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Abstract
Neurobiological models explain increased risk-taking behaviours in adolescence and young adulthood as arising from staggered
development of subcortical reward networks and prefrontal control networks. In this study, we examined whether individual
variability in impulsivity and reward-related mechanisms is associated with higher level of engagement in risky behaviours and
vulnerability to maladaptive outcomes and whether this relationship is mediated by cognitive control ability. A community
sample of adolescents, young adults, and adults (age = 15-35 years) completed self-report measures and behavioural tasks of
cognitive control, impulsivity, and reward-related mechanisms, and self-reported level of maladaptive outcomes. Behavioural,
event-related potential (ERP), and multivariate pattern analysis (MVPA) measures of proactive control were derived from a task-
switching paradigm. Adolescents, but not young adults, reported higher levels of impulsivity, reward-seeking behaviours and
maladaptive outcomes than adults. They also had lower cognitive control ability, as measured by both self-report and task-based
measures. Consistent with models of risk-taking behaviour, self-reported level of cognitive control mediated the relationship
between self-reported levels of impulsivity and psychological distress, but the effect was not moderated by age. In contrast, there
was no mediation effect of behavioural or EEG-based measures of cognitive control. These findings suggest that individual
variability in cognitive control is more crucial to the relationship between risk-taking/impulsivity and outcomes than age itself.
They also highlight large differences in measurement between self-report and task-based measures of cognitive control and
decision-making under reward conditions, which should be considered in any studies of cognitive control.
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Risk-taking during late adolescence and young adulthood
forms an integral and adaptive part of the psychological and
physical transitions towards adult patterns of behaviour.

Although not all risk-taking is maladaptive (Gullo & Dawe,
2008; Romer et al., 2017), high-risk behaviours can have ad-
verse long-term consequences (Reyna & Farley, 2006;
Steinberg, 2009) by supporting lifelong patterns of maladap-
tive behaviours (e.g., addiction, criminality; Moffitt et al.,
2011) both in healthy young people and even more so in
people with neurodevelopmental disorders (Catts et al.,
2013; Steinberg, 2009). Recentmodels of risk-taking in young
people (e.g., Casey, 2015; Steinberg, 2007) posit that height-
ened risk-taking behaviour and associated maladaptive out-
comes during adolescence and young adulthood arise from
differences in the rate of maturation of brain networks.
Frontal cognitive control networks that are involved in guid-
ing goal-directed behaviour do not mature until well into
adulthood, whereas cortico-subcortical networks that support
reward-related mechanisms mature during adolescence. This
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is thought to result in heightened sensitivity to the potential
rewards that may be associated with engaging in risky behav-
iours, which, in combination with less efficient control net-
works, results in poor decision-making, especially under high
incentive conditions (Shulman et al., 2016).

Consistent with these models, core cognitive control pro-
cesses (i.e., working memory, set-shifting, common executive
function (EF); Miyake & Friedman, 2012) continue to develop
throughout adolescence and into young adulthood
(Karayanidis, Jamadar & Sanday, 2013; Luna, Garver, Urban,
Lazar & Sweeney, 2004; Ridderinkhof, Band & Logan, 1999).
These processes rely on broadly distributed frontal networks
(Gratton, Sun & Peterson, 2018) that also show protracted de-
velopment in both structure (Paus, 2005; Gogtay et al., 2004)
and connectivity with cortical and subcortical regions (Hwang,
Velanova & Luna, 2010; Stevens, Kiehl, Pearlson & Calhoun,
2007). Functional differences also have been shown. For in-
stance, compared with adults, adolescents show less engage-
ment of frontoparietal control networks during risky decision
making (Eshel, Nelson, Blair, Pine & Ernst, 2007; Fecteau
et al., 2007) and greater activation of reward-related networks
when processing appetitive cues (Sommerville, Hare & Casey,
2011, van Leijenhorst et al., 2009).

There also is substantial evidence linking cognitive control
and risk-taking (Peeters, Oldehinkel & Vollebergh, 2017;
Magar, Phillips & Hosie, 2008), impulsivity (Stahl et al.,
2014), and maladaptive outcomes in later life (Moffitt et al.,
2011). Likewise, high reward seeking and impulsivity, mea-
sured both behaviourally and through self-report, are associ-
ated with greater engagement in maladaptive and risk-taking
behaviours (Castellanos-Ryan et al., 2013; Derefinko et al.,
2014; Donohew et al., 2000; Mackillip et al., 2016; Stahl
et al., 2014). However, the relationship between the develop-
mental trajectories of brain networks associated with reward
mechanisms and cognitive control is complex, showing dy-
namic interactions extending well beyond adolescence
(Pfeifer & Allen, 2012; Romer, Reyna & Satterwaite, 2017).
For instance, level of cognitive control (van Leijenhorst et al.,
2010) and sensitivity to feedback (Koolschijn, Schel, de
Rooij, Rombouts & Crone, 2011) were found to be stronger
predictors of brain maturation than age alone, consistent with
substantial individual variability in the rate of development of
these processes (Romer, Reyna & Satterwaite, 2017).

