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Abstract
Higher cognitive functioning is supported by adaptive reconfiguration of large-scale functional brain networks. Cognitive control
(CC), which plays a vital role in flexibly guiding cognition and behavior in accordance with our goals, supports a range of
executive functions via distributed brain networks. These networks process information dynamically and can be represented as
functional connectivity changes between network elements. Using graph theory, we explored context-dependent network reor-
ganization in 56 healthy adults performing fMRI tasks from two cognitive domains that varied in CC and episodic-memory
demands. We examined whole-brain modular structure during the DPX task, which engages proactive CC in the frontal-parietal
cognitive-control network (FPN), and the RiSE task, which manipulates CC demands at encoding and retrieval during episodic-
memory processing, and engages FPN, the medial-temporal lobe and other memory-related networks in a context dependent
manner. Analyses revealed different levels of network integration and segregation. Modularity analyses revealed greater brain-
wide integration across tasks in high CC conditions compared to low CC conditions. Greater network reorganization occurred in
the RiSE memory task, which is thought to require coordination across multiple brain networks, than in the DPX cognitive-
control task. Finally, FPN, ventral attention, and visual systems showed within network connectivity effects of cognitive control;
however, these cognitive systems displayed varying levels of network reorganization. These findings provide insight into how
brain networks reorganize to support differing task contexts, suggesting that the FPN flexibly segregates during focused proactive
control and integrates to support control in other domains such as episodic memory.
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Introduction

Cognitive control (CC) plays a vital role in flexibly guiding
cognition and behavior in accordance with our goals, and it is
thought that this ability serves as an important element in
healthy brain function (Veen&Carter, 2006). This mechanism
is not limited to a particular cognitive domain (Banich, 1997),
CC supports a range of cognitive functions, including working
memory, episodic memory (Ragland et al., 2009), inhibitory
processing (Banich et al., 2000), and goal maintenance
(Henderson et al., 2012). These aspects of executive functions
are supported by distributed brain networks that represent and
process information in a dynamic manner via functional con-
nectivity (FC) between network elements (Cole & Schneider,
2007; Cole et al., 2013).

The prefrontal cortex (PFC) plays a central role in cognitive
control (Badre, 2008; MacDonald, 2000; Niendam et al.,
2012). Evidence supports an anterior-posterior gradient of
function within the PFC. While the rostrolateral PFC is
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Reliability of the brain’s functional architecture at rest is
well supported; however, recent GT analyses have revealed
an adaptive reconfiguration of large-scale brain networks that
support higher cognitive functions (Bassett et al., 2011; Braun
et al., 2015; Cole et al., 2014; Hearne et al., 2017). Studies
probing the correspondence of network organization during
rest and task using residualized and non-residualized fMRI
data have found that network modifications during task were
independently associated with regional activation and changes
in functional connectivity (Gratton, Laumann, Gordon,
Adeyemo, & Petersen, 2016). Ultimately this suggests that
meaningful, context-dependent network reconfigurations oc-
cur against a backdrop of stable, large-scale networks that sup-
port diverse cognitive functions (Cohen & D'Esposito, 2016;
Cole et al., 2014; Crossley et al., 2013; Hearne et al., 2017).

The current study examines cognitive-control processing in
data from 56 healthy adults performing fMRI tasks from two
distinct cognitive domains that varied in demands for cogni-
tive control, the RiSE episodic memory task and the Dot
Pattern Expectancy (DPX) goal maintenance task. Adapting
a beta series correlation technique (Mumford et al., 2012) to
examine brain-wide integration and segregation of cognitive
systems during the RiSE and DPX, we leverage opposing
network topology to quantitatively assess the dynamic net-
work reorganization (i.e., variation in community structure
corresponding to diverse cognitive-control demands) involved
in each of these cognitive tasks. Prior work from this sample
used the Network Based Statistic (Zalesky et al., 2010) to
identify increases in functional connections within the FPN
associated with cognitive-control demand (Ray et al., 2017).
However, it is not clear how within-network FC changes cor-
respond to brain-wide network organization. Here, we inves-
tigate context-dependent network reorganization via changes
in integration and segregation properties associated with mod-
ular organization across the RiSE and DPX tasks. We predict
that increased demands for cognitive-control processing will
result in greater brain-wide integration of cognitive systems
measured by decreased modularity. We measure changes in
modular partitions associated with increased CC using mutual
information. We hypothesize that the FPN will integrate with
other higher-cognitive networks in order to support efficient
cognitive processing/task completion, which we quantify by
means of increased participation coefficient of modular
partitions.

Materials and methods

Subjects

Study participants were recruited as part of the CNTRACS
Consortium (http://cntracs.ucdavis.edu), which included five
different research sites: University of California – Davis,
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associated with relational reasoning, functional magnetic res-
onance imaging (fMRI) studies suggest that interactions be-
tween dorsal and ventral lateral prefrontal regions and poste-
rior brain regions including the lateral parietal lobe and the
medial temporal lobe (MTL) support the retrieval of relation-
ally encoded information and associative recognition during
episodic memory (Murray & Ranganath, 2007; Ragland et al.,
2012, 2015). More broadly, the evidence for such segregated
brain activity during the processing of goal maintenance is
consistent with recent studies suggesting that trial-by-trial
cognitive control engages a large-scale functional brain net-
work encompassing frontal and parietal cortices (Henderson
et al., 2012; Lopez-Garcia et al., 2015).

