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Abstract
The present study investigated the neural dynamics of error processing in both the time and frequency domains, as well as
associated behavioral phenomena, at the single-trial level. We used a technique that enabled us to separately investigate the
evoked and induced aspects of the EEG signal (Cohen & Donner, 2013, Journal of Neurophysiology, 110[12], 2752–2763). We
found that at the single-trial level, while the (evoked) error-related negativity (ERN) predicted only post-error slowing (PES)—
and only when errors occurred on incongruent trials—induced frontal midline theta power served as a robust predictor of both
PES and post-error accuracy (PEA) regardless of stimulus congruency. Mediation models of both electrophysiological indices
demonstrated that although the relationship between theta and PEAwas mediated by PES, there was not a relationship between
the ERN and PEA. Our data suggest that although the ERN and frontal midline theta index functionally related underlying
cognitive processes, they are not simply the same process manifested in different domains. In addition, our findings are consistent
with the adaptive theory of post-error slowing, as PES was positively associated with post-error accuracy at the single-trial level.
More generally, our study provides additional support for the inclusion of a time-frequency approach to better understand the role
of medial frontal cortex in action monitoring.
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Within simple forced-choice decision-making tasks, commit-
ting an error initiates a cascade of cognitive events within the
action-monitoring system. The participant will briefly disen-
gage from the ongoing task, attend to and identify the error,
and make cognitive and behavioral adjustments in an effort to
prevent the error from reoccurring once they reengage in the
task (Wessel, 2017; Wessel & Aron, 2017). In particular, these
behavioral adjustments include increases in response time on
trials that follow error commission (post-error slowing [PES];
Laming, 1979), as well as either increases or decreases in
subsequent trial accuracy (post-error accuracy [PEA]). A ma-
jor topic of debate in the research community is whether this

slowing is an adaptive or maladaptive consequence of an er-
ror. Findings in support of adaptive theories suggest that PES
provides additional time to process subsequent trial task stim-
uli, consequently enabling a relative improvement in task per-
formance (increased PEA; Botvinick, Braver, Barch, Carter,
& Cohen, 2001; King, Korb, von Cramon, & Ullsperger,
2010; Maier, Yeung, & Steinhauser, 2011; Marco-Pallarés,
Camara, Münte, & Rodríguez-Fornells, 2008; M.
Steinhauser & Andersen, 2019). By contrast, findings in sup-
port for maladaptive theories suggest that PES is an index of
distraction from the task set that leads to a deterioration of
performance and potentially additional errors (decreased
PEA; Beatty, Buzzell, Roberts, & McDonald, 2018; Buzzell,
Beatty, Paquette, Roberts, & McDonald, 2017; Jentzsch &
Dudschig, 2009; Notebaert et al., 2009; R. Steinhauser,
Wirth, Kunde, Janczyk, & Steinhauser, 2018; van den Brink,
Wynn, & Nieuwenhuis, 2014; Van der Borght, Schevernels,
Burle, & Notebaert, 2016). Despite attempts to reconcile this
debate (Purcell & Kiani, 2016; Ullsperger & Danielmeier,
2016), the research community has not yet found consensus.

To inform the link between error processing and how indi-
viduals adjust their behavior following error commission, re-
searchers have identified various neural indices of error
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processing. The error related negativity (ERN; Falkenstein,
Hohnsbein, Hoormann, & Blanke, 1991; Gehring, Goss,
Coles, Meyer, & Donchin, 1993) is a response-locked,
frontocentral event-related potential (ERP) component gener-
ated at least partially within the medial frontal cortex (Buzzell,
Richards, et al., 2017) that is believed to act as an implicit
signal to convey either a mismatch between expected and
actual performance (Gehring et al., 1993) or response conflict
associated with competing responses (Botvinick et al., 2001).
Studies of the relation between the ERN and post-error behav-
ioral adaptations have yielded conflicting results. Whereas
some work has shown the ERN to be associated with in-
creased PES (Debener et al., 2005; Fischer, Danielmeier,
Villringer, Klein, & Ullsperger, 2016; Fu et al., 2019;
Gehring et al., 1993; Kalfaoğlu, Stafford, & Milne, 2018;
Maier et al., 2011; M. Steinhauser & Andersen, 2019), other
studies have failed to find any relation between the ERN and
post-error behavior (Beatty et al., 2018; Buzzell, Beatty, et al.,
2017; Dudschig & Jentzsch, 2009; Nieuwenhuis,
Ridderinkhof, Blom, Band, & Kok, 2001; Valadez &
Simons, 2017; Van der Borght et al., 2016). While a recent
meta-analysis provided support for a relation between the
ERN and PES (Cavanagh & Shackman, 2015), this study
did not investigate possible relations with PEA. To our knowl-
edge, even in cases in which the ERN predicts PES, it has not
directly predicted increased PEA, which has made it difficult
to draw conclusions as to whether neural activity associated
with PES is adaptive or maladaptive.