Moreover, there are still large gaps in our understanding of
how cognitive control and reward mechanisms relate to intra-
and inter-individual variability in impulsivity and risk-taking
behaviours. For instance, within dual-systems models, impul-
sivity is sometimes encompassed under psychosocial maturi-
ty, a composite construct that also includes risk perception,
sensation seeking (Steinberg, 2008), and other times used as
a proxy for response inhibition, a core cognitive control pro-
cess (Steinberg, 2010). These distinct definitions are consis-
tent with Dawe’s conceptualisation of impulsivity as a

multifaceted construct that includes two key domains: one
relating to reward sensitivity or drive and the other to disinhi-
bition (Dawe & Loxton, 2004; Gullo & Dawe, 2008). Few
studies have concurrently examined individual variability in
the relationship between cognitive control, impulsivity,
reward-related mechanisms, and outcome behaviours in ado-
lescence and young adulthood (Bjork & Pardini, 2015; Casey
et al., 2011; Laurens et al., 2007; Pfeifer & Allen, 2012;
Steinberg, 2007; Shulman et al., 2016).

In this study, we usedmediation analyses to test the implicit
assumption of risk-taking models of adolescence and young
adulthood that cognitive control ability mediates the effect of
impulsivity and reward-seeking on level of engagement in
risky behaviours and maladaptive outcomes (Casey et al.,
2010; Steinberg, 2009). We hypothesised that higher levels
of impulsivity and reward-seeking are associated with greater
engagement in risky behaviours and maladaptive outcomes
and that this relationship is mediated by level of cognitive
control. Adolescents are expected to exhibit higher impulsiv-
ity and reward-seeking, as well as lower cognitive control than
adults. Because variability in cognitive control is expected to
be greater in adolescence, we hypothesised that the mediating
effect of cognitive control on the relationship between
impulsivity/reward-seeking and outcome behaviours will be
greater in this group.

Reward-related mechanisms cover a broad range of con-
structs that are defined and operationalised differently across
the literature (Harden et al., 2017; Duell et al., 2016; Nigg,
2017). For example, risk-taking is impulsive when the behav-
iour is engaged without thought of consequence, yet also can
be quite planned and thoughtout (Nigg, 2017). The associa-
tion between impulsivity, reward mechanisms, cognitive con-
trol ability, and maladaptive outcomes has been shown to be
weak and to vary with the level of measurement (Skippen
et al., 2019; for review see Stahl et al., 2014) as well as dif-
ferent researchers’ definition of such terms (Nigg, 2017;
Romer et al., 2017). We included both self-report and behav-
ioural measures of impulsivity and reward-seeking to capture
both levels of measurement and identify independent patterns.
Furthermore, to target real-world behaviours, outcome mea-
sures focussed on self-reported level of engagement in risky
behaviours, quality of life, and psychological well-being.

Most imaging studies of risk-taking behaviour have used
magnetic resonance imaging (MRI) measures to identify var-
iability across brain regions and networks involved in cogni-
tive control and reward processes. However, electroencepha-
lography (EEG) methods can better capture the temporal var-
iability of complex, dynamic processes associated with cog-
nitive control processes (Gratton, Cooper, Fabiani, Carter &
Karayanidis, 2018) and may be more sensitive to capturing
developmental changes in cognition across the lifespan
(Segalowitz, Santesso, & Jetha, 2010; Uhlhaas, Roux,
Rodriguez, Rotarska-Jagiela, & Singer, 2010).
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Like the constructs of impulsivity and reward seeking, cog-
nitive control also can be defined a number of different ways
(Harden et al., 2017). In this study, we describe cognitive
control as the higher-order executive functions, planning,
working memory, task-set updating (Miyake & Friedman,
2012). We obtained measurements of cognitive control at dif-
ferent levels (EEG, behaviour, self-report) to determine
whether cognitive control processes differ in their mediation
of the relationship between reward-seeking and maladaptive
outcomes. We used the cued-trials task-switching paradigm
(Karayanidis et al., 2010; see Jamadar, Thienel &
Karayanidis, 2015 for task-switching paradigms and associat-
ed cognitive processes) that produces behavioural and event-
related potential (ERP) measures sensitive to proactive cogni-
tive control processes (Braver, 2012). These processes are
involved in anticipating and preparing for a change in contex-
tual demands to optimise performance and have been shown
to mature more slowly in childhood and adolescence
(Karayanidis et al., 2013; Munakata et al., 2012). We sought
to optimise the opportunity to identify specific proactive con-
trol processes that impact risk-taking behaviour and quality of
life by deriving multiple sensitive measures of proactive con-
trol. Behavioural switch cost and mixing cost measures target
set-shifting ability and working memory load, respectively—
two core cognitive control processes (Miyake and Friedman,
2012) that have been found to engage frontoparietal (Cooper
et al., 2016; Mansfield et al., 2012) and frontostriatal
(Mansfield et al., 2011) control networks. We extracted mea-
sures of ERP components during the cue-target interval (CTI)
to examine individual variability in the engagement of proac-
tive control processes involved in preparing to shift between
tasks-sets. In addition, we implemented multivariate pattern
analysis (MVPA) of the EEG data (Bode et al., 2018) to char-
acterise individual variability in the timing and accuracy of
working memory and set-shifting processes involved in
mixing cost and switch cost, respectively. We argue that the
accuracy of discrimination of EEG epochs from trials that
differ in set-shifting demands (or working memory demands)
is indicative of processing efficiency and that greater discrim-
ination is suggestive of more efficient implementation of cog-
nitive control.

Methods

Participants

A community sample was recruited from schools, businesses,
community organisations, and tertiary education centres in the
Central Coast and Hunter regions of New South Wales,
Australia. Participants who reported having received a clinical
diagnosis of psychological or neurological conditions were
excluded. Of the 238 participants who were included in the

Age-ility project (Karayanidis et al. 2016; Cooper et al.,
2015), 215 participants completed the EEG session
(Figure 1). Twenty-two percent were removed because of
task-switching data problems (n = 4) or missing data (n =
43), leaving a final sample of 168 participants (20.91 ± 4.75
yr, range 15-35 yr, 91% right handed). Men and women
(56.5%) did not differ in age (21.5 ± 5.0 yr, 20.2 ± 4.4 yr,
respectively F(1,166) = 3.346, p = 0.069). This sample did not
differ from the 70 participants who had no EEG or incomplete
data on any common variables, including age, sex, and neu-
ropsychological measures (all p > 0.162).

