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Abstract
Learning in dynamic environments requires integrating over stable fluctuations to minimize the impact of noise (stability) but
rapidly responding in the face of fundamental changes (flexibility). Achieving one of these goals often requires sacrificing the
other to some degree, producing a stability-flexibility tradeoff. Individuals navigate this tradeoff in different ways; some people
learn rapidly (emphasizing flexibility) and others rely more heavily on historical information (emphasizing stability). Despite the
prominence of such individual differences in learning tasks, the degree to which they relate to broader characteristics of real-
world behavior or pathologies has not been well explored. We relate individual differences in learning behavior to self-report
measures thought to capture collectively the characteristics of the Autism spectrum. We show that young adults who learn most
slowly tend to integrate more effective samples into their beliefs about the world making them more robust to noise (more
stability) but are more likely to integrate information from previous contexts (less flexibility). We show that individuals who
report paying more attention to detail tend to use high flexibility and low stability information processing strategies. We
demonstrate the robustness of this inverse relationship between attention to detail and formation of stable beliefs in a heteroge-
neous population of children that includes a high proportion of Autism diagnoses. Together, our results highlight that attention to
detail reflects an information processing policy that comes with a substantial downside, namely the ability to integrate data to
overcome environmental noise.
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Introduction

Successful decisionmaking requires inferring important quan-
tities, such as the values and probabilities associated with po-
tential decision outcomes through sequential observations
over time. This inference process is difficult in changing en-
vironments, where optimal inference requires tracking the en-
vironmental statistics necessary to determine the most appro-
priate rate of learning (Behrens, Woolrich, Walton, &
Rushworth, 2007; Browning, Behrens, Jocham, O'Reilly, &
Bishop, 2015; McGuire, Nassar, Gold, & Kable, 2014;
Nassar, McGuire, Ritz, & Kable, 2019b; Nassar et al., 2012;
Adams & MacKay, 2007; Wilson, Nassar, & Gold, 2010; Yu

& Dayan, 2005). In general, learning should be slow during
periods of environmental stability to average over as many
relevant observations as possible but fast during periods of
environmental change that render prior observations irrelevant
to the problem of predicting future ones (Behrens et al., 2007;
Browning et al., 2015; Nassar et al., 2016; Nassar, Wilson,
Heasly, & Gold, 2010; Vaghi et al., 2017; Wilson, Nassar, &
Gold, 2013). Human behavior, fMRI BOLD responses, and
measures of physiological arousal display qualitative hall-
marks of this sort of learning rate adjustment, suggesting that
the brain implements meta-control over its own rate of learn-
ing to optimize behaviorally relevant inferences (Behrens
et al., 2007; Browning et al., 2015; McGuire et al., 2014;
Nassar et al., 2012; Nassar, McGuire, Ritz, & Kable, 2019b;
Adams & MacKay, 2007; Wilson et al., 2010; Yu & Dayan,
2005).

However, learning rate, and adjustments thereof, differ dra-
matically across individuals, age groups, and clinical popula-
tions (Behrens et al., 2007; Browning et al., 2015; Nassar
et al., 2010, 2016; Vaghi et al., 2017; Wilson et al., 2013).
Some individuals tend to adjust beliefs rapidly irrespective of
environmental statistics, leading to flexible but unstable be-
liefs, whereas others tend to adjust more slowly giving rise to
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inflexible but stable beliefs (Nassar et al., 2010). In principle,
such differences might arise through learning about environ-
mental statistics over a much longer time course, such as over
development (Nassar et al., 2016) or even evolution (Krugel,
Biele,Mohr, Li, &Heekeren, 2009; Stein, Newman, Savitz, &
Ramesar, 2006). This longer timescale meta-learning might in
some cases appropriately bias an individual towards one end
of the stability/flexibility spectrum; however, in other cases it
could potentially go awry and give rise to pathological belief
updating. For example, recent work has suggested individuals
with obsessive compulsive disorder tend to overlearn from
new information (Vaghi et al., 2017), limiting stability of be-
liefs. Consistent with a prominent theory of autism (Sinha
et al., 2014), similar conclusions have been made about autis-
tic individuals under some conditions (Lawson, Mathys, &
Rees, 2017), although other studies have failed to identify
differences between autistic individuals and controls
(Manning, Kilner, Neil, Karaminis, & Pellicano, 2016).

These mixed results may result in part from heterogeneity
within the autism spectrum. Autism is a broad diagnostic cat-
egory characterized by deficits in social communication as
well as restricted and repetitive patterns of behavior (RRBs).
RRBs include inflexible adherence to routines, inflexibility to
changing contexts, rigid thinking patterns, and increased at-
tention to detail. Although the neural origins of an increased
focus on details remains unknown, it has been described col-
loquially as “missing the forest for the trees” and theoretically
as “weak central coherence” (Frith, 1989; Happé & Frith,
2006), “enhanced discrimination and reduced generalization”
(Plaisted, 2001), “enhanced perceptual functioning” (Mottron,
Dawson, Soulières, Hubert, & Burack, 2006), as well as other
theoretical explanations (Belmonte et al., 2004; Just, Keller,
Malave, Kana, & Varma, 2012; Kana, Libero, & Moore,
2011; Lawson, Rees, & Friston, 2014; Williams, Goldstein,
& Minshew, 2006).

Although these psychological models differ in terms of the
origin of these deficits, they all generally describe an imbal-
ance of global and local information processing, with RRBs
emerging from overstimulation stemming from increased
local/primary sensory information processing. We extend this
notion of locality to the temporal domain. For the purposes of
learning in dynamic environments, we refer to “flexibility” as
the ability to prevent integration of information across a
change point. We propose that such flexibility might be en-
hanced through a focus on local details, such as the most
recent observation, rather than more global information, such
as a long-term average over observations. From this perspec-
tive, the greater reliance on local information characteristic of
heightened attention to detail in individuals with autismmight
result in a particular learning profile favoring flexibility as
opposed to stability.

One factor limiting much of the previous research on at-
tention to detail is the focus on dichotomous groups of

individuals with or without an ASD diagnosis, a study design
that does not take into account that behavioral manifestations
of ASD. Importantly, local/global perception also has been
shown to vary in the general population (Dale & Arnell,
2013; McKone et al., 2010; Scherf, Behrmann, Kimchi, &
Luna, 2009). Thus, quantitative measurement of attention to
detail along with measurement of learning behavior that dif-
fers based on information processing policies in those with
and without ASD would be particularly powerful. Recent
work that has used the approach has shown that quan-
titative traits of autism measured both in the general
population and within clinically diagnosed cohorts are
associated with the ability to disembed a smaller figure
from a larger shape (Sabatino DiCriscio & Troiani,
2017, 2018). Furthermore, it has been shown that the
ability to disembed a local part from a global whole are
not present in every individual with ASD, indicating
that measuring trait dimensions is important in hetero-
geneous disorders, such as autism (DiCriscio, Hu, &
Troiani, 2019). Additional studies have used the AQ
to screen participants and split them into “High AQ”
and “Low AQ” groups or to link quantitative measures
of autism traits to a given behavior. These studies also
show that there is a documented relationship between
visual perceptual skills and autism traits in neurotypical
individuals as measured by the AQ (Burghoorn,
Dingemanse, van Lier, & van Leeuwen, 2020).

We use a trait dimension approach to examine the relation-
ship between attention to detail, a prominent feature of au-
tism, and the degree to which individuals implement learning
policies favoring either stability or flexibility. We relate indi-
vidual differences in learning behavior (stability/flexibility
tradeoff) to a quantitative measure of autism traits (Autism
Spectrum Quotient; AQ), designed to capture characteristics
of autism that extend outside of traditional diagnostic bound-
aries. We examine this in two separate populations: healthy
young adults and children with a range of developmental abil-
ities, including autism. We show that the young adults who
update beliefs the least in the face of conflicting information
integrate more effective samples into their beliefs about the
world, making them more robust to noise (more stability), but
also are more likely to integrate information from previous
contexts (less flexibility). The individuals who showed the
opposite pattern of results (high flexibility/low stability)
tended to score higher on the attention to detail subscale of
the AQ. We confirm this inverse relationship between
attention to detail and formation of stable beliefs in a
population of children that includes a high proportion of
clinical autism diagnoses. Together, our results highlight
that attention to detail reflects an information processing
policy that comes with a substantial downside, namely
the inability to integrate data to overcome environmental
noise.
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Methods

Subject populations

Experiment 1 Forty-three young adults (20 females, mean
[std] age = 21.4 [3.4] years, mean [std] WASI FSIQ = 112
[10.4]) were recruited from a local community population to
participate in our first behavioral study.

