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Abstract
Reward learning is a ubiquitous cognitive mechanism guiding adaptive choices and behaviors, and when impaired, can lead to
considerable mental health consequences. Reward-related functional neuroimaging studies have begun to implicate networks of
brain regions essential for processing various peripheral influences (e.g., risk, subjective preference, delay, social context)
involved in the multifaceted reward processing construct. To provide a more complete neurocognitive perspective on reward
processing that synthesizes findings across the literature while also appreciating these peripheral influences, we used emerging
meta-analytic techniques to elucidate brain regions, and in turn networks, consistently engaged in distinct aspects of reward
processing. Using a data-driven, meta-analytic, k-means clustering approach, we dissociated seven meta-analytic groupings
(MAGs) of neuroimaging results (i.e., brain activity maps) from 749 experimental contrasts across 176 reward processing studies
involving 13,358 healthy participants. We then performed an exploratory functional decoding approach to gain insight into the
putative functions associated with each MAG. We identified a seven-MAG clustering solution that represented dissociable
patterns of convergent brain activity across reward processing tasks. Additionally, our functional decoding analyses revealed
that each of these MAGs mapped onto discrete behavior profiles that suggested specialized roles in predicting value (MAG-1 &
MAG-2) and processing a variety of emotional (MAG-3), external (MAG-4 & MAG-5), and internal (MAG-6 & MAG-7)
influences across reward processing paradigms. These findings support and extend aspects of well-accepted reward learning
theories and highlight large-scale brain network activity associated with distinct aspects of reward processing.
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Reward learning is a fundamental cognitive process vital for
adaptive functioning that consequently, when disrupted, has a
significant impact on mental health. Widely accepted and
commonly adopted neurocognitive models of reward learning
propose that value predictions are formed and updated based
on dopaminergic reward prediction error (RPE) signals
(Glimcher, 2011; Hollerman & Schultz, 1998; Knutson,
Fong, Adams, Varner, & Hommer, 2001; Schultz, 1998;

Schultz, 2016; Schultz, Dayan, & Montague, 1997). RPE sig-
nals represent the discrepancy between expected outcomes
and actual outcomes (Rescorla & Wagner, 1972). In support
of these models, functional neuroimaging studies have consis-
tently demonstrated striatal and midbrain activity associated
with unexpected positive or negative cues/outcomes (i.e., RPE
task events) across a variety of paradigms (Cooper, Hollon,
Wimmer, & Knutson, 2009; Garrison, Erdeniz, & Done,
2013; Knutson, Bhanji, Cooney, Atlas, & Gotlib, 2008;
O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003). As
neuroimaging investigations of value prediction have ad-
vanced, scientists continue to construct progressively more
complex paradigms involving reward contingencies within
increasingly externally valid contexts involving additional in-
fluences on valuation, and ultimately reward learning (Daw,
Gershman, Seymour, Dayan, & Dolan, 2011; Kahnt, 2018;
Porcelli & Delgado, 2009; Seaman et al., 2018).

For example, many reward processing tasks involve para-
digms that mirror gambling activities played regularly in
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casinos or watched on game shows, like blackjack (Miedl,
Fehr, Meyer, & Herrmann, 2010), wheel of fortune (Ernst
et al., 2005), and slot machines (Daw et al., 2006). Many
tasks also include psychosocial processes, in which partic-
ipants make altruistic decisions about how to spend money
(Hare, Camerer, Knoepfle, & Rangel, 2010), or choose to
reward/punish themselves over others (Kramer, Jansma,
Tempelmann, & Munte, 2007). Other tasks provoke pref-
erences about culturally embedded food brands or luxury
items, craft pseudostock markets in which participants can
make investment decisions and respond to the conse-
quences (Kuhnen & Knutson, 2005), or require partici-
pants to move through virtual spaces to collect rewards
(Marsh et al., 2010) or escape punishments (Mobbs et al.,
2007). Overall, nearly all contemporary reward processing
tasks in neuroimaging experiments engage multiple mental
operations (Kahnt, 2018), such as working memory
(Pochon et al., 2002), rule switching (Remijnse et al.,
2009), probability estimation (Hampton, Bossaerts, &
O’Doherty, 2006), spatial navigation (Marsh et al., 2010),
episodic memory (de Greck et al., 2008), emotion regula-
tion (Delgado, Gillis, & Phelps, 2008), and/or inhibition
(Mengotti, Foroni, & Rumiati, 2019).

These research paradigms model a broader array of real-
world reward contingencies and have demonstrated that as-
pects of reward contexts, such as social factors, temporal fac-
tors, riskiness, cost or effort required, and the probabilistic
nature of contingencies all influence choices and behaviors
(Rangel, Camerer, & Montague, 2008; Rushworth &
Behrens, 2008; Seaman et al., 2018). Internal states, memories
of past experiences, and subjective preferences also influence
subjective value and choice decisions (Engelmann & Tamir,
2009; Koeneke, Pedroni, Dieckmann, Bosch, & Jancke, 2008;
Lopez-Persem, Domenech, & Pessiglione, 2016).
Accordingly, neuroimaging reward processing studies have
not only demonstrated RPE-related striatal and midbrain
responsivity (Cooper et al., 2009; Garrison et al., 2013;
Knutson et al., 2008), but also implicate a wider network of
brain activity linked with processing these various peripheral
influences (Acikalin, Gorgolewski, & Poldrack, 2017;
Behrens, Woolrich, Walton, & Rushworth, 2007; Gläscher,
Daw, Dayan, & O’Doherty, 2010; Juechems et al., 2019;
Seaman et al., 2018; Sugrue, Corrado, & Newsome, 2004).
As such, neurocognitive models of reward learning should
endeavor to more fully characterize these additional contextu-
al influences.

Given that reward processing studies use a variety of
complex tasks, task modeling approaches, and theoretical
frameworks, it has been difficult to synthesize a quantitative
summary of consistent associations between cognitive con-
structs and brain function. Emerging meta-analytic tech-
niques have proven helpful in synthesizing neuroimaging
findings across disperse experimental sites and diverse

scientific approaches (Bottenhorn et al., 2019; Bzdok et al.,
2015; Bzdok et al., 2013a; Bzdok et al., 2013b; Clos,
Amunts, Laird, Fox, & Eickhoff, 2013; Eickhoff, Laird,
Fox, Bzdok, & Hensel, 2016; Laird et al., 2015; Ray et al.,
2015; Riedel et al., 2018). Using these techniques, we aimed
to elucidate brain regions, and in turn networks, consistently
linked with different aspects of reward processing.

We employed a data-driven, meta-analytic clustering
approach to an extensive body of reward processing neu-
roimaging results archived in the BrainMap database
(www.brainmap.org; Fox & Lancaster, 2002; Laird,
Lancaster, & Fox, 2005) to characterize meta-analytic
groupings (MAGs) of reward processing experiments
based on the spatial similarity of brain activity patterns.
These groupings were formed under the assumption that
spatially similar task-based brain activity patterns can be
categorized as functionally similar, while spatially differ-
ent patterns can be classified as distinct. To provide insight
into the mental processes associated with each of these
MAGs, we then conducted functional decoding, a data-
driven method for inferring mental processes from ob-
served patterns of brain activity.