The protocol was approved by the University of Newcastle
Human Research Ethics Committee (HREC: H-2012-0157).
Participants (and their parents/guardians, if aged under 18 yr)
gave written, informed consent and were reimbursed $20/hr.

We examined scatterplots of age against other variables
(see below) and fitted a Loess curve (see online supplementa-
ry materials; https://osf.io/hs9me/), which indicated that the
effect of age was not strongly linear, consistent with
literature, suggesting continuing development of cognitive
mechanisms from adolescence into young adulthood
reaching a plateau thereafter. Consequently, we defined three
age groups: Adolescent (15-18 yr, n = 62, 33 females, 16.8 ±
1.2 yr), Young Adult (19-24 yr, n = 74, 39 females, 20.9 ± 1.6
yr), and Adult (25-35 yr, n = 32, 23 females, 28.9 ± 3.7). Sex
did not differ across groups (p > 0.15).

We analysed all variables using a three age-group
(Adolescent, Young Adult, Adult) × two Sex ANOVA, with
repeated measures factors specified where appropriate (see in
each section of Results). Significant age-group effects were
followed by simple contrasts comparing Adolescents vs.
Young Adults, Adolescents vs. Adults, and Young Adults
vs. Adults with Greenhouse-Geisser corrections for the as-
sumption of sphericity violations. We report significant results
with exact p values, except where <0.0001, and include full
list of nonsignificant results at https://osf.io/hs9me/.

Procedure

Participants completed three testing sessions (Karayanidis
et al. 2016). The first session included a neuropsychological
battery focussing on cognitive control and decision-making,
as well as practice on the task-switching paradigm.
Participants were given a series of questionnaires, including
measures of cognitive control, impulsivity, reward-seeking,
risk behaviours, and psychological well-being, to complete
in the laboratory or at home to be returned for the second
session. The second session occurred 2 weeks later and in-
cluded further task practice and performance of the task-
switching paradigm while EEG was recorded. The third ses-
sion included an MRI scan; the results of which are not re-
ported here (Karayanidis et al. 2016).

Cogn Affect Behav Neurosci (2019) 19:653–676 655

https://osf.io/hs9me/
https://osf.io/hs9me/


Table 1 lists all tasks and questionnaires and the measures
analysed from each. Predictor variables included measures
that characterise the individual in terms of constructs, such
as impulsivity, sensation seeking, risk appraisal, and risky
decision-making. Outcome variables included self-report
measures of engagement in risky behaviours, psychological
distress, and quality of life. Cognitive control variables were
derived from well-established tasks of reasoning, problem
solving, and working memory, the cued-trials task-switching
paradigm (Karayanidis et al., 2016), as well as the self-report
version of the Behavioural Rating Inventory of Executive
Function (BRIEF).

Missing data Five participants had minimal missing data, and
we used the following approaches to avoid excluding the entire
case. Two participants had more than two items missing on the
SSS and the Barratt Impulsivity Scale-11 (BIS-11), respective-
ly. We used regression imputation to estimate missing values
(Saunders et al., 2006). For each participant, we ran regression
across all participants on variables related to the scale with
missing data. The resulting linear equation (y =mx + b) was
solved for the missing data point (y). Missing data for each
participant was imputed by averaging all estimates (y values).

Another participant’s missing K10 total score was
substituted with the mean of the entire sample. On the
Sensation Seeking Scale (SSS), one participant had one miss-
ing response, and another had two missing responses. These
missing values were replaced with the individual’s mean score
on the corresponding subscale, and the total scores was com-
puted using the replaced values.

Variable Reduction

As many of the variables derived from self-report and behav-
ioural measures tap into partially overlapping constructs, we
used principal components analysis (PCA) to derive separate
PCAmodels for variables characterised as predictors (n = 17),
outcomes (n = 20), and cognitive control measures (n = 10)
from the neuropsychological tasks (Table 1).1

PCA relies on the variable correlation matrix to identify
components that maximise the total variance within these
measures.We assessed all measures for outliers or other biases
that may affect the linearity of correlations but did not need to
remove any variables due to outlying values. To correct for
nonlinear biases, we took the natural log of the CARE Past
Frequency and WHOQol scores. For ease of interpretation,
some variables were reversed so that for all PCA component
loadings high scores indicate higher level of risk-taking/im-
pulsivity (predictor components), poorer life outcomes (i.e.,
higher psychological distress, more risky behaviours, poorer
quality of life, outcome components), and poorer cognitive
control ability (cognitive control components).

In a PCAmodel, each component is a linear combination of
all variables and will fit as much of the variability as possible
into the first component. The remaining variance is attributed
to the subsequent component, and so on. The original vari-
ables are weighted by their contribution to explaining the

1 The BRIEF scale was omitted from the cognitive control PCA, because we
had to use T-scores to compare scores from Child (<18 yr) and Adult (>18 yr)
versions of the scale. Note that only 162 of the 168 participants completed the
BRIEF.

