, 2020).

Our model comparisons strongly supported a meta control
model in which proactive and reactive control are independent
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Fig. 13 Predicted effects of contextual load on accuracy
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and can both occur on the same trial. This version of our
model makes exactly two independent meta-control decisions:
one about whether or not to engage proactive control and a
second one about whether or not to engage reactive control.
Supporting the view that proactive control and reactive control
are independent, the meta-control decision about reactive con-
trol is always made regardless of whether an intention was
previously set. It decides whether to recall the rules based on
a cost-benefit analysis that only considers the probe. If the
rules are recalled then whatever mechanisms would have de-
termined the person’s choice otherwise, be it a proactively set
intention or automaticity, will be inhibited and overridden by
reactive control. Supporting the view that the inhibition of
prepotent intentions is an important part of reactive control,
the data favored the recall-override model over an alternative
simplified model that does not allow for the inhibition of pro-
actively set intentions. In addition, the simulation results sum-
marized in Fig. 5 of the Supplementary Material show that
proactive control and reactive control are two complementary
mechanisms of proactivity that are both needed to capture
people’s capacity for proactive goal-directed behavior.

Future Directions

Our model allows us to derive a number of predictions that go
beyond the phenomena studied by Mäki-Marttunen et al.
(2019a), Mäki-Marttunen et al. (2019b), Gonthier et al.
(2016), and Redick (2014). These predictions can guide the
design of future experiments. In general, our rational model of
meta-control predicts that proactivity increases with situation-
al factors and personal characteristics that make proactivity
more beneficial and decreases with situational factors and per-
sonal characteristics that make it costlier and less beneficial.
The value of proactivity increases with the predictability of the
environment. Therefore, our model predicts that for AX fre-
quencies in-between the extremes used by Redick (2014) peo-
ple should gradually become less proactive as more AX trials
are converted into AY trials. Conversely, and this has not been
explored yet, people should become more proactive when the
frequency of AX trials is increased beyond 70% or the fre-
quency of AY trials is decreased below 10% (Fig. 14a). Based
on this prediction, proactive intention setting should be most
frequent in response to a cue that is always followed by the
same probe and inverts the required response to that probe.
Proactivity also becomes more valuable as reflexive
responding to the probe becomes less effective. Reflexive
responding to the X probe is least effective when both re-
sponses are correct equally often. This is the case when the
frequency of BX trials equals the frequency of AX trials. Our
model therefore predicts an inverse-U shaped effect of the
proportion of B-cues on proactivity when the ratio of AX trials
to AY trials and the ratio of BX trials to BY trials is held
constant (Fig. 14b). Furthermore, when the incentives or

instructions emphasize accuracy over speed, then the reward
manipulation would have the opposite effect on people’s per-
formance on AY trials than the one observed by Mäki-
Marttunen et al. (2019a); that is, as the emphasis of the reward
criterion shifts from speed towards accuracy, the effect of
reward on people’s performance on AY trials should become
increasingly positive (Fig. 14c), in contrast to the experiment
by (Mäki-Marttunen et al., 2019a) where the effect was neg-
ative. The interested reader can download the code of our
model and simulations are available on the Open Science
Framework (https://osf.io/ng65r) to generate these and other
predictions or to fit our model to their own data sets by
following the instructions in the readme file.

The model introduced above is a computational-level the-
ory. It defines the function of meta-control over proactivity.
As proposed by Lieder et al. (2018) and confirmed by
Bustamante et al. (2021), we postulate that the meta-control
system learns to approximate the optimal solution proposed
by our model. Applied to proactivity in the AX-CPT, the
Learned Value of Control (LVOC) model predicts that if we
were to create different versions of the AX-CPT task that
require more versus less proactivity, then we should see peo-
ple’s proactivity gradually increase versus decrease over time.

In addition to testing these predictions, future work will
extend our investigation of proactivity from proactive control
in the AX-CPT task to proactivity in the real world. This will
include investigating whether our formal mathematical mea-
sure of goal-directedness (see Section 4 of the Supplementary
Material) based on people’s performance in simple laboratory
paradigms is predictive of proactivity in the real world. In a
parallel line of work, we will extend our model by the aspects
of proactivity that are currently missing from it. Referring
back to the definitions of proactivity that we started from
(Crant, 2000; Parker et al., 2010; Seibert et al., 1999; Siebert
& Kunz, 2016), we can see that our model captures that
proactivity includes the self-initiated and future-oriented set-
ting of intentions and the active pursuit of those intentions
over time. However, the important cognitive processes of de-
riving long-term goals from personal values, planning, moti-
vation, self-improvement, progress monitoring, self-regula-
tion, and reflection are still missing from our model.
Incorporating these additional mechanisms will likely allow
our model to capture even higher levels of proactivity that
people are likely to exhibit in more naturalistic scenarios. As
an intermediate step, we will model goal setting and extend
our model of proactivity to other experimental paradigms that
have been used to study proactive control, including working
memory paradigms (Braver, 2012; Burgess et al., 2011).