Advances in applying graph analysis to fMRI data have
provided means to mathematically describe and quantify
cognition-related patterns of function connectivity. Initially
restricted to rest, developments in graph theory (GT) method-
ology applied to task fMRI have furthered our understanding
of how cognitive control is supported through flexible,
context-dependent integration and segregation of functional
brain networks in a dynamic manner (Braun et al., 2015;
Cocchi et al., 2013a; Cocchi et al., 2013b; Fornito et al.,
2012; Hearne et al., 2017). These studies commonly focus
on network organization supporting performance of a single
cognitive task within a single brain network or defined set of
networks. More recently, studies have demonstrated that mod-
ular properties of brain networks shift in response to differing
cognitive demands (Cohen & D'Esposito, 2016; Geib et al.,
2017; Westphal et al., 2017). The current fMRI study exam-
ines whole brain network organization involved in cognitive
control during two tasks that involve multiple cognitive do-
mains. We examine network reorganization specifically with-
in the framework of changes in functional connectivity where
we investigate two different mechanisms of reorganization:
(1) enhanced network connectivity in the frontal parietal net-
work (FPN) using the participation coefficient and (2) en-
hanced between network connectivity, using modularity,
where cognitive systems integrate to create new networks.

We use modularity, a GT method that measures the
decomposability of a graph into modules or communities,
to provide insight into context-dependent network reorga-
nization in healthy adults (HC) performing tasks with
varying demands on cognitive control. Modularity is a
general hallmark of complex biological systems.
Modular organization of brain networks shapes how in-
formation is distributed and processed where regions that
are functionally close and tend to share information are
considered members of the same cluster or module
(Sporns & Betzel, 2016). A module containing nodes
from a variety of cognitive systems likely indicates func-
tional integration amongst cognitive brain networks,
whereas a module composed of only nodes from a single
system may likely represent network segregation.

http://cntracs.ucdavis.edu


Maryland Psychiatric Research Center at the University of
Maryland, Rutgers University – Robert Wood Johnson
Medical School, University of Minnesota – Twin Cities, and
Washington University. Recruitment and informed consent
procedures for each site were approved by their Institutional
Review Boards. Complete details regarding CNTRACS re-
cruitment and enrollment can be found in Ragland et al.
(2015).

Data were obtained on 60 healthy adults (HC). Participants
were excluded if they exhibited excess movement (i.e., >
0.37 mm mean frame-to-frame movement), below-chance
performance, or image acquisition errors. This left final sam-
ples of 56HC (34.0 ± 11.4 years) for the RiSE task, and 52HC
(34.1 ± 10.4 years) for the DPX task (Table 1).

While fMRI and behavioral data from these subjects have
been used in previous publications, results from the current
study are unique and do not include previously published
findings.

Data acquisition

Relational and Item-Specific Encoding (RiSE) task The design
was identical to that of the original RiSE studies (Ragland
et al., 2012, 2015), with the following exceptions: stimuli
were presented in pairs during both encoding conditions (see
below), and the item-recognition task did not include confi-
dence ratings. Participants completed four encoding and four
recognition fMRI runs. During encoding (Fig. 1A), partici-
pants alternated between three item-specific blocks (“Is either
object living?”; nine low cognitive-control trials each) and
three relational blocks (“Can one object fit inside the other?”;
nine high cognitive-control trials each) in a “jittered” event-
related design. During item recognition (Fig. 1B), participants
made a two-button response to indicate whether objects were
previously studied (old) or never studied (new). During item
recognition, 54 individual objects from each encoding condi-
tion (54 item-specific, 54 relational) were randomly presented
with 54 new items. The Rise task is considered a rapid-
presentation event-related fMRI paradigm, therefore

OPTSEQ (available at https://surfer.nmr.mgh.harvard.edu/
optseq/) was used to optimize the efficiency of trial
presentation timing and randomization across each block.
Because our interest was in engagement of CC during
encoding processes rather than accuracy of frequently
equivocal responses (e.g., Is an apple that is not on the tree
living?), fMRI analysis included trials in which participants
correctly responded during the recognition condition and their
corresponding encoding trials. As reported in Ragland et al.
(2015), mean accuracy for healthy adults was 72.0% and 86.
1% for item and relational recognition trials, respectively. See
Ragland et al. (2015) for more information regarding the RiSE
task.

Previous RiSE fMRI studies contrasting relational (high
cognitive control) against item-specific (low cognitive con-
trol) in the same sample have identified robust activation in-
creases in the bilateral DLPFC, VLPFC, parietal, and occipital
cortices (Ragland et al., 2015). Furthermore, functional con-
nectivity analyses examined in this sample have demonstrated
network-specific engagement of the FPN during the RiSE task
(Ray et al., 2017).

Dot Pattern Expectancy (DPX) task The DPX task consisted of
a sequence of cue-probe stimuli where participants made one
response when a target cue-probe pair was presented and an-
other response for all other stimuli (Fig. 2). Cues indicated the
need for high (B Cues) or low (A Cues) levels of cognitive
control. Four types of trials were presented across four blocks:
AX, AY, BX, and BY. AX trials are "target trials," where a
valid cue is followed by a valid probe. The three other trial
types are "Non-target trials" in which either a valid cue is
followed by an invalid probe ("AY" trials) or an invalid cue
is followed by either a valid or invalid probe ("BX" or "BY"
probes, respectively). Each block of the DPX task consisted of
40 trials: 24 AX, six AY, six BX, and four BY. The nature of
the cue (valid or invalid) provides the "context" for
responding on a given trial. The majority of trials are "target
trials" (AX trials). This feature is intended to encourage par-
ticipants to "expect" a valid probe to follow a valid cue. A
consequence of this manipulation is that participants develop a
prepotency to respond with "target" responses on trials for
which valid cues are presented, regardless of whether the trials
were of the target (AX) or non-target (AY) type. The DPX task
is a rapid-presentation event-related fMRI paradigm, therefore
OPTSEQ (available at https://surfer.nmr.mgh.harvard.edu/
optseq/) was used to optimize the efficiency of trial
presentation timing and randomization across each block.
Correct responses from four runs of the DPX task were used
for analysis. See Poppe et al. (2016) for more detail regarding
the AX-DPX.