Experiment 2 Thirty-seven children (17 females, mean [stan-
dard deviation (SD)] age = 9.5 [2.5]) were recruited to partic-
ipate in our second behavioral study. In order to obtain a range
of autism traits in the sample, we identified participants using a
broad recruitment strategy. This included identifying partici-
pants based on patient referral to a neurodevelopmental clinic
in Lewisburg, Pennsylvania, as well as from health system-wide
advertisement and the surrounding community. On the day of
research testing, all participants completed a cognitive assess-
ment to document IQ (WASI-II: Wechsler abbreviated scale of
intelligence, 2nd edition; Wechsler, 2011). If an IQ test was
ascertained as part of their clinic appointment that day, we used
the clinically ascertained IQ score. All participants assented to
protocols approved by the institutional review board (IRB) at
the authors’ home institution. Twelve of our participants had a
clinical diagnosis of autism or ASD based on assessment by our
neurodevelopmental pediatricians and support staff.

Study Session

Each experimental session involved performing a computer-
ized predictive inference task (Nassar et al., 2016; Nassar,
Bruckner, & Frank, 2019a), completing the Autism Quotient
questionnaire, and a cognitive assessment (WASI FSIQ).
Thirteen of the 43 young adult participants did not complete
the WASI FSIQ due to time constraints.

Predictive inference task

Each participant completed a computerized predictive infer-
ence task that required them to infer the location of an unob-
servable helicopter based on the locations of bags that had
previously fallen from it (McGuire et al., 2014). The task
included two conditions that favor different adaptive learning
strategies (d’Acremont & Bossaerts, 2016; Nassar, Bruckner,
& Frank, 2019a). In one condition, the helicopter was gener-
ally stationary but occasionally underwent “changepoints”
(hazard rate = 0.125) at which its position was reset to a ran-
dom horizontal position on the visible screen (arbitrarily de-
fined using screen positions on a scale from 0 to 300). In the
other condition, the helicopter “drifted” slightly from trial-to-
trial (implemented as a normal random walk with standard
deviation = 10 screen units). For each trial, a bag would fall
from the top of the screen, horizontally displaced slightly from

the true horizontal position of the helicopter (noise standard
deviation = 20 screen units), providing the participant with
some information about the helicopter location. In the
changepoint condition, this information was always
relevant—as bag locations were normally distributed around
the helicopter position. However, in the condition with the
drifting helicopter, bags were occasionally (hazard rate =
0.125) sampled from a uniform distribution extending across
the entire screen, giving rise to “oddball” events that were
unrelated to the true helicopter location. For half of the trials,
the contents of bags were worth points that accumulated in the
bucket across trials and were translated into incentive pay-
ments at the end of the session. For the other half, the contents
were worthless, but nonetheless bag positions provided im-
portant information about the position of the helicopter and
thus upcoming bag locations. The value of bag contents was
designated by color (counterbalanced across participants) and
could not be predicted such that the best strategy on each trial
was to move the bucket to the inferred location of the helicop-
ter to maximize the chances of “catching” valuable tokens.

Subjects were trained separately and explicitly on each of the
two conditions. Training on each task condition consisted of 1) a
set of instructions slides that explicitly described the generative
environment (e.g., changepoint or oddball condition; see
Appendix 1 for complete instructions); and 2) a visible helicopter
training version of the task in which participants could observe
the bags fall from the helicopter directly. After performing 50
trials of the visible helicopter training task for a given condition,
participants were told that the helicopter would be obscured by
clouds and that they would need to infer its position based on
previous bag locations. Thus, participants were made explicitly
aware of the condition that they were in (changepoint/oddball)
before beginning each condition of the predictive inference task.
Performance of both cohorts on the visible helicopter task indi-
cated a general understanding of the task (Fig. S1).

Autism Spectrum Quotient

The Autism Spectrum Quotient (AQ) is a self-report measure
that is designed to assess ASD-like traits across the general
population (Baron-Cohen, Wheelwright, Skinner, Martin, &
Clubley, 2001). This measure assesses five trait domains, in-
cluding communication, social skills, attention switching,
imagination, and attention to detail. Using a 4-point Likert
scale, a participant responds with how strongly they agree or
disagree with a given statement. Each item is scored based on
whether a given trait is endorsed. Half of the items require an
agree and half require a disagree response to endorse anASD-
like trait. Item scores are summed to generate both a total score
as well as subscale scores. In Experiment 1, young adults
completed a self-report version of the AQ, whereas in
Experiment 2, parents completed a parental-report version of
the AQ on their child’s behavior.
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Subject Exclusion

For both studies, subjects were excluded if they did not meet a
basic performance standard designed to determine whether
they were actually attempting to complete the task (mean dis-
tance between bucket and helicopter position of less than 45
units). This performance standard was met by all participants
in the young adult population but did lead to exclusion of one
participant in the developmental cohort (Fig. S7). In addition,
eight participants in the developmental cohort did not com-
plete the AQ due to time constraints and thus were not includ-
ed in the correlations between AQ measures and task perfor-
mance. After participant exclusion, our developmental cohort
included 29 participants who had completed the AQ, 9 of
whom had an autism diagnosis.

Normative learning model

Normative learning was assessed using a reduced Bayesian
model, which has been described previously for the
changepoint (Nassar et al., 2010) and oddball (Nassar,
Bruckner, & Frank, 2019a) conditions. In both conditions,
model updates correspond to an error driven learning rule
where the learning rate depends on trial-by-trial estimates of
the probability of an extreme event (referred to as changepoint
or oddball probability, depending on the block type), which is
computed according to Bayes rule:

p extreme event on trial tð Þ ¼ Ωt ¼
H
300

N PE; 0; σ2ð Þ 1−Hð Þ þ H
300

ð1Þ

Where H is an a priori expectation about the rate of extreme
events (hazard rate), PE refers to the difference between the
actual and expected outcomes (prediction error), and σ2 is the
variance on the models estimate of the current helicopter lo-
cation. This variance is derived from two sources, the irreduc-
ible variability attributable to the width of the bag distribution
(σ2

N Þ and the uncertainty attributable to imprecise estimates of

the helicopter location (σ2
μ ). For normative model simula-

tions, σ2
N was set to its true value in the task (20 screen units)

and σ2
μ was inferred on each trial as has been described previ-

ously for the changepoint (McGuire et al., 2014) and oddball
conditions (Nassar, Bruckner, & Frank, 2019a).

The fraction of total uncertainty (σ2) that is due to an im-
precise estimate of the helicopter location (σ2

μ ) is termed

relative uncertainty:

τ tþ1 ¼
σ2
μ

σ2
N þ σ2

μ

ð2Þ

In the changepoint condition, learning rates in the model
are driven up by both the probability of an extreme event and
the relative uncertainty about the helicopter position:

αt changepoint conditionð Þ ¼ Ωt þ τ t−Ωtτ t ð3Þ

This is not the case for the oddball condition, where prob-
able oddballs should be ignored:

αt oddball conditionð Þ ¼ τ t−Ωtτ t ð4Þ

Single trial learning rates

Participant bucket positions and computer generated bag lo-
cations were used to compute trial-by-trial prediction errors
(the difference between bag location and the center of the
bucket on a given trial) and prediction updates (the bucket
location on a subsequent trial minus the bucket location on
the current trial). In order to estimate the degree of influence of
each bag on the subsequent behavior of the participant, we
computed a single trial learning rate by dividing the update
made on each trial by the prediction error observed on that trial
(Nassar et al., 2010). Learning rates computed in this way that
were greater than 1 or less than 0 were set to 1 or 0, respec-
tively. Single trial learning rates also were categorized into
three groups: 1) total updates [>0.8], 2) moderate updates
[0.2 to 0.8], and 3) non-updates (<0.2).