Fig. 1. Participant attrition flowchart. Note: BRIEF-SR = Behavioural Rating Inventory of Executive Function Self-Report
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Table 1 List of (A) Predictor variables used to measure impulsivity and risk propensity, (B) Outcome variables used to assess risk behaviours andwell-
being, and (C) Cognitive control measures

A. PREDICTORVARIABLES

Barratt Impulsivity Scale (BIS-11; Patton, Stanford & Barratt, 1995) A 30-item, self-report questionnaire that measures perceived level
of impulsive behaviours and preferences. We used the three 2nd order
factors: attentional, motor, and non-planning impulsivity.

Cognitive Appraisal of Risky Events – 2. Perceived Risk Benefit
(CARE-Perceived Risk Benefit; Fromme, Katz & Rivet, 1997)

A 30-item, self-report questionnaire that measures perceived benefit
of engaging in risky behaviours including Drug use, Aggression/Illegal
activity, Risky Sexual Behaviour, Hazardous Drinking, and missing
Work/study commitments.

Sensation Seeking Scale (SSS; Zuckerman, Kolin,
Price & Zoob, 1964)

A 40-item, self-report questionnaire that assesses perceived preference for a
range of activities across four subscales: Thrill and Adventure Seeking,
Disinhibition, Experience Seeking, Boredom Susceptibility.

Information Sampling Task (IST; Cambridge Cognition, 2006) IST provides behavioural measures of reflection impulsivity, the tendency
to evaluate information before making a decision. Each trial includes a 5x5
array of grey tiles that are yellow or blue on the reverse surface. Participants
are asked to decide whether the array is hiding more yellow or blue tiles,
and receive points reward for correct decisions. In different conditions,
the reward value decreases (decreasing win) or increases (ascending win)
with every tile opened. P(Correct) is the probability of being correct that
the participant tolerates at the point of decision-making. We report data
only from the descending win conditions, as there was no variability in
the ascending win condition.

Cambridge Gambling Task (CGT; Cambridge Cognition, 2006) CGT measures risk-taking behaviour and delay aversion. Participants are
presented with ten boxes that differ in red:blue ratio (9:1 to 6:4) and are
asked to respond which colour is most likely to contain a hidden token.
On each trial, participants can delay their response to increase or reduce
the bet value associated with that choice. In different blocks, the bet value
increases or decreases over the course of the trial. Delay Aversion measures
the inability to wait to optimise reward (the difference in bet value between
ascending and descending bet conditions, when controlling for risk level,
high score = greater aversion to delaying response). We used ratios 6:4
and 9:1, which showed the largest individual differences. Risk Adjustment
measures how well one can adjust their risk taking behaviour to maximise
reward as the extent to which the behaviour is moderated by the ratio of red
to blue boxes, when controlling for delay.

B. OUTCOME MEASURES

Cognitive Appraisal of Risky Events – 1. Past Event Frequency
(CARE-Past Frequency; Fromme, Katz & Rivet, 1997)

A 30-item, self-report questionnaire that measures the frequency of engaging
in risky behaviours including Drug use, Aggression/Illegal activity, Risky
Sexual Behaviour, Hazardous Drinking, and missing Work/study
commitments, in the past six months.

Depression Anxiety Stress Scale (DASS; Antony, Bieling,
Cox, Enns & Swinson, 1998)

A 21-item, self-report questionnaire with three scales that measure perceived
level of depressive, anxiety and stress symptoms.

Difficulty in Emotional Regulation Scale (DERS; Gratz &
Roemer, 2004)

A 36-item, self-report questionnaire that assesses perceived difficulty in
regulating one’s emotions across six subscales: Non-acceptance of
emotional responses, Difficulty engaging in goal directed behaviour,
Impulse control difficulties, Lack of emotional awareness, Limited access
to emotion regulation strategies, and Lack of emotional clarity.

World Health Organisation Quality of Life (WHOQoL;
WHOQOL Group, 1998)

A 26-item, self-report questionnaire that assesses perceived quality of life
across four domains: Physical, Psychological, Social, and Environmental.

Kessler Psychological Distress Scale (K-10; Kessler et al., 2002) A 10-item, self-report questionnaire of perceived level of psychological
distress.

Suicidal Behaviour Questionnaire (SBQ; Osman et al., 2001) A 4-item, self-report questionnaire of suicidal thoughts and behaviour that
asks about lifetime ideation, ideation frequency, threat of attempt, and
future likelihood of suicidal behaviour.

C. COGNITIVE CONTROL MEASURES

Matrix Reasoning, Wechsler Abbreviated Scale of Intelligence-II
(WASI-II; Wechsler, 2011)

A task of fluid intelligence where participants select the logically following
item in a pattern or the missing piece in a matrix. We report the total
raw score.

Cogn Affect Behav Neurosci (2019) 19:653–676 657



variance in each linear dimension, making the interpretation of
components difficult in some cases (Jolliffe, 2011).
Consequently, we used oblique component rotation, which
unlike traditional orthogonal (e.g., Varimax) rotation allows
the rotated components to correlate. This results in a more
realistic component structure (given that the variables entered
into each PCA model intercorrelate across the hypothesised
component structure; e.g., measures of psychological distress
(e.g., DASS) intercorrelated with measures of quality of life
(WHOQol), and self-report risk behaviours (CARE Past
Frequency).

The PCA was conducted using the BPsych^ package
(Revelle, 2018) in the R statistical modelling program (R
Core Team, 2017). Z-scored data were entered into the
fa.parallel function to determine the number of components
to extract, using Horn’s (1965) parallel method of determining
the number of factors. This function displays a standard scree

plot of the eigenvalues, as well as a scree of a random data
matrix of the same size, and components whose eigenvalues
are larger than the random sample are retained. The analysis
suggested five components for the predictor: three for the
outcome, and two for the cognitive control variables. These
were extracted using the principal function with default set-
tings. The BGPArotation^ package (Bernaards & Jennrich,
2005) was used to conduct the oblique rotation (BOblimin^),
and we examined the loadings of each rotated component to
interpret the components.

