
Extinction learning alters the neural representation
of conditioned fear

John L. Graner1 & Daniel Stjepanović1,2 & Kevin S. LaBar1

# The Psychonomic Society, Inc. 2020

Abstract
Extinction learning is a primary means by which conditioned associations to threats are controlled and is a model system for
emotion dysregulation in anxiety disorders. Recent work has called for new approaches to track extinction-related changes in
conditioned stimulus (CS) representations. We applied a multivariate analysis to previously -collected functional magnetic
resonance imaging data on extinction learning, in which healthy young adult participants (N = 43; 21 males, 22 females)
encountered dynamic snake and spider CSs while passively navigating 3D virtual environments. We used representational
similarity analysis to compare voxel-wise activation t-statistic maps for the shock-reinforced CS (CS+) from the late phase of
fear acquisition to the early and late phases of extinction learning within subjects. These patterns became more dissimilar from
early to late extinction in a priori regions of interest: subgenual and dorsal anterior cingulate gyrus, amygdala and hippocampus.
A whole-brain searchlight analysis revealed similar findings in the insula, mid-cingulate cortex, ventrolateral prefrontal cortex,
somatosensory cortex, cerebellum, and visual cortex. High state anxiety attenuated extinction-related changes to the CS+
patterning in the amygdala, which suggests an enduring threat representation. None of these effects generalized to an unrein-
forced control cue, nor were they evident in traditional univariate analyses. Our approach extends previous neuroimaging work
by emphasizing how evoked neural patterns change from late acquisition through phases of extinction learning, including those
in brain regions not traditionally implicated in animal models. Finally, the findings provide additional support for a role of the
amygdala in anxiety-related persistence of conditioned fears.
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The ability to suppress fear responses when they are no longer
appropriate is a hallmark of healthy emotion regulation.
Extinction learning provides a powerful means to override
acquired fears by repeatedly exposing individuals to threat
encounters in a safe context without aversive consequences.

Extinction learning is thought to update the affective represen-
tation of a threat in a context-dependent way such that a new,
safememory competes with the original fear acquisition mem-
ory and diminishes defensive reactions (Bouton, 1993) (but
see Dunsmoor et al., 2015). Given that extinction learning
forms the basis of exposure-based therapies, which are effec-
tive in treating specific phobias and posttraumatic stress dis-
order (PTSD), there is much interest in understanding its neu-
ral basis (Marks & Tobena, 1990).

Neurobiological models, derived largely from rodent stud-
ies, have implicated inhibitory connections between the ven-
tromedial prefrontal cortex (vmPFC) and the amygdala as
being critical for extinction learning. The vmPFC engages
inhibitory pathways within the basolateral and centromedial
complexes of the amygdala that consolidate memories of the
extinction training experience and reduce subsequent condi-
tioned fear responses (Milad & Quirk, 2012). Hippocampal
input can up- or down-regulate activity in these structures,
which contributes to the context-specificity of extinction
learning and susceptibility to relapse following context shifts
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(Maren, 2011). Pharmacologic and electrophysiologic manip-
ulation of activity within this hippocampal-vmPFC-amygdala
circuit impacts the recall of extinction learning (Ji & Maren,
2007; Laurent & Westbrook, 2009; Sierra-Mercado et al.,
2011), with implications for developing neuromodulatory in-
terventions to treat extinction-resistant fear memories.

Efforts to translate these findings to humans have yielded
mixed evidence (Sevenster et al., 2018). A key tenet of the
findings from the rodent literature is that plasticity in this core
circuit during extinction learning—especially the inhibitory
interactions between the vmPFC and amygdala—is critical
for establishing the memory trace associating the previously
conditioned stimulus (CS) with safety. Thus, neuroimaging
studies should show engagement of these structures during
extinction learning, and this activity and/or functional connec-
tivity should predict subsequent extinction recall. One chal-
lenge to this logic is that both inhibitory and excitatory influ-
ences can yield increases in blood-oxygenated-level-
dependent (BOLD) signal (Xu, 2015), making it unclear
how extinction learning would translate quantitatively into
changes in the aggregate BOLD signal. Further complicating
matters, the vmPFC tends to exhibit decreases in BOLD signal
when engaged by a cognitive task, relative to a resting base-
line, as part of the brain’s default mode network (Raichle
et al., 2001). Despite these challenges, some initial neuroim-
aging evidence supported a role for the hippocampal-vmPFC-
amygdala circuit in extinction processes. For instance, LaBar
et al. (1998) showed that the amygdala exhibited a transient
response to a shock-reinforced CS (CS+) during early extinc-
tion training that declined over subsequent trials. Phelps et al.
(2004) found that amygdala activity to a CS+ decreased from
acquisition to extinction training, and the amount of extinction
learning evident in skin conductance responses (SCRs) pre-
dicted vmPFC activity to a CS+ during a subsequent extinc-
tion recall session. Milad et al. (2007) reported enhanced
vmPFC signaling during recall of an extinguished CS+ along
with greater functional coupling between the vmPFC and the
hippocampus. Using structural equation modeling, Åhs et al.
(2015) showed that the vmPFC mediates amygdala-
hippocampal functional coupling to support extinction recall.

Nonetheless, in a recent meta-analysis of 31 human fMRI
studies of extinction learning, Fullana et al. (2018) did not find
reliable evidence for vmPFC engagement or amygdala down-
regulation to a CS+, as would be predicted from the rodent
models and this earlier neuroimaging work. Instead, brain
regions active during fear acquisition, such as the dACC and
insula, consistently contributed to fear extinction as well, and
a direct comparison of brain regions that were more engaged
during extinction learning than acquisition training yielded no
significant effects. Although some evidence of hippocampal
and vmPFC engagement during a delayed extinction recall
test was found in the meta-analysis, this evidence was restrict-
ed to a small number of studies that utilized a particular

stimulus comparison (recall for a previously extinguished
CS+ compared with recall for an unextinguished CS+).
Regardless, this latter finding is inconsistent with some rodent
electrophysiological and optogenetic studies showing that
vmPFC-amygdala interactions, while important to consolidate
extinction memories at the time of initial learning, are not
critical for expressing this prior learning at a delayed recall
test (Bukalo et al., 2015; Do-Monte et al., 2015).

While null results are challenging to interpret, the Fullana
et al. (2018) meta-analysis raises issues regarding possible
species differences in the neural processing of extinction
and/or methodological limitations of existing neuroimaging
studies. One possibility implicated by this meta-analysis is
that residual signaling of the threat value of the CS+may carry
over into extinction training and conflate interpretation of
fMRI signal changes during extinction. Bolstering this possi-
bility are results from electrophysiological and immunohisto-
chemical studies in rodents showing that residual conditioned
fear and extinction representations can be interdigitated (and
perhaps compete for expression) by neighboring neuronal
pools within the same brain region (for review, see Courtin
et al., 2013; Dejean et al., 2015). Thus, more refined pattern
representation approaches and/or higher-resolution fMRI
studies may be needed to disambiguate threat and safe mem-
ory representations during extinction learning.