In addition to the ERN, research has also been conducted on
transient, rhythmic cortical activity, which is believed to origi-
nate from themedial frontal cortex (Cohen, 2014). In particular,
frontal midline theta oscillations (4–7 Hz) that occur around the
time of response are thought to act as an implicit monitoring
signal (Ullsperger, Fischer, Nigbur, & Endrass, 2014) that leads
to the recruitment of cognitive control and post-error compen-
sations (Cavanagh & Frank, 2014). A recent study conducted
by Valadez and Simons (2017) investigated differences in the
predictive power that ERPs (such as the ERN) and neural os-
cillations (such as frontal midline theta) have for post-error
behavior. They determined that, although the ERN did not have
a relationship with post-error behavior, the magnitude of theta
oscillations was related to increases in both PES and PEA.
They interpreted their findings as providing support for the
adaptive theory of PES, which posits that slowing down after
an error reflects enhanced cognitive control, which consequent-
ly leads to performance recovery.

Although Valadez and Simons (2017) provided compelling
evidence that ERP and time-frequency analyses differ in their
ability to predict post-error behavioral compensations, it is still
controversial as to whether the ERN and theta oscillations
reflect either the same neural process manifested in different
domains or dissociable elements of the error-monitoring sys-
tem (Luu & Tucker, 2001; Luu, Tucker, & Makeig, 2004;

Yeung, Bogacz, Holroyd, & Cohen, 2004; Yeung, Bogacz,
Holroyd, Nieuwenhuis, & Cohen, 2007). Indicative of the
widespread assumption that the ERN, or other control-
sensitive frontal-midline ERPs (i.e., the ERN, N2, and
FRN), are relatively synonymous with theta oscillations
assessed via time-frequency approaches, a recent meta-
analysis of “frontal midline theta” (Cavanagh & Shackman,
2015) relied primarily on ERPs as a means to study relations
between “theta” and behavior. Thus, additional work investi-
gating the relations between theta, the ERN, and post-error
behavior are needed. Since the theta power analyses presented
by Valadez and Simons (2017) included both the evoked
(phase-locked) and induced (non-phase-locked) components
of the EEG signal, they were not able to rule out that the
predictive power of theta was due to the residual influence
of the evoked data. Here, we note that one study in particular
has directly investigated how the evoked and induced portions
of the event-related theta power can be dissociated, and how
these neural elements relate to behavior. Cohen and Donner
(2013) pioneered a technique in which the average evoked
component of the neural response (the ERP) is subtracted from
the total EEG signal before computing the time-frequency
power spectrum, allowing for separate investigation of both
evoked and induced neural activity. Using this technique, they
were able to dissociate the conflict-related N2 from induced
theta oscillations and observed that only induced theta power
was predictive of conflict-related response slowing. Given
these findings, we chose to use Cohen and Donner’s (2013)
approach to investigate whether the ERN and frontal midline
theta could be similarly dissociated, and if so, exhibit differen-
tial relations with post-error behavior. We note however, that
although Cohen and Donner (2013) demonstrated that induced
theta was a better predictor of next-trial RT slowing, since they
did not investigate the relationship between induced theta and
next-trial accuracy, they could not conclude whether this RT
slowing was adaptive or maladaptive.

Valadez and Simons (2017) provided seminal evidence for
a relationship between frontal midline theta oscillations and
performance recovery (increased accuracy); they also provid-
ed support for the notion that PES is adaptive. However, their
analysis approach did not leverage trial-by-trial relations be-
tween brain and behavior and instead relied on partitioning
task data into trial bins, leading to a rather small number of
trials per condition and the exclusion a majority of their
participants for some analyses. Furthermore, Valadez and
Simons (2017) did not attempt to dissociate the induced and
evoked components of the EEG signal. Given these
considerations, we sought to build upon the findings of
Valadez and Simons (2017) using a single-trial analysis and
an approach that enabled us to dissociate evoked and induced
neural activity (Cohen & Donner, 2013). Based on the find-
ings of Valadez and Simons (2017), we predicted that induced
theta oscillations, but not the evoked neural activity of the
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ERN, would predict post-error behavior (PES and PEA) at the
single-trial level. Moreover, we predicted that PES would be
positively associated with PEA, in line with adaptive theories
of PES.

Method

The present study uses the same paradigm and data as reported
in Beatty et al. (2018); for completeness, the general proce-
dures are outlined below.

Participants and experiment design

Twenty-four healthy, right-handed participants (mean age =
24.75 years; 16 female) participated in exchange for course
credit at George Mason University. Three participants were
excluded due to either below-chance accuracy, routinely
correcting responses (more than two-thirds of errors were
corrected), or procedural error during data collection, leaving
21 participants (mean age = 23.62 years; 13 female) to be
incorporated into all analyses. Participants completed a color
Simon task (see Fig. 1), implemented using Psychtoolbox
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) for the
MATLAB programming environment (The MathWorks,
Natick,MA) in conjunction with custom scripts and functions.
Participants were presented with a light-gray central fixation
cross on a darker gray background along with two light-gray
boxes, each subtending 3.75 × 3.75 degrees, located 4.25 de-
grees to the left and right of the center of the screen. A red
(sRGB: r = 105.85, g = 0, b = 0) or green (sRGB: r = 0, g =
53.05, b = 0) colored circle, subtending 2 degrees, was pre-
sented for 200 ms in the center of one of the two boxes. All
stimuli were equiprobable, and perceived luminance of the
stimuli was equated using the sRGB gamma function. The
task was presented on the Cambridge Research Systems
Display++ LCD monitor (Cambridge Research Systems Ltd).