Because some models contained a small subject:variable
ratio (e.g., outcomes = 186:20), we obtained a number of
descriptive statistics about each model to assist with the inter-
pretation of the resulting model structure. The variable loading
strength and the number of variables loading on each compo-
nent were relatively high, indicating low error and good fit
(Osborne & Costello, 2004). The communality of each

Table 1 (continued)

Trail-Making Test (TMT; Reitan, 1959) A task of set-shifting ability. It measures the time taken to trace a line to link
numbers from 1-25 presented in a random configuration (Part A) and
alternate between letters and number in sequence (Part B). The B-A score
indicates set-shifting ability when controlling for perceptual and motor speed.

Verbal Fluency (FAS Verbal Fluency task; Lezak, Howieson,
Loring & Fischer, 2004)

A task of flexible thinking. Measures the number of unique words produced in
1 min starting with the letters F, A, and S, in different blocks.
Verbal fluency total score is the total number of correct words summed
across all three blocks.

Digit Span, Wechsler Adult Intelligence Scale-IV
(WAIS-lV; Wechsler, 2008)

A task of short-term (forward) and working memory (backward, sequencing)
ability. Span length is number of digits correctly recited. We report
Span Length using forward-backward and forward-sequencing to measure
working memory when controlling for short-term memory.

Spatial Working Memory (SWM; Cambridge Cognition, 2006) A task of the ability to retain and manipulation of visuospatial information.
A token is hidden under a different box in a random array of boxes on each
trial. Participant seek the token without opening the same box twice.
Total Error score measures working memory (i.e., the number of times
the same box is checked). We report Strategy which measures strategy
formation (i.e., development of a consistent approach to solving
consecutive problems).

Spatial Span (SSP; Cambridge Cognition, 2006) A task of visuospatial working memory capacity. An array of white boxes is
displayed. On each trial, a sequence of boxes briefly change colour one at a
time in a variable sequence, and then participants are asked to tap the boxes
that changed in the correct sequence. We report Span length, the longest
sequence correctly recalled.

Stockings of Cambridge (SOC; Cambridge Cognition, 2006) A task of spatial planning, spatial working memory and motor control.
Participants solve problems by rearranging coloured balls in one display to
match that of the test display. Problems can be solved in a minimum of
2-5 moves. We report Mean Moves, the mean number of moves to solve a
problem for 4 and 5 move problems.

Behavioural Rating Index of Executive Functions (BRIEF;
Roth, Isquith & Gioia, 2005)a

An 86-item, self-report questionnaire of executive function which derives two
main indices. The Behavioural Regulation Index (BRI) measures perceived
ability to control behaviour and emotional responses. The Metacognition
Index (MI) measures perceived ability on higher order processes including
planning, organisation, and maintaining attention. A higher score on these
indices indicates higher levels of executive dysfunction. Note: For
BRIEF, N = 162.

Task-switching paradigma (Karayanidis et al., 2009) See Methods for task details.

Total score is used unless stated otherwise
a These measures were not included in the PCA – see Footnote 1 for explanation.
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variable, which particularly in exploratory factor analysis is
considered a measure of the reliability of the variable (Gaston,
2008), as well as the confidence intervals of loadings and
complexity, is available in the online supplementary materials
(https://osf.io/hs9me/). Table 2 shows the loadings of each
variable on the rotated components for predictor, outcome,
and neuropsychological variables.

The five rotated Predictor components accounted for 64%
of variance: (1) Risk Propensity contained strong contribu-
tions from measures that ask about the desire to engage in
(SSS) and the perceived benefit of (CARE-2) risky behav-
iours; (2) Impulsivity contained strongest contribution from
the BIS-11 subscales; (3) Delay Aversion included self-
reported SSS Boredom Susceptibility and behavioural mea-
sures of delay aversion from the CGT; (4) Impulsive Decisions
consisted of behavioural measures of risk adjustment from the
CGT, as well as the Probability Correct from the IST; and (5)
Work & Aggression contained strongest contributions from
CARE-2 scales of perceived benefit of aggression and lax
work practices.

The PCA model from the outcome variables produced a
three rotated component structure that explained 56% of var-
iance: (1) Psychological Distress contained the DASS, K-10,
and SBQ variables, and most of the DERS scales; (2) Quality
of Life contained the WHOQoL scales and DERS Awareness
scale; and (3) Risky Behaviours included the CARE Past-
Frequency scales.

Only two components were returned from the PCA model
on the neuropsychological measures of cognitive control and
accounted for 44% of the variance: (1) General-Executive
Function (General-EF) contained the highest loadings from
Trail-Making Task, Matrix Reasoning, Verbal Fluency, both
SWM scores, as well as SOC; and (2)Working Memory Span
contained strong loadings from the Digit Span measures, with
weaker cross loading from SSP.

Task-switching paradigm

We used the cued-trials task switching paradigm with three
tasks developed by Karayanidis et al. (2009).