We addressed this issue by adapting multivariate pattern
analysis (MVPA) methods to track extinction-induced chang-
es in the neural signaling of conditioned stimuli. We aimed to
characterize the extent to which extinction learning creates a
unique patterned representation of the CS relative to that at the
end of acquisition training. MVPA considers the contributions
of subthreshold voxels rather than relying on the peak signal
change in a region, thus obtaining a more comprehensive view
of the distributed nature of neural signaling in a brain region
associated with a stimulus. These methods can even differen-
tiate voxelwise patterns associated with different functions
when the mean signal in an ROI is the same across conditions
(for a review of MVPA and its applications, see Kriegeskorte,
2011; Tong & Pratte, 2012). For these reasons, we feel that
MVPA may be particularly useful for distinguishing a change
in the CS representation from acquisition to extinction training
or other kinds of context shifts.

A few studies have investigated the change in the represen-
tational similarity of CS+ and CS− stimuli during fear acqui-
sition or extinction learning using MVPA (Visser et al., 2011;
Visser et al., 2013; Visser et al., 2015; Visser et al., 2016). The
general idea tested in these studies is that as conditioned learn-
ing progresses, the CS representation should become more
stable across trials. Results from these studies indicate increas-
ing trial-to-trial similarity in the CS+ neural representation
through acquisition. This increased similarity was still present
upon re-exposure to the CS+ days to weeks later. This main-
tained similarity was not found for the CS−, which the authors
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suggested reflected a more refined (i.e., more specific and
reproducible) neural response to the CS+, likely driven by a
learned threat association. In all the studies by Visser and
colleagues, acquisition and extinction were performed in sep-
arate neuroimaging sessions, and there was no direct compar-
ison between the neural patterns across phases of condition-
ing. This leaves open the question of how and when changes
in reinforcement contingencies, such as the transition from
acquisition to extinction training, or during reversal learning,
alters the specific neural pattern response to the CS that is
established through conditioning.

Studies from a separate literature on episodic event seg-
mentation provide guidance for considering how representa-
tions of CSs might change across phases of learning.
According to event segmentation theory (Zacks et al., 2007),
when naturalistic events unfold over time, event boundary
markers are established by prediction errors created when in-
cidents deviate from what is expected based on contextual
information. This binding of event segments at a boundary
facilitates memory encoding, enables separate memory traces
for sequential event segments to be established, and refocuses
attention to update and align working memory contents to a
model of the current event structure (Radvansky & Zacks,
2017). The hippocampus contributes to memory formation
based on binding of information at an event boundary (Ben-
Yakov et al., 2014; Baldassano et al., 2017), and many cortical
brain regions establish new patterns of activity soon after an
event transition from one context to another in order to stably
signal the new event segment (Baldassano et al., 2017).

As applied to conditioning paradigms, event segmentation
theory would predict separable representations of both the
CS+ and the CS− from acquisition to extinction training, giv-
en that the initiation of extinction involves a novel learning
context due to the removal of the unconditioned stimulus
(US). Separability should be further enhanced when acquisi-
tion and extinction phases are conducted in two distinct spatial
environments, which would require binding both the CS+ and
CS− to distinct contextual cues across training phases.
Nonetheless, if the threat value of the CS+ is initially resistant
to change due to carryover of conditioned fear associations
from the acquisition phase (as suggested by the re-exposure
findings of Visser and colleagues, among others), then its
representation may undergo a more delayed shift than that of
the CS- at the event boundary. Although it has been hypoth-
esized from associative learning principles that acquisition
and extinction training establish distinct engrams to condi-
tioned stimuli (Bouton, 1993), it has been difficult to track
these representational changes with current neuroimaging
methods.

In the current study, we re-analyzed fMRI data col-
lected from a prior fear conditioning experiment (Åhs
et al., 2015) in which acquisition and extinction data
were collected in the same imaging session, allowing

representational similarity analysis (RSA) to be per-
formed between the two phases without introducing
day or session effects in the pattern similarity metrics.
The conditioning paradigm consisted of a 3-D virtual
reality (VR) environment in which participants encoun-
tered conditioned stimuli (snakes/spiders) during passive
navigation. Conditioned fear acquisition and extinction
learning took place in different immersive VR contexts
(an indoor scene and an outdoor scene, counterbalanced
across participants), which provided a clear event
boundary to differentiate memory engrams of each
phase for both the CS+ and CS− stimuli. We previously
reported that this paradigm elicits changes in functional
connectivity 24 hours after extinction learning such that
vmPFC gating of amygdala-hippocampal connectivity
promoted extinction recall whereas dACC gating of this
connectivity promoted fear renewal (Åhs et al., 2015).
However, consistent with the meta-analytic results of
Fullana et al. (2018), we failed to find significant signal
changes in these regions during the initial extinction
learning itself using a traditional univariate analysis,
with the exception of dACC activity in the CS+ > CS
− contrast during early extinction. We applied RSA to
test the hypothesis, based on the existing event bound-
ary and extinction meta-analysis literatures, that the con-
ditioned fear representation of the CS+ changes from
early to late training blocks of extinction learning and
that this change would be larger relative to that of an
unreinforced stimulus (CS−). We also tested the related
hypothesis that the neural representation of the CS+
would undergo less change when initially moving from
the acquisition context to the novel extinction context
than would the representation of the CS−, due to the
carry-over associations acquired through the fear-
conditioning process. Given that representations of con-
ditioned stimuli involve cell assemblies with coordinated
firing patterns that span several frontolimbic structures
(Courtin et al., 2013; Rozeske & Herry, 2018), we did
not have a priori hypotheses about the specificity of
these effects within the core fear-conditioning network.

Because extinction learning is the fundamental compo-
nent of exposure-based therapies, it is important to under-
stand how individual differences in anxiety impact the
ability of extinction to modify threat representations.
Anxiety disorders are associated with aberrant learning
processes following fear conditioning as individuals over-
generalize or fail to regulate their affective responses
(Lissek, 2012). Thus, high-anxious individuals should ex-
hibit less change in the representation of the CS+ as ex-
tinction training progresses as a result of its lingering
association with threat. We tested this hypothesis in a core
fear conditioning network, including the amygdala, hip-
pocampus, dACC, and vmPFC.
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Method

Participants

Healthy, right-handed young adults (N = 45) were presented
with dynamic snake and spider conditioned stimuli while pas-
sively navigating 3D virtual environments using stereoscopic
video projection. Two participants were unable to complete a
portion of the original data collection and were excluded from
analysis. The final sample size was N = 43 (21 males, 22
females; mean age = 28.7 years). Participants were compen-
sated $20/hr for participating and provided written, informed
consent consistent with procedures approved by the Duke
University Medical Center Institutional Review Board. The
initial univariate and structural equation modeling data analy-
ses from this study, along with the behavioral and psycho-
physiological data, were previously reported in Åhs et al.
(2015); here we report new results from a follow-up MVPA
analysis.