Participants were instructed to respond to each stimulus as
quickly and accurately as possible by pressing either the “2”

key (using their left index finger) or the “8” key (using their
right index finger) to indicate what color was presented. These
response mappings were counterbalanced across participants.
If the participant responded within 150 ms of stimulus onset,
responded after the 500-ms response deadline, corrected their
response, or did not provide a response, the trial (as well as the
following trial) were removed from all analyses. Following
the response, participants were provided with a randomly se-
lected response stimulus interval (RSI) from a random uni-
form distribution between 200 ms and 1,200 ms in duration.
In order to combat fatigue, between each block participants
were required to rest for at least 30 seconds prior to beginning
the next block. During this period, they were also informed of
their block accuracy. The main experiment consisted of 3,520
trials (22 blocks of 160 trials). The last two blocks, however,
were dedicated to passive viewing of the stimuli and are not
discussed here.

To familiarize themselves with the task, participants first
completed an easier version, in which they were providedwith
a 2-second response deadline as well as trial-by-trial feedback
of their performance (no trial-level accuracy feedback was
presented during the actual experiment). Following practice
of an easy version of the task, participants completed an ad-
ditional practice that was more difficult and identical to the
experimental version of the task.

EEG data acquisition and processing

EEG data were collected using a Brain Vision ActiChamp
amplifier and Brain Vision Recorder 1.2 acquisition software
(Brain Products Inc.). Data were recorded using 64 actiCAP
electrodes (positioned according to the extended 10–20 sys-
tem). An additional in-cap ground electrode was positioned
anterior to electrode Fz. Although electrode Cz was used as
the online reference for the other 63 in-cap electrodes, the data
for electrode Cz were recovered off-line. The data were then
re-referenced off-line to the average of electrodes TP9 and
TP10 (corresponding to the left and right mastoids). The data
were recorded at a sampling rate of 1,000 Hz, with an online

Fig. 1 Experimental paradigm. Stimulus contrasts have been increased for presentation purposes

Cogn Affect Behav Neurosci (2020) 20:636–647638



band-pass filter of .1–250 Hz. In concordance with impedance
recommendations for high-impedance active EEG systems,
impedance for all electrodes was maintained below 25 kΩ.

Processing of EEG data was conducted using the EEGLAB
(Delorme & Makeig, 2004) toolbox for the MATLAB pro-
gramming environment (The MathWorks, Natick, MA).
Data were detrended, low-pass filtered at 30 Hz (using a
Butterworth filter from the ERPLAB plugin; Lopez-
Calderon & Luck, 2014) and down-sampled to 500 Hz. On
a 1-Hz high-pass filtered copy of the original data set (which
was preprocessed in an identical manner to the 0.1-Hz high-
pass filtered data set), the data were segmented into a series of
consecutive 1,000-ms epochs and subjected to automated am-
plitude rejection threshold of ±500 μVand a spectral rejection
threshold of 50 dB within the 20–40 Hz band using the
pop_rejspec function (to remove EMG-like activity;
Delorme & Makeig, 2004). If more than 20% of epochs were
marked for rejection in a given channel, that channel was
removed from all copies of the data set. The data were then
decomposed using independent component analysis (ICA).
The ICA component weights that were generated for the 1-
Hz high-pass filtered data set were then copied onto the orig-
inal 0.1-Hz high-pass data set (Winkler, Debener, Müller, &
Tangermann, 2015). All further analyses were performed on
the 0.1-Hz high-pass data set.

After rejecting independent components that corresponded
to blinks and saccades, the data were epoched from −1,000 ms
to 1,500 ms for all stimulus and response markers. To remove
epochs containing residual artifacts after cleaning with ICA,
the data were subjected to a stricter automated rejection pro-
cedure using a voltage rejection threshold of ±100 μV and a
spectral rejection threshold of 50 dB within the 20–40 Hz
band using the pop_rejspec function. Similar to earlier in the
processing stream, if the more than 20% of epochs were
marked for rejection for a given channel, that channel was
removed from the data set. In order to ensure that the trial N
stimulus, trial N response, and trial N + 1 stimulus epochs
were matched, if any member of the epoch “triplet” were
rejected during processing, the corresponding epochs were
also rejected. All rejected channels were then interpolated
(using a spherical spline interpolation). If the maximum num-
ber of channels that were interpolated for a participant was
more than 10% of all electrodes, that participant was removed
from all analyses. To better estimate cortical sources and re-
duce the impact of volume conduction, we conducted a
Laplacian (current source density [CSD]) transformation of
the data (Kayser & Tenke, 2006).

When conducting time-frequency analyses, we used the
approach taken by Cohen and Donner (2013) to remove the
ERP from the EEG signal. With this approach, the averaged
ERPs are subtracted from each individual epoch before com-
puting the time-frequency spectrum, thus theoretically remov-
ing the phase-locked component of the EEG signal. This

assumes that the ERP components are relatively time-
invariant from trial to trial. This subtraction was performed
in the time domain (using the full −1,000-ms to 1,500-ms
epoch) and was completed separately at each electrode for
each condition of interest. Although only the induced neural
activity was subjected to statistical analysis, time-frequency
analyses were separately performed on both the total and in-
duced versions of the data set in order to demonstrate that the
method provided results comparable to those of Cohen and
Donner (2013; see Fig. 2). Note that the total and induced
plots are very similar, which suggests that the method did
not dramatically alter the data in which there was compara-
tively little influence of the evoked activity within the theta
frequency range. It is to be expected that the subtraction does
not dramatically change the time-frequency power distribu-
tion since the majority of power in time-frequency data comes
from non-phase-locked (induced) activity (Trujillo & Allen,
2007); the primary difference is that activity in the delta fre-
quency range was removed. Consistent with these observa-
tions, the intertrial phase coherence (ITPC) was relatively
higher within the delta band, as compared with the theta band,
which suggests that power in this frequency range reflects
proportionately greater phase-locked activity.