Furthermore, future work will supplement our model from
a computational-level theory of the function of proactivity
with mechanistic models of the underlying meta-decision-
making processes and investigate how those processes are
shaped by learning. Understanding how proactivity is shaped
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by learning will be an important step towards developing
training interventions for helping people become more
proactive.

Relevance to cognitive neuroscience

Proactive control is an important topic in cognitive neurosci-
ence and investigating its neurocomputational mechanisms will
further our understanding of the function of prefrontal cortex
and the neuromodulatory systems underlying cognitive control
(Braver, 2012; Mäki-Marttunen et al., 2019b). We anticipate
that our model will become an important asset in the search
for the neural mechanisms of proactivity, akin to how the

expected value of control model (Shenhav et al., 2013) has
helped us elucidate the neural underpinnings of cognitive con-
trol and mental effort (Shenhav et al., 2017).

While previous research has demonstrated that the dorsolat-
eral prefrontal cortex plays an important role in the implemen-
tation of proactive control (Mäki-Marttunen et al., 2019b), the
neural basis of meta-control over proactivity is less well under-
stood. Based on previous work, we postulate that 1) the cost-
benefit analyses that govern the meta-control over proactive
control are implemented in the dorsal anterior cingulate cortex
(dACC, Shenhav et al., 2013; Shenhav et al., 2017), and 2) that
the meta-control decisions made by the dACC are then imple-
mented by the dorsolateral prefrontal cortex (dlPFC, Badre,
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Fig. 14 Model predictions to be tested in future work. The vertical dashed
lines in a and b mark the values corresponding to a standard AX-CPT with
70% AX trial, 10% AY trials, 10% BX trials, and 10% BY trials. a Our
model predicts an increase of proactivity with the frequency of AX trials
relative of the frequency of AY trials. In this simulation there are 10% BX
trials, 10% BY trials, and AX and AY trials jointly make up the remaining
80% of the trials. A ratio of 1 means that there are 40% AX trials and 40%
AY trials. A ratio of 20 means that there are 3.5% AY trials and 76.5% AX
trials. The model parameters are those used to simulate the reward condition.
Proactivity is measured according to Equation 13 in the Supplementary

Material. b Our model predicts an inverse-U-shape relationship between the
proportion of B-cues (pB) when the relative frequencies of AX, AY, BX, and
BY trials are 7

8 � 1−pBð Þ ; 18 � 1−pBð Þ ; 78 � pB, and 1
8 � pB respectively. The

model predictions suggest that people should be most proactive when habits
are least useful. c) For a sufficiently high reward (4 times the subjective value
of getting it correct without any reward) our model predicts that the effect of
reward on people’s performance on AY trials should switch from decreasing
people’s performance to increasing people’s performance as the emphasis of
the reward criterion shifts from speed to accuracy
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2008; Mäki-Marttunen et al., 2019b). Future work might em-
ploy neuroimaging methods and pupillometry to test our
models and our hypothesis about its neural substrates in the
three following ways. First, future work might use fMRI to
evaluate how well the event-related activity of the dACC is
predicted by the cost and benefit terms postulated by ourmodel.
Second, fMRI or fNIRS could be used to investigate how well
the control signals selected by our model predict the task-
dependent activation of the dlPFC (Mäki-Marttunen et al.,
2019b) and the locus coeruleus (Mäki-Marttunen et al.,
2019b). Pupillometry could be used to test our model’s predic-
tions about the workingmemory load andmental effort entailed
by the control signals and strategies chosen by our model
(Kahneman & Beatty, 1966). Third, EEG or MEG could be
used to test our models’ assumptions about the number and
nature of meta-control decisions are involved in people’s re-
sponses on AY trials. This would allow for a more direct com-
parison of our basic meta-control model (Fig. 2) against the
extended meta-control model (Fig. 6a) and simpler meta-
control models (Fig. 6c). If the neural correlates of these
meta-control decisions can be identified then future work might
also leverage them to test our model’s predictions about how
those three stages are affected by the statistical structure of the
task, the incentives, and cognitive load.

Conclusions

We believe that our computational level theory of variation in
pro- and reactive control is an important step towards a formal
theory of proactivity. We hope that by connecting the concept
of proactivity from the management and personal develop-
ment literatures to laboratory paradigms and computational
models of meta-control, our article will help to make the com-
putational challenges of living a good live amenable to rigor-
ous scientific investigation in the laboratory.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13415-021-00884-y.
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