Stimuli

Fear acquisition and extinction occurred in two different 3D
virtual environment contexts, an indoor apartment scene and
an outdoor woods scene, counterbalanced across participants.
Assignment of CS type (CS+/CS−) to stimulus type (snake/
spider) also was counterbalanced across participants. The 3D
conditioned stimuli and virtual environments were construct-
ed in Maya (Autodesk, San Rafael, CA). These stimuli were
then presented in Virtools (Dassault Systeme, Paris, France)
via MRI-compatible goggles (VisuaStim, Resonance
Technology Inc., Northridge, CA). During passive navigation,
participants viewed the virtual environments from a first-
person perspective as if they were walking through them.
During presentation of CSs, this progression was paused
while the given CS was rendered into the scene for 4 sec.
The interstimulus interval for both acquisition and extinction
was jittered in a range between 10 and 14 sec.

Presentation of the unconditioned stimulus (US) over-
lapped the final 16 ms of paired CS+ events during the fear
acquisition phase. The US was an unpleasant shock produced
by an MP-150 BIOPAC system (STM-100 and STM-200
modules, BIOPAC systems, Goleta, CA) and delivered
through electrodes (EL507, BIOPAC systems) attached to
the right wrist. The magnitude of the shock was set for each
individual participant during the experimental setup using an
ascending staircase procedure and was calibrated using the
participant’s feedback to be “highly annoying but not painful”
(mean and standard deviation of US voltage = 49 ± 17 V). US
presentations were associated with the same CS+ presenta-
tions for each participant and were spaced throughout acqui-
sition training using a pseudorandomization procedure.

Fear conditioning task

The conditioning procedure consisted of a habituation phase,
an acquisition phase, and an extinction phase. Participants
were instructed to predict when a snake or spider would be
paired with a shock. Participants responded “no,” “unsure,” or
“yes” in response to each CS via button press on a MRI-
compatible button box. CS presentation was ordered
pseudorandomly such that no more than two stimuli of the
same type appeared consecutively. Participants returned the
next day for a fear renewal test, but only data from Day 1 (fear
acquisition and extinction) are analyzed here.

The habituation phase consisted of 4 CS+ and 4 CS− pre-
sentations without reinforcement. This phase was included
only to reduce initial orienting responses to the stimuli and
to acclimate the participants to the immersive VR environ-
ment; no data were analyzed from this phase. The fear acqui-
sition phase included 16 CS+ and 16 CS− presentations. A
partial reinforcement paradigm was used during this phase,
with 5 of the 16 CS+’s (31%) being paired with the US. The
extinction phase also contained 16 CS+ and 16 CS- presenta-
tions, but none of the stimuli were paired with the US. A brief
pause separated each of the three study phases. During these
interphase periods, participants reported their current level of
anxiety on a scale from 1 (“not anxious at all”) to 10 (“worst
imaginable anxiety”).

Magnetic resonance image collection

Functional and anatomical brain images were acquired on a
General Electric Signa EXCITE HD 3.0 Tesla magnetic reso-
nance imaging (MRI) scanner with 40-mT/m gradients using
an 8-channel head coil (General Electric, Waukesha, WI).
Before functional imaging, a high-resolution, T1-weighted
image was collected with a 3D fast Spoiled Gradient Echo
sequence (repetition time (TR) = 500 ms; echo time (TE) =
31 ms; image matrix = 256 x 256; 68 contiguous slices; voxel
size = 0.9375 x 0.9375 x 1.9 mm). Functional images were
collected using a SENSE™ spiral-in sequence (acquisition
matrix = 64 x 64; field of view = 256 x 256; flip angle =
60°; 34 slices; interleaved slice acquisition; slice thickness =
3.8 mm; no slice gaps; TR = 2,000 ms; TE = 27 ms).

Skin conductance response collection and data
processing

Skin conductance responses (SCR) were recorded continuous-
ly during acquisition and extinction using an MP-150
BIOPAC system through MRI-compatible Ag/AgCl elec-
trodes on the palmar surface of participants’ left hands and
analyzed using Autonomate software (Green, et al., 2014).
SCR data validated the experimental manipulation, as previ-
ously reported in Åhs et al. (2015). We reanalyzed the SCR
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data by normalizing each stimulus presentation’s response to
the maximal response to the unconditioned stimulus for each
subject (SCRfinal = SCR/MAXUS) to achieve the goal of com-
paring standardized SCR and fMRI responses within-subjects.

Average SCR values for early and late extinction were
calculated for each participant. “Early” and “Late” phases of
extinction refer to, respectively, the first 8 events of each type
and the last 8 events of each type (see “Imaging Data
Processing” section below for more information on this event
binning). These values were analyzed using a repeated mea-
sures ANOVA with factors of CS Type (CS+/CS−) and Time
(Early/Late extinction blocks).

For completeness, the normalized SCR and reported Shock
Expectancy values for each trial are reported in the
Supplemental Material (Figures S1 and S2).

Shock expectancy data processing

Shock expectancy responses of “no,” “unsure,” and “yes”
were coded as 0, 0.5, and 1.0, respectively. Average expec-
tancy values for Early and Late Extinction were calculated for
each participant. These values were analyzed using a
repeated-measures ANOVA with factors of CS Type (CS+/
CS−) and Time (Early/Late extinction blocks).

Imaging data processing

Preprocessing of the raw imaging data for the multivariate
analysis was performed from scratch in AFNI (Cox, 1996).
The primary difference between the preprocessing performed
in this study and the preprocessing performed by Åhs et al.
(2015) previously is the exclusion of spatial smoothing in the
current pipeline. First, the anatomical data were skull-stripped
and separately registered to the functional data and warped to
MNI-152 space (using the 2 mm3 template as a target). This
procedure created two sets of transformation files: one
converting between anatomical space and functional space,
and the other converting between anatomical space and MNI
space. The functional data underwent slice-time correction,
motion-correction, and warping into standardMNI-152 space.
The warp to standard space was performed by applying the
inversion of the transform from anatomical space to functional
space and the transform from anatomical space to MNI space.
Additionally, the target grid of the functional data in the warp
to standard space was set to 3.5 mm3. This step was done to
minimize the effects of interpolation and resampling on the
functional data. In order to better facilitate multivariate anal-
ysis, no smoothing was applied to the functional image data.
The standard-space anatomical images were then segmented
to create grey matter masks for each participant. These binary
masks were averaged together, and voxels with values greater
than 0.5 (i.e., at least half the participants’ individual masks

contained the voxel) were retained to create a final group gray
matter mask.

Creation of first-level statistical maps for use in the multi-
variate analysis was performed using SPM8 (Wellcome Trust
Centre for Neuroimaging, University College London,
London, UK). T-statistic maps were generated for each par-
ticipant using a general linear model (GLM) approach for the
following conditions: CS+ and CS− responses in Early
Acquisition, Late Acquisition, Early Extinction, and Late
Extinction. “Early” and “Late” refer to the same epochs as
described above for the SCR data processing. Standard regres-
sor creation was used for the GLM, convolving a Gaussian
hemodynamic response function with boxcar functions based
on the onset times and durations of the presentations of each
stimulus type. Thus, the first-level GLM produced 8 t-statistic
maps (2 CS types x 4 time epochs). Six of these maps (Late
Acquisition, Early Extinction, and Late Extinction for each
CS type) were used as inputs to the multivariate representa-
tional similarity analysis (RSA).