Characterizing the content of participant beliefs

To better understand how the exact sequence of learning rates
employed by each participants affected the precision and flex-
ibility of their beliefs, we re-represented participant beliefs
(bucket position) on each trial as a weighted mixture of pre-
vious outcomes (bag locations). This is made possible through
the following equivalency for error driven learning systems
(Sutton & Barto, 1998):

Bt ¼ 1−αð ÞtB0 þ ∑
t−1

i¼1
αi 1−αiþ1ð Þ 1−αiþ2ð Þ… 1−αtð ÞX i

Where Bt is the belief on timestep t, Xi is the position of the
bag on the ith trial, and

αi is the empirical learning rate describing how the partic-
ipant updated his or her bucket position in response to that
observed bag position. Thus, the contribution of the ith out-
come to the belief on trial t is greatest when a participant used
a high learning rate in response to that outcome (αi) and ex-
tremely small learning rates in response to all subsequent out-
comes ((1 −αi + 1)…).
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We implemented this procedure by stepping through the
sequence of single trial learning rates and for each trial to 1)
assign weight to the newest outcome in proportion to the
learning rate on that trial αi, and 2) updated the weight
assigned to all previous outcomes by multiplying their weight
(computed on the previous trial) by one minus the current
trials learning rate (1 −αi + 1). This procedure produced a vec-
tor of weights that, when multiplied by the corresponding
vector of bag positions, resulted in the exact belief of the
participant. We note that this procedure does not involve any
model fitting and only relies on the Markov assumption that
the influence of each bag impacts immediate beliefs immedi-
ately, without having any delayed effects.

To understand how stability and flexibility of beliefs might
be assessed through the weight attributed to previous out-
comes, it is useful to consider what optimal inference might
look like, when recast as a set of weights to previous out-
comes. If a changepoint is correctly identified, then optimal
inference would correspond to a flat weight profile across all
outcomes subsequent to the most recent changepoint and zero
weight attributed to all outcomes before the most recent
changepoint. A belief updating strategy that attributes weight
to outcomes preceding the most recent changepoint could be
considered inflexible, in that it failed to replace information
from an irrelevant context. A belief updating strategy that
unevenly attributes weight to the relevant outcomes, in the
extreme giving all weight to a single outcome, could be con-
sidered unstable and imprecise, in that it limits the degree to
which noise in individual observations can be averaged out
and thus would provide a less precise estimate of the underly-
ing mean.

With these considerations in mind, to assess the flexibility
of beliefs, we quantified the proportion of the weight profile
that was attributed to relevant outcomes (proportion relevant).
In the changepoint condition, relevant outcomes were defined
as those having occurred since the most recent changepoint
(e.g., bags that fell from the current helicopter location). In the
oddball condition, all non-oddball outcomes were considered
to be relevant (e.g., bags normally distributed around
helicopter).

To assess precision and stability of beliefs, we quantified
the effective number of outcomes from which they were com-
posed. Specifically, we computed effective samples as
follows:

p ¼ 1

σ2
tot

¼ 1

w1σsamp
� �2 þ w2σsamp

� �2
…þ wt−1σsamp

� �2 ð5Þ

Effective samples ¼ p
σ2
samp

ð6Þ

where p reflects the precision (inverse variance) of beliefs, σ2tot
is the variance on the weighted mean of samples, σ2

sample is the
variance on each sample, and w reflects the weight given to

that sample during updating. Our effective samples measure
simply normalized the belief precision in terms of the preci-
sion of a belief based on a single observation allowing abso-
lute values to be more interpretable. The resulting measure of
effective samples reflects the effective number of samples
comprising the current prediction.

Statistical analysis

Rank order correlations between task measures and AQ sub-
scale measures were computed using Spearman’s Rho. Linear
regression was used for follow-up analyses designed to statis-
tically control for other factors, including IQ, age, and gender.
When additional factors were used as covariates, missing data
were replaced with group mean values. All analyses and
models were implemented in Matlab (The MathWorks,
Natick, MA). All code and anonymized data will be made
available upon publication on the corresponding author’s
website (https://sites.brown.edu/mattlab/resources/).

Results

Experiment 1

Young adults made predictive inferences in both changepoint
and oddball contexts. Participants specified predictions about
the location of an unobservable helicopter (Fig. 1a, prediction
panel) in order to catch bags (Fig. 1a, outcome panel).
Predictions were updated on each trial (Fig. 1a, update
panel) according to the most recently observed bag location
and knowledge of the underlying generative structure
(changepoint/oddball). In the changepoint condition, norma-
tive learning (Fig. 1b, pink line) prescribed rapid updating in
response to unexpected bag locations, as these outcomes were
likely associated with a change in the helicopter location. In
contrast, in the oddball condition normative learning (Fig. 1b,
pink) required ignoring unexpected bag locations, which were
likely to be oddballs unrelated to the actual helicopter posi-
tion. Predictions made by an example participant (Fig. 1b & c,
blue) conform well to normative model predictions. The nor-
mative learning model adjusts learning rate from trial to trial
according to the probability that the observed outcome reflects
a changepoint (Fig. 1d, orange) or oddball (Fig. 1e, orange),
depending on the current task condition, as well as an estimate
of uncertainty about the current helicopter location (Fig. 1d &
e, yellow (Nassar et al., 2012)).

To better understand how participants adjusted learning
across trials and conditions, we computed single trial learning
rates based on the prediction errors that participants experi-
enced on each trial and the bucket updates that they produced
(Fig. S2). The distribution of single trial learning rates used by
participants differed across the two conditions, qualitatively in
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accordance with the normative predictions. On changepoint
trials, participants tended to use high learning rates (Fig. 2a),
whereas on oddball trials where bag locations were equally
surprising but unrelated to the true helicopter location, partic-
ipants tended to use learning rates near zero (Fig. 2b).
Distribution of learning rates across unsurprising trials tended
to be more similar across the conditions, with a fair number of
small and moderate learning rates employed (Fig. 2c & d).
These relative patterns of learning were consistent across sub-
jects, with total-updates (learning rate >0.8) decreasing with
increasing trials after a changepoint (Fig. 2e; linear effect of
trials after changepoint on total updating: t = −8.0, degree of
freedom [df] = 42, p = 5x10-10) and non-updates (learning rate
< 0.2) elevated on oddball trials (Fig. 2f; contrast non-
updating on oddball versus other trials: t = 2.9, df = 42, p =

0.007). On average, young adult participants demonstrated
context-sensitive adjustments in learning that qualitatively
matched model prescriptions for how learning should be ad-
justed according to surprise (Fig. S3).

Despite the preservation of context sensitive adjustments of
learning across participants, individuals differed markedly in
their overall learning rate distributions. Some participants al-
most never made a total update and others used total updates
for approximately six of ten trials. In principle, these differ-
ences could reflect different policies toward optimizing either
the stability or flexibility of beliefs. To test whether such a
stability/flexibility tradeoff exists, we examined how individ-
ual differences in total update frequency related to perfor-
mance in each of the task conditions. In the changepoint con-
dition, higher total update frequency tended to be associated
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Fig. 1 Predictive inference task measures learning in different statistical
contexts. a. For each trial, participants were required to adjust the position
of a bucket to catch bags of coins that would be dropped from an
unobservable helicopter. Subjects were not able to observe the
helicopter and thus were forced to use the history of bag locations and
knowledge about the environmental statistics to inform bucket placement.
Example data from a single subject performing the predictive inference
task in changepoint b and oddball c conditions. b. In the changepoint
condition, the helicopter (not shown) remained in a single screen
position (ordinate) for a number of trials (abscissa), before occasionally
relocating to a new screen position (changepoint). Bag locations (yellow
and gray points) were drawn from a normal distribution centered on the
helicopter location. Inferences about the helicopter location made by a

normative learning model (pink line) and bucket placements made by an
example subject (blue line) are both rapid to adjust after changepoints in
the helicopter location. c. In the oddball condition, the helicopter position
drifted slowly from one trial to the next, and bag positions were either
drawn from a normal distribution centered on the helicopter location
(90% of trials) or a uniform distribution across the entire task space
(10% of trials). The normative learning model adjusted learning rate
(green line) on each trial according to uncertainty (yellow) and surprise
(orange). In the changepoint condition d, surprise was indicative of
changepoints and increased learning rates, whereas in the oddball condi-
tion e surprise was indicative of an uninformative oddball and thus pro-
moted lower learning rates
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with smaller errors on changepoint trials (Fig. 3a; Spearman’s
rho = −0.34, p = 0.02) but larger errors during periods of
stability (Fig. 3c; Spearman’s rho = 0.66, p = 1.5 × 10-6),
supporting the idea that individuals may differ in their relative
concern for stability versus flexibility of beliefs. Performance
in the oddball condition, in contrast, tended to favor more
stable belief updating strategies, with more frequent total up-
dates leading to worse performance on oddball trials (Fig. 3b
& d; Spearman’s rho = 0.66, p = 1.5 × 10-6). Thus, individual
differences in learning, specifically the frequency of total
updating, predicted individual differences in performance in
a manner that suggests different policies regarding toward
optimizing stability or flexibility.