Stimuli and task parameters A grey circle (5o visual angle)
was continuously displayed and divided into six sections, with
adjacent sections mapped to one of three tasks (Figure 2A).
The target was a pair of characters (e.g., grey A4) with three
dimensions: one relevant to the task (e.g., if the target was in a
letter section, BA^ would be mapped to a left response), one
irrelevant dimension that was always incongruently mapped
to the relevant task’s response (e.g., B4^ mapped to a right
response) and a neutral dimension that was not mapped to
any response (e.g., grey). A cue indicating the relevant task
for this trial preceded the target by 1,000 ms (i.e., a highlight
over two adjacent regions of the circle; Figure 2B). In single-

task blocks, the cue remained in the same position throughout
the block, indicating that the same task was to be repeated (all-
repeat trials). In mixed-task blocks, on repeat trials (25%;
Figure 2Ci), the cue remained in the same position on consec-
utive trials. Repeat trials were identical to all-repeat trials but
were interspersed with switch trials (25%; Figure 2Cii) on
which the cue changed position and highlighted segments
associated with one of the other two tasks. The remaining
50% of trials used partially informative cues and are not used
here (see Karayanidis et al., 2009 for more task details).
Targets were presented for 5000ms or until a response was
emitted, and the next cue occurred 400-ms later. Incorrect
responses resulted in an error feedback tone. Participants com-
pleted two training sessions (1,320 practice trials) before un-
dertaking 10 mixed-task blocks (77 trials/block) and three
single-task blocks (53 trials/block) while EEG was recorded.

We derived two key task-switching measures. Switch cost
is the difference in RT and error rate between switch and
repeat trials, and reflects processes involved in task-set
updating on switch trials (Karayanidis et al., 2009). Mixing
cost is the difference in RT and error rate between repeat and
all-repeat trials and reflects increased working memory load
on mixed-task compared to single-task blocks (Los, 1996).

EEG Recording and Processing EEG was continuously record-
ed relative to an amplifier reference voltage using an
ActiveTwo Biosemi EEG system (2048 Hz, bandpass filter
of DC-400 Hz) from 64 scalp electrodes, left and right mas-
toids, bilateral outer canthi, and supra/infraorbital sites.
Commonmode sense (CMS) and driven right leg (DRL) elec-
trodes were positioned inferior to P1 and P2, respectively.
EEG was processed in MATLAB through a pipeline utilising
Fieldtrip (Oostenveld et al., 2011), CSD Toolbox (Kayser &
Tenke, 2006) and in-house functions (Wong & Cooper). EEG
was re-referenced off-line to electrode Cz and then down-
sampled from 2,048 Hz to 512 Hz (using the fieldtrip
ft_preproc_resample function; zero-phase anti-aliasing filter
with a low-pass cutoff frequency of 245 Hz). Data were high
pass and notch filtered to remove line noise and low-
frequency drift (high pass: 0.1 Hz, forward phase; 50 Hz
notch: zero phase). Excessively noisy channels were identified
with visual inspection and excluded (average 1.7 ± 4.1 chan-
nels per participant). Epochs were extracted from −1,000 ms
to 3,500 ms with respect to cue onset. Blink and vertical eye-
movement artefacts were identified and removed by a trained
observer using Independent Components Analysis (ICA) with
the fastICA algorithm (Hyvärinen & Oja, 2000; 1.38 ± 0.76
components). The remaining components were projected back
into sensor (electrode) space. The data were low pass filtered
(30 Hz, zero-phase) and trials with residual artefact larger than
±120 μVwere deleted. On average, pre-processing resulted in
110.92 ± 23.85 all-repeat, 131.51 ± 24.94 repeat, and 126.34
± 26.62 switch trials per participant, with a minimum of 30
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Table 2 Loadings of (A) Predictor, (B) Outcome, and (C) Cognitive Control components derived from the principal component analyses

A. PREDICTOR COMPONENTS
Risk propensity Impulsivity Delay aversion Impulsive decisions Work and aggression

BIS-11
Attentional 0.860
Motor 0.779
Non-Planning 0.724

CARE-Perceived Benefit
Drug 0.804
Aggression 0.856
Sex 0.668 0.303
Drink 0.700
Work 0.244 0.730

SSS
Boredom susceptibility 0.340 0.615
Disinhibition 0.791
Experience seeking 0.606 -0.216
Thrill seeking 0.643 -0.224

IST
Probability correct 0.302 0.567

CGT
Risk adjustment
Ascending 0.841
Descending 0.345 0.761
Delay Aversion
9:1 0.755
6:4 0.868

B. OUTCOME COMPONENTS
Psychological distress Quality of life Risky behaviours

CARE-Past Frequency
Drug 0.688
Aggression 0.471
Sex 0.562
Drink 0.721
Work 0.256 0.544

DASS
Stress 0.799
Anxiety 0.808
Depression 0.768

DERS
Non-acceptance 0.804
Goals 0.735
Impulsivity 0.822
Awareness 0.205 0.473
Strategy 0.891
Clarity 0.611 0.228

WHOQoL
Physical 0.701
Psychological 0.742
Social 0.812
Environmental 0.801

K10 0.830
SBQ 0.474

C. COGNITIVE CONTROL COMPONENTS
General-EF Working memory span

Matrix reasoning 0.672
Trail-making test 0.538
Verbal fluency total 0.543 -0.272
Digit span
Backward 0.817
Sequencing 0.821
SWM
Strategy 0.665
Total errors 0.791
SSP
Span length 0.394 0.371
SOC
4 Move 0.421 0.251
5 Move 0.548

Loadings between –0.2 and 0.2 are omitted for ease of interpretation. Component names are selected to represent the contributing measures.

Full loadings and other descriptive statistics can be found in the supplementary materials. EF = Executive Function.
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trials per trial type per participant. The surface Laplacian
transformation was computed and a spherical spline function
was applied across all channels, with a spline flexibility pa-
rameter, m = 4, for increased rigidness (Kayser & Tenke,
2015). An iterative process was used to solve a Legendre
differential equation to obtain the surface Laplacian and sur-
face potential matrices (Kayser & Tenke, 2006). As the EEG
signal is transformed based on the second partial derivate of
the signal (μV) over a spatial area (cm2 – i.e., the scalp), the
measurement scale is μV/cm2 (Kayser & Tenke, 2006, 2015).