Following subtraction of the ERP, the data were trans-
formed to a time-frequency representation via convolution
with a series of complex Morlet wavelets at the single-trial
level. The frequency of each wavelet increased from 2 to
30 Hz in 20 linearly spaced steps, while the number of cycles
increased from 3 to 6 in 20 logarithmically spaced steps. We
note that the complete data set contained trials with RSIs
ranging from 200 ms to 1,200 ms (for the purposes of
orthogonal analyses described in Beatty et al., 2018). In order
to ensure that a sufficient baseline normalization period was
used for the full RSI range, the data were binned into three
tertiles (short: 200–533 ms; medium: 534–866 ms; long: 867–
1,200 ms). Given the limited time between trials for short RSI,
in an attempt to avoid overlap from the previous trial inside
the baseline period, we elected to baseline normalize the short
RSI bin using the same baseline that we used for medium and
long RSIs. More specifically, the power values at each fre-
quency were baseline normalized using a common, divisive
baseline relative to the average power from −400 ms to
−100 ms relative to stimulus onset, collapsing across
medium/long RSIs and all conditions of interest (10 × log10
(trial N response power / common trial N stimulus baseline
period)).

For all analyses, PES was computed at the average (group)
and single-trial level by subtracting current trial error RTs
from next trial post-error RTs (Schroder et al., 2019), while
PEA was computed as a percentage change between (1) the
accuracy for trials following an error and (2) the accuracy for
trials following a correct response (Beatty et al., 2018;
Buzzell, Beatty, et al., 2017). To verify whether there was a
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significant magnitude of slowing at each RSI bin, we conduct-
ed a series of Bonferroni-corrected t tests. Analyses of PES
and PEA at the group level were separately conducted using a
2 (congruency: congruent, incongruent) × 3 (RSI: short, me-
dium, long) analysis of variance (ANOVA).

For ERP analyses, given that all ERP analyses were con-
ducted using the same trials that were used in the time-
frequency analyses, the trial N stimulus and response epochs
were reepoched to −200 ms to 800 ms. Baseline correction
was implemented using the prestimulus period (−200 ms to 0
ms) from the trial-matched stimulus-locked epoch. We ob-
served that artifact rejection affected error trials (24.133%
rejected) to a greater extent than correct trials (13.649%
rejected), t(20) = −5.214, p < .001; this is perhaps due to
additional ocular or muscular artifacts that occurred in concor-
dance with an erroneous response. Nevertheless, we still had a
sufficient number of trials per condition (Olvet & Hajcak,
2009). The average number of clean, artifact-free trials incor-
porated into each condition of interest were as follows: “cor-
rect congruent followed by correct” (M = 853.95, SD =
147.66), “error congruent followed by correct” (M = 97.00,
SD = 40.22), “correct incongruent followed by correct” (M =
774.67, SD = 136.51), “error incongruent followed by cor-
rect” (M = 158.71, SD = 60.37). Statistical analyses for the
ERN and theta at the group level took place at electrode Cz
(which is where both components were found to be maximal)
using separate 2 (accuracy: correct, error) × 2 (congruency:
congruent, incongruent) ANOVAs. The values being com-
pared were the average voltage (for the ERN) or average pow-
er (for theta) within their respective analysis windows, cen-
tered at the peak of each component at the group level. The
“peak” of theta was chosen by plotting theta power as a time-
series plot (averaging across the data derived from wavelets
between 4 to 7 Hz). Analysis windows were constructed on an
individual participant basis in order to better capture each
component at the single-trial level. To create analysis window
widths that were data driven, we elected to create a window-
width based on the 50% amplitude of the component (Hassall,
McDonald, & Krigolson, 2019). The averaged window width
across participants was computed to be from approximately

−6 ms to 78 ms for the ERN and −110 ms to 258 ms for theta
power.

To assess whether error processing (as indexed by the ERN
and theta) was predictive of changes in subsequent trial behav-
ioral indices of cognitive control on a single-trial (within-
subject) level, using the same electrode and windows as in the
group-level analyses, we performed a series of mixed-effects
models using the R statistical software (Version 3.3.1; Imai,
Keele and Tingley, 2010), using the lmerTest package
(Version 2.0–32; Kuznetsova, Brockhoff, & Christensen,
2016) and the lme4 package (Version 1.1–12; Bates, Mächler,
Bolker, & Walker, 2014). Prior to carrying out each analysis,
models were constructed such that the continuous variables
(ERN magnitude, theta magnitude, PES, RSI) were centered
and scaled to have a mean of zero and standard deviation of
1. Instead of keeping RSI segmented into bins, we elected to
have RSI as a continuous variable for all relevant single-trial
models. These variables were fit using linear mixed-effects
analysis using the lmer function, with restricted maximum like-
lihood estimation. The categorical variable (PEA) was exam-
ined using sum contrasts and fit using generalized linear mixed-
effects models using the glmer function with logit link with
maximum likelihood estimation. Variation in intercept was
treated as a random effect, while all remaining variables were
treated as fixed effects. Statistical significance for each fixed
effect was calculated via lmerTest (Kuznetsova et al., 2016),
using the Satterthwaite’s approximation to denominator degrees
of freedom. The main analyses explored the effect of ERP
component magnitude or theta magnitude predicting single-
trial modulation of post-error behavior (PES and PEA). In order
to determine whether theta or the ERN accounts for more var-
iance when predicting subsequent trial behavior, an additional
model was conducted with both indices in the same model.
Since we were interested specifically in error processing, we
limited what types of trials would be included in the models.
When predicting PES, we limited the trials that were included
in the model to “error trials followed by correct trials.” When
predicting PEA, we limited the trials such that the current trial
must be an error. Furthermore, to follow up on significant ef-
fects in the mixed-effects models, we conducted separate