Previous fMRI whole-brain analyses from our group using
a different healthy sample have shown that contrasting B-cues
relative to A-cues in the DPX task elicits widespread

Table 1 Participant demographics

HCs (n = 56)
Mean (SD)

Age, y 33.98 (11.40)

WTAR 37.89 (10.2)

Education, y

Participant 14.84 (1.87)

Parent 14.9 (3.9)

Male sex, no. (%) 40 (71%)

Right-handed, no. (%) 52 (93%)

HCs healthy controls,WTARWechsler Test of Adult Reading
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activations in the cognitive-control FPN, including bilateral
DLPFC, bilateral fusiform gyri, and right inferior parietal gy-
rus (Lopez-Garcia et al., 2015). These activation findings have
been replicated in the current sample (Poppe et al., 2016) and
subsequent functional connectivity analyses have also demon-
strated network-specific engagement of the FPN during the
DPX task (Ray et al., 2017).

Preprocessing

Images were acquired in a single 3T MRI session using a
consistent protocol across sites. Functional images were ac-
quired using gradient-echo BOLD echo-planar imaging (TR =
2,000 ms, TE = 30ms, 77° flip angle, FOV = 220mm2, 3.43 ×
3.43 × 4 mm voxels, 32 axial slices parallel with the anterior/

Fig. 2 Illustration of the Dot Pattern Expectancy Task. Shown is an
example sequence of cue-probe stimuli and the type of response (target
or non-target) a participant was required to make after each stimulus. The
nomenclature for stimuli and trial types was adopted from the expectancy
letter AX task. The valid cue pattern is referred to as “A” and the valid
probe pattern is referred to as “X.”Non-“A” cue patterns are referred to as

“B”-type cues, and non-“X” probe patterns are referred to as “Y”-type
probes. A target response is required for “X” when it follows “A,” non-
target responses are made for all other stimuli. The first pair of stimuli in
the sequence represents an AX trial. The third and fourth stimuli together
represent an AY type of trial, the fifth and sixth stimuli together complete
a BX trial, and the seventh and eighth stimuli make up a BY type of trial

Fig. 1 Illustration of the RiSE task. (A) Item specific (left) and relational
(right) object pairs presented while subjects made either an item-specific
encoding response or a relational encoding response. (B) During item

recognition, objects from item and relational encoding conditions were
randomly presented with new items, and participants indicated whether
each item was old (i.e., previously studied)
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posterior commissure). For more information see Henderson
et al. (2012).

Pre-processing was carried out using the FMRI Expert
Analysis Tool (FEAT) in the FMRIB Software Library (FSL
version 4.1; www.fmrib.ox.ac.uk/fsl) using standard
procedures, including field-map correction, spatial normaliza-
tion, and nonlinear registration to MNI152. Field maps to
correct fMRI data for geometric distortion caused bymagnetic
field inhomogeneity and a T1-weighted anatomical image (1-
mm isotropic voxels) were also acquired.

Data processing (beta-series regression)

Subject-wise beta-series regression analysis was performed on
RiSE and DPX fMRI data in order to capture trial-specific
BOLD effects for each condition (Turner et al., 2012). Using
the least-squares-separate (LS-S) method to measure event-
related functional connectivity, individual trials were modeled
with a new GLM in SPM8 with two predicted BOLD time
courses – one that reflects the expected BOLD response to the
current event and another for the BOLD responses to all
events except the current event. All events were modeled,
but only cue events for DPX correct trials and correct RiSE
trials were included in the analysis because these represented
trial periods in which cognitive-control demands were
maximized.

Separate regressors modeling each event were defined in a
general linear model to yield unique condition-wise beta
values for every voxel. Each beta value reflected the magni-
tude of the hemodynamic response evoked by each event.
Beta images were sorted by condition and concatenated across
runs yielding a 4D dataset (space × n trials), or beta-series, for
each of the six conditions: RiSE Item Encoding, RiSE
Relation Encoding, RiSE Item Recognition, RiSE Relation
Recognition, DPX A Cue, and DPX B Cue.

Additional motion-correction steps were taken analogous
to data-scrubbing procedures often performed in resting-state
functional connectivity analyses (Power et al., 2014). Beta-
images containing frame-wise displacement (FD) values
greater than 0.5 mm motion were excluded from the beta-
series. If more than 10% of TRs within a block contained
frame-wise displacement > 0.5 mm, the entire block was ex-
cluded from analysis. This FD threshold led to the exclusion
of five blocks of the RiSE task, and one block in the DPX task.

Next, each participant’s brain data were parcellated into
discrete regions of interest representing nodes obtained from
the Power atlas (Power et al., 2011). Twenty-one Power nodes
were eliminated due to low signal, and two bilateral MTL
nodes were added (MNI coords: -30,-12,-22; 32,-14,-22)
resulting in 245 nodes across the whole brain. Beta-series
pairwise correlations for all 245 nodes were extracted and z-
transformed resulting with a 245 × 245 connectivity matrix. A
final group FC graph for each condition was established by

summing the 5% thresholded connection matrices across all
subjects, then applying a subsequent 5% threshold on the
summed group connection matrix to identify connections that
are consistently strongest across participants, followed by bi-
narization of the summed group connection matrix.