To test more explicitly for individual differences in the
stability and flexibility of beliefs, we used the sequence of
learning rates preceding each prediction to determine the
weighted contribution of each previous outcome to that pre-
diction (see Methods; Fig. 4a). In order to demonstrate how
the method works, we first applied it to behavior of model
agents. When applied to simple fixed learning rate models,
the method revealed the expected exponential decay of weight
across previous outcomes, with higher learning rates

corresponding to higher rates of decay (Fig. 4b, blue &
yellow). Applying the method to our normative learning mod-
el identifies weights with more complex dynamics, which are
approximately uniform across trials since the most recent
changepoint, but zero on trials before the most recent
changepoint (Fig. 4b, green).

The weight profile characterizing the influence of out-
comes on the normative learning model reveals hallmarks of
both flexibility and stability. The lack of weight attributed to
outcomes before the previous changepoint affords the norma-
tivemodel flexibility (Fig. 4b, green), which is to say an ability
to disengage from irrelevant information after a change in
context. With this in mind, we could quantify the flexibility
of any agent, or indeed our subjects, by calculating the fraction
of the weight profile that is attributed to “relevant” trials,
which, in the case of the changepoint environment, occurred
subsequent to the most recent changepoint (proportion
relevant). The stability of beliefs held by the normative model
is evident in the roughly uniform weighting of outcomes since
the previous changepoint (Fig. 4b, green, relevant trials). This
near-equal weighting of relevant outcomes “averages out” the
independent noise associated with each individual outcome,
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providing more stable beliefs, which more precisely estimate
of the mean (helicopter location) that gave rise to them (Fig.
4a, bottom). This benefit in stability/precision can be quanti-
fied through the number of effective samples comprising the
current prediction, which grows nearly linearly for the norma-
tivemodel during periods of stability but rapidly decays to one
after a changepoint (Fig. 4c, green; effective samples). Note
that a simple high fixed learning rate model, which is flexible
in that it rapidly discards old and potentially irrelevant infor-
mation (Fig. 4b, blue), never accumulates even two effective
samples (Fig. 4c, blue) and therefore is highly sensitive to the
noise inherent in individual outcomes. This illustrates the sta-
bility flexibility tradeoff: rapid learning can promote flexibil-
ity (high proportion relevant) at the expense of precision dur-
ing periods of stability (low effective samples). Our analysis
methods allow us to characterize this tradeoff, even in the
presence of response variability (Fig. S4) to examine carefully
how individuals might differentially navigate it.

The stability flexibility tradeoff also was evident from in-
dividual differences in the changepoint condition of our task.
Individuals who were most flexible (e.g., had a high propor-
tion of weight associated to relevant outcomes) tended to base
predictions on fewer samples (Fig. 4d; Spearman’s rho =
−0.49, p = 9.1 × 10-4) in the changepoint condition.
Conversely, individuals who incorporated more outcomes in-
to their predictions tended to include a higher proportion of
irrelevant outcomes, making their predictions less flexible in
the face of changepoints. In the oddball condition, where task-
relevance was unrelated to recency, this relationship reversed
such that participants who incorporated the most samples also

tended to have the highest proportion of relevant ones (Fig. 4e;
Spearman’s rho = 0.53, p = 3.1 × 10-4). Taken together, these
results suggest that individuals differ in their relative emphasis
on the precision of beliefs, or their flexibility in the face of
changing contexts.

An important motivating question of this work was to ex-
amine the degree to which such differences in stability/
flexibility policy might relate to broader patterns of real-
world behavior, with respect to traits that are elevated in
ASD. In line with this idea, healthy young adults who scored
highest on the attention to detail subdomain of the AQ incor-
porated fewer effective samples into beliefs in the changepoint
condition (Fig. 5a; Spearman’s rho = −0.43, p = 0.005), but
those samples tended to bemore relevant (Fig. 5c; Spearman’s
rho = 0.33, p = 0.03). Consistent with attention to detail
reflecting an emphasis on flexibility, as opposed to stability,
it was associatedwithmore frequent use of high learning rates,
and less frequent use of low ones (Fig. S5). Both relationships
between attention to detail and key metrics of changepoint
task behavior (effective samples and proportion relevant)
persisted in a regression model that included IQ and age as
covariates: (effective samples: t = −2.7, df = 37, p = 0.01;
proportion relevant: t = 2.8, df = 37, p = 0.007). The relation-
ship of attention to detail to belief precision, as quantified by
effective samples, was robust to exclusion of individual sub-
jects and remained statistically significant after controlling for
multiple comparisons to account for other AQ subdomains
(Bonferroni corrected p = 0.02). The relationship between
attention to detail and belief flexibility, as quantified by pro-
portion relevant samples in the changepoint condition, was
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less robust and not statistically significant after removing the
lowest attention to detail participant (rho = 0.29, p = 0.07) or
after controlling for all five possible comparisons (Bonferroni
corrected p = 0.15). As might be expected, the lower precision
beliefs in high attention to detail individuals conferred a small
performance disadvantage during periods of stability in the
changepoint task (correlation between mean relative error >5
trials after a changepoint and attention to detail: rho = 0.35, p =
0.02), whereas the trend toward higher flexibility did not pro-
duce a significant performance advantage immediately after
changepoints (correlation between mean relative error on trial
after changepoint and attention to detail: rho = −0.16, p =
0.33). Thus, attention to detail conferred a clear disadvantage
in terms of belief precision, and our data hints that this disad-
vantage comes with a benefit of increased flexibility, although
the data are less clear on that issue.

No relationships between these measures of stability and
flexibility were observed in relation to other subdomains of
the AQ (see Fig. S6 for all pairwise correlations and relevant
statistics) or in relation to IQ (p = 0.16, 0.28). There was a
trend toward the same negative relationship between precision
and attention to detail in the oddball condition (Spearman’s
rho = −0.30, p = 0.06); however, the advantage of high atten-
tion to detail individuals in terms of sample relevance was not
apparent in this condition (Spearman’s rho = −0.22, p = 0.17).
Taken together, these results suggest “attention to detail,” one
specific aspect of behavioral variability that has been associ-
ated with ASD, directly relates to stability/flexibility policy,
with individuals higher on “attention to detail” favoring flex-
ibility at the expense of stability.

Experiment 2

To test the generality of the relationship between attention to
detail and stability/flexibility and to examine it across a wider
range of behavioral phenotypes that includes individuals with
ASD, we conducted a second behavioral study in a heteroge-
nous population of children (N = 37, mean [SD] age = 9 [2.5],
17 females). The group included 12 participants diagnosed
with ASD, as well as 25 children recruited from the local
community. Overall performance of the developmental cohort
was considerably worse on the task than that of our young
adult cohort, in part due to a lack of context dependent learn-
ing rate adjustments in the developmental group (Fig. S2).

More generally, behavior of the children included far fewer
updates than that of the young adult population. Non-updates
were the most common updating category, even on
changepoint trials that should require total updates (Fig. 6).
In principle, non-updates could limit flexibility by reducing
responsiveness to new information after a changepoint but
also could limit precision of beliefs during periods of stability
by preventing incorporation of new information into existing
beliefs (Fig. 4a, non-update). Consistent with this idea, there

was no evidence for a stability flexibility tradeoff in either
condition for the developmental cohort (Fig. 7a; Spearman’s
Rho 0.21, p = 0.2 for the changepoint condition and Rho
−0.03, p = 0.87 for the oddball condition).