Fig. 2 Separation of evoked and induced power. Similar to the findings of
Cohen and Donner (2013), these plots demonstrate how total power can
be parsed into induced and evoked power. The “Evoked” plot was com-
puted by subtracting the ERSP values of “Induced” from “Total.” Note
that the total and induced plots are very similar, which suggests that the

method did not dramatically alter the data. The assumption being made
during the subtraction process is that the ERP components are relatively
time invariant from trial to trial. The intertrial phase coherence (ITPC)
plot illustrates the magnitude of response-locked phase locking (mean
vector length). (Color figure online)
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mediation models for induced theta power and the ERN using
the mediation package for R (Tingley, Yamamoto, Hirose,
Keele, & Imai, 2014) to determine whether each indices’ pre-
dictive power for PEAwasmediated by PES. As recommended
by the mediation package, the models underwent 1,000 itera-
tions, which were sampled using a quasi-BayesianMonte Carlo
method based on normal approximation (Imai, Keele, &
Tingley, 2010).

Since a change in statistical significance between ERN and
theta models cannot alone be used to infer that one model
provides a better fit to behavioral data (Gelman & Stern,
2006; Nieuwenhuis, Forstmann, & Wagenmakers, 2011), the
fit of ERN and theta models were directly compared using
Aka ike we igh t s (Burnham & Ande r son , 2003 ;
Wagenmakers & Farrell, 2004). Specifically, the second-
order Akaike information criterion (AICc) was calculated for
both ERN and theta models using the “AICc” function in the
MuMIn package (Barton, 2019) and subsequently trans-
formed to Akaike weights. The probability that the best fitting
model was indeed the preferred model was calculated as the
ratio of the best fitting model Akaike weights to the sum of
Akaike weights from all models under consideration (both
ERN and theta).

Results

Group-level analyses

Post-error behavior

A series of Bonferroni-corrected t tests regarding the magni-
tude of PES for each RSI tertile revealed that there indeed was
significant slowing for all three RSI bins: short (200–533 ms),
t(20) = 8.189, p < .001; medium (534–866 ms), t(20) = 5.949,
p < .001; long (867–1,200 ms), t(20) = 5.122, p < .001.

For analyses of PES, a 2 (congruency: congruent, incon-
gruent) × 3 (RSI: short, medium, long) ANOVA revealed an
effect of congruency on PES, F(1, 20) = 84.810, p < .001, ηp

2

= .809, in which slowing following incongruent trials (M =
36.751 ms, SD = 3.683 ms) was greater than following con-
gruent trials (M = 11.640 ms, SD = 3.684 ms), as well as an
effect of RSI on PES, F(1, 20) = 26.618, p < .001, ηp

2 = .571,
in which slowing following short RSI (M = 38.262 ms, SD =
4.710 ms) was greater than following medium (M = 16.939
ms, SD = 3.500 ms) or long (M = 17.386 ms, SD = 3.442 ms)
RSI. However, the congruency by RSI interaction failed to
reach significance (p = .431).

For analyses of PEA, a 2 (congruency: congruent, incon-
gruent) × 3 (RSI: short, medium, long) ANOVA revealed an
effect of congruency on PEA, F(1, 20) = 6.293, p = .021, ηp

2 =
.239, in which accuracy following incongruent errors (M =
−9.800%, SD = −2.000%) was lower than following

congruent errors (M = −6.700%, SD = 2.200%), as well as
an effect of RSI on PEA, F(1, 20) = 25.207, p < .001, ηp

2 =
.558, in which accuracy following short RSI (M = −13.800%,
SD = 2.200%) was lower than following medium (M =
−6.800%, SD = 2.300%) or long (M = −4.100%, SD =
2.000%) RSI. However, the congruency by RSI interaction
failed to reach significance (p = .914).

Electrophysiology

Analysis of the ERN (see Fig. 3a) revealed a main effect of
accuracy, F(1, 20) = 43.636, p < .001, ηp

2 = .686, in which the
ERN (M = −21.679, SE = 2.915) was larger than the correct-
related negativity (CRN) (M = −.706, SE = 2.313), as well as a
main effect of congruency, F(1, 20) = 4.962, p = .038, ηp

2 =
.199, such that the ERN on incongruent trials (M = −11.811,
SE = 2.062) was larger than on congruent trials (M = −10.574,
SE = 2.171). There was also an Accuracy × Congruency in-
teraction, F(1, 20) = 7.679, p = .012, ηp

2 = .277. Paired-
samples t tests revealed that the CRN on congruent trials (M
= −1.043, SE = 2.309) was not significantly different than on
incongruent trials (M = −.369, SE = 2.346; p = .211), but the
ERN on incongruent trials (M = −23.252, SE = 3.038) was
larger than on congruent trials (M = −20.106, SE = 2.901; p =
.012, d = .229).