Graph analysis

Recent advances in the application of graph theoretical
analysis to fMRI data allow us to leverage information
contained within the BOLD signal to test hypotheses re-
garding the functional architecture of the human brain
(Bullmore & Bassett, 2011). One well-known investigation
of community structure in functional brain networks
(Power et al., 2011) extracted communities from resting-
state fMRI data and, using a map of task-based activations
across a range of tasks, mapped these communities to well-
studied cognitive systems. The current study examines
segregation and integration of brain networks via modular
organization during each condition in the RiSE and DPX
tasks separately and leverages opposing network topology
to highlight the dynamic reorganizations that support these
different cognitive-control tasks in healthy adults. That is,
we used graph theoretical measures (i.e., modularity) to
model and quantify context-dependent changes in func-
tional brain organization during three fast event-related
fMRI paradigms: The RiSE encoding, RiSE recognition,
and DPX tasks.

Modularity Modularity (Q) and modular partitions were ex-
tracted for each subject using the community Louvain algo-
rithm provided by the Brain Connectivity toolbox (Rubinov&
Sporns, 2010). A Louvain module partition yields a set of
non-overlapping communities, where each node is assigned
to one and only one module. Modularity (Q) ranges from zero
to one and quantifies the goodness of modular partitions,
where good modular partitions have high modularity values
and an unexpectedly high proportion of connections within
modules, and an unexpectedly low proportion of connections
between modules (Newman, 2004). A high proportion of con-
nections between modules (i.e., low modularity) suggests a
greater level of brain-wide community integration amongst
cognitive systems, whereas a low proportion of connections
between modules (i.e., high modularity) may suggest a segre-
gation of communities. Nevertheless, the Louvain modularity
algorithm uses a randomized heuristic approach and conse-
quently results across runs slightly vary. We therefore applied
this algorithm 1,000 times for each task condition at propor-
tional thresholds of 0.05 through 0.60 (to avoid negative con-
nections in FC matrices) at increments of 0.05, and selected
the partition with the highest modularity score, Q (Meunier,
2009; Rubinov & Sporns, 2011). Modularity analyses were
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run on the group connection matrix and on individual subject-
connection matrices for each task.

Comparison of task-based Q to null model Null models are
important adjuncts of descriptive graph analysis as they
allow discriminating which graph attributes are due to
chance and which exceed the expected values given by
the null model (Sporns, 2018). To establish a null model
for each condition examined, we assessed the modularity
of random graphs derived from each task condition.
Random graphs for each participant and for the group
mean were created using functions provided in the Brain
Connectivity Toolbox that randomize connections in their
corresponding task-based network (randmio_und.m, 500
iterations), while preserving the degree distribution
(Rubinov & Sporns, 2011). Modularity (Q) of task-based
graphs were compared to their respective null model across
a range of thresholds (i.e., 0.05 – 0.60 proportional thresh-
olds at intervals of 0.05) using a repeated-measures
ANOVA.

Comparison of task-based Q to Power Q An advantage of
using the Power atlas is that it also provides an a priori
partition of subgraphs that replicate across cohorts and
correspond anatomically with many functional systems
consistently observed in the neuroimaging literature
(Power et al., 2011). As a follow-up to task-based modu-
larity analyses of the RiSE and DPX paradigms, we were
interested in comparing the task-based Louvain-Modular
partitions to the Power atlas resting-state subgraph parti-
tion. To do so, modularity (Q) of the Power resting-state
subgraph partition was calculated for each subject using an
abridged version of modularity scripts provided in the BCT
that determines Q based on the input Power partition rather
than an optimized partition. Modularity of the Power par-
tition for each subject was then compared to the modularity
of their corresponding task-based partitions using a
repeated-measures ANOVA.

Within-network connectivity Changes in functional network
organization are a byproduct of functional connectivity chang-
es. To better understand which cognitive systems likely con-
tribute to changes in network organization, the average con-
nectivity (mean Fisher z value) across all ROI-ROI connec-
tions within each of the Power networks was computed. We
used a repeated-measures three-way ANOVA to examine
whether main effects of task, cognitive control, or Power net-
work were present. This was followed by separate two-way
repeated-measures ANOVAS to test for main effect cognitive
control within each Power network.

Quantifying network reorganization using mutual informa-
tion theory We utilized popular information-theoretic

measures of distance in partition space, mutual information
and variation of information (Meilă, 2007; Rubinov &
Sporns, 2011), to provide a measure of the amount of net-
work reorganization between high and low control-
condition partitions in the RiSE and DPX tasks. Using
functions provided in the Brain Connectivity Toolbox
(partition_distance.m; Rubinov & Sporns, 2011), mutual
information between two partitions M and M’ was calcu-
lated as:

I M ;M
0

� �
¼ ∑

u∈M
∑

u0∈M 0
P u; u

0
� �

log
P u; u

0� �
P uð ÞP u0ð Þ

where P u; u
0� � ¼ nuu0

n and nuu′ is the number of nodes that
are simultaneously in module u of partition M, and in mod-
ule u’ of partition M’. Variation of information is defined
as:

VI ¼ 1

logn
H Mð Þ þ H M

0
� �

−2I M ;M
0

� �h i
;

where the factor 1
logn rescales the variation of information

to the range of [0,1], such that VI = 0 corresponds to equal
partitions, and VI = 1 corresponds to maximally different
partitions (Rubinov & Sporns, 2011). Partition vectors M
and M’ contained the full set of 245 nodes, thus mutual
information and variation of information values reflect net-
work reorganization across the whole brain unless other-
wise noted.