While previous reward-related meta-analyses have fo-
cused on specific aspects of reward processing (e.g.,
subjective valuation; Bartra, McGuire, & Kable, 2013;
Diekhof, Kaps, Falkai, & Gruber, 2012; Sescousse,
Caldu, Segura, & Dreher, 2013; van der Laan, de Ridder,
Viergever, & Smeets, 2011), the corpus of neuroimaging
results included in our meta-analysis adds to prior work by
including brain activity coordinates from a diverse range of
tasks and experimental contrasts. The relatively liberal in-
clusion criteria for our corpus provides a more complete
and agnostic investigation of the reward processing con-
struct that arguably better captures its multifaceted nature.
Further, while existing reward processing meta-analyses
manually grouped published neuroimaging results accord-
ing to reward-related cognitive constructs of interest to
characterize associated brain activity patterns (e.g., Liu,
Hairston, Schrier, & Fan, 2011), our meta-analytic, data-
driven parsing of experimental contrasts allowed for dis-
tinct patterns of brain activity to emerge organically and
unbiased by prior assumptions. This k-means clustering
approach differs from existing meta-analytic strategies as
it can identify dissociable patterns of brain activity present
within subgroups of studies within the corpus that might
otherwise be obscured when focusing only on activity con-
vergence across the entire corpus.

Overall our goals were to (1) provide a data-driven, func-
tionally relevant summary of brain activity patterns common-
ly observed across diverse reward-related neuroimaging para-
digms; (2) perform functional decoding analyses linking these
activity patterns with distinct cognitive-behavioral processes;
and (3) to integrate summative interpretations of empirically
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derived meta-analytic results within existing reward process-
ing theories.

Method

To organize reward-related neuroimaging results into sub-
groups based on the spatial profile of their modeled activity
maps, we performed k-means clustering acrossmultiple model
orders. We identified viable model orders operationalized as
those that maximized between-group differences and mini-
mized within-group differences of between-experiment corre-
lation distributions using four information-theoretic criterion
metrics. After comparing and contrasting viable solutions, we
ultimately selected the solution with the greatest number of
neurocognitively plausible MAGs. Subsequently, convergent
brain activity within each grouping of experiments in this
selected solution was quantified via separate neuroimaging
meta-analyses. Functional decoding assessments using the
NeuroSynth database (Neurosynth.org; Yarkoni, Poldrack,
Nichols, Van Essen, & Wager, 2011) were then performed
on the resulting MAG’s unthresholded activation likelihood
estimation (ALE) maps. The following subsections elaborate
the methodological details of these steps in our meta-analytic
clustering approach.

Identification of included studies

To compile a large corpus of neuroimaging results across re-
ward processing paradigms, we extracted activation coordi-
nates reported in published studies archived in the BrainMap
Database as of April 22, 2016, under the paradigm class meta-
data labels Reward, Delay Discounting, andGambling (www.
brainmap.org; Fox et al., 2005; Fox & Lancaster, 2002; Laird
et al., 2011). The vast majority (94.9%) of the identified
studies were archived under the Reward label with most
Delay Discounting and Gambling studies being additionally
archived under Reward. The Reward label denotes that the
reported activation coordinates were identified in a task
where a stimulus served to reinforce a desired response (e.g.,
monetary reward after a correct response; www.brainmap.org/
taxonomy/paradigms).

We considered only activation coordinates from published
neuroimaging studies, among healthy participants, that were
reported in standard Talairach (Talairach & Tournoux, 1988)
or Montreal Neurological Institute (MNI; Collins, Neelin,
Peters, & Evans, 1994) space and derived from whole-brain
statistical tests. Brain coordinates derived through behavioral
correlations or a priori region of interest (ROI) analyses were
excluded. As this meta-analysis aimed to investigate brain
activity linked with typical reward processing, coordinates
from groups of individuals diagnosed with neuropsychiatric
disorders (e.g., addictive disorders) were excluded from the

corpus. Each study included provided at least one experimen-
tal contrast that statistically identified brain activity associated
with a certain task event defined by the original authors (e.g., a
brain activity map). These experimental contrasts were sum-
marized and curated in the BrainMap database as a set of brain
activity foci/coordinates linked either with phases of the orig-
inal task (i.e., task response, anticipation of outcome, outcome
delivery) or stimuli presented in the task (e.g., positive out-
come, negative outcome, high reward, low reward). Foci from
experimental contrasts could also reflect brain activity loca-
tions linked with more abstract and computationally derived
constructs of interest in the original study (e.g., learning rate,
subjective value).

Modeled activation (MA) images of experimental
contrasts

Reward-related activation coordinates reported in Talairach
space were first transformed into MNI space (Lancaster
et al., 2007). Subsequently, modeled activation (MA) images
for each experimental contrast (2mm3 resolution) were gener-
ated by modeling coordinate foci as Gaussian probability dis-
tributions to account for spatial uncertainty due to template
and between-subject variance (Eickhoff et al., 2009; see Fig.
1, Step 1). This algorithm eliminates the effect of within-
experiment number of foci and within-experiment foci prox-
imity by determining the voxel-wise MA values via the max-
imum probability associatedwith any one location reported by
the experiment instead of taking the union of probabilities
associated with all the foci reported by an experiment
(Turkeltaub et al., 2012). This ensured that multiple foci from
a single experiment did not jointly influence theMAvalue of a
single voxel. Each experimental contrast’s MA image was
collapsed to a single dimension vector composed of v voxels,
and then each experiment’s (e) vector was concatenated to
create an e × v matrix. The Pearson’s product-moment corre-
lation (r) was then computed for each pair of MA maps,
resulting in a symmetric e × e cross-correlation matrix
reflecting the extent of similarity (correlation) between the
activity locations of different experiments while considering
the experiments sample size (see Fig. 1, Step 2).

Correlation matrix-based k-means clustering

To group experimental contrasts with similar brain activity
patterns, we applied an adapted meta-analytic k-means clus-
tering procedure previously applied to large collections of
experimental contrasts (Bottenhorn et al., 2019; see Fig. 1,
Step 3). The distribution of experiment-to-experiment dis-
tance values, defined as the additive inverse of the Pearson’s
correlation coefficient (i.e., 1 − r), was the spatial measure
used to determine an experimental contrast’s group assign-
ment. We applied an implementation of k-means clustering
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in the MATLAB environment (Version 2014b; The
MathWorks, Inc., Natick,MA) and classified experiments into
k groupings. We generated 14 clustering solutions (k = 2
through k = 15) similar to previous work using k-means clus-
tering tehniques on meta-anayltic functional neuroimaging
data (Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012;
Zangemeister et al., 2016). K-means clustering is a nonhierar-
chical clustering approach that segregates observations into a
prespecified number of groups (k) (Forgy, 1965; Hartigan &
Wong, 1979; Nanetti, Cerliani, Gazzola, Renken, & Keysers,
2009). This is accomplished by randomly selecting a starting
centroid for each group and iterativitly reassigning observa-
tions to groups such that within-group variance is minimized
and between-group variance is maximized. The random selec-
tion of an initial grouping centroid and the subsequent reas-
signment of experiments was repeated 1,000 times to identify
viable solutions (Nanetti et al., 2009).

Selection of an optimal number of clusters (k)

We identified viable model orders based on four information-
theoretic criterion metrics that characterized the group separa-
tion and group stability properties of eachmodel order (Bzdok

et al., 2015; Eickhoff et al., 2016; see Fig. 1, Step 4). These
metrics have previously been used in coactivation-based
parcellation analyses to determine optimal clustering solutions
(Bzdok et al., 2013b; Chang, Yarkoni, Khaw, & Sanfey, 2013)
for brain regions across task-independent (Bottenhorn et al.,
2019; Kahnt, Chang, Park, Heinzle, & Haynes, 2012; Kelly
et al., 2010) and task-dependent (Bzdok et al., 2015; Chase
et al., 2015a; Clos et al., 2013; Ray et al., 2015) brain states.
We compared and contrasted the outcomes from viable clus-
tering solutions and ultimately selected the solution identify-
ing the greatest number of neurocognitively plausible MAGs
for presentation in the main text. The outcomes of other viable
clustering solutions are presented in the supplemental
materials.