Analysis of theta power (see Fig. 3b) revealed a main effect
of accuracy, F(1, 20) = 200.269, p < .001, ηp

2 = .909, in which
theta power for errors (M = 4.349, SE = .290) was larger than
theta power for corrects (M = 1.471, SE = .169), but failed to
reveal a main effect of congruency (p = .934). However, there
was also an Accuracy × Congruency interaction, F(1, 20) =
19.514, p < .001, ηp

2 = .494. Paired-samples t tests revealed
that theta power on incongruent trials (M = 1.633, SE = .184)
was larger than on congruent trials (M = 1.309, SE = .160) for
corrects (p < .001, d = .383), but the theta power on congruent
trials (M = 4.517, SE = .331) was larger than on incongruent
trials (M = 4.181, SE = .260) for errors (p = .019, d = .210).

The analyses for both the group-level ERN and induced
theta (1) verified that activity on error trials is larger than
activity on correct trials and (2) determined that, although in
opposite directions, both the ERN and theta were modulated
by congruency on error trials.

Single-trial analyses

In order to investigate the ERN and theta at the single-
trial level, we conducted a series of mixed effects
models (see Fig. 4).

Predicting PES

For the model of “theta, congruency, and RSI predicting PES”
(AICc = 14,912.43), there was an effect of theta, t(5197) =
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2.509, estimate = .035, SE = .014, p = .012, in which larger
theta magnitude predicted slower responding on the following
trial. However, the Theta × Congruency interaction, t(5353) =
−.017, estimate = −.0004, SE = .027, p = .987, Theta × RSI
interaction, t(5345) = −.571, estimate = −.008, SE = .013, p =
.568, and Theta × Congruency × RSI interaction, t(5348) =
−.825, estimate = −.022, SE = .027, p = .410, failed to reach
significance. For the model of “ERN, congruency, and RSI
predicting PES” (AICc = 14,911.45), the effect of ERN,
t(5201) = −.357, estimate = −.005, SE = .014, p = .721,
ERN × RSI interaction, t(5348) = −1.367, estimate = −.019,
SE = .014, p = .172, and ERN × Congruency × RSI interac-
tion, t(5346) = −.744, estimate = −.021, SE = .028, p = .457,
failed to reach significance. However, there was a significant
ERN × Congruency interaction, t(5351) = −2.145, estimate =
−.058, SE = .027, p = .032. Follow-up statistical models dem-
onstrated that a larger ERN led to slower responding follow-
ing incongruent, t(3138) = −1.959, estimate = −.035, SE =
.018, p = .050, but not congruent, t(1960) = .955, estimate =
.022, SE = .023, p = .340, trials. For the model of “theta, ERN,
congruency, and RSI predicting PES,” there was an effect of
theta, t(5247) = 2.299, estimate = .033, SE = .014, p = .022, in
which larger theta magnitude predicted slower responding on
the following trial. All other effects regarding theta or ERN

failed to reach significance. Therefore, theta explained unique
variance in terms of predicting PES, over and above any effect
of the ERN.

Predicting PEA

For the model of “theta, congruency, and RSI predicting PEA”
(AICc = 7,452.066), there was an effect of theta (z = 4.613,
estimate = .141, SE = .030, p < .001), in which larger theta
magnitude predicted increased accuracy on the following trial.
However, the Theta × Congruency interaction (z = −.183,
estimate = −.011, SE = .058, p = .855), Theta × RSI interaction
(z = −.157, estimate = −.005, SE = .029, p = .875), and Theta ×
Congruency × RSI interaction (z = .762, estimate = .044, SE =
.058, p = .446), failed to reach significance. For the model of
“ERN, congruency, and RSI predicting PEA” (AICc =
7,466.837), although the effect of ERN (z = −1.551, estimate
= −.049, SE = .032, p = .121), the ERN × Congruency inter-
action (z = 1.235, estimate = .075, SE = .061, p = .217), and
ERN × Congruency × RSI interaction (z = −.713, estimate =
−.044, SE = .062, p = .476), failed to reach significance, there
was a trend for the ERN × RSI interaction (z = 1.897, estimate
= .059, SE = .031, p = .058). For the model of “theta, ERN,
congruency, and RSI predicting PEA,” there was an effect of

Fig. 3 ERN and theta analyses. Although the analysis windows were
constructed on an individual person basis using a 50% amplitude
measure, the average analysis window (collapsed across participants) is
designated by the shaded box. a ERN at electrode Cz (collapsed across
RSI) with topographic plots as a function of congruency. The topographic
plots depict the amplitude of the accuracy difference throughout the

respective analysis window. bNon-phase-locked theta power at electrode
Cz (collapsed across RSI). The topographic plot signifies the power of the
accuracy difference throughout the respective analysis window. Although
the epoch time range for time frequency analyses was from −1,000 to
1,500 ms, the data were ultimately plotted from −400 to 800 ms to match
the time range of the ERP plot. (Color figure online)
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theta (z = 4.408, estimate = .137, SE = .031, p < .001), in
which larger theta magnitude predicted increased accuracy
on the following trial. All other effects regarding theta or
ERN failed to reach significance. Therefore, theta explained
unique variance in terms of predicting PEA, over and above
any effect of the ERN.