In the context of the current study, mutual information
indicates the degree to which nodes are similarly assigned
to modules during high and low cognitive-control condi-
tions. A mutual information (I) value of one would indicate
two identical partitions are being compared and no change
in module organization between high and low cognitive-
control conditions. A mutual information index of zero
would indicate maximally different partitions and thus a
large change in module organizations between the two con-
ditions compared.

Participation Coefficient We utilized the participation coef-
ficient (PC) to examine the integrative role of the FPN with
respect to other cognitive networks. The participation co-
efficient measures the proportion of connections a node has
within its own module versus other modules in the network
(Guimerà & Nunes Amaral, 2005; Rubinov & Sporns,
2010; Sporns et al., 2007). Thus, nodes with high PC are
more strongly connected to nodes associated with other
modules, thereby facilitating greater integration of infor-
mation across modules; in contrast, nodes with lower PC
are predominately connected to nodes within its assigned
module. The PC of FPN nodes in the Power atlas were
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extracted from the 5% thresholded functional connectivity
matrices of each task condition for each individual partic-
ipant. PCs were averaged across all nodes within the FPN,
and a repeated-measures 3 × 2 ANOVA was performed to
test the effect of cognitive control across the RiSE
encoding, RiSE recognition, and DPX tasks.

Results

Comparison of task-based Q to null model

Subject-wise functional partitions thresholded to the strongest
5% of connections were significantly more modular (Q) than
their respective null models for each task, F(1,51)=2497, p <
0.001 (Fig. 3). This significant difference was present across a
range of thresholds.

Comparison of task-based Q to Power Q

Compared to modularity (Q) of the a priori Power parti-
tion, we found that task-based functional partitions provid-
ed a significantly greater modularity score than the resting-
state subgraph partition (F(1,51) = 9710.173, p < 0.001;
5% threshold). A greater Q-score indicates that newly
established task modules yield a better model of network
organization during the RiSE and DPX paradigms than the
resting-state Power subgraph partition, and that a reason-
able amount of network reconfiguration occurs between
rest and task (Hearne et al., 2017). Moreover, Power

modularity scores (Q) were, on average, 0.013 higher than
their null models across tasks (F(1,51) = 6.541, p = 0.014;
5% threshold).

Task-based modularity

Once the non-randomness of task-based modular partitions
was established across participants, we performed a 3 × 2
ANOVA to examine the effects of task and cognitive con-
trol. In doing so, we observed an overall effect of task
(F(2,50) = 9.615, p < 0.001), indicating that the RiSE
and DPX tasks exhibit different levels of network integra-
tion and segregation (Fig. 3B). A cognitive control effect
was also present, where low cognitive-control conditions
exhibited greater modularity relative to high control con-
ditions across RiSE and DPX conditions (F(1, 51) = 5.673,
p < 0.021). Furthermore, a task-by-control interaction ef-
fect was present (F(1,51) = 3.179, p < 0.046), indicating
that while low cognitive-control conditions were greater
than high cognitive-control conditions in each of the tasks
examined, that the extent of this modularity effect varied
across RiSE encoding, RiSE recognition, and DPX tasks.

Within-network connectivity

Considering that changes in network organization (e.g., mod-
ular composition, participation coefficient) are a result of un-
derlying changes in functional connectivity, we examined
within-network connectivity of each cognitive network in the
Power atlas to better understand which networks likely

Fig. 3 (A) Louvain modularity (Q) of group mean task-based Louvain
partitions compared to their respective individual null-model. Task-based
partitions were significantlymore modular than their null model across all
thresholds tested (p < 0.001). (B) Modularity of each individual’s task-
based partitions at a 0.05 proportional threshold compared to their null-

model and the Power subgraph partition. A Cue and B Cue refer to the
two DPX conditions. E Item and E Rel refer to the RiSE item and rela-
tional encoding conditions, respectively. IR Item and IR Rel refer to the
RiSE item and relational Recognition conditions, respectively
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contribute to reorganization during cognitive-control process-
ing. First, a three-way repeated-measures ANOVA was per-
formed to test for main effects of task, cognitive control, and
Power network.While effects of cognitive control (F(1,2,13) =
1.269, ns) and task (F(1,2,13) = 1.765, ns) were not significant,
there was a main effect of Power Network (F(1,2,13) = 76.134,
p < 0.001), indicating that cognitive systems displayed differ-
ent strengths of connectivity during the cognitive control.
Separate repeated-measures ANOVAs on each Power network
revealed main effect of cognitive control in FPN (F(2,51) =
4.081, p < 0.05), Ventral Attention (Vat; (F(2,51) = 5.935, p <
0.05), and Visual Networks (F(2,51) = 5.306, p < 0.05). Of
these cognitive systems, only the FPN exhibited a control-by-
task interaction (F(2,102) = 5.117, p = 0.008).

Quantifying network reorganization using
information theory

While modularity can be used as an estimate of whole-
brain integration or segregation amongst brain modules, it
cannot capture module composition or changes in modu-
lar partitions. Thus, we used mutual information and var-
iation of information to quantify the similarity of module
assignments between high and low cognitive-control con-
ditions in the RiSE encoding, RiSE recognition, and DPX
tasks, which we interpret as measures of network
reorganization.