Despite the lack of evidence for a stability flexibility
tradeoff in this heterogenous population of children, attention
to detailwas still related across participants to lower precision
beliefs, as quantified by effective samples. The average num-
ber of effective samples in participant beliefs aggregated
across conditions was greatest for individuals with the lowest
attention to detail scores (Spearman’s Rho = −0.50, p =
0.006). This relationship was similar in the two conditions
(Fig. 8a & b) but only reached statistical significance in the
oddball condition (Spearman’s Rho for CP and ODD condi-
tions: −0.25, −0.56; p values: 0.19, 0.001). Unlike in the
young adult population, attention to detail did not confer
any advantage in terms of flexibility to children (Fig. 8c &
d; p-value for correlations in both conditions >0.5), likely due
to additional variance in flexibility measures attributable to
non-updating at changepoints (Fig. 6e, pink). The relationship
between attention to detail and belief precision was robust to
inclusion of IQ, age, and gender into the explanatory model
(Mean [95% confidence interval] beta for extended regression
model = −0.20 [−0.33, −0.06], t = −3.0, df = 24, p = 0.006).
The relationship was selective for attention to detail and cate-
gorical autism diagnosis did not relate to any of our task mea-
sures (Fig. S8). Taken together, these results suggest that at-
tention to detail comes at a significant cost to the precision of
beliefs, whereas the potential benefits of attention to detail in
terms of belief flexibility are population-dependent.

Discussion

Autism is a multidimensional construct with a broad behav-
ioral profile. One autism-linked dimension, attention to detail,
has been related to a focus on local, as opposed to global,
stimulus information. We explored whether this local bias
might exist in time, as well as in space, and whether such a
bias would manifest in highly flexible but unstable beliefs.We
confirmed high attention to detail young adults were more
prone to completely updating beliefs in the face of contradic-
tory information and that this led them to form beliefs that
were more flexible but which incorporated fewer observa-
tions, and thereby less robust to noise during periods of sta-
bility. We replicated the negative relationship between atten-
tion to detail and belief precision in a developmental cohort
that included both typically developing and children with au-
tism but did not identify any advantages of higher attention to
detail individuals in this population with respect to flexibility.
Our results highlight that high attention to detail, a prominent
feature of autism, has profound implications for the way that
information is used over time—promoting the use of recent,
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rather than historical information, and limiting the degree to
which beliefs integrate over multiple observations.

To a first approximation, our results are consistent with
basic tenants of “Weak Central Coherence Theory” (Frith,
1989; Happé & Frith, 2006). Specifically, the “global” aspect
of our task might be considered to be the entire sequence of
bag locations falling from the current helicopter location,
whereas the “local” aspect might be considered to be the most
recent bag location. We found that individuals who are high
on attention to detail—a trait sometimes associated with
autism—tend to focus on temporally local information and

form beliefs that incorporate fewer samples from the “global”
category. This work nicely parallels work in the perceptual
domain that has defined local and global in terms of space
(O'Riordan & Plaisted, 2001; Plaisted, Dobler, Bell, &
Davis, 2006; Sabatino DiCriscio & Troiani, 2017; Suzanne
Scherf, Luna, Kimchi, Minshew, & Behrmann, 2008).

Although perceptual differences in ASD have been con-
ceptualized as a manifestation of RRBs, the relationship be-
tween the presence of motor stereotypies, circumscribed inter-
ests, and perceptual differences in a given individual remains
unclear. For this reason, we do not intend to suggest that
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greater flexibility in our task would be necessarily linked to
manifestations of all RRBs observed in those with ASD. Our
work did not focus on the binary autism distinction but rather
directly linked to measures of attention to detail. Thus, this is
only one of many traits that is prevalent in ASD and, indeed,
in our populations was only very minimally related to other
autism-linked traits (see Supplementary Figures 6 & 8). Some
RRBs, particularly those in the visual perceptual domain, like-
ly extend into the general population, whereas others (motor
stereotypies) do not. Thus, our focus on traits might have
heightened our ability to see such an effect, whereas other
recent work that has compared autism to controls has had
mixed results (Lawson et al., 2017; Manning et al., 2016).
Given the heterogeneity of autism phenotype and manifesta-
tions of RRBs, it would be good for future work to delineate
the relationship of various RRBs to each other and the pres-
ence of each RRB in the general population.

We find significant relationships with only the AQ
Attention to Detail subscale. Given that performance on our
task requires shifting responses in the face of altered contexts,
one might expect a relationship between aspects of perfor-
mance and the Attention Switching subscale. It may be that
this subscale better captures aspects of visual pattern detection
and detail-focused attention that scale with the particular type
of performance pattern in this task. Others also have found
distinct associations with the Attention to Detail subscale, in-
cluding one study that demonstrated the Attention to Detail
subscale was associated with better visual working memory
(Richmond, Thorpe, Berryhill, Klugman, & Olson, 2013) as
well as a study that found the Attention to Detail subscale was
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Fig. 5 Attention to detail predicts individual differences in stability/
flexibility policy. Individual differences in the effective sample size of
beliefs (ordinate) were negatively related to self-reported scores on the
attention to detail subscale of the Autism Spectrum Questionnaire
(abscissa) in both changepoint a and oddball b conditions. Individual

differences in the proportion of samples attributed to relevant
observations (ordinate) were positively related to self-reported scores on
the attention to detail subscale of the Autism Spectrum Questionnaire
(abscissa) in the changepoint c but not the oddball d conditions

�Fig. 4 Individual differences in performance are attributable to a
fundamental tradeoff in the quantity and relevance of samples from which
a belief is composed. a. Learning rates can be used to infer the weight
attributed to previous outcomes, providing insight into the stability and
flexibility of participant beliefs. Schematic (top) depicts an example where
the bucket is placed halfway between two previous bag locations (t-2, t-3)
and a new outcome is observed (t-1). Three different update strategies are
depicted: non-update (left), moderate update (middle), and total update
(right). After the bucket position is updated (arrow and × in schematics),
the relative weight attributed to each previous outcome is assessed to reveal
the contents of updated beliefs for each case (second row), the precision of
those beliefs, and our normalized measure of belief precision, “effective
samples,” which quantifies the effective number of previous outcomes in-
corporated into beliefs. Note that the total update pushes all weight onto the
most recent outcome, leading to single effective sample, whereas the mod-
erate update (learning rate = 1/3) gives rise to a flat weight profile over the
three observations, resulting in the highest possible effective sample size (3).
b. In general, higher learning rates correspond to a greater proportion of
weight attributed to recent observations (compare blue and yellow lines) and
normative learning approximates a flat weighting of all observations since
the previous changepoint (green). Observations occurring before the most
recent changepoint are irrelevant to the inference process, and thus the
proportion of weights attributed to observations occurring since the last
changepoint quantifies the relevance of samples from which the belief is
composed. c. For a bucket placement on a given trial, the distribution of
weights over previous observations can be used to infer the effective number
of samples incorporated into that belief (which scales with the precision—or
inverse variance—of that belief). High learning rate models, which rely
predominantly on the most recent observations, rely on beliefs with the
fewest effective samples (blue). Normative learning approximates linear
growth of effective samples during periods of stability but rapid collapse
of effective samples after observing a changepoint (green). Participants who
incorporated the most samples into their beliefs (abscissa) tended to rely on
less relevant information (ordinate) in the change-point condition d, whereas
this relationship reversed in the oddball condition e
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associated with improved performance on the Embedded
Figures Task, a classic paradigm to measure one’s ability to
extract a small object from a larger context (Burghoorn et al.,
2020). Thus, this work adds to a growing body of evidence
linking the Attention to Detail trait dimension that favor local
information processing. One interesting and open question is
whether the individual differences in temporal information
processing that emphasize flexibility, as the cost of stability,
which we highlight, might directly relate to the perceptual
enhancements that have previously been reported in high at-
tention to detail individuals.

Our results also speak to the more general tradeoff that the
brain faces with respect to controlling the use of recent versus
historical information. In stable regimes, optimizing this
tradeoff requires integrating over all relevant historical obser-
vations, but changes in the environment require rapidly
refocusing on recent observations to afford flexibility. We
found, as had been reported previously, dynamic adjustments
in the use of information according to environmental statistics,
but we also noted an extremely wide range of overall learning
behaviors (Fig. 3). Note that this need not be the case from a
computational perspective; participants were trained explicitly
on the generative structure of the task and had more than

enough experience to estimate the rate of changepoints and
oddballs if they were inferring these meta-parameters from the
task observations (Nassar, Bruckner, & Frank, 2019a; Wilson
et al., 2010). Thus, if participants came into the task without
strong predispositions toward favoring either stability or flex-
ibility, then they should have all arrived at similar policies by
the end of the training session. However, this is not what we
observed. One might argue that the heterogeneity across the
individual participants reflects completely different task strat-
egies; however, the link between attention to detail and learn-
ing policy observed in our two experiments (Figs. 5 and 8)
suggests that participants come to the task with a systematic
predisposition toward a specific learning strategy, either fa-
voring the use of recent information for flexibility (high atten-
tion to detail) or favoring the integration of data over time for
stability (low attention to detail).