We had originally explored performing a trial-by-trial anal-
ysis of these data, similar to the analyses performed by Visser
et al. (2013, 2015). However, the task protocol was not orig-
inally designed for such an analysis, which requires fixed
times of sufficient duration between consecutive trials of each
condition type to limit confounds due to intrinsic noise corre-
lations. Fixed trial intervals are typically not implemented in
fear conditioning paradigms to minimize temporal confounds
in CS onset predictability. Thus, we expected that the trial-to-
trial dissimilarity metrics would be highly impacted by tem-
poral autocorrelation inherent in BOLD data. A preliminary
event-wise RSA showed that, as anticipated, there was a sig-
nificant relationship between trial-to-trial dissimilarity and
trial-to-trial time separation in both acquisition and extinction
for both CS+ and CS− events (see Supplemental Materials for
details). Given this methodological confound, we abandoned
the trial-by-trial analysis in favor of modeling groups of events
across Early and Late time epochs of each phase. This event
grouping had been used in the univariate analysis performed
in the original study (Åhs et al., 2015); it provides a more
stable estimate of the CS+ and CS− representations during
Late Acquisition relative to a single-trial estimate, which
serves as the comparison to the extinction phases; and it al-
lows each bin to contain a similar number of trials across
participants. Given that the CS+/CS− discrimination hap-
pened relatively quickly in both the shock expectancy and
SCR measures (as is typical of human fear conditioning
studies; see Supplementary Materials), this trial block parsing
roughly corresponds to an early active learning phase and a
later learning maintenance phase.

The preliminary trial-to-trial RSA also showed that CS+
events paired with the US had response patterns that were
different from those of the other CS+ events (see
Supplemental Materials for details on this analysis). Because
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responses to paired events could include US processing as a
potential confound, the multivariate analysis focused on the
unpaired CS+ trials, with the paired CS+ trials modeled as a
separate regressor in the first-level GLM (note: the binning of
events into “Early” and “Late” epochs was done counting all
CS+ events and did not change following the creation of the
paired CS+ regressor). Treatment of US-paired CS+ events as
a condition of no interest has also been done in previous fear
conditioning fMRI studies (Visser et al., 2011; Sehlmeyer
et al., 2011). A regressor was also included for US events as
well as the six motion correction parameters (translation and
rotation in x, y, and z) for each TR. Finally, TR-wise motion-
censoring regressors were created and included in the model
in cases where significant motion was present. Specifically, a
vector was created for each pair of TRs, consisting of the
difference in the six motion correction parameters between
the two time points. A motion-censor regressor was created
for a TR if the Euclidean norm of the vector associated with
the TR and the preceding TR was greater than 0.4. These
motion-censoring regressors contained a value of “1” at the
TR to be censored and a value of “0” for every other TR in
order to minimize the influence of excess motion on the GLM
beta estimates for the regressors of interest. The mean percent
of motion-censored TRs across all Acquisition images was
1.9% and ranged from 0% to 9.5%. The mean percent of
motion-censored TRs across all Extinction images was 1.4%
and ranged from 0% to 13.7%.

The analysis of univariate data (described below) was per-
formed on the first-level results previously reported by Åhs
et al. (2015). No new preprocessing was performed for that
analysis.

Regions of interest

The a priori regions of interest (ROIs) defined in Åhs et al.
(2015) were again used here after being resampled to match
the voxel size of the newly processed functional data. These
ROIs were created using selections of the Wake Forest
University PickAtlas software (Maldjian et al., 2003) and in-
cluded amygdala, hippocampus, dorsal anterior cingulate cor-
tex (dACC), and ventral medial prefrontal cortex (vmPFC).
The AAL left and right hippocampus ROIs were split into two
parts, anterior and posterior, by bisecting them at y = −24 mm
in MNI space (Poppenk et al., 2013). The amygdala ROIs
were taken from the TD library (Maldjian et al., 2003). The
dACC ROI used was the portion of the AAL library region
superior to the genu. The vmPFC region was created by dilat-
ing the TD library BA 25 ROI by 2 mm. For the current
analysis, the left and right ROIs for the anterior hippocampus,
posterior hippocampus, and amygdala were combined for
each region to create bilateral ROIs. Although only results
for the posterior hippocampus ROI were reported in the pre-
vious analysis (Åhs et al., 2015), both the anterior and

posterior portions were included in the current multivariate
analysis for completeness. Thus, there are five ROIs used in
the multivariate analysis (bilateral anterior hippocampus, bi-
lateral posterior hippocampus, bilateral amygdala, vmPFC,
and dACC) and four ROIs reported in the univariate analysis
(bilateral posterior hippocampus, bilateral amygdala, vmPFC,
and dACC).

Representational similarity analysis of functional
imaging data

Representational Similarity Analysis (RSA) was performed
using the rsatoolbox (https://github.com/rsagroup/
rsatoolbox) writ ten for the Matlab programming
environment (The Mathworks, Inc., Natick, MA). Inputs to
the RSA were the t-statistic maps produced by the first-level
analysis described above. The purpose of the RSA was to
produce metrics estimating the degree of neural pattern dis-
similarity between Late Acquisition and each of the two time
epochs (Early and Late) of Extinction. The general process for
the calculation of a dissimilarity metric between two condi-
tions (e.g., Late Acquisition CS+ and Early Extinction CS+)
in a given ROI for a single participant’s fMRI data set is as
follows: 1) Extract the ROI voxel values from the participant’s
first-level t-statistic map from the first condition (e.g., Late
Acquisition, CS+); 2) Create a single row vector of these
values; 3) Repeat steps 1 and 2 for the second condition
(e.g., Early Extinction, CS+); 4) Calculate the correlation be-
tween these two vectors; 5) Dissimilarity metric between the
two conditions for the given ROI for the given participant is 1
minus this correlation value. Thus, if the spatial patterns of t-
statistics for the two conditions are similar, the calculated vec-
tor correlation will be high and the dissimilarity metric to be
relatively low. On the other hand, if the spatial t-statistic pat-
terns have little in common between the two conditions, the
calculated vector correlation will be low, and thus, the dissim-
ilarity metric will be relatively high.

One set of dissimilarity metrics was calculated comparing
patterns in Late Acquisition and Early Extinction (“Early
Dissimilarity” in Fig. 1). A second set of dissimilarity metrics
was calculated comparing patterns in Late Acquisition and
Late Extinction (“Late Dissimilarity” in Fig. 1). Both of these
sets were created for each of the two stimulus types (CS+ and
CS−) for each of the five a priori ROIs for each participant.
These dissimilarity metrics were used to test our hypotheses
regarding the neural representations of the stimuli through
extinction: the representation of the CS+ would change
through extinction, shown by greater dissimilarity between
Late Acquisition and Late Extinction than between Late
Acquisition and Early Extinction; this change in the represen-
tation of the CS+ would be larger than the change in the
representation of the CS−, shown by a larger change in dis-
similarity metrics for the CS+ than for the CS− between Early
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and Late Extinction; and the representation of the CS+ would
undergo less change across the event boundary between ac-
quisition and extinction, as shown by a greater dissimilarity
metric between Late Acquisition and Early Extinction in the
CS− than in the CS+. These hypotheses were tested in each of
the five ROIs independently. This procedure was done by
entering the dissimilarity metrics into a multi-factor analysis
of variance (ANOVA) with CS Type (CS+, CS−), Time
(Early Extinction, Late Extinction), and ROI as main factors
and all two-way and three-way interaction terms included.
Follow-up t-tests were performed to further investigate the
relationships driving significant model terms.