Regarding between-group separation, solutions indicating
greater separability were desired as they possess a lower like-
lihood of experimental contrast misclassification into neigh-
boring groupings. Two metrics were used to assess group
separation. The first was the average silhouette coefficient
(ASC; Kaufman & Rousseeuw, 2009) that quantified a given
experiment’s similarity to the others within its designated
grouping relative to the experiments in other groupings.
This criterion metric identifies viable solutions (e.g., k) as

Fig. 1 Data extraction and k-means clustering analytic workflow.
Activation coordinates from experimental contrasts meeting inclusion
criteria were extracted from the BrainMap database and reconstructed
into modeled activation (MA) images (Step 1). Each experimental con-
trast’s MA image was then collapsed to a one-dimensional vector com-
posed of v voxels, and then each experiment’s (e) vector was concatenat-
ed to create an e × v matrix. Pearson’s correlations between every pair of
experiment vectors generated an experiment (e) × experiment (e) cross-

correlation matrix (Step 2). K-means clustering analysis grouped experi-
ments according to 14 different model orders (k = 2–15; Step 3). Four
different metrics were used to determine viable clustering solutions (Step
4). Finally, an activation likelihood estimation (ALE) meta-analysis (p-
cluster-level < .05; pvoxel-level < .001) was performed for each resulting meta-
analytic grouping (MAG) of experimental contrasts to compute ALE
images of significant activity convergence (Step 5)
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those with significantly higher coefficients than the subse-
quent solution (k + 1) or as solutions without significantly
lower coefficients than the preceding solution (k − 1). The
second separability metric was the hierarchy index (HI),
which compared the percentage of experiments assigned to
a given grouping that were lost from that grouping when
moving from the k to the k − 1 solution for all solutions
greater than k = 2 (Kahnt et al., 2012). Experiments are gen-
erally thought to be lost from a grouping because of incorrect
group assignment. Viable solution candidates were defined as
those with a percentage of lost experiments below the median
value for all possible solutions.

Regarding within-group stability, solutions demonstrating
higher stability were desired as high stability indicates consis-
tent and robust grouping. Two metrics were employed to as-
sess group stability. The first was the variation of information
(VI) statistic (Meilă, 2007), which described the amount of
information lost or gained when moving to a subsequent clus-
tering solution. Viable solutions were defined as those where
the VI increased from the k to k + 1 solution (primary criteri-
on) and where the VI decreased from the immediately preced-
ing k − 1 solution to the k solution (secondary criterion; Clos
et al., 2013). The second metric used to assess group stability
was the minimum number of experimental contrasts consis-
tently assigned to a grouping, relative to the mean number of
experimental contrasts consistently assigned to that grouping
across the 1,000 iterations (Nickl-Jockschat et al., 2015;
Poldrack, 2006). Viable solution candidates were defined as
those with a minimum number of consistently assigned exper-
iments that was greater than half the mean number of consis-
tently assigned experiments.

Statistical convergence within meta-analytic
groupings

The k-means clustering algorithm assigns all the experimental
contrasts within the corpus to separate collections/groupings.
We refer to the collections of experimental contrasts in the k-
means clustering solutions as meta-analytic groupings
(MAGs). After identifying a clustering solution, convergent
brain activity maps across all experimental contrasts within
each of the kMAGs were produced using a revised activation
likelihood estimation (ALE) algorithm implemented in the
MATLAB environment (see Fig. 1, Step 5; Eickhoff et al.,
2012; Eickhoff et al., 2009; Turkeltaub et al., 2012). Voxel-
wise ALE scores were computed as the union of all MA im-
ages within each MAG and served as a quantitative represen-
tation of convergent activity within a grouping. Each MAG’s
distribution of ALE scores was then subjected to significance
testing using a null distribution analytically derived from the
random spatial association between experiments (Eickhoff
et al., 2012). The resulting p values were thresholded at p-
cluster-level < .05 (family-wise-error corrected for multiple

comparisons; cluster-forming threshold pvoxel-level < .001) to
identify significant clusters within each MAG. Convergent
activity maps were exported to MANGO (http://ric.uthscsa.
edu/mango/) and rendered for visualization using Nilearn 0.
5.0 (Abraham et al., 2014).

Functional decoding of meta-analytic groupings

To gain insight into cognitive and behavioral processes asso-
ciated with convergent brain activity captured within each
MAG, we performed functional decoding using NeuroVault
(Gorgolewski et al., 2015) and NeuroSynth (Yarkoni et al.,
2011). NeuroVault is a Web-based repository allowing re-
searchers to store, share, and visualize statistical neuroimaging
maps. NeuroVault also facilitates functional decoding by in-
terfacing with NeuroSynth, a platform that produces term-
specific meta-analytic maps based on its database containing
activation coordinates and automatically extracted terms from
over 14,000 published neuroimaging studies (abstracts).
Functional decoding was then performed by uploading each
MAG’s unthresholded ALE map to NeuroVault, which then
correlated these uploaded maps with term-specific meta-ana-
lytic maps extracted from NeuroSynth’s database. This
yielded a ranked list of maximally related NeuroSynth terms
and their respective Pearson correlation values. These corre-
lation values represented how well the spatial distribution of
activity associated with each term in the database matched the
activity pattern of the uploaded MAG’s ALE map. This func-
tional decoding approach allowed for an objective description
of the NeuroSynth terms linked with each MAG, as well as a
comparison of our MAGs with the broader neuroimaging
literature.

Results

The search criteria yielded a corpus of brain activation foci
from a total of 749 experimental contrasts across 176 studies
involving 13,358 healthy participants. Published articles with
experimental contrasts included in the corpus are listed in
Table S1 in the Supplemental Information. Of these 749 con-
trasts, 711 (94.9%) were archived under BrainMap’s Reward
paradigm class label, 42 (5.6%) under the Delay Discounting
paradigm class label, and 20 (2.7%) under the Gambling par-
adigm class label. Almost all studies included in the corpus
were also archived under a variety of other meta-data labels
(e.g., Task Switching [6.4%], Go/No-Go [2.9%], Visuospatial
Attention [2.9%], Wisconsin Card Sorting Test [2.6%],
Reasoning/Problem Solving [1.3%]), which is unsurprising
as reward processing is a multifaceted construct, connecting
elements of sensation, perception, cognitive control, and other
mental operations. As studies included in the corpus could be
dually archived under multiple paradigm classes, the
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percentages of corpus experiments in each paradigm class was
not expected to sum to 100%. A complete list of the percent-
age of experiments achieved under each paradigm class is
presented in Table S2 in the Supplemental Information.

The foci included in our corpus were from 749 experimen-
tal contrasts that probed specific events from a variety of
tasks including, but not limited to monetary incentive delay
(MID) tasks; gambling simulation tasks (e.g., wheel of for-
tune, four-arm bandit/slot machine, blackjack tasks); stock
market simulation tasks; delay discounting tasks; face, prod-
uct, or food preference tasks; punishment avoidance tasks
(i.e., predator, prey paradigm); reversal learning tasks (e.g.,
Wisconsin card sort tasks); Iowa gambling tasks; tower of
London tasks; go/no-go tasks; and balloon analogue risk
tasks (BART). However, not all studies used identical ver-
sions of these well-known paradigms and even studies apply-
ing the same task often reported brain activity from different
experimental contrasts.