One interesting question stemming from this work relates
to the developmental timescale and origin of these predispo-
sitions from a neural perspective. For example, many aspects
of RRBs present in ASD are considered age appropriate for
most neurotypical toddlers (i.e., insistence on sameness,
circumscribed/hyperfocused interests, inflexibility). One rea-
son that these behaviors are considered atypical in ASD is that
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they persist in older children and adults with the diagnosis,
significantly contributing to impairment in real-world situa-
tions. From the neural perspective, the heterogenous behav-
ioral traits of ASD are not thought to stem from specific re-
gions of the brain but rather from atypical connectivity be-
tween brain regions. Atypical connectivity has been identified
in numerous studies across multiple brain networks in ASD
using various neuroimaging methods, including structural and
functional MRI, EEG andMEG, and fNIRS (Hull et al., 2017;
O’Reilly, Lewis, & Elsabbagh, 2017; Rane et al., 2015; Zhang
& Roeyers, 2019). Although the findings of altered connec-
tivity in ASD are vast, one finding that is particularly relevant
to the current design is that inflexibility of neural circuitry has
been linked to behavioral inflexibility in ASD. For example, it
is more difficult to discriminate functional connectivity of
specific brain networks (namely, the salience network (SN),
default mode network (DMN), and central executive network
(CEN)) from each other in ASD relative to typical controls
(Uddin et al., 2014). The SN and CEN networks are associated

with salient information processing and cognitive control, re-
spectively and nodes include the insula (SN), anterior cingu-
late (SN), dorsolateral prefrontal cortex (CEN), and posterior
parietal cortex (CEN), which have been found to be relevant in
performing the current task (see below).

The neural mechanisms of trial-to-trial adjustments and
individual differences in learning rate also have been the focus
of much recent work. Dynamic fluctuations in learning rate
relate to overall arousal levels as measured by pupil diameter
(Nassar et al., 2012), as well as activation in a network that
includes insula, dorsomedial prefrontal cortex, and parietal
cortex, and parts of dorsolateral prefrontal cortex (Behrens
et al., 2007; McGuire et al., 2014; Payzan-LeNestour,
Dunne, Bossaerts, & O'Doherty, 2013). Functional connectiv-
ity over a subgraph that includes many of these regions, and is
closely related to both the salience and central executive net-
works described above, predicts individual differences in
learning behavior (Kao et al., 2020). Given the well-
established connectivity differences in ASD, it is possible
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both attention to detail and adaptive learning in our task are
jointly driven by individual differences in functional connec-
tivity. We hope that our work motivates future explorations of
these brain-behavior relationships.

One important question is whether the brain networks that
reflect learning rate are actually implementing a learning sig-
nal or doing something more general, such as assigning sa-
lience to unexpected observations. Two recent studies that
clearly dissociate salience from learning using a generative
structure like our oddball condition have suggested that the
latter may be the case (d’Acremont & Bossaerts, 2016;
Nassar, Bruckner, & Frank, 2019a). One recent idea that at-
tempts to rectify differences between the relationship between
brain activity and learning rate observed across different sta-
tistical environments is that learning rate adjustments are im-
plemented through changes in the active latent state (Nassar,
Bruckner, & Frank, 2019a; Nassar, McGuire, Ritz, & Kable,
2019b; Wilson, Takahashi, Schoenbaum, & Niv, 2014).
When changes to this latent state are carried forward in time
(e.g., changepoints), they could drive increases in learning
rate, whereas when they are rapidly replaced (e.g., oddballs),
they could drive reductions in learning rate (Razmi & Nassar,
2020). Within this framework, the frontoparietal control net-
work could be thought of as providing a signal to load a new
state representation (Nassar, Bruckner, & Frank, 2019a),
whereas regions including the orbitofrontal cortex seem to
reflect the newly loaded state itself (Nassar, McGuire, Ritz,
& Kable, 2019b). An important question raised by our work is
where individual differences would fall in such a mechanistic
process. If the primary determinant of individual differences
were in the salience assignments, then one might expect
divergent individual difference relationships across the
changepoint and oddball conditions. However, we ob-
served similar individual difference relationships across
the changepoint and oddball conditions, suggesting that
attention to detail is less related to salience assignments
rather than to the learning itself. This raises important
questions about how such individual differences could
emerge in the mechanistic model above and should mo-
tivate future neuroimaging studies using individual dif-
ferences in both task conditions to dissect the neural
mechanisms through which attention to detail promotes
flexible, but unstable, beliefs.

While our results provide some evidence for normative
learning rate adjustment, they also highlight the impressive
heterogeneity of learning strategies across individuals and
the degree to which all individuals fail to fully embody nor-
mative inference. The best participants in the young adult
condition reported beliefs that, by our measures, only aver-
aged across 2-4 observations, thereby leaving them suscepti-
ble to noise inherent in single observations. The deviations
from normative learning were even more extreme in the de-
velopmental cohort, which did not show context dependent

adjustments of learning (Fig. S3). It is tempting to speculate
that such context dependent adjustments might require cogni-
tive architecture that is refined late in development; however,
another possibility is that children simply lacked the ability to
translate our explicit instructions into a useful belief updating
policy. Thus, our results highlight the need for future devel-
opmental work on context-dependent learning rate adjust-
ment, particularly using tasks where generative structures are
learned implicitly (Bakst & McGuire, 2020), removing in-
structional confounds. Our developmental group also deviated
from normative inference in the frequent use of non-updates.
This finding is in line with other recent work that has sug-
gested that increased perseveration and increased response
variability in children might both stem from a liberal
satisficing policy that leaves children highly influenced by
default beliefs (Bruckner, Nassar, Li, & Eppinger, 2020).
Taken together, these findings suggest that despite showing
qualitative hallmarks of adaptive learning, people deviate sub-
stantially from optimality in a manner that depends on factors,
including their age and attention to detail.

Conclusions

Our results identify a link between attention to detail, a trait
elevated in autism, and learning policies that favor flexibility
over stability. Individuals high on attention to detail pay a
price in terms of stability, with beliefs that tend to incorporate
fewer observations than they would otherwise. These results
were specific to attention to detail and unrelated to IQ or other
autism linked traits. Overall, our findings demonstrate a core
negative consequence of attention to detail, namely that
by focusing attention on the newest observation, it
limits the ability to integrate relevant information across
a broader temporal context.
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Appendix 1: Task instructions

Instructions for one counterbalance condition of the predictive
inference task are reproduced below. Instructions also includ-
ed screenshots of the task, which are not reproduced here. All
instructions were read aloud to participants in the develop-
mental cohort.
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General instructions:
“Instructions. Press any key to move onto the next screen.”
“Bags of stones fall out of the helicopter. You’ll want to

catch as many as you can.”
“Use the F, G, H, and J keys to move your bucket.”
“When you are satisfied with the position of your bucket,

press the space bar.”
Oddball context instructions:
“The helicopter will not stay in one location; it will make

small but unpredictable movements. Most of the time, bags
will fall near the helicopter. But on some trials, bags will be
dropped from a plane way up above. On these trials, the bag is
equally likely to fall in any location.”

Screen display then indicates which color stones the par-
ticipant will receive points for collecting (depends on coun-
terbalance condition). They will not know which color stone
the bag contains until it lands. Example text:

“Red stones are worth money.
You will get paid an extra $5 for every 10 buckets you fill

with red stones.
Green stones are not worth anything.
There is no way to tell what kind of stones are in the bag

until it lands.”
[Run visible oddball block]
“Now the helicopter will be hidden by clouds. Everything

else will be exactly the same as the previous blocks. You
should continue to keep your bucket directly under the heli-
copter, even though you can no longer see it.”

[Run cloudy oddball block]
“Bags will fall near the helicopter but their exact position is

random. Your best strategy is to keep the bucket directly un-
derneath the helicopter.

The helicopter usually stays in one place, but occasionally
it moves to a new location.”

[Run visible changepoint block].
“Now the helicopter will be hidden by clouds. Everything

else will be exactly the same as the previous blocks. You
should continue to keep your bucket directly under the heli-
copter, even though you can no longer see it.”

[Run cloudy changepoint block].

References

Adams, R. P., & MacKay, D. J. (2007). Bayesian online changepoint
detection. arXiv preprint arXiv:0710.3742.