In response to reviewer requests, we also created average
dissimilarity metrics between CS+ and CS− events within
Early Acquisition, Late Acquisition, Early Extinction, and
Late Extinction. These results are presented and discussed in
Supplemental Figure S6.

RSA metric across extinction learning (ELrsa)

A participant-wise metric summarizing the change in CS+
representational dissimilarity across Extinction Learning,
ELrsa+, was created based on the voxel-wise neural represen-
tation data. ELrsa+ is the difference between “Late
Dissimilarity” and “Early Dissimilarity” for the CS+ (Fig.

1). The same RSA metric was also computed for the CS-
(ELrsa-). To determine whether the extinction-induced change
in representation of the CS+ was related to individual differ-
ences in conditioned learning, we regressed the ELrsa+ against
the SCR index of differential conditioning (normalized mean
Late Acquisition SCR ((SCRCS+ - SCRCS-)/MAXUS)) across
participants. We also regressed ELrsa+ against self-reported
anxiety following Late Acquisition and against self-reported
change in shock expectancy during Extinction (ShockExpCS+
,Early - ShockExpCS+,Late). All regressions performed with
ELrsa+were also performed with ELrsa-Regressions were per-
formed by using the IBM SPSS Statistics software.

Whole-brain searchlight RSA

To complement the ROI-based RSA described above, an ex-
ploratory whole-brain searchlight analysis was performed to
look for regions of the brain, in addition to our a priori ROIs,
that showed changes in local neural patterns, again relative to
Late Acquisition, between the two time epochs of extinction.
This analysis was performed as a data-driven approach to
identify other brain regions that may potentially be involved
in or influenced by extinction learning. Dissimilarity metrics
were calculated as described above for the ROI-based RSA.
However, rather than using anatomically based ROIs, each

Fig. 1 Derivation of a multivariate neural metric of change in
representational dissimilarity across extinction learning (ELrsa). Within-
subject changes in the similarity of the reinforced stimulus (CS+) repre-
sentation are calculated voxel-wise from Late Acquisition to Early
Extinction (Early Dissimilarity) and from Late Acquisition to Late

Extinction (Late Dissimilarity) and then compared to each other. This
procedure is repeated using the nonreinforced stimulus (CS−) trials to
determine the specificity of the extinction-induced change in neural
representation
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voxel in the brain had a 7-mm radius sphere ROI centered on
it. Dissimilarity metrics calculated from a given voxel’s
sphere ROI were then assigned to that voxel, producing
whole-brain dissimilarity metric maps. Two such whole-
brain dissimilarity maps were created for each participant:
one for Late Acquisition-to-Early Extinction dissimilarity,
and one for Late Acquisition-to-Late Extinction dissimilarity,
both using the CS+. The group gray matter mask was applied
to these maps and a paired t-test was performed on each voxel
(AFNI’s 3dttest++; paired within participant; including
whole-brain maps from all participants) to determine whether
there was significant difference between the two dissimilarity
metrics in that voxel.

An identical searchlight analysis was performed for the CS
− as well, again exploring differences in Late Acquisition-to-
Late Extinction dissimilarity and Late Acquisition-to-Early
Extinction dissimilarity.

Searchlight results were corrected for multiple compar-
isons using a family-wise error approach (using 3dttest++
’s -Clustsim option). Ten thousand random permutations
of the t-test residuals were performed to simulate the null-
condition t-distribution. This procedure allows the estima-
tion of the number of clusters of various sizes that would
randomly occur based solely on noise at a range of voxel-
wise t-test p-values without assuming a specific structure
of the noise spatial autocorrelation. At a voxel-wise t-test
p-value of 0.001, a cluster size of at least 14 voxels (CS+)
or 15 voxels (CS-) corresponded to a cluster-wise
corrected p-value (alpha) less than 0.05. Generation of
the null-condition distribution and the t-test results were
spatially restricted to the group gray-matter mask created
from the anatomical data.

Comparison to standard univariate extinction metrics

To determine if the multivariate metrics developed here con-
tributed additional value beyond that of the univariate data, we
put the previously estimated univariate results (reported in
Table S1, Åhs et al. (2015)) through the same analyses as
the new multivariate metrics. For each participant, for each
CS type, and for each ROI, the average Late Acquisition ac-
tivation value was subtracted from each of the Early
Extinction and Late Extinction values. These univariate met-
rics were entered into a multi-factor ANOVA with CS Type
(CS+, CS−), Time (Early Extinction, Late Extinction), and
ROI as factors. A mean variable was also created for each
participant that represented the change in activation to the
CS+ from Early to Late Extinction (Late Extinction CS+ -
Early Extinction CS+). This contrast was treated as a univar-
iate equivalent of ELrsa+ and was similarly regressed against
SCR indices of differential conditioned learning and reported
anxiety across participants using SPSS. Individual univariate
regressions were carried out for each of SCR and reported

anxiety for each ROI, and the final significance values were
Holm-corrected for multiple comparisons based on the num-
ber of ROIs (Holm, 1979).

Results

Neural representation of the CS+ becomes more
dissimilar from late acquisition as extinction
progresses

The representational dissimilarity metrics between Late
Acquis i t ion and Early Ext inct ion tr ia ls (Ear ly
Dissimilarity), and between Late Acquisition and Late
Extinction trials (Late Dissimilarity), are shown in Fig.
2A for each CS type. Inspection of the mean dissimilar-
ity values suggests that the extinction-related change in
CS− representation is established early and does not
change over time, whereas the CS+ representation is
initially more similar to its representation during Late
Acquisition and then changes as extinction learning pro-
gresses. This interpretation is supported statistically by a
repeated measures ANOVA, which revealed a significant
CS Type by Time interaction (CS Type * Time F(1,42) =
4.8, p = 0.03; Table 1). As predicted, post-hoc t-tests
averaging across ROIs (as there was no significant ROI
x Time term in the ANOVA results) indicated this in-
teraction was driven by a significant increase in CS+
dissimilarity from Early to Late Extinction (t42 = −4.6,
p < 0.001) and a lack of significant change in CS−
dissimilarity over the same time period (t42 = −1.1, p
= 0.27).

Extinction-induced change in the multivariate
representation of the CS+ in bilateral amygdala is
moderated by individual differences in state anxiety

We reasoned that the extinction-induced change in rep-
resentation of the CS+ would be greatest for individuals
who exhibited the strongest conditioned fear response
following acquisition training. However, we found no
relationship between Late Acquisition SCRs and ELrsa+

in our a priori ROIs. We also expected that individuals
with high state anxiety immediately following condition-
ing (see Figure S5 for all average reported anxiety
values) would exhibit less change in the CS+ represen-
tation of the ROIs across time in Extinction. Of these
regressions, one showed a significant correlation. ELrsa+
in bilateral amygdala was significantly (r2 = 0.20, p =
0.015, Holm-corrected for n = 5 ROIs; Fig. 3) negative-
ly correlated with reported state anxiety following Fear
Acquisition. This result indicates that participants with
higher state anxiety following conditioning exhibited a
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more persistent representation of the CS+ in the bilater-
al amygdala. None of the regressions of reported

anxiety, SCR metrics, or shock expectancy with ELrsa-
showed a significant relationship (see Table S2).