Akaike Weights Ratio

To test which electrophysiological index was a better predictor
of post-error behavior, we computed a series of Akaike weight
ratios. For PES, the model including the ERNwas 1.634 times
more likely to be the better model than the one including theta,
with a normalized probability of 62.04% that the model in-
cluding ERN was preferred to theta. For PEA, the model in-
cluding theta was 1612.357 times more likely to be the better
model than the one including the ERN, with a normalized
probability of 99.94% that the model including theta was the
preferred model.

PES PEA mediation model

When conducting the mediation model for theta and the ERN
(see Fig. 5), in order to ensure that the same trials were used
for comparing each component to PES and PEA, we lifted the

restriction that subsequent trials must be a correct response. In
addition, since the mixed-effects models found that the ERN
only predicted PES on incongruent trials, the mediation model
for the ERN was limited to incongruent errors (however, a
separate ERN mediation model that was limited to
congruent errors was conducted and did not result in any
significant effects; see Supplemental Materials). The media-
tion analysis for theta revealed a significant total effect (β =
.023, 95% CI [.013, .030], p < .001), a significant direct effect
of theta on PEA (β = .021, 95% CI [.011, .030], p < .001), as
well as a significant indirect effect of theta on PEA, as medi-
ated by PES (β = .001, 95% CI [.0003, 0], p = .014). For the
mediation analysis for the ERN (regarding incongruent er-
rors), there was not a significant total effect (β = −.005, 95%
CI [−.019, .010], p = .480), direct effect of ERN on PEA (β =
−.003, 95% CI [−.018, .010], p = .630), or indirect effect of
ERN on PEA, as mediated by PES (β = −.001, 95% CI
[−.003, 0], p = .120).

Discussion

The present study investigated the neural dynamics of error
processing in both the time and frequency domains, as well as
associated behavioral phenomena, at the single-trial level. We

Fig. 4 Single trial models. Displays the single trial models predicting PES and PEA for the ERN and theta. Shaded regions indicate the standard error

Cogn Affect Behav Neurosci (2020) 20:636–647 643



used a technique that enabled us to separately investigate the
evoked and induced aspects of the EEG signal (Cohen &
Donner, 2013). We found that at the single-trial level, while
the (evoked) ERN was predictive of only PES—and only
when errors occurred on incongruent trials—induced frontal
midline theta power served as a robust predictor of both PES
and PEA, regardless of stimulus congruency. Mediation
models of both electrophysiological indices demonstrated that
although the relationship between theta and PEAwas mediat-
ed by PES, there was not a relationship between the ERN and
PEA. These data highlight at least partial dissociations in the
neural mechanisms indexed by the ERN and induced theta
power. Moreover, these data provide evidence for the adaptive
theory of PES, when single-trial analyses of induced theta
power are also considered.

With regard to the inclusion of RSIs between 200 ms to
1,200 ms in the task design, the present study replicated the
behavioral findings by Jentzsch and Dudschig (2009), such
that short RSIs were associated with increased PES and re-
duced PEA compared with longer RSIs. Critically, although
RSI was included as a factor in the single-trial models, we
failed to observe any significant interactions between our elec-
trophysiological measures and RSI. Although future research
may wish to further explore the impact that RSI has on various
action-monitoring indices, our results suggest the presence of
RSI did not inform the relation between our electrophysiolog-
ical indices and post-error behavior, and are not discussed
further (for detailed discussion of the role of RSI in these
data, see Beatty et al., 2018).

In concordance with recent work investigating the relation
of theta, the ERN, and PES (Kalfaoğlu et al., 2018), the
mixed-effects models revealed that both the ERN and induced
theta power are capable of predicting PES. More specifically,
a larger ERN predicts increased PES (following only incon-
gruent errors), while larger induced theta power predicts

increased PES, irrespective of stimulus congruency. This pro-
vides additional evidence that induced theta power and the
evoked ERN index predicts at least partially dissociable
neurocognitive processes, perhaps reflecting differing sensi-
tivity to certain aspects of task demands or error types (Maier
et al., 2011). According to the Akaike weight ratios, the two
neural measures are nearly equivalent in their predictive pow-
er for PES, with the ERN providing a marginally better model
fit overall. We note that while some studies (the present study
included) have observed a relationship between the ERN and
PES (Debener et al., 2005; Fischer et al., 2016; Fu et al., 2019;
Gehring et al., 1993; Kalfaoğlu et al., 2018; Maier et al., 2011;
M. Steinhauser & Andersen, 2019), there are also some that
have not (Beatty et al., 2018; Buzzell, Beatty, et al., 2017;
Dudschig & Jentzsch, 2009; Nieuwenhuis et al., 2001;
Valadez & Simons, 2017; Van der Borght et al., 2016).
Although there has been a meta-analysis that investigated
the consistency with which the ERN predicts PES
(Cavanagh & Shackman, 2015), this meta-analysis did not
investigate relations with PEA. More importantly, the meta-
analysis by Cavanagh and Shackman (2015) focused primar-
ily on ERP studies that investigated components thought to be
reflective of theta (i.e., the ERN, N2, and FRN). Furthermore,
a recent study (Schroder et al., 2019) demonstrated that anoth-
er explanation for the inconsistency could be the method used
to calculate PES, which was not accounted for in the meta-
analysis of Cavanagh and Shackman (2015). Another possi-
bility that cannot be ruled out is that the ERN may be more
closely associated with error corrections (Rodríguez-Fornells,
Kurzbuch, & Münte, 2002; Ullsperger & von Cramon, 2006),
although we note that there is evidence that the ERN predicts
PES irrespective of whether errors were corrected or
noncorrected (Kalfaoğlu et al., 2018). Although the current
study was not designed to allow for the study of error correc-
tions, future studies should further investigate this possibility.