Bakst, L., & McGuire, J. T. (2020). Eye movements reflect adaptive
predictions and predictive precision. Journal of Experimental
Psychology: General. https://doi.org/10.1037/xge0000977

Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E.
(2001). The autism-spectrum quotient (AQ): Evidence from
asperger syndrome/high-functioning autism, malesand females,

scientists and mathematicians. Journal of Autism and
Developmental Disorders, 31(1), 5–17.

Behrens, T. E. J., Woolrich, M. W., Walton, M. E., & Rushworth, M. F.
S. (2007). Learning the value of information in an uncertain world.
Nature Neuroscience, 10(9), 1214–1221. https://doi.org/10.1038/
nn1954

Belmonte, M. K., Cook, E. H., Anderson, G. M., Rubenstein, J. L. R.,
Greenough, W. T., Beckel-Mitchener, A., et al. (2004). Autism as a
disorder of neural information processing: directions for research
and targets for therapy. Molecular Psychiatry, 9(7), 646–663.
https://doi.org/10.1038/sj.mp.4001499

Browning,M., Behrens, T. E., Jocham, G., O'Reilly, J. X., &Bishop, S. J.
(2015). Anxious individuals have difficulty learning the causal sta-
tistics of aversive environments. Nature Neuroscience, 18(4), 590–
596. https://doi.org/10.1038/nn.3961

Bruckner, R., Nassar, M. R., Li, S., & Eppinger, B. (2020). Default
beliefs guide learning under uncertainty in children and older
adults. https://doi.org/10.31234/osf.io/nh9bq

Burghoorn, F., Dingemanse, M., van Lier, R., & van Leeuwen, T. M.
(2020). The Relation Between Autistic Traits, the Degree of
Synaesthesia, and Local/Global Visual Perception. Journal of
Autism and Developmental Disorders, 50(1), 12–29. https://doi.
org/10.1007/s10803-019-04222-7

d’Acremont, M., & Bossaerts, P. (2016). Neural mechanisms behind
identification of leptokurtic noise and adaptive behavioral response.
Cerebral Cortex (New York, N.Y. : 1991), 26(4), 1818–1830. https://
doi.org/10.1093/cercor/bhw013

Dale, G., & Arnell, K. M. (2013). Investigating the stability of and rela-
tionships among global/local processing measures. Attention,
Perception & Psychophysics, 75(3), 394–406.

DiCriscio, A. S., Hu, Y., & Troiani, V. (2019). Brief report: visual per-
ception, task-induced pupil response trajectories and ASD features
in children. Journal of Autism and Developmental Disorders, 49(7),
3016–3030. https://doi.org/10.1007/s10803-019-04028-7

Frith, U. (1989). Autism: explaining the enigma. Oxford: Wiley-
Blackwell.

Happé, F., & Frith, U. (2006). The weak coherence account: detail-
focused cognitive style in autism spectrum disorders. Journal of
Autism and Developmental Disorders, 36(1), 5–25. https://doi.org/
10.1007/s10803-005-0039-0

Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C.M., Irimia, A., &
Van Horn, J. D. (2017). Resting-state functional connectivity in
autism spectrum disorders: a review.Frontiers in Psychiatry, 7, 205.

Just, M. A., Keller, T. A., Malave, V. L., Kana, R. K., & Varma, S.
(2012). Autism as a neural systems disorder: a theory of frontal-
posterior underconnectivity. Neuroscience and Biobehavioral
Reviews, 36(4), 1292–1313. https://doi.org/10.1016/j.neubiorev.
2012.02.007

Kana, R. K., Libero, L. E., & Moore, M. S. (2011). Disrupted cortical
connectivity theory as an explanatory model for autism spectrum
disorders. Physics of Life Reviews, 8(4), 410–437. https://doi.org/
10.1016/j.plrev.2011.10.001

Kao, C.-H., Khambhati, A. N., Bassett, D. S., Nassar, M. R., McGuire, J.
T., Gold, J. I., & Kable, J. W. (2020). Functional brain network
reconfiguration during learning in a dynamic environment. Nature
Communications, 11(1), 1682. https://doi.org/10.1038/s41467-020-
15442-2

Krugel, L. K., Biele, G., Mohr, P. N. C., Li, S.-C., & Heekeren, H. R.
(2009). Genetic variation in dopaminergic neuromodulation influ-
ences the ability to rapidly and flexibly adapt decisions. Proceedings
of the National Academy of Sciences, 106(42), 17951–17956.
https://doi.org/10.1073/pnas.0905191106

Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism over-
estimate the volatility of the sensory environment. Nature
Publishing Group, 15, 173. https://doi.org/10.5014/ajot.49.5.444

621Cogn Affect Behav Neurosci (2021) 21:607–623

https://doi.org/10.1037/xge0000977
https://doi.org/10.1038/nn1954
https://doi.org/10.1038/nn1954
https://doi.org/10.1038/sj.mp.4001499
https://doi.org/10.1038/nn.3961
https://doi.org/10.31234/osf.io/nh9bq
https://doi.org/10.1007/s10803-019-04222-7
https://doi.org/10.1007/s10803-019-04222-7
https://doi.org/10.1093/cercor/bhw013
https://doi.org/10.1093/cercor/bhw013
https://doi.org/10.1007/s10803-019-04028-7
https://doi.org/10.1007/s10803-005-0039-0
https://doi.org/10.1007/s10803-005-0039-0
https://doi.org/10.1016/j.neubiorev.2012.02.007
https://doi.org/10.1016/j.neubiorev.2012.02.007
https://doi.org/10.1016/j.plrev.2011.10.001
https://doi.org/10.1016/j.plrev.2011.10.001
https://doi.org/10.1038/s41467-020-15442-2
https://doi.org/10.1038/s41467-020-15442-2
https://doi.org/10.1073/pnas.0905191106
https://doi.org/10.5014/ajot.49.5.444


Lawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant precision
account of autism. Frontiers in Human Neuroscience, 8, 302.
https://doi.org/10.3389/fnhum.2014.00302

Manning, C., Kilner, J., Neil, L., Karaminis, T., & Pellicano, E. (2016).
Children on the autism spectrum update their behaviour in response
to a volatile environment. Developmental Science, 20(5), e12435.
https://doi.org/10.1073/pnas.1506582112

McGuire, J. T., Nassar, M. R., Gold, J. I., & Kable, J. W. (2014).
Functionally dissociable influences on learning rate in a dynamic
environment. Neuron, 84(4), 870–881. https://doi.org/10.1016/j.
neuron.2014.10.013

McKone, E., Davies, A. A., Fernando, D., Aalders, R., Leung, H.,
Wickramariyaratne, T., & Platow, M. J. (2010). Asia has the global
advantage: Race and visual attention. Vision Research, 50(16),
1540–1549.

Mottron, L., Dawson, M., Soulières, I., Hubert, B., & Burack, J. (2006).
Enhanced perceptual functioning in autism: an update, and eight
principles of autistic perception. Journal of Autism and
Developmental Disorders, 36(1), 27–43. https://doi.org/10.1007/
s10803-005-0040-7

Nassar, M. R., Wilson, R. C., Heasly, B., & Gold, J. I. (2010). An ap-
proximately Bayesian delta-rule model explains the dynamics of
belief updating in a changing environment. Journal of
Neuroscience, 30(37), 12366–12378. https://doi.org/10.1523/
JNEUROSCI.0822-10.2010

Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B., &
Gold, J. I. (2012). Rational regulation of learning dynamics by
pupil-linked arousal systems. Nature Neuroscience, 15(7), 1040–
1046. https://doi.org/10.1038/nn.3130

Nassar, M. R., Bruckner, R., Gold, J. I., Li, S.-C., Heekeren, H. R., &
Eppinger, B. (2016). Age differences in learning emerge from an
insufficient representation of uncertainty in older adults. Nature
Communications, 7, 11609. https://doi.org/10.1038/ncomms11609

Nassar, M. R., Bruckner, R., & Frank, M. J. (2019a). Statistical context
dictates the relationship between feedback-related EEG signals and
learning. eLife, 8. https://doi.org/10.7554/eLife.46975

Nassar, M. R., McGuire, J. T., Ritz, H., & Kable, J. W. (2019b).
Dissociable Forms of Uncertainty-Driven Representational Change
Across the Human Brain. Journal of Neuroscience, 39(9), 1688–
1698. https://doi.org/10.1523/JNEUROSCI.1713-18.2018

O'Riordan,M., & Plaisted, K. (2001). Enhanced discrimination in autism.
The Quarterly Journal of Experimental Psychology: Section A,
54(4), 961–979.