Clustering solutions

To identify viable clustering solutions, we quantitatively eval-
uated solutions k = 2 through k = 15 across four metrics: the
average silhouette coefficient (ASC), the hierarchy index (HI),
the variation of information (VI) statistic, and a cluster-size
metric (see Fig. 2). The ASC metric identified the k = 4 model
order as a viable solution, as it had a higher ASC than the
subsequent k = 5 model order, but not a lower ASC than the
preceding k = 3 model order (see Fig. 2a). Regarding HI,
model orders k = 3, 4, 5, 7, 8, and 9 met criterion, having a
percentage of lost experiments below the median with the k =
7 model order having the lowest percentage of lost experi-
ments (see Fig. 2b). Regarding VI, the k = 5, 7, and 13 model
orders all met primary and secondary metric criteria.
Specifically, the subsequent solution and the immediately pre-
ceding solution both displayed an increased VI statistic (see
Fig. 2C). Regarding the cluster consistency metric, all

Fig. 2 Clustering solution metrics for k = 2–15. a A higher average
silhouette coefficient (ASC) indicates increased group separation and a
lower likelihood of experiment misclassification. The ASC identified the
k = 4 model order as a viable solution. b However, the hierarchy index
(HI) indicated that the k = 7 model order not only displayed a below-
median (gray dashed line) number of experiments lost from the previous
model order but also displayed the lowest HI relative to all other model
orders. c The k = 5, 7, and 13 model orders met both the primary and
secondary criterion for the variation of information (VI) metric as they all

displayed an increased VI statistic moving from k to k + 1 and displayed a
decreased VI statistic moving from k − 1 to k.This indicated that the k = 5,
7, and 13model orders had high group stability. dAll solutions except k =
14 and k = 15 had a minimum number of consistently assigned experi-
ments that was greater than half themean number of consistently assigned
experiments indicating high cluster consistency. Given that model orders
k = 4, 5, and 7 were identified across multiple metrics, we considered
these to be viable clustering solutions. (* indicates the best solution or
solutions for each metric)
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solutions except k = 14 and k = 15 had a minimum number of
consistently assigned experiments that was greater than half
the mean number of consistently assigned experiments indi-
cating high cluster consistency (see Fig. 2D).

Based on these metrics, we identified model orders k = 4, 5,
and 7 as viable solutions, as they all met criteria for three of the
four metrics. Ultimately, we selected the k = 7 solution for
presentation in the main text, as it identified the greatest num-
ber of neurocognitively plausible MAGs. However, we also
performed supplementary analyses and examination of the k =
4 and k = 5 solutions. Clustering (see Figs. S1 and S3) and
functional decoding results (Figs. S2 and S4, Tables S4 and
S5) for these two other solutions are presented in the
Supplemental Information and discussed in relation to the k
= 7 outcomes. We suggest that examination and functional
decoding of these three viable model orders provides addition-
al information regarding the integration and segregation of
functional brain networks and cognitive-behavioral constructs
across varying levels of parcellation.

Meta-analytic groupings

As depicted in the experiment (e) × experiment (e) cross-
correlation matrix ordered by the seven groupings (see Fig.
S5 in the Supplemental Information), MAGs from the k = 7
clustering solution displayed between-MAG differences and
within-MAG similarities when considering pairwise
experiment–experiment correlation distributions. Further,
each of the seven MAGs contained a reasonably high number
of experiments and foci from studies involving a large pool of
participants (see Table 1). The generated ALE maps identified
regions of convergent activity for each of the seven MAGs
(pcluster-level < .05; family-wise-error corrected; pvoxel-level <
.001; see Fig. 3, Table S3). The order in which the seven
derived MAGs were labeled does not reflect any aspect of
the k-means clustering analysis.

The ALE map for MAG-1 (see Fig. 3, red) displayed bilat-
eral convergent activity in a large cluster extending through

most of the striatum and thalamus and into the midbrain and
anterior insula with the center of mass in the ventral striatum
(VS). MAG-1 also included smaller clusters in the subgenual
anterior cingulate, posterior cingulate cortex (PCC), and ven-
tromedial prefrontal cortex (vmPFC). MAG-2 (Fig. 3, yellow)
also exhibited convergent activity in the striatum, thalamus,
medial prefrontal cortex (mPFC), cingulate, and anterior
insula. Whereas MAG-1 included activity in the VS,
vmPFC, anterior cingulate cortex (ACC) and PCC, MAG-2
displayed convergent activity centered on more dorsal regions
(see Fig. S6a), specifically in the dorsal striatum (DS), dorsal
medial prefrontal cortex (dmPFC), pre-supplementary motor
area (pre-SMA), and dorsal medial cingulate cortex (dmCC).
MAG-3 (Fig. 3, green) exhibited bilateral convergent activity
in the amygdala and hippocampus, as well as in the SMA and
left posterior insula. MAG-4 (Fig. 3, pink) displayed conver-
gence in the bilateral insulae and the dmPFC extending into
the dorsal ACC. MAG-4 also included smaller bilateral clus-
ters in the posterior thalamus encompassing the epithalamic
habenular nuclei and in the lateral PFC (LPFC), PCC, and the
bilateral intraparietal sulcus (IPS). MAG-5 (Fig. 3, purple)
also displayed convergence in the bilateral IPS extending into
the inferior and superior parietal lobules, dmPFC, and the
bilateral LPFC including clusters in the dorsal middle frontal
gyrus and frontal pole. MAG-6 (Fig. 3, aqua) displayed con-
vergence in the central medial PFC (cmPFC), subgenual
ACC, right middle temporal gyrus, bilateral inferior frontal
gyrus, precuneus, and bilateral temporoparietal junction
(TPJ) extending into the right middle temporal gyrus and left
supramarginal gyrus. MAG-7 (Fig. 3, navy) also displayed
convergence in the medial frontal cortex, but ventral to that
for MAG-6 (Fig. S6b in the Supplemental Information).
Specifically, MAG-7 displayed a large cluster extending
across the entire medial orbital frontal cortex (OFC) and
subgenual ACC in addition to convergence in the right amyg-
dala, right hippocampus, PCC, and left middle frontal gyrus.

Functional decoding

NeuroSynth functional decoding results were exported as term
correlation values quantifying the similarity between an input
map (i.e., each MAG’s ALE map) and maps associated with
the NeuroSynth term. To facilitate interpretation, the top 10
NeuroSynth terms with the highest correlation values for each
MAG were used to generate behavior profiles (see Fig. 4,
Table 2). Anatomical NeuroSynth terms, such as “insula” or
“anterior,” were excluded from these lists. NeuroSynth terms
that were near duplicates of those already on the list were
condensed into the one term that was highest on the list. For
example, the terms “emotional” and “emotions” would be
condensed if the term “emotion” was already in the top 10
(see Table 2, Near Duplicates section).

Table 1 Number of experiments, subjects, and foci within each MAG
from the k = 7 clustering solution

MAG Experiments Subjects Foci

MAG 1 181 3,226 1,609

MAG 2 99 1,583 1,101

MAG 3 89 1,717 601

MAG 4 98 1,775 886

MAG 5 94 1,766 667

MAG 6 88 1,652 546

MAG 7 100 1,639 541

Total 749 13,358 5,951
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Functional interpretations of MAGs

We provide an interpretation of each MAG’s presumed func-
tional role based on formal decoding outcomes and previous
studies involving the brain regions displaying convergent ac-
tivity. These functional interpretations speak to probabilistic
co-occurrence of activity patterns with certain cognitive-
behavioral functions across the literature; but they do not de-
fine the function of specified brain locations, per se.