Separate repeated-measures ANOVAs examining mutual in-
formation and variation of information scores comparing high
and low cognitive-control condition partitions in the RiSE
encoding, RiSE recognition, and DPX tasks identified a signif-
icant effect of task (F(2,51) = 94.558, p < 0.001, F(2,51) =
78.11, p < 0.001 respectively; Fig. 4), indicating that different
levels of network reorganization were observed across tasks.
Post hoc t-tests of mutual information scores identified signifi-
cant differences between each task: DPX > RiSERecognition (t =
5.726, p < 0.001), DPX > RiSEEncoding (t = 12.436, p < 0.001),
RiSERecognition > RiSEEncoding (t = 8.673, p < 0.001). Post hoc t-
tests of variation of information scores revealed significant

differences between each task in the opposite direction as mu-
tual information scores: DPX < RiSERecognition (t = 7.469, p <
0.001), DPX < RiSEEncoding (t = 16.110, p < 0.001),
RiSERecognition < RiSEEncoding (t = 10.799, p < 0.001). It can
be seen in Fig. 4 that the greatest agreement between modular
partitions for high and low control conditions (quantified via
both Mutual Information and Variation of Information) was
observed in the DPX task, followed by RiSE recognition, with
the least agreement found for RiSE encoding. Considering that
both larger mutual information scores and smaller variation of
information scores indicate fewer differences between two
modular partitions, we infer that whole-brain reconfiguration
of brain networks was lowest between the DPX conditions
and greatest during the RiSE encoding conditions.

Subsequent examination of network-specific Variation of
Information scores of cognitive systems exhibiting within-
network control effects (FPN, Vat, Visual Networks) was per-
formed. A repeated-measures ANOVA identified a main effect
of task (F(2,102) = 49.537, p < 0.001) and main effect of
network (F(2,102) = 19.965, p < 0.001), indicating that the
extent of network reorganization differed across tasks and net-
works. Post hoc t-tests revealed that Variation of Information
was greater in the FPN and VAt compared to the Visual
Network (t = 5.897, p < 0.001 and t = 5.254, p < 0.001, respec-
tively), but there was no difference between the FPN and VAt.

Participation coefficient

We used the participation coefficient to assess changes in the
diversity of intermodular connections within the FPN associ-
ated with cognitive control. We observed a main effect of
cognitive control across the three tasks examined where PC
was greater during high cognitive-control conditions com-
pared to low cognitive-control conditions (F(2,51) = 4.083,
p = 0.046; Fig. 5). This finding indicates that the FPN exhibits
greater between-module communication (i.e., integration)
during high cognitive-control conditions relative to low
cognitive-control conditions.

Fig. 4 Mutual information (left) and Variation of Information (right)
scores quantifying the similarity of module partitions between high and
low cognitive control conditions in the DPX, RiSE encoding, and RiSE

recognition tasks. The horizontal line inside each violin indicates the
mean. *** indicates p < 0.001
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Interpretations of module composition

Varying levels of integration and segregation between cogni-
tive systems were observed across the tasks examined. In ad-
dition to quantitative modularity, mutual information, and PC
differences observed, qualitative visual inspection of group-
level brain module composition across tasks (Fig. 6) revealed
that nodes associated with low-level perceptual functioning
were consistently constrained to two similar modules across
tasks. This included nodes associated with sensorimotor (hand
– royal blue, mouth – navy), auditory (orange), and cerebellar
networks (yellow). Medial and lateral visual nodes (red) inte-
grated into a single module during the DPX task but segregat-
ed into separate modules during the RiSE task with medial
nodes integrating with memory nodes (cyan) during encoding
and DMN nodes during recognitions conditions (Fig. 6).
Nodes associated with high-level cognitive functioning
displayed complex levels of module reorganization across
tasks. Notably, the FPN (spring green) displayed varying
levels of integration and segregation across tasks as it integrat-
ed with elements of default mode and salience (sky blue)
networks in multiple modules across the RiSE conditions
but segregated into the main element of a single module in
both DPX conditions.

Discussion

The purpose of the current study was to quantify and charac-
terize changes in whole-brain network dynamics as they per-
tain to cognitive control. While previous functional connec-
tivity studies have largely focused on changes within a single
cognitive system, or between a set of systems (Dosenbach
et al., 2008; Fornito et al., 2012; Hearne et al., 2015), the
present study explored context-dependent integration and

segregation of brain-wide systems in healthy adults
performing fMRI tasks from two distinct cognitive domains
that varied in demands for cognitive control as well as de-
mands for episodic mnemonic functions. In doing so, we le-
verage opposing community structure in the RiSE and DPX
tasks to highlight the dynamic reorganizations that support
these differentially engaging cognitive control tasks.

Task based modularity

Examining modularity of the RiSE and DPX tasks revealed
different levels of network integration and segregation. Across
all tasks, modularity was lower in high control relative to low
control conditions. Decreased modularity indicates a reduced
proportion of within-module connections in a network, and
thus a greater proportion of between-module connections,
suggesting a greater level of brain-wide community integra-
tion. Similar findings of increased integration have been re-
ported in a range of executive functions including inhibition
(Spielberg et al., 2015) and deductive reasoning (Cocchi et al.,
2013a; Hearne et al., 2017), and in episodic memory where
lower whole-brain modularity has been associated with im-
proved performance (Cohen & D'Esposito, 2016; Geib et al.,
2017; Westphal et al., 2017). Interestingly, a task-by-control
interaction effect was also present, indicating that while mod-
ularity was greater in low cognitive-control conditions, the
extent of the effect varied across tasks. Interaction effects sug-
gest that modules were more segregated in the DPX task than
in the RiSE recognition and encoding tasks. This finding is not
surprising considering that the DPX primarily engages cogni-
tive control, whereas the RiSE task requires recruitment of
both control and long-term (episodic) memory systems.
Cohen and colleagues report similar reduced modularity in a
memory task, which is thought to require coordination across
multiple brain networks, compared to a motor task that likely

Fig. 5 Participation coefficient (PC) of the frontal parietal network (FPN)
across tasks. PC of FPN nodes was greater during high cognitive-control
conditions (e.g., B Cue, E Relation, IR Relation) than low cognitive-
control conditions (e.g., A Cue, E Item, IR Item; p = 0.046). A Cue and

B Cue refer to the two DPX conditions. The horizontal line in each violin
indicates the mean. E Item and E Rel refer to the RiSE item and relational
encoding conditions, respectively. IR Item and IR Rel refer to the RiSE
item and relational Recognition conditions, respectively
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involves only a single brain network (Cohen & D'Esposito,
2016).