ERP Measures Cue-locked ERP average waveforms were de-
rived for each trial type (all-repeat, repeat, switch) from
−200 ms to 1,200 ms peri-cue, with a ±50 ms baseline.
Mixing cost (repeat minus all-repeat) and switch cost (switch
minus repeat) difference waveforms were extracted. The to-
pography of significant mixing and switch effects across the
cue-target interval were inspected in ≈10 ms bins (5 sample
points at 512 Hz). Paired samples t-tests (α < 0.005, FDR
corrected; Benjamini & Yekutieli, 2001) were conducted to
determine Bhotspots^ (i.e., electrode clusters and time win-
dows) of significant posterior mixing and switch positivities
typically obtained from this paradigm (Karayanidis et al.,
2009). Table 3 shows early and late positivity hotspots iden-
tified for mixing and switch difference waveforms. For each
hotspot, we measured peak amplitude over that time window
at each electrode using an average measure over four sample
points either side of the maximum (i.e., ≈18ms), as well as the
latency of the peak amplitude. Peak amplitude was compared
across electrodes within that hotspot, and the electrode with
the largest peak amplitude was used to derive peak amplitude
and latency for that hotspot.

Multivariate Pattern Analysis (MVPA) was implemented in
the Decision Decoding Toolbox (DDTBOX, Bode et al.,

2018) to classify epochs of spatio-temporal EEG data mea-
sured on the two-dimensional surface of the scalp in a binary
manner. This technique is based on a support vector machine
(SVM; Cortes & Vapnik, 1995), which uses an optimized
linear kernel (LIBLINEAR, Fan et al., 2008) to obtain the
hyperplane that maximises the margin of separation between
two classes or conditions.

We used MVPA to discriminate between ERPs for switch
and repeat trials, corresponding to switch cost, and ERPs for
repeat and all-repeat, corresponding to mixing cost. For each
discrimination, the time of interest ranged 50-2,050 ms post-
cue (peri-cue baseline ±50 ms), so as to include a post-target
interval. A tenfold cross-validation training process was re-
peated 10 times for each individual’s EEG trials on every
spatiotemporal EEG feature, resulting in 100 classification
rates per time bin per individual. A total of 320 spatiotemporal
EEG features (mean amplitude from nonoverlapping 10-ms
sliding windows at 64 channels) were used to train an SVM
for each time bin (210 time bins per epoch). For each individ-
ual, a null classification rate was calculated using the above
method, by randomly permuting condition labels. Across the
sample, 6.762 million linear classifiers were trained across all
discriminations used in this analysis.

For each individual, we measured the maximum classi-
fication rate over the 50-2,050 ms interval and the latency
at which this occurred. The signal was smoothed using a
10-point time domain moving average filter, and peak anal-
ysis was used to identify the global maximum classification
rate. Specifically, a linear search was used to identify all
local maxima in the signal and identify the global maxi-
mum. A local maximum was identified as the global max-
imum, if its value exceeded that of the previous global
maximum by a certain threshold. This threshold was de-
fined separately for each discrimination task using an
optimising process that favoured the first maximum

Fig. 2. Cued-trials task switching paradigm. (A) Display structure indi-
cating mapping of adjacent segments to letter, digit, and colour classifi-
cation and example of stimulus-response mapping. (B) Single trial exam-
ple. A cue is presented 400 ms after the response to the previous trial and
highlights two adjacent segments (corresponding here to the letter task),
indicating that the next target will appear in one of these segments. After

1,000 ms, a target appears in one of the highlighted segments and partic-
ipants are required to respond to the target. (C) The following trial (N-1)
could be a i) repeat trial, i.e., the same two segments are highlighted and
the same task is performed, or ii) switch trial, i.e., the cue highlights
segments associated with one of the other two tasks and validly indicates
which task to perform on the target

Cogn Affect Behav Neurosci (2019) 19:653–676 661



classification, unless the subsequent one was substantially
greater (i.e., avoid a minor increase in rate producing a
disproportionate and potentially artificial increase in laten-
cy), hence minimising the number of subjects with a post-
target maximum classification. The threshold was 3.64%
for the switch versus repeat discrimination, and 3.96% for
the repeat versus all-repeat discrimination.

AnalysesWarmup trials (5 per block), trials with RT <200 ms
or >3 SD above the individual’s mean RT, and error or post-
error trials were removed from analyses (on average, 18.5 ±
8% of trials) of RT, ERP, and MVPA measures. Behavioural
(median RT, error rate) and EEG-based (ERPs, MVPA) mea-
sures were analysed using GLM in SPSS v21 with Trial Type
(all-repeat, repeat, switch) as a repeated measures factor, and
Age Group and Sex as between-group factors (see below).
Two planned comparisons were used to assess switch cost
and mixing cost, with family-wise error Bonferroni correction
(α < 0.05/2) and Greenhouse-Geisser correction for the viola-
tions of the assumption of sphericity.

Mediation Analyses

Mediation analysis was used to assess whether the relationship
between predictor (X) and outcome (Y) variables was medi-
ated by cognitive control variables (M). If the total effect of X
on Y was reduced or removed after including M, this was
taken as evidence that the relationship between X and Y was
partially or fully mediated by M, respectively (Baron &
Kenny 1986; MacKinnon 2008). To compare the strength of
mediation, we standardised all M variables. We report the
indirect effect (X➔ M➔ Y) as the main index of mediation.