MAG-1 displayed convergent activity in the mid-brain,
vmPFC, and VS (see Fig. 3, red). The VS and its dopaminer-
gic connections are known to respond to reward cues and
unexpected outcomes or reward prediction errors (RPEs;
Hollerman & Schultz, 1998; O’Doherty et al., 2003; Parker
et al., 2016; Schultz et al., 1997). Functional decoding results
indicated that MAG-1 was associated with the terms predic-
tion error, outcome, anticipation, reward, gains, and incentive
(see Fig. 4, Table 2). These terms, in conjunction with the

Fig. 3 Brain activity profiles associated with eachmeta-analytic grouping
(MAG) of reward processing experiments derived via k-means clustering.
ALE images identified significant (pcluster-corrected < .05; pvoxel-level < .001)

convergence in dissociable and distributed brain regions across each
MAG. Unthresholded maps of each MAG are available on NeuroVault
(https://neurovault.org/collections/5070/). (Color figure online)
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convergent activity observed in the VS and vmPFC, suggest
that MAG-1 may play a role in processing reward cues, unex-
pected outcomes, and encoding RPEs.

MAG-2 also showed convergent activity in the striatum and
mPFC, albeit in more dorsal regions than those observed for
MAG-1. Specifically, MAG-2 displayed activity in the dmPFC/
pre-SMA, DS, dmCC, and anterior insula (see Fig. 3, yellow).
Behaviorally, MAG-2 was associated with many of the same
terms as MAG-1, suggesting RPE encoding and reward cue
processing, specifically, anticipation, reward, gains, incentive,
incentive delay, monetary, and motivation (see Fig. 4, Table 2).
In addition, MAG-2 was also associated with three other terms:
losses, behavior, and task. Evidence suggests that more dorsal
regions of the striatum, mPFC, cingulate, and the pre-SMA
may specialize in processing response–outcome contingencies
(Atallah, Lopez-Paniagua, Rudy, & O’Reilly, 2007; McNamee,
Liljeholm, Zika, & O’Doherty, 2015; O’Doherty et al., 2004;
Parker et al., 2016) and negative outcomes (Bartra et al., 2013;
Tops & Boksem, 2012). MAG-2’s brain activity profile and
behavioral profile were consistent with this view and suggest
involvement in RPE encoding, but perhaps with a specializa-
tion for response–outcome contingencies and/or involving neg-
ative outcomes.

MAG-3 exhibited convergent activity in the amygdala, hip-
pocampus, left posterior insula, and SMA (see Fig. 3, green).

Previous research has implicated these brain regions in the
recognition and regulation of emotions (Adolphs, Baron-
Cohen, & Tranel, 2002; Grecucci, Giorgetta, Van’t Wout,
Bonini, & Sanfey, 2013; Phan et al., 2003; Phan et al., 2004;
Schnell, Bluschke, Konradt, & Walter, 2011; Seymour &
Dolan, 2008). Our functional decoding results were consistent
with these previous findings as MAG-3’s behavior profile
included affective terms such as reactivity, emotion, emotional
stimuli, anxiety, fearful, and happy (see Fig. 4, Table 2). In
conjunction with the brain activity profile, one functional in-
terpretation of MAG-3 is a role in emotional processing.

MAG-4 included convergent activity in the bilateral ante-
rior insulae, dACC, dmPFC, and thalamus with clusters
encompassing the epithalamic habenular nuclei (see Fig. 3,
pink). The anterior insula, dACC, and thalamus represent core
nodes of the salience network (SN) (Seeley et al., 2007), a
commonly observed large-scale brain network thought to be
involved in detecting salient stimuli and, in turn, adjusting
attentional focus by modulating the relative activity level of
other networks (Menon & Uddin, 2010; Sridharan, Levitin, &
Menon, 2008; Sutherland, McHugh, Pariyadath, & Stein,
2012). MAG-4’s behavior profile included terms indicating a
role in generalized “task-on” processes (e.g., cognitive
control, decision, task), and both MAG-4 and MAG-5 were
jointly associated with terms related to the specific executive

Fig. 4 Behavior profiles associated with each meta-analytic grouping
(MAG) of reward processing experiments. Behavior profiles consisted
of NeuroSynth (NS) terms with the top 10 highest correlation values for
each MAG (excluding anatomical terms). Lines connect MAGs to the

terms making up their unique behavior profile. Additionally, some terms
or groups of terms are connected to multiple MAGs, indicating that these
terms were in the top 10 lists of multiple MAGs
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function working memory (working memory, maintenance,
load; see Fig. 4, Table 2). Further, MAG-4’s behavior profile
also included the term stop, suggestive of another executive
function—specifically, inhibitory control/response inhibition.
MAG-4 convergent activity also encompassed the habenula,
an epithalamic nucleus implicated in conflict monitoring, error
processing, reward, and consequently decision-making
(Baker et al., 2016; Ide & Li, 2011; Kawai, Yamada, Sato,
Takada, &Matsumoto, 2015).MAG-4’s pattern of convergent
activity resembled previous accounts of human habenula con-
nectivity (Ely, Stern, Kim, Gabbay, & Xu, 2019; Ely et al.,
2016), particularly during error processing (Ide & Li, 2011),
and thus it is noteworthy that MAG-4’s behavior profile also
includes terms related to performance monitoring (conflict,
monitoring, cognitive control). In conjunction with the ob-
served convergent activity in the anterior insula, dACC, and
habenula, the collection of terms in MAG-4’s behavior profile
suggested a role in externally focused attention particularly in
the context of executive functions such as working memory,
response inhibition, and performance monitoring.

MAG-5 presented convergent activity in the LPFC and
parietal cortex (see Fig. 3, purple), core nodes of the executive
control network (ECN; Seeley et al., 2007). The ECN is
thought to play a prominent role in attention, inhibition, cog-
nitive flexibility, working memory, and planning (Brown,
Schmitt, Smith, & Gold, 2019; Niendam et al., 2012) and
has also been linked with reward motivated decision-making
(Hobkirk, Bell, Utevsky, Huettel, & Meade, 2019; Tanji &
Hoshi, 2008). As noted above, MAG-5 and MAG-4 were
jointly associated with terms related to working memory
(working memory, maintenance, load; see Fig. 4, Table 2),
and similar to MAG-4, MAG-5’s behavior profile also includ-
ed terms that indicated a role in generalized “task-on” process-
es (executive, attentional, performance). Additionally, MAG-
5 was associated with terms indicative of mathematical calcu-
lating (calculation, arithmetic). Overall, this collection of
terms suggested a role in externally focused attention particu-
larly in the context of higher order mental operations such as
mathematical calculation.

MAG-6 displayed convergent activity in the cmPFC, parie-
tal lobe, TPJ, middle temporal gyrus, PCC, and precuneus (see
Fig. 3, aqua), regions resembling the default-mode network
(DMN). The DMN is a commonly observed collection of brain
regions showing decreased activity during overt task perfor-
mance (Raichle et al., 2001) and increased activity during “rest”
(Spreng, 2012; Spreng & Grady, 2009) or internally focused
tasks involving theory of mind, autobiographical memory re-
trieval, or other forms of self-referential thought (Andrews-
Hanna, 2012; Mars et al., 2012; Qin & Northoff, 2011;
Spreng & Grady, 2009). MAG-6’s behavioral profile was con-
sistent with these functions previously linked to the DMN and
included terms suggesting self-referential thought
(autobiographical, self-referential, beliefs), mentalizing

(beliefs, mental states, mentalizing), and theory of mind
(theory mind, social, moral; see Fig. 4, Table 2). The conver-
gent activity in DMN regions, in conjunction with this collec-
tion of terms suggested involvement of this MAG in internally-
focused thought specifically regarding abstract mental states.