We also found that the task-based functional partitions pro-
vided a significantly greater modularity score than the resting-
state Power partition. Most comparisons between task and rest
FC have observed high correspondence (Cole et al., 2014; Fair
et al., 2007; Fox & Raichle, 2007; Greicius et al., 2008).
However, more recent comparisons between task and rest
functional connectivity have emphasized differences in con-
nectivity patterns (Buckner et al., 2013; Hermundstad et al.,
2013; Mennes et al., 2012). Although our sample does not
include resting-state fMRI, it is clear that the task-based com-
munity structure we observed does not fit the task-negative
partition proposed by Power et al. (2011). This is further sup-
ported by a recent study from Hearne and colleagues showing
that increases in reasoning complexity resulted in a merging of

resting state modules (Hearne et al., 2017). One source of this
disagreement between rest and task community partitions may
be due to differences in methods for community detection
(Infomap compared to Louvain modularity), furthermore the
beta-series approach used in the current analysis does not re-
gress out task structure. Nevertheless, the disparity between
the presented task-based modular partitions and the proposed
Power resting-state subgraph partition do provide support for
the concept of differences between task and resting functional
architectures.

Network reorganization

Different levels of network reorganization were observed
across tasks. We used two information theory measures, mu-
tual information and variation of information, to quantify

Fig. 6 Brain graphs of healthy adults performing the DPX (left column),
RiSE encoding (middle column), and RiSE recognition (right column)
tasks. Low cognitive-control conditions for each task are shown on the
top row, high cognitive control conditions are shown on the bottom row.
Edges displayed in each graph represent the strongest 5% of functional

connections, groups of nodes indicate their module assignment defined
using the Louvain Modularity algorithm in the BCT. The color of each
node corresponds to one of the 14 cognitive systems proposed in Power
et al. (2011). Graphs were visualized using BrainNet Viewer and Circos
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dynamic network reorganization between modular partitions
of high and low cognitive-control conditions.We observed the
highest mutual information and lowest VI (i.e., agreement in
module composition) in the DPX task, followed by RiSE rec-
ognition, and the least mutual information and highest VI
during the RiSE encoding. These relationships across tasks
were present when examining network-specific VI in the
FPN, VAt, and visual systems; however VI in visual nodes
was lower than FPN and VAt across all tasks This suggests
that changes in connectivity within FPN and VAt likely con-
tribute more to network reorganization between high and low
cognitive-control systems than visual nodes. While there was
no significant correlation between brain-widemutual informa-
tion (I) between high and low CC conditions and modularity
scores (Q) for any of the task conditions examined, similar
effects across tasks were present. In other words, the DPX
was most modular (Q) and contained the greatest mutual in-
formation whereas RiSE encoding was least modular (Q) and
contained the least amount of mutual information.
Incorporating the current findings with previous studies inves-
tigating FPN-specific functional connectivity changes associ-
ated with cognitive control on the same sample (Ray et al.,
2017), the DPX task displayed the greatest change in within-
FPN functional connectivity between high and low CC con-
ditions (Ray et al., 2017), and our current work suggests it is
also most modular (i.e., greatest network segregation) and
experiences the least amount of network reorganization.
Conversely, the RiSE-encoding task displayed the least within
FPN change in function connectivity between high and low
CC conditions (Ray et al., 2017), while current work shows
RiSE encoding to be least modular yet undergoes the most
network reorganization. All the while, performance on these
tasks is significantly correlated, suggesting that they share
common processes associated with cognitive control
(Sheffield et al., 2014) and they elicit increased activity in
the dorsolateral prefrontal and parietal cortices in fMRI stud-
ies (Lopez-Garcia et al., 2015; Ragland et al., 2015). Together,
this may suggest that cognitive-control processing may be
recruited via mechanisms that enhance within network and
between network functional connectivity.

Interpretations of module composition

The FPN exhibited greater integrative properties during high
CC control conditions than low CC as measured by the par-
ticipation coefficient. Subsequent qualitative visual inspection
of group partitions was performed to better understand chang-
es in module compositions corresponding to changes in mod-
ularity (Q), information theory measures (mutual and varia-
tion of information), and participation coefficient (PC) across
the DPX and RiSE tasks.

Across all conditions examined, several modules were con-
sistently identified that included nodes associated with low-

level perceptual systems (e.g., sensorimotor, cerebellar, audi-
tion, vision). Nodes in the FPN, DMN, and salience network
varied in their module assignments. Focusing on systems
exhibiting within-network connectivity effects of cognitive
control, the VAt was primarily contained within a single mod-
ule across all conditions examined, whereas the Visual net-
work typically straddled one or two posterior modules.
Conversely, qualitative visual inspection of modules contain-
ing FPN nodes were variable across tasks at the group level,
where elements the FPN coupled with were either anterior
and/or posterior DMN, as well as medial and/or lateral sa-
lience systems. Similar findings have been reported in a
whole-brain, task-based graph theory analysis comparing
modular organizations between 2-back and 0-back conditions
in a working memory, executive function n-back task (Braun
et al., 2015). Braun and colleagues found that “flexibility,” a
term defined as the tendency for nodes to change module
allegiance, was highest in PFC-related systems, which
corresponded with PFC module reorganization, observed in
the DPX and RiSE tasks. In relation to episodic memory,
Westphal and colleagues report an inverse relationship be-
tween DMN and FPN coupling (i.e., network integration)
and whole-brain modularity during an episodic memory task
(Westphal et al., 2017). This corresponds well with the RiSE
task community structure where modules with FPN nodes
also contain more DMN nodes and exhibit lower modularity
relative to DPX community structure.