O’Reilly, C., Lewis, J. D., & Elsabbagh, M. (2017). Is functional brain
connectivity atypical in autism? A systematic review of EEG and
MEG studies. PLoS ONE, 12(5), e0175870.

Payzan-LeNestour, E., Dunne, S., Bossaerts, P., & O'Doherty, J. P.
(2013). The neural representation of unexpected uncertainty during
value-based decision making. Neuron, 79(1), 191–201. https://doi.
org/10.1016/j.neuron.2013.04.037

Plaisted, K. (2001). Reduced generalization in autism: An alternative to
weak central coherence. In J. A. Burack, T. Charman, N. Yirmiya, &
P. R. Zelaz (Eds.), The development of autism: Perspectives from
theory and research. (pp. 1–23).

Plaisted, K., Dobler, V., Bell, S., &Davis, G. (2006). Themicrogenesis of
global perception in autism. Journal of Autism and Developmental
Disorders, 36(1), 107–116.

Rane, P., Cochran, D., Hodge, S. M., Haselgrove, C., Kennedy, D., &
Frazier, J. A. (2015). Connectivity in autism: a review of MRI con-
nectivity studies. Harvard Review of Psychiatry, 23(4), 223.

Razmi, N., & Nassar, M. R. (2020). Adaptive learning through temporal
dynamics of state representation. bioRxiv. https://doi.org/10.1101/
2020.08.03.231068

Richmond, L. L., Thorpe, M., Berryhill, M. E., Klugman, J., & Olson, I.
R. (2013). Individual differences in autistic trait load in the general
population predict visual working memory performance. The
Quarterly Journal of Experimental Psychology, 66(6), 1182–1195.
https://doi.org/10.1080/17470218.2012.734831

Sabatino DiCriscio, A., & Troiani, V. (2017). Brief Report: Autism-like
Traits are Associated With Enhanced Ability to Disembed Visual
Forms. Journal of Autism and Developmental Disorders, 47(5),
1568–1576. https://doi.org/10.1007/s10803-017-3053-0

Sabatino DiCriscio, A., & Troiani, V. (2018). The Broader Autism
Phenotype and Visual Perception in Children. Journal of Autism
and Developmental Disorders, 48(8), 2809–2820. https://doi.org/
10.1007/s10803-018-3534-9

Scherf, K. S., Behrmann, M., Kimchi, R., & Luna, B. (2009). Emergence
of global shape processing continues through adolescence. Child
Development, 80(1), 162–177.

Sinha, P., Kjelgaard, M. M., Gandhi, T. K., Tsourides, K., Cardinaux, A.
L., Pantazis, D., et al. (2014). Autism as a disorder of prediction.
Proceedings of the National Academy of Sciences, 111(42), 15220–
15225. https://doi.org/10.1073/pnas.1416797111

Stein, D. J., Newman, T. K., Savitz, J., & Ramesar, R. (2006). Warriors
versus worriers: the role of COMT gene variants. CNS Spectrums,
11(10), 745–748.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction.
Cambridge, MA: MIT Press.

Suzanne Scherf, K., Luna, B., Kimchi, R., Minshew, N., & Behrmann,
M. (2008). Missing the big picture: impaired development of global
shape processing in autism. Autism Research, 1(2), 114–129. https://
doi.org/10.1080/13546800701417096

Uddin, L. Q., Supekar, K., Lynch, C. J., Cheng, K. M., Odriozola, P.,
Barth, M. E., et al. (2014). Brain state differentiation and behavioral
inflexibility in autism. Cerebral Cortex, 25(12), 4740–4747.

Vaghi, M. M., Luyckx, F., Sule, A., Fineberg, N. A., Robbins, T. W., &
De Martino, B. (2017). Compulsivity Reveals a Novel Dissociation
between Action and Confidence. Neuron, 96(2), 348–354.e4.
https://doi.org/10.1016/j.neuron.2017.09.006

Wechsler, D. (2011). Wechsler abbreviated scale of intelligence, 2nd
edition (WASI-II). San Antonio, TX: Pearson. https://doi.org/10.
1177/0734282912467756

Williams, D. L., Goldstein, G., & Minshew, N. J. (2006).
Neuropsychologic functioning in children with autism: further evi-
dence for disordered complex information-processing. Child
Neuropsychology : a Journal on Normal and Abnormal
Development in Childhood and Adolescence, 12(4-5), 279–298.
https://doi.org/10.1080/09297040600681190

Wilson, R. C., Nassar,M. R., &Gold, J. I. (2010). Bayesian online learning
of the hazard rate in change-point problems. Neural Computation,
22(9), 2452–2476. https://doi.org/10.1162/NECO_a_00007

Wilson, R. C., Nassar, M. R., & Gold, J. I. (2013). A mixture of delta-
rules approximation to bayesian inference in change-point prob-
lems. PLoS Computational Biology, 9(7), e1003150. https://doi.
org/10.1371/journal.pcbi.1003150

Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014).
Orbitofrontal cortex as a cognitive map of task space.Neuron, 81(2),
267–279. https://doi.org/10.1016/j.neuron.2013.11.005

Yu, A. J., & Dayan, P. (2005). Uncertainty, neuromodulation, and atten-
tion. Neuron, 46(4), 681–692. https://doi.org/10.1016/j.neuron.
2005.04.026

Zhang, F., & Roeyers, H. (2019). Exploring brain functions in autism
spectrum disorder: a systematic review on functional near-infrared
spectroscopy (fNIRS) studies. International Journal of
Psychophysiology, 137, 41–53. https://doi.org/10.1016/j.ijpsycho.
2019.01.003

622 Cogn Affect Behav Neurosci (2021) 21:607–623

https://doi.org/10.3389/fnhum.2014.00302
https://doi.org/10.1073/pnas.1506582112
https://doi.org/10.1016/j.neuron.2014.10.013
https://doi.org/10.1016/j.neuron.2014.10.013
https://doi.org/10.1007/s10803-005-0040-7
https://doi.org/10.1007/s10803-005-0040-7
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1523/JNEUROSCI.0822-10.2010
https://doi.org/10.1038/nn.3130
https://doi.org/10.1038/ncomms11609
https://doi.org/10.7554/eLife.46975
https://doi.org/10.1523/JNEUROSCI.1713-18.2018
https://doi.org/10.1016/j.neuron.2013.04.037
https://doi.org/10.1016/j.neuron.2013.04.037
https://doi.org/10.1101/2020.08.03.231068
https://doi.org/10.1101/2020.08.03.231068
https://doi.org/10.1080/17470218.2012.734831
https://doi.org/10.1007/s10803-017-3053-0
https://doi.org/10.1007/s10803-018-3534-9
https://doi.org/10.1007/s10803-018-3534-9
https://doi.org/10.1073/pnas.1416797111
https://doi.org/10.1080/13546800701417096
https://doi.org/10.1080/13546800701417096
https://doi.org/10.1016/j.neuron.2017.09.006
https://doi.org/10.1177/0734282912467756
https://doi.org/10.1177/0734282912467756
https://doi.org/10.1080/09297040600681190
https://doi.org/10.1162/NECO_a_00007
https://doi.org/10.1371/journal.pcbi.1003150
https://doi.org/10.1371/journal.pcbi.1003150
https://doi.org/10.1016/j.neuron.2013.11.005
https://doi.org/10.1016/j.neuron.2005.04.026
https://doi.org/10.1016/j.neuron.2005.04.026
https://doi.org/10.1016/j.ijpsycho.2019.01.003
https://doi.org/10.1016/j.ijpsycho.2019.01.003


Open Practices Statement

All data and analysis code associated with this paper will be made
available upon acceptance of the publication on the authors website
(https://sites.brown.edu/mattlab/resources/). None of the experiments
reported were preregistered.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

623Cogn Affect Behav Neurosci (2021) 21:607–623


	The stability flexibility tradeoff and the dark side of detail
	Abstract
	Introduction
	Methods
	Subject populations
	Study Session
	Predictive inference task
	Autism Spectrum Quotient
	Subject Exclusion
	Normative learning model
	Single trial learning rates
	Characterizing the content of participant beliefs
	Statistical analysis

	Results
	Experiment 1
	Experiment 2

	Discussion

	This link is 10.3758/s13415-00848-,",
	Conclusions
	Appendix 1: Task instructions
	References