MAG-7 also displayed convergent activity in DMN re-
gions (see Fig. 3, navy), including the medial OFC, ACC,
and PCC (Acikalin et al., 2017; Raichle et al., 2001; Spreng,
2012; Spreng & Grady, 2009). However, the convergent ac-
tivity in the medial OFC and PCC was located more ventrally
than that from MAG-6. Additionally, MAG-7 did not display
convergent activity in the TPJ or temporal gyrus, as in MAG-
6, but instead displayed convergence in the right amygdala.
Interestingly, the vmPFC, medial OFC, amygdala, and PCC
have been implicated in subjective valuation and have been
previously characterized as constituting a subjective valuation
network (Bartra et al., 2013; Levy&Glimcher, 2012; Peters &
Buchel, 2010). While both MAG-7 and MAG-6 were jointly
associated with terms suggesting intrapersonal and interper-
sonal mentalizing (e.g., autobiographical, social, referential),
MAG-7 was also associated with terms related to subjective
valuation and arousal (i.e., value, valence, arousal, reward,
neutral, and emotion; see Fig. 4, Table 2). Overall, the local-
ization of convergent activity in conjunction with the func-
tional decoding of MAG-7 suggested a role in internally fo-
cused thought specifically in the context of subjective
valuation.

Discussion

Using a data-driven k-means clustering approach, we classi-
fied 749 reward processing experiments into seven meta-
analytic groupings (MAGs). We then computed and visual-
ized the convergent brain activity for each MAG in the ALE
framework. Our results suggested that the underlying organi-
zation of brain activity during reward processing tasks could
be dissociated into separate networks, each with distinct func-
tional roles. By performing exploratory functional decoding
analyses, we constructed a behavior profile for each MAG
comprised of cognitive-behavioral terms that captured com-
mon and unique mental operations that may be critically
linked with each MAG’s brain activity profile. We note that
while our functional decoding results suggest differential
functioning across brain activity patterns, they do not defini-
tively prescribe functional specializations to these patterns.

MAG functions within a reward processing framework

To serve as a roadmap for the discussion below, we concep-
tualized these outcomes in a reward processing heuristic
framework. This framework, combining the summative inter-
pretations of all MAGs, captures cognitive mechanisms
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involved with various potential influences on reward process-
ing present in the complex contexts generated by various re-
ward processing tasks (see Fig. 5). In the more complex situ-
ations generated by human neuroimaging paradigms, we pro-
pose that value predictions, based on RPE signals generated
through stimuli–outcome and response–outcome pairings, are
further influenced by external contextual factors (Behrens
et al., 2007; Fiorillo, Tobler, & Schultz, 2007; Hariri et al.,
2006; Porcelli & Delgado, 2009; Preuschoff & Bossaerts,
2007; Rangel et al., 2008; Seaman et al., 2018), and/or by
subjective internal factors (Hetherington, Pirie, & Nabb,
2002; Juechems et al., 2019; Lopez-Persem et al., 2016;
Singer, Critchley, & Preuschoff, 2009).

While MAG-1 and MAG-2 identified convergent brain ac-
tivity in a network of regions implicated in value prediction
through RPE signals during classical and instrumental condi-
tioning (an interpretation further supported by quantitatively
defined behavior profiles), the other five MAGs possessed
behavior profiles suggesting putative roles in processing more
peripheral, external, and internal influences present in the
complex reward contingencies inherent to more externally

valid reward learning circumstances. Based on these results,
our heuristic framework proposes that emotional, external,
and internal influences in a given context play a role in mod-
ulating the valuation of outcomes formed and updated by RPE
signals (see Fig. 5). The following subsections describe each
MAG’s interpretat ion in more detai l within this
conceptualization.

Value prediction through RPE encoding

The most basic elements of value prediction are often studied
within conditioning paradigms in which a reward or punish-
ment is paired with a neutral stimulus (O’Doherty, 2004;
Porcelli & Delgado, 2009). After this association has been
learned, the neutral stimulus acquires a predictive value
(Hollerman & Schultz, 1998; Schultz et al., 1997).
Neuroimaging findings have provided robust evidence of do-
paminergic signals in the striatum encoding RPEs (O’Doherty,
2004; O’Doherty et al., 2003; Porcelli & Delgado, 2009;
Wang, Smith, & Delgado, 2016). These signals are thought
to form value predictions and learned stimulus–outcome and

Fig. 5 Heuristic framework linking each MAG’s unique functional
interpretation. This schematic depicts a synthesized interpretation of
each MAG’s dissociable functions based on term definitions and
previously implicated cognitive processes. We propose that critic
(ventral) and actor (dorsal) striatal-medial frontal pathways form value
predictions through classical conditioning (stimuli–outcome associations)
and/or instrumental conditioning (response–outcome contingencies).

These value predictions are further modulated by a variety of emotional
factors (stress, fear, anxiety), external factors (task calculations, task per-
formance, risk, delay, effort, probability), and other internal factors (sub-
jective preferences, personal beliefs, internal states, memories of past
experiences). The integration of these influences results in a final repre-
sentation of value that ultimately governs behavior. (Color figure online)
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response–outcome associations (Delgado, Nystrom, Fissell,
Noll, & Fiez, 2000; Gottfried, O’Doherty, & Dolan, 2003;
Hollerman & Schultz, 1998; Knutson et al., 2001; Schultz,
2016; Zald et al., 2004). Additionally, blood oxygen-level de-
pendent (BOLD) activity in the mPFC, thalamus, midbrain,
amygdala, insula, and inferior frontal cortex has been associ-
ated with RPE-related task events (Chase et al., 2015b;
Fouragnan, Retzler, & Philiastides, 2018; Garrison et al.,
2013; Rutledge, Dean, Caplin, & Glimcher, 2010). Both of
our MAGs that included striatal activity (i.e., MAG-1, MAG-
2; in conjunction with other regions) exhibited behavior pro-
files consistent with RPE task event processing.

That said, accumulating evidence suggests that there may
be dissociable ventral and dorsal RPE-encoding pathways
with distinct functional roles (García-García, Zeighami, &
Dagher, 2017; O’Doherty et al., 2004; Parker et al., 2016)
and that these roles can be mapped to a well-studied compu-
tational framework termed the actor-critic model (García-
García et al., 2017; Niv, 2009). Specifically, the pathway from
the ventral tegmental area (VTA) to the VS to limbic and
cortical regions (i.e., the mesocorticolimbic pathway) is
thought to use RPEs to update stimuli values, corresponding
to the role of the critic in actor-critic models. Whereas the
pathway from the substantia nigra (SN) to the DS to the motor
and premotor cortex (i.e., the nigrostriatal pathway) is thought
to assign this value to actions and be involved in action selec-
tion, corresponding to the actor role in actor-critic models
(Barto, 1995; García-García et al., 2017).