The notion of context-dependent dynamic integration and
segregation of higher cognitive systems has recently been in-
troduced by other investigative groups. For example Menon
and colleagues have suggested that the activity of the frontal
parietal and cingulo-opercular systems is related to the behav-
ior of the DMN (Bressler & Menon, 2010; Menon & Uddin,
2010). The DMN is commonly referred to as “task negative”
because its activity decreases during external goal-oriented
actions and increases during performance of tasks requiring
self-related processing (Raichle & Snyder, 2007). Several ear-
ly studies have supported the hypothesis of a functional an-
tagonism between the two task-positive FPN and cingulo-
opercular systems on the one hand and the task-negative
DMN on the other (Kelly et al., 2008). Decreased activity
within the DMN is inversely correlated with cognitive control
(Lawrence et al., 2003; McKiernan et al., 2003) and positively
correlated with task-unrelated mental activity (Mason et al.,
2007), suggesting that they would be segregated systems.
Recent advances in graph theory analysis have led to findings
that challenge the notion that functional segregation between
regions within default-mode and control networks invariably
support cognitive task performance (Cocchi et al., 2013b;
Fornito et al., 2012; Hearne et al., 2015). Fornito et al.
(2012) identified a division of the DMN into core and transi-
tional subsystems where the latter facilitates integration be-
tween the core DMN and FPN during goal-directed
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recollection. Moreover it has been shown that increased cog-
nitive demand during cognitive reasoning is accompanied by
a loss of segregation and a progressive enhancement of con-
nectivity between control and default-mode networks (Hearne
et al., 2015). Related to this, Hearne et al., (2017) also found
that increases in reasoning complexity were associated with
greater connectivity and more variable community assign-
ment of the FPN. While these previous studies have focused
on direct relationships between select cognitive systems, our
whole-brain findings complement this more recent view of a
context-dependent coordination of task-positive and task-
negative brain systems to support healthy cognitive function.
With all of this in consideration, there is compelling evidence
suggesting that cognitive control is implemented through the
flexible reconfiguration of the FPN as it pertains to a wide
range of cognitive domains (Cocchi et al., 2013a; Cole et al.,
2013; Fornito et al., 2012; Hearne et al., 2017; Ray et al.,
2017; Sheffield et al., 2015).

Methodological considerations

While the current study provides novel insights into the dynam-
ic brain network reorganization that support cognitive control
processing, it is important to acknowledge potential methodo-
logical limitations. Recent studies have shown that movement
during fMRI acquisition causes systematic changes in function-
al connectivity (Power et al., 2014; Power et al., 2015;
Satterthwaite et al., 2012). To reduce this potential source of
error, we took the precaution of performing a “beta-scrubbing”
procedure analogous to scrubbing procedures used in resting-
state fMRI studies where beta-images containing frame-wise
displacement values greater than 0.5mmmotionwere excluded
from beta-series. Notably, preliminary modularity analyses per-
formed on these data prior to our “beta-scrubbing” procedure
aimed at eliminating trials with excess motion were highly con-
sistent with modular partitions currently presented.

The utility of the Power atlas has been well supported with-
in the neuroimaging community, as numerous studies have
utilized this set of regions of interest for various network-
connectivity analyses. However, it is important to note that
the cognitive labels assigned to their networks that have been
subsequently adopted in the current study as “cognitive sys-
tems” are based upon reverse inference. Furthermore, the mod-
ularity approach employed, Louvain Modularity, relies on the
assumption that nodes may only be assigned to a single mod-
ule. While this is common in modularity algorithms applied to
brain-imaging data, we recognize the plausibility that multi-
functional nodes may be involved in more than one module.

Stringent thresholds applied in the current analysis ensure
that only strong, positive connections were examined
(Zalesky et al., 2016). This is standard practice in the over-
whelming majority of graph theoretical analyses; however, it

should be noted that this step might inadvertently discard
neurobiologically relevant information. Furthermore, to sup-
port the reliability of the presented results, replication of these
analyses using a 10% threshold on functional connectivity
graphs was highly consistent. While all modularity values
were lower at the 10% threshold, the pattern of results was
consistent where task partitions were significantly greater than
those of their null and Power partitions. Mutual Information
comparing the similarity of partitions from the high and low
cognitive-control trials of each task also showed a similar
pattern of results where the DPX and RiSE Recognition tasks
showed significantly greater mutual information than the
RiSE Encoding task. Finally, the module composition of brain
graphs remained highly consistent between the two thresholds
examined, yielding a highmeanmutual information score (MI
= 0.84) and low mean variation of information (VI = 0.1136)
across the six brain graphs (representing the two trial types
from each of the three tasks).

Conclusions

These findings provide insight into how brain networks reor-
ganize to support cognitive performance under differing task
contexts. Results suggest that the FPN can contribute to task-
appropriate responses through two different mechanisms.
Enhanced within-network connectivity in the FPN network
is sufficient to support proactive cognitive control, as seen
during the DPX. Enhanced network connectivity has also
been reported with FPN in the RiSE (Ray et al., 2017); how-
ever, the FPN also exhibits the capability to support a wide
range of executive functions by flexibly reorganizing into
unique community structures that display varying levels of
integration and segregation with elements of the DMN, sa-
lience, and memory networks to support different forms of
encoding and retrieval.
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