Fig. 2 Values of neuroimaging, psychophysiological, and behavioral
metrics in Early and Late Extinction for CS+ and CS− stimuli. We
highlight differences across measures in exhibiting the hypothesized CS
Type by Time interactions. (A) The multivariate representational dissim-
ilarity metric showed a significant CS Type by Time interaction. There
was a greater difference between Early and Late Extinction for the rein-
forced conditioned stimulus (CS+; left plot) than for the nonreinforced
stimulus (CS−; right plot), with the CS+ showing greater dissimilarity
from Late Acquisition as extinction progressed. Values represent region
of interest (ROI) means ± SEM. Bilat. Amy., Bilateral Amygdala; Bilat.
Ant. Hippo., Bilateral Anterior Hippocampus; Bilat. Post. Hippo.,

Bilateral Posterior Hippocampus; dACC, dorsal Anterior Cingulate
Cortex; vmPFC, ventromedial Prefrontal Cortex. (B) Average univariate
BOLD response in the ROIs did not show a significant CS Type by Time
interaction, although a main effect of region was found. (C) Normalized
skin conductance response (SCR) also did not show a significant CS
Type by Time interaction through Extinction, although main effects of
CS Type and Time were found. (D) Reported shock expectancy showed a
significant CS Type by Time interaction through Extinction; participants’
expectation of shock to CS+ stimuli began higher and dropped off more
significantly than did their expectation of shock to CS− stimuli
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Multivariate dissimilarity changes through extinction
show sensitivity to stimulus type when SCR measures
do not, but do not track shock expectancy

As reported above, the multivariate dissimilarity metrics be-
haved differently for the CS+ and CS− events through extinc-
tion, with the CS+ dissimilarity values starting lower and be-
coming more dissimilar over time than those of the CS−
events (Fig. 2A; Table 1). The 2-factor repeated measures
ANOVA of the SCR data in extinction showed significant
main effects of CS type (F(1,42) = 6.0, p = 0.018) and time
(F(1,42) = 29.0, p < 0.001; Table 2), but no significant CS type-
by-time interaction (CSType * Time F(1,42) = 1.4, p = 0.25).
Although SCRmagnitude decreased over the course of extinc-
tion, this decrease was present for both CS+ and CS− re-
sponses, with no differential effects (Early > Late paired t42
= 5.4, p < 0.001; Fig. 2C). The shock expectancy data also
showed a significant CS Type-by-Time interaction (CS Type
* Time F(1,42) = 6.4, p = 0.015; Table 3), with a greater reduc-
tion in ratings to the CS+ than the CS− as extinction
progressed (Fig. 2D).

To investigate the relationship between ELrsa+ and SCR
and shock expectancy across individuals, regression models
were created (one per ROI) to attempt to predict ELrsa+ from
the change in these other variables between Early and Late
Extinction. ELrsa+ was regressed against (SCRlate - SCRearly),
where SCRlate and SCRearly each refer to the average normal-
ized SCR ((SCRCS+ - SCRCS-)/MAXUS)) across the associated
time period of extinction, and ELrsa+ was regressed against
SElate - SEearly, where SElate and SEearly each refer to the av-
erage shock expectancy to the CS+ across the associated time
period in extinction. None of the regressions showed a signif-
icant relationship after correction for multiple comparisons
(see Table S2 for uncorrected p-values).

Whole-brain searchlight RSA reveals additional brain
regions with extinction-induced representation
changes beyond the core extinction circuit model

The whole-brain, voxel-wise searchlight RSA revealed sever-
al additional brain regions where the neural representation of
CS+ stimuli, relative to Late Acquisition, changed significant-
ly between Early and Late Extinction. These regions included
the mid-cingulate cortex, bilateral insular cortex/frontal oper-
culum, right somatosensory cortex, left cerebellum, and mul-
tiple sectors of visual cortex. The sizes of these clusters, their
corrected p-values (alphas), and the locations of their centers
within the brain (as determined by AFNI’s whereami

Table 1 Three-factor ANOVA of multivariate dissimilarity

Model term Degrees of freedom F Partial Eta2 p value

Region 4 2.4 0.20 0.07

CSType 1 7.6 0.15 0.008

Time 1 13.7 0.25 0.001

Region*CSType 4 3.7 0.27 0.013

Region*Time 4 0.52 0.05 0.72

CSType*Time 1 4.8 0.10 0.034

Region*CSType*Time 4 1.4 0.12 0.26

Statistics for the three-factor ANOVA of pattern dissimilarity metrics. Factors are CS Type (CS+/CS−), Time in Extinction (Early/Late), and Brain
Region (bilateral amygdala, bilateral posterior hippocampus, bilateral anterior hippocampus, dorsal anterior cingulate cortex, and ventral medial
prefrontal cortex)

Fig. 3 Self-reported state anxiety immediately following fear acquisition
was significantly negatively correlated (r2 = 0.20, p = 0.015) with the
extinction-related change in CS+ representational similarity in the amyg-
dala. Higher anxiety across participants was associated with lower mul-
tivariate evidence of extinction learning (ELrsa)

Table 2 SCR Two-factor ANOVA

Model term Degrees of freedom F Partial Eta2 p value

CSType 1 6.0 0.13 0.018

Time 1 29.0 0.41 <0.001

CSType*Time 1 1.4 0.03 0.25

Statistics for the two-factor ANOVA of normalized SCR (SCRs for CS+
and CS- divided by the maximum US SCR for each participant) in
Extinction. Factors are CS Type (CS+/CS−) and Time in Extinction
(Early/Late)
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function) are included in Table 4. Some of these clusters are
depicted in Fig. 4. The searchlight analysis of the CS− data
found no regions in which the neural representation of CS−
stimuli, relative to Late Acquisition, changed significantly be-
tween Early and Late Extinction, after correction for multiple
comparisons.

Multivariate analysis yields additional insights
relative to standard univariate fMRI extinction
metrics

The repeated measures ANOVA on the univariate metrics had
three significant terms: the main effect of ROI (F(3,42) = 9.1, p
< 0.001), the main effect of CS-type (F(1,42)=7.1, p = 0.01),
and the ROI-by-time interaction term (F(3,42) = 11.2, p <
0.001; Table 5). Notably, the CS-type-by-time interaction
term was not significant, suggesting changes in the BOLD
signal between Early and Late Extinction are the same for
the CS+ and CS−. Regression of the univariate equivalent of
ELrsa+ (average CS+ activation in Late Extinction minus the
average CS+ activation in Early Extinction) for each ROI
against Late Acquisition SCR and reported anxiety following
Late Acquisition showed no significant correlations.
Therefore, the multivariate metrics reveal hypothesized CS-
type-by-time interactions and sensitivity to individual differ-
ences in state anxiety that were not found using traditional
univariate analytic approaches.