Fig. 5 Mediation models. Displays the mediation models for theta and
the ERN, which were centered and scaled in an identical manner as the
mixed-effects models. All mediation models limited the current trial to be

an error trial. A, B, and C/C' represent the averaged unstandardized re-
gression coefficients
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In sum, the current study provides additional support that both
theta power and the ERN are predictive of PES, although the
ERN only predicted PES following incongruent errors.

When investigating whether induced theta power or the
ERN predicted PEA, the mixed-effects models, Akaike
weight ratio comparison, and mediation models revealed that
induced theta power, but not the ERN, predicted PEA. More
specifically, we observed that while the positive relationship
between theta and PEAwas mediated by PES, there were not
total, direct, or indirect relationships for the ERN and PEA.
Our findings suggest that as the magnitude of error processing
increases on the current trial, as indexed by theta but not the
ERN, responding on the following post-error trial will be
slowed (potentially reflecting increased response caution),
resulting in a relative improvement in task performance.
These results are consistent with adaptive theories of PES,
and moreover, implicate theta power—and not the ERN—in
adaptive PES. Therefore, in order to isolate adaptive forms of
PES, it is critical to consider theta power and behavior at the
single-trial level. Collectively, these results highlight the dis-
sociation between behavioral and electrophysiological indices
of action monitoring and the recruitment of cognitive control.

A critical difference in predictive power for theta and the
ERN is that only theta acts as a robust predictor of both PES
and PEA.Moreover, with regard to the single-trial models that
incorporated both theta and the ERN in the same model, theta
explained unique variance in terms of predicting next trial
behavior, over and above the ERN. Interestingly, despite theta
being modulated as a function of congruency at the group
level, its ability to predict post-error behavior at the single-
trial level was not influenced by stimulus congruency. This is
in contrast to the ERN, which was modulated by congruency
at the group level, as well as with regard to its ability to predict
post-error slowing at the single-trial level. Since both neural
indices are sensitive to stimulus congruency at the group level,
we propose that the present data can at least partially be ex-
plained within the theoretical framework of conflict-
monitoring theory (Botvinick et al., 2001; Yeung, Botvinick,
& Cohen, 2004). However, we note that conflict-monitoring
theory cannot explain the complete pattern of results for both
the ERN and theta. In particular, conflict monitoring theory
predicts that, following a response, conflict is highest for con-
gruent errors as opposed to incongruent errors (note that
conflict monitoring predicts the opposite prior to the
response; see Fig. 4 in Yeung et al., 2004). Our results for
theta are entirely consistent with the predictions of conflict
monitoring theory (note the similarity between Fig. 3b in our
paper and the predictions of the conflict monitoring model in
Fig. 4 in Yeung et al., 2004); similarly, prior work has linked
theta power to conflict specifically (Cohen & Donner, 2013).
However, our results for the ERN, in which the ERN was
observed to be larger for incongruent, compared with congru-
ent, errors, cannot be fully explained within the framework of

conflict monitoring theory. Given such a discrepancy, we sug-
gest that the ERN data are consistent with a recently proposed
extension to conflict monitoring theory, known as the “affec-
tive signaling hypothesis” (Dignath, Eder, Steinhauser, &
Kiesel, 2020), which suggests the ERN is sensitive to both
conflict and affective aspects of error commission. This work
builds on a series of studies by Maier, Steinhauser, and col-
leagues (Maier, Ernst, & Steinhauser, 2019; Maier &
Steinhauser, 2016; Maier, Steinhauser, & Hübner, 2008;
Maier et al., 2011), which suggests that negative affect might
be associated with some types of errors more than others; in
particular, errors occurring in response to incongruent stimuli
may be more likely to contain an affective component. Note
that such an interpretation is also in line with recent work
identifying ventral-frontal sources for the ERN (Buzzell,
Richards, et al., 2017). Such theoretical perspectives could
explain whywe observed the ERN to be larger for incongruent
as opposed to congruent trials, and, moreover, why the ERN
was only predictive of PES following incongruent errors. We
therefore suggest that while theta more closely tracks conflict
monitoring, directly in line with the predictions of conflict
monitoring theory (Yeung et al., 2004), the ERN arises from
a combination of conflict monitoring and additional affective
signaling (Dignath et al., 2020). However, additional compu-
tational modeling work is needed to direct test such
hypotheses.

In conclusion, our data are consistent with the notion that
although action-monitoring ERPs and frontal midline theta
index functionally related underlying cognitive processes,
they are not simply the same process manifested in different
domains. Induced frontal midline theta power plays an inte-
gral role in action-monitoring processes and appears to more
closely relate to adaptive forms of post-error behavior, as com-
pared with the ERN. Finally, these data highlight the impor-
tance of simultaneously studying action-monitoring processes
in both the neural and behavioral domains at the single-trial
level.
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