The distinction between regions displaying convergent ac-
tivity in MAG-1 and MAG-2 is in line with such actor-critic
models distinguishing between ventral and dorsal pathways.
MAG-1 displayed convergent activity in the striatum, thala-
mus, midbrain, amygdala, anterior insula, and ventral aspects
of the mPFC and the associated behavioral profile included
the terms prediction error, anticipation, reward, outcome, and
incentive supporting previous accounts of these regions
responding to reward cues and RPEs (Bray & O’Doherty,
2007; Kirsch et al., 2003; McClure, Berns, & Montague,
2003). MAG-2, while also displaying convergent activity in
the striatum and mPFC, was localized to more dorsal regions
and included activity in the dmCC and pre-SMA (see Fig. S6a
in the Supplemental Information). MAG-2 was also associat-
ed with terms indicative of RPE encoding, specifically
incentive, reward, losses, motivation, and anticipation.
However, unlike MAG-1’s behavioral profile, that for
MAG-2 included the terms behavior and task suggestive of
learning more instrumental, response-outcome contingencies.
Evidence suggests that DS function is also linked to RPE
encoding and particularly so during instrumental conditioning
paradigms (Atallah et al., 2007; Elliott, Newman, Longe, &
Deakin, 2004; García-García et al., 2017; Hart, Leung &
Balleine, 2014; Haruno et al., 2004; O’Doherty et al., 2004).
In these paradigms, outcomes are contingent on the execution

of an action. As instrumental contingencies are learned, ac-
tions that lead to desired outcomes are more likely to be re-
peated. Neuroimaging studies investigating this instrumental
component of conditioning support the notion that DS activity
may reflect dopaminergic signaling underlying response–
outcome contingency learning similar to the way the ventral
striatum supports stimulus–outcome learning (Atallah et al.,
2007; Haruno et al., 2004; O’Doherty et al., 2004). Further,
the dmCC and pre-SMA have been shown to regulate perfor-
mance of instrumental, goal-directed responses (Liljeholm
et al., 2015; Mannella, Mirolli, & Baldassarre, 2016;
McNamee et al., 2015). Thus, the convergent activity ob-
served in the dmCC, pre-SMA, and DS in MAG-2 corre-
sponds well with regions previously implicated in instrumen-
tal conditioning. In addition to positive outcomes, this net-
work is also thought to specialize in processing negative out-
comes (Bartra et al., 2013). Overall, our data-driven, meta-
analytic groupings support the contemporary notion of func-
tionally dissociable ventral and dorsal RPE encoding net-
works. Specifically, MAG-1 captured a network including
VS and vmPFC activity that previous research has implicated
in representing and updating value in stimuli–outcome asso-
ciations, while MAG-2 captured a network including the DS,
dmCC, pre-SMA, and the anterior insula implicated in pro-
cessing response–outcome contingencies and negative out-
comes (Bartra et al., 2013; O’Doherty et al., 2004).

Value modulation by dissociable influences

The behavior profiles associated with MAG-3-7 suggested
additional cognitive mechanisms and brain regions linked
with reward processing. We propose that in complex reward
contexts, valuation may be influenced by emotional factors,
probabilistic external factors, and/or other subjective internal
factors. The behavior profiles for MAGs 3-7 included terms
representing cognitive mechanisms involved in processing a
variety of the peripheral aspects of reward contingencies that
often influence (augment or discount) valuation. Based on the
results of our functional decoding analyses, we interpreted the
functional dissociation of MAGs-3-7 to reflect the processing
of differential value modulators. Depending on the type of
task being employed, value could be modulated by internally
focused processes (e.g., emotion, physiological/affective
states, episodic memory of prior experiences, and personal
beliefs or preferences), and/or externally focused processes
(e.g., performance monitoring, executive attention, risk and
probability calculation).

Emotional influences on valuation

MAG-3 displayed convergent activity in the amygdala, hip-
pocampus, left posterior insula, and SMA and was associated
with affect-related terms such as reactivity, emotion,
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emotional stimuli, anxiety, fearful, and happy. Reward-related
contexts often engender acute emotional states necessitating
emotion identification and/or regulation (Quartz, 2009;
Seymour & Dolan, 2008). Affective states such as fear, stress,
anger, and excitement, and the capacity to regulate these emo-
tions, impact reward processing and goal-directed decision-
making (Coricelli, Dolan, & Sirigu, 2007; Lawrence, Allen
& Chanen, 2010; Paulus & Yu, 2012). External reward con-
texts may involve emotional or arousing stimuli (e.g., happy
or angry facial expressions; deprecating or praising feedback),
which in turn may evoke internal emotional reactions (reac-
tivity, anxiety, fearful, emotion) or require internal processes
(emotion regulation). Therefore, in the context of our meta-
analytic corpus, it is plausible that convergent activity patterns
linked with emotional processing would not discretely cluster
into an internal or external subgrouping of studies, but rather
may represent a distinct neurocomputational influence on re-
ward processing as observed in MAG-3.

External influences on valuation

Both MAG-4 and MAG-5 exhibited convergent activity in the
IPS and LPFC, major hubs of the ECN (Seeley et al., 2007).
The ECN is thought to underlie “task-on attention” when tasks
involve executive attention, working memory, inhibition, cog-
nitive flexibility, and planning (Brown et al., 2019; Niendam
et al., 2012) and has been implicated in reward-motivated cog-
nitive control and decision-making (Hobkirk et al., 2019;
Krmpotich et al., 2013; Tanji & Hoshi, 2008). Additionally,
the IPS and LPFC have been associated with cue-based atten-
tion orienting (Anderson, 2017) and monitoring peripheral as-
pects of reward tasks such as stimuli presentation patterns and a
stimulus’s associated probability or risk levels (Blankenstein,
Schreuders, Peper, Crone, & van Duijvenvoorde, 2018;
Gläscher et al., 2010; Guo, Zhang, Da, Sheng, & Zhang,
2018; Huettel, Mack, & McCarthy, 2002; Rushworth &
Behrens, 2008; Sela, Kilim, & Lavidor, 2012). The correspon-
dence between MAG-4 and MAG-5 and the ECN is intuitive
considering the terms associated with these MAGs suggest a
role in processing external aspects of the task context (MAG-4:
monitoring, difficulty, decision, conflict; MAG-5: performance,
calculation, interference, arithmetic), employing executive
control (MAG-4: cognitive control, MAG-5: executive,
attentional), and maintaining information in working memory
(MAG-4 & 5: working memory, maintenance, load).

Notably, MAG-4 also displayed robust convergent activity
in core nodes of the SN (Seeley et al., 2007) including the
bilateral anterior insulae, dACC, and thalamic nuclei, which
were not observed in MAG-5. The SN is another large-scale
brain network thought to be involved in detecting salient stimuli
and accordingly orienting attentional resources (Menon &
Uddin, 2010; Sridharan et al., 2008; Sutherland et al., 2012).
Additionally, MAG-4 included two bilateral clusters centered

over the habenular nuclei that extended into the thalamus and
midbrain. MAG-4’s pattern of convergent activation also re-
sembled previous accounts of human habenula connectivity
(Ely et al., 2019; Ely et al., 2016), particularly during error
processing (Ide & Li, 2011). The habenula has been implicated
in processing negative outcomes and error monitoring (Baker
et al., 2016; Flannery et al., 2019; Li et al., 2008; Ullsperger &
Cramon, 2003) and is of emerging interest in the context of
reward processing and pathologies characterized by disruptions
thereof, such as addiction and depression (Batalla et al., 2017;
Flannery et al., 2019; Loonen & Ivanova, 2016; Mathis &
Kenny, 2018). Thus, we found it particularly noteworthy that
MAG-4 was uniquely associated with terms suggesting a po-
tential role in performance monitoring (difficulty, stop, conflict,
monitoring, cognitive control). In line with the bottom-up, sa-
lience detecting, and attention-orienting roles of the SN, pre-
clinical research has demonstrated a habenula-ACC circuit in
which errors are detected in the habenula and maintained in the
ACC (Kawai et al., 2015). Then, through interactions with the
ACC, the anterior insula is thought to use this information to
appropriately mediate dynamic switching between DMN and
ECN activity (Kerns et al., 2004; Menon & Uddin, 2010;
Sridharan et al., 2008; Sutherland et al., 2012).