Discussion

The goal of this study was to characterize how extinction
learning changes the representation of a fear-conditioned stim-
ulus in the core neural circuit implicated in animal condition-
ing models. To achieve this goal, we derived a multivariate
metric that first extracted a stable estimate of the representa-
tion of the CS+ from the Late Acquisition training phase, and
then investigated how it changed across early and late phases
of extinction training. A similar process was conducted for the
explicitly-unreinforced stimulus (CS−). Extinction followed
acquisition training in the same fMRI testing session but
was conducted in a different 3D virtual environment.

We found that the contextual switch from Late Acquisition
to Early Extinction training yielded a change in the neural
representation of the CS- within all ROIs, spanning the amyg-
dala, hippocampus, vmPFC and dACC. However, the repre-
sentation of the CS+ resisted this change, becoming more
dissimilar from Late Acquisition as extinction learning
progressed to its later stage in the same ROIs. An analogous
analysis using the univariate signal from our ROIs showed no
CS type X time interaction during extinction, indicating that
the multivariate analysis is more sensitive to such extinction-
induced shifts in CS+ signaling. A whole-brain searchlight
analysis yielded similar findings for the CS+ in some brain
areas outside of this core extinction network, including the
mid-cingulate gyrus, insula/frontal operculum, cerebellum,
somatosensory cortex, and several sectors of the visual cortex.
Providing evidence that this persistence in the CS+ represen-
tation early in extinction was related to its acquired threat
value, we found that individuals who reported higher state
anxiety at the end of acquisition training exhibited less change
in their multivariate amygdala patterning of the CS+ during
extinction. This relationship with state anxiety also was not
evident in the univariate analysis.

As discussed in the Introduction, prior univariate fMRI
studies of extinction in healthy adults have yielded conflicting

Table 3 Shock expectancy two-factor ANOVA

Model term Degrees of freedom (df) F(df,42) p value

CSType 1 18 <0.001

Time 1 75.2 <0.001

CSType*Time 1 6.4 0.015

Statistics for the two-factor ANOVA of shock expectancy data. Factors
are CS Type (CS+/CS−) and Time in Extinction (Early/Late)

Table 4 Whole-brain searchlight cluster results

Center of mass (mm, MNI-152)

X Y Z Volume (ml) Cluster α Max Z-stat CA_ML_18_MNIA: Macro Labels

46 −4 8 1.5 <0.01 4.5 Right Rolandic operculum (right insula)

−30 −66 −38 1.1 <0.01 4.6 Left cerebellum (Crus 2)

0 −18 42 0.86 <0.02 5.4 Mid-cingulate cortex

0 −82 −4 0.77 <0.03 4.2 Calcarine gyrus

−52 8 2 0.73 <0.03 4.3 Left Rolandic operculum

−14 −46 −8 0.65 <0.04 4.2 Left lingual gyrus

62 −10 34 0.60 <0.05 4.2 Right postcentral gyrus

Whole-brain voxel-wise searchlight results from the representational similarity analysis reflecting extinction learning (ELrsa). The neural representation
of acquired fear to the CS+ stimuli in these regions significantly changes from early to late extinction. Reported locations are for the center-of-mass of
each cluster. Reported cluster multiple-comparison-corrected alphas are based on a set voxel-wise t-test p-value of 0.001
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findings. Fullana et al.’s 2018 meta-analysis reported that uni-
variate fMRI studies of within-session extinction learning do
not yield consistent changes in the vmPFC-amygdala-
hippocampal circuit. Instead, extinction learning reliably acti-
vated other frontolimbic and subcortical structures (e.g.,
dACC, insula, striatum, thalamus, midbrain), as well as
visual and somatosensory regions when extinction training
was accompanied by a context shift. Fullana et al. (2018)
noted the similarity of these results to meta-analyses of fear
acquisition (e.g., Fullana et al., 2016) and speculated that
some of these regions may maintain a representation of the
acquired fear value of the CS+ through extinction.

Our approach directly addresses this latter point and some
other limitations of the prior literature. Indeed, we found evi-
dence for a carryover effect of the CS+ threat representation

from Late Acquisition to Early Extinction training in several
brain regions implicated in conditioned fear learning and extinc-
tion, but these representations change by Late Extinction (albeit
less so in the amygdala for individuals with high state anxiety).
Thus, the temporal dynamics and representational content of
activity in these regions are important to consider, and studies
that combine data across all extinction trials in these regions
may be conflating threat and safety signals. We note that other
brain regions may instead encode error prediction signals or
other facets of extinction learning that are not captured by the
change in representational similarity investigated here. By com-
paring univariate and multivariate results within our ROIs, we
demonstrate the added value of the latter approach.

Rodent studies have shown that “fear” and “extinction” cells
can be intermixed within the basolateral amygdala, along with
neurons that signal both representations as a potential index of
fear persistence (Herry et al., 2008). In addition, the prelimbic
cortex contains both inhibitory and excitatory pathways that are
differentially gated through the ventral hippocampus and
basolateral amygdala to reduce or enhance conditioned fear
expression, respectively (Sotres-Boyen et al., 2012). One dif-
ference between our results and the existing rodent literature is
that we find evidence for extinction-related changes in threat
signaling in both the dACC and vmPFC. In contrast, the rodent
literature tends to find more consistent differences between
these structures, with the dACC (prelimbic cortex) relating
more to fear acquisition/expression/recovery and the vmPFC
(infralimbic cortex) more involved with fear extinction and
safety signaling (reviewed in Milad & Quirk, 2012).
Nonetheless, rodent optogenetic studies have shown that these
two prefrontal structures can directly interact with one another

Fig. 4 Whole-brain voxel-wise searchlight results. Shown in blue are
clusters of voxels in which ELrsa was significant. These areas indicate
where the multivariate neural representation of CS+ stimuli, relative to

Late Acquisition, changed significantly between Early and Late
Extinction. An additional region in the cerebellum is not shown

Table 5 Three-factor ANOVA of univariate BOLD signal

Model term Degrees of freedom F Partial
Eta2

p value

Region 3 9.1 0.41 <0.001

CSType 1 7.1 0.15 0.01

Time 1 0.81 0.02 0.38

Region*CSType 3 2.4 0.15 0.09

Region*Time 3 11.2 0.46 <0.001

CSType*Time 1 0.64 0.02 0.43

Region*CSType*Time 3 0.68 0.05 0.57

Statistics for the three-factor ANOVA of univariate average BOLD
(blood oxygenation level dependent) fMRI signal change. Factors are
CS Type (CS+/CS−), Time in Extinction (Early/Late), and Brain
Region (bilateral amygdala, bilateral posterior hippocampus, dorsal ante-
rior cingulate cortex, and ventral medial prefrontal cortex)
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(Ji & Neugebauer, 2012). To be effective, extinction learning
must engage specific inhibitory neuronal subtypes within the
infralimbic cortex and amygdala; otherwise, fear behaviors
continue to be expressed (reviewed in Courtin et al., 2013).
Likewise, optogenetic manipulation of specific pathways with-
in the prelimbic cortex can recover fear memories (Courtin
et al., 2014), which increases theta synchrony across the ventral
hippocampus, basolateral amygdala, and mPFC (Stujenske
et al., 2014). All of these considerations suggest that a more
refined spatial approach to fMRI data analysis is warranted to
facilitate cross-species comparisons regarding the functional
roles of these structures.