Overall, our functional decoding of MAG-4 and MAG-5
suggest that they may be involved in executive functions
needed during reward-processing tasks, such as monitoring
task performance or task difficulty, assessing associated risk
levels, or calculating the probabilistic nature of reward contin-
gencies. Further, the dissociated convergent activity of these
two MAGs may highlight discrete bottom-up, cognitive con-
trol (MAG-4) and higher order, calculation-based (MAG-5)
executive functions during reward processing.

Internal influences on valuation

In addition to external influences, valuation could be influ-
enced by a variety of internal factors specific to an individual’s
current hedonic state and past experiences; both of which are
modulated by physiological, social, and/or cultural influences
(Bartra et al., 2013; McClure et al., 2004; Rangel et al., 2008;
Yoder & Decety, 2018). Both MAG-6 and MAG-7 were as-
sociated with terms suggesting such an internally oriented
focus such that MAG-6’s behavior profile was indicative of
self-referential abstract mentalizing (self-referential,
mentalizing, mental states, beliefs, moral) and MAG-7’s pro-
file was indicative of using personal preferences and prior
experience to form subjective values (value, valence, arousal,
autobiographical, emotion, neutral, referential).

BothMAGswere characterized by topologic resemblance to
the DMN, which further supported such an interpretation, given
the known link between DMN regions and internally focused
tasks involving theory of mind, autobiographical memory re-
trieval, and other forms of self-referential thought (Hamilton,
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Farmer, Fogelman, & Gotlib, 2015; Mars et al., 2012; Philippi,
Tranel, Duff, & Rudrauf, 2015; Qin & Northoff, 2011; Spreng
& Grady, 2009). However, despite some similarities, dissocia-
ble areas of activity convergence were noteworthy between
these MAGs, such that MAG-6 displayed convergence in more
dorsal regions of the mPFC and PCC, whereas MAG-7
displayed more ventral convergence in the mPFC, medial
OFC, and PCC. Further, MAG-6 included convergent activity
in the TPJ, precuneus, lateral inferior frontal gyrus, and middle
temporal gyrus that was not seen in MAG-7. Instead, MAG-7
displayed convergent activity in a cluster encompassing the
right amygdala and hippocampus.

Regions included specifically in MAG-6 have been broadly
associated with tasks evoking theory of mind and self-
referential thought (Mars et al., 2012; Qin & Northoff, 2011).
Additionally, MAG-7 includes brain regions (vmPFC, medial
OFC, amygdala, PCC) that have been implicated in subjective
valuation networks defined by previous work (Bartra et al.,
2013; Levy & Glimcher, 2012; Peters & Buchel, 2010). For
example, Acikalin et al. (2017) demonstrated a meta-analytic,
functional overlap between the DMN and what they termed the
subjective valuation network (SVN). Key nodes displaying
DMN and SVN overlap were also reflected in MAG-7 of our
meta-analytic k-means clustering analysis. Overall, our func-
tional decoding of MAG-6 and MAG-7 demonstrated how
two aspects of internally focused attention may be functionally
dissociated into similar networks that differ in their recruitment
of the mPFC (ventral or dorsal) and other regions (right amyg-
dala or TPJ). The dissociated convergent activity across these
twoMAGs corresponds with previous work exploring the mul-
tifaceted functions associated with the DMN (Acikalin et al.,
2017; Mars et al., 2012; Qin & Northoff, 2011).

Comprehensive meta-analysis: Integration
of understudied functions

The inclusion criteria for our corpus of experiments
encompassed a wider range of reward-related tasks than previ-
ous meta-analyses have considered. This allowed us to provide
a unique meta-analytic account of brain regions that are not as
commonly linked to reward processing, but are nonetheless
vital for its realization. Previous neuroimaging meta-analyses
of reward processing have focused on specific aspects such as
food processing (van der Laan et al., 2011) and subjective val-
uation (Bartra et al., 2013), or specific comparisons such as
passive anticipation versus consumption of rewards (Diekhof
et al., 2012) and receipt of primary versus secondary rewards
(Sescousse et al., 2013).While our sample of reward processing
results was constrained to the perhaps disproportionate frequen-
cy distribution of certain topics and tasks characterized in the
extant neuroimaging literature, our sample did not exclude ex-
perimental contrasts based on outcome valance (i.e., positive,
negative), outcome type (i.e., monetary, food, verbal), or

processing stage (i.e., decision, anticipation, outcome delivery).
Additionally, while existing meta-analyses manually classified
data sets into aspects of interest to subsequently characterize
associated brain activation patterns (e.g., Liu et al., 2011), our
meta-analytic, data-driven parsing of experimental contrasts
allowed for groups of activity patterns to emerge organically
and unbiased by prior assumptions.

Methodological considerations

Our clustering results may be influenced by characteristics of
the k-means clustering algorithm, specifically its sensitivity to
spherical clusters and its assumption that input data are line-
arly separable (Bottenhorn et al., 2019). Further, while this
approach is, for the most part, data driven, it requires specifi-
cation of certain parameters. Specifically, we chose 1,000 as
the number of iterations performed to ensure that each solu-
tion minimized the point-to-centroid distance. This decision
was made based on prior work (Bottenhorn et al., 2019;
Kanungo et al., 2004). We also selected the additive inverse
of the Pearson’s correlation coefficient as the metric for cal-
culating pairwise distances between variables as it has been
previously recommended to maximize distances between spa-
tial patterns of activity maps (Laird et al., 2015). Exploring the
impact of these parameters on clustering results is beyond the
scope of the current work.

While we used metrics to determine viable clustering solu-
tions, the optimal solution is not always an obvious selection.
Our metrics identified three viable model orders and we ulti-
mately selected the solution that identified the greatest number
of neurocognitively plausibleMAGs. However, we also report
assessments of the two other viable solutions in the supple-
mental material and believe that examination of all three via-
ble model orders provides increased transparency regarding
the integration and segregation of our data across degrees of
meta-analytic, k-means clustering parcellation. Additionally,
as with all meta-analyses, our results are potentially influ-
enced by any reporting biases present in the extant literature.
Finally, while our functional decoding yielded outcomes re-
flective of the broader literature, more corpus-specific and
domain-specific insights might have been achieved with a
functional decoding approach based on annotation of experi-
ments in our corpus (see the Supplemental Information for
further discussion on manual corpus-specific versus automat-
ed generalized annotation strategies). Approaches allowing
for unbiased, objective, and yet detailed annotation of
corpus-specific experiments may benefit future research.

Conclusion

We dissociated meta-analytic groupings of reward processing
experiments based on the similarity between each experiment’s
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pattern of activation using a meta-analytic k-means clustering
approach. The resulting seven meta-analytic groupings repre-
sented patterns of activity consistently occurring across reward
processing tasks. Our functional decoding analyses revealed
that these dissociable brain activity patterns could be mapped
onto discrete mental processes within a heuristic framework of
valuation. Specifically, we observed two frontal-striatal path-
way MAGs, one displaying convergent activity in a VS–
vmPFC network (MAG-1) and another displaying convergent
activity in a DS–dmPFC network (MAG-2). While our func-
tional decoding linked both MAGs to anticipating outcomes
and encoding RPEs, these MAGs appeared to be consistent
with specialized roles described in actor-critic models.
Further, we identified five additional MAGs that correspond
to recognized limbic (MAG-3), SN (MAG-4), ECN (MAG-
5), DMN (MAG-6), and SVN (MAG-7) activity patterns.
Functional decoding linked these MAGs to processing distinct
emotional, internal, and external influences present across com-
plex reward contexts. These findings demonstrate the extensive
variety of activity patterns involved in aspects of valuation and
highlight the role of commonly observed large-scale brain net-
works in certain aspects of reward processing tasks.
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