Multivariate analytic approaches to fMRI that do not apply
spatial smoothing to the raw images should be more sensitive
than traditional mass univariate approaches to detect these
subtle patterns of threat and safety value within a prescribed
anatomical region (although subcortical regions may require
denser sampling and/or special multiple comparisons correc-
tion for small volumes). As shown here, changes in such neu-
ral representations can be extracted even in the absence of
measurable behavioral fear expression during later stages of
extinction training. It is perhaps not surprising that our multi-
variate extinction learning metric didn’t track concurrent
SCR/shock expectancy ratings during the extinction session,
as animal studies show that the plasticity in this core circuit
functionally relates primarily to initiating consolidation pro-
cesses for the extinction learning episode rather than within-
session expression of extinction learning (Milad & Quirk,
2012). However, we note that SCR is a noisy dependent mea-
sure, especially late in extinction learning where the data are
skewed towards zero, and our crude subdivision of extinction
phases using a split-half approach (early vs. late trials) may
have obscured more precise relationships.

As mentioned, the present report constituted an exploratory
analysis of previously collected data. Some limitations arise
from the fact that the original paradigm was not optimally
designed for trial-wise multivariate pattern analysis (such as
that performed by Visser et al., 2011), and thus we grouped
data across trial blocks (see Supplemental Materials for
details). Specifically, the time interval between consecutive
trials of each type was not constant throughout the paradigm
and sufficiently long to minimize the influence of intrinsic
noise correlations in the trial-wise estimates (see Methods).
Future study designs with optimally timed stimulus presenta-
tions and the collection of fear acquisition and extinction data
in the same imaging session would allow expansion of the
current work. On the other hand, we note that most fear con-
ditioning studies use variable trials to avoid temporal con-
founds in the prediction of CS onsets, and so our approach,
while providing limited temporal precision, may be more gen-
eralizable to standard conditioning task designs and avoids
inadvertent temporal conditioning due to fixed training
intervals.

Our paradigm contained several salient shifts between ac-
quisition and extinction that could help to establish a contextual
boundary between training phases and promote new learning.
As with all conditioning procedures, the extinction phase omit-
ted the reinforcer which yields error prediction signals and
creates a safe context. In addition, the 3D VR technology cre-
ated a strong environmental context shift from an indoor to an
outdoor setting (or vice-versa, counterbalanced across partici-
pants), which also entailed a brief temporal pause in fMRI
scanning between experimental phases. Future studies that
compare results with and without an environmental context
shift are needed to determine the extent to which our results
depend on this feature of the experimental design. In particular,
it is interesting that the CS− representation in Early Extinction
is already quite dissimilar to that from Late Acquisition. We
suspect that the degree of dissimilarity in CS- signaling would
be reduced if both phases were conducted in the same environ-
mental context, but this conjecture requires experimental vali-
dation. Given its role in event boundary detection (Baldassano
et al., 2017), it may be surprising that the hippocampus shows a
temporal delay in signaling a change of the CS+ representation
upon the context shift. One potential reason for this pattern is
that the hippocampal signaling of the threat value of the CS+
overshadows that of the background context shift when activity
is time-locked to the cue. Electrophysiological studies in ro-
dents have shown that the ventral hippocampus, which is the
region most directly connected to the amygdala, plays a role in
CS+ signaling (Maren & Holt, 2004); conditioned fear stress
exposure enhances hippocampal long-term potentiation (Inoue
et al., 2013); and optogenetic activation of a hippocampal en-
gram recovers conditioned fear memories (Liu et al., 2012).
Cued conditioned threats are learned more quickly, exhibit
larger behavioral responses, and extinguish more slowly than
background contextual conditioning when assayed separately
within the same task (LaBar & LeDoux, 1996). Alternatively,
hippocampal coding of the context shift in the presence of a
CS+ might be too transient to pick up using our trial-averaging
technique, and/or the context signaling may be more evident
when the CS+ is not present (e.g., during the intertrial interval).

Future studies should also endeavor to link these represen-
tational changes with specific cognitive and computational
processes. Of the extinction-induced changes in our ROIs,
only the amygdala’s representation of the CS+ tracked indi-
vidual differences in post-acquisition state anxiety.
Extinction-induced changes in multivariate patterning in other
brain regions may be driven, in turn, by the amygdala itself or
may be related to other cognitive processes implicated in com-
putational models of conditioning, such as attentional alloca-
tion, value updating, or contextual binding (Armony et al.,
1995; Schmajuk, 1997).

Finally, we acknowledge that there is a current debate re-
garding how well the neural circuitry involved in defensive
conditioning processes maps onto feelings of fear and anxiety,
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with some researchers calling for a reframing of conditioning
processes as reflecting survival-based threat detection compu-
tations that are broader than those relating to the experience of
fear per se (LeDoux, 2012; LeDoux & Pine, 2016; but see
Fanselow & Pennington, 2016). For instance, using a threat
exposure paradigm, Taschereau-Dumouchel, Kawato & Lau,
(2019) showed that, while there was some overlap in fMRI
signals that predicted both subjective anxiety and SCR reac-
tivity to evolutionary-based threats, other regions showed se-
lectivity to one of these measures and not the other. In this
paper, we chose to maintain the traditional terminology that
refers to defensive Pavlovian training paradigms as “fear con-
ditioning” to link our study to the broader extant literature,
while recognizing that fMRI responses elicited to conditioned
stimuli may not necessarily map onto those that mediate the
subjective experience of fear. Interestingly, our results inform
this debate by showing that a dissociation between condition-
ing processes and the subjective experience of fear/anxiety
may not be so clear-cut. In particular, we found that individual
differences in the subjective experience of anxiety at the end
of acquisition training predicted a persistence in CS+ pattern-
ing in the amygdala during Early Extinction training. As
discussed above, this relationship was not found to physiolog-
ical expression of conditioned learning as measured by SCR.
These results suggest that fMRI signaling of conditioned stim-
uli may reflect some integration of subjective aspects of
fear/anxiety. Nonetheless, we note that this influence was se-
lective to the amygdala ROI and thus may be more separable
in other components of fear-conditioning circuitry. Future
studies that assay emotions more comprehensively during fear
conditioning are warranted to further interrogate the relation-
ship between subjective experience and neural representations
of conditioned stimuli.

Open practices statement The voxel-wise whole-brain search-
light RSA statistical map for the CS+ events (shown in Fig. 4)
will be made available upon publication via the NeuroVault
website (neurovault.org). Participant-wise RSA dissimilarity
metrics for each ROI, average univariate activation values for
each ROI, reported shock expectancy, reported state anxiety
levels, and skin conductance response values will be made
available upon publication via the Open Science Framework
website (osf.io). The experiment was not preregistered.
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