The mediation analyses were conducted in R (R Core
Team, 2017) using the Bmediation^ package (Tingley,
Yamamoto, Hirose, Keele & Imai, 2014) with default argu-
ments of the mediate function, which uses bootstrapping to
determine significance (Imai, Keele & Tingley, 2010). Data
were resampled with replacement with 5,000 bootstraps, and
the distribution of indirect, direct, and total effects were
returned. We report the indirect effect estimates, their associ-
ated confidence intervals, and p values in-text, with more de-
tailed summaries of the models in the online supplementary
materials (see https://osf.io/hs9me/). We also present Bayes
Factors (BF) to describe the likelihood of the data in the

mediation or the null hypothesis (i.e., that there is no media-
tion effect). Using the R package BBayesMed^ (Nuijten,
Wetzels, Matzke, Dolan, & Wagenmakers, 2015), we used
the default settings of the jzs_med function to perform medi-
ation largely as described above. This function uses a Jeffreys-
Zellner-Siow prior (Liang, Paulo, Molina, Clyde & Berger,
2008) and takes 10,000 samples, with 500 Bburn-in^ samples
using JAGS software (Hornik, Leisch & Zeileis, 2003). We
present the resulting BF10, which describes the evidence in
favour of the mediation effect, and the inverse (BF01) for a
null mediation. As per Kass and Raftery (1995), Bayes factor
values are referred to as positive (>3), strong (>20), and very
strong (>150) evidence for mediation (B10) or for the null
(B01). Full descriptive output for both types of models can
be found online (https://osf.io/hs9me/).

Significant mediation models were rerun with age as a
possible moderator, using Hayes (2017) model 58, which in-
cludes an interaction with age on both predictor-mediator, and
mediator-outcome paths. To test for significant moderated me-
diation, we compared conditional indirect effects for different
values of age, selected to be the mean of each age group:
Adolescent (16.8 yr), Young Adult (20.8 yr), and Adult
(28.4 yr). If one group had a significant mediation effect and
at least one other did not, we had some evidence for moder-
ated mediation, i.e., mediation is dependent upon age. We
tested whether the moderated mediation was significant using
the test.modmed function in the Bmediation^ package. This
tests the conditional indirect effects at one value of age against
another and returns the beta value difference, 95% confidence
interval, and p value. Because the Bayesian analysis for mod-
eration has not yet been implemented in the ‘BayesMed’
package, we could not calculate Bayes factors.

Results

Age and Sex Effects on Predictor, Outcome,
and Cognitive Control PCA Components

Means and standard deviations are shown for males and fe-
males in each age group in Table 4. Predictor components
showed a number of significant age and sex effects
(Table 5A). The Adolescent group scored higher on the
Delay Aversion and Impulsive Decisions PCA components,

Table 3 Electrodes and time windows of event related potential (ERP) components representing switch and mixing costs

Cost Type ERP label Electrodes Time window (ms)

Switch Early-cue positivity PO7,PO3,POz,PO4,PO8,O1,Oz,O2 250-320

Late-cue positivity CPz,CP1,CP3,CP2,CP4,Pz,P1,P3,P2,P4,POz,PO3,PO4 340-550

Mix Early-cue positivity P3,P1,Pz,P2,P4,PO3,POz,PO4 280-450

Late-cue positivity P1,Pz,P2,PO3,POz,PO4 452-900
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compared with both the Young Adults and Adult groups, in-
dicating a tendency to respond faster and more impulsively,
even though they did not report higher impulsivity or benefits
of risk-taking (Impulsivity, Risk Propensity components). Yet,
both Adolescent and Young Adult groups reported greater
perceived benefits of antisocial behaviours compared to the
Adult group (Work & Aggression). Males reported higher

benefits of risky behaviours (Risk Propensity) and benefits
of antisocial behaviour (Work and Aggression), but their
responding showed less impulsive choice (Impulsive
Decisions) than females.

Outcome and Cognitive Control components showed no
effects of Sex (Tables 5B and C). An Age effect was signifi-
cant for both Psychological Distress and General-EF

Table 4 Age group means and standard deviations (SD) of the (A) Predictor (B)Outcome and (C) Cognitive Control PCA component scores, as well
as the task-switching and BRIEF variables

Adolescents Young adults Adults

Male Female Male Female Male Female

Measure Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

A. Predictors Components
Risk Propensity -0.044 0.981 -0.230 1.035 0.581 0.932 -0.279 0.841 0.653 0.957 -0.282 0.947
Delay Aversion 0.453 1.043 0.443 1.113 -0.122 0.942 -0.361 0.913 -0.354 0.669 -0.270 0.696
Impulsive Decisions 0.191 0.868 0.408 0.947 -0.284 0.995 -0.097 1.044 -0.749 0.823 0.063 0.995
Impulsivity 0.128 1.254 0.269 1.012 0.004 0.859 -0.241 0.813 -0.379 0.668 0.003 1.167
Work and Aggression 0.438 1.160 -0.358 0.660 0.463 1.149 -0.115 0.924 -0.513 0.279 -0.348 0.812

B. Outcomes Components
Psychological Distress 0.141 1.015 0.443 1.310 -0.038 0.907 -0.255 0.671 -0.520 0.785 -0.120 0.972
Risky Behaviours -0.151 0.810 0.005 1.159 0.369 1.100 -0.198 0.863 0.208 0.900 -0.125 1.002
Quality of Life -0.024 1.164 0.163 0.966 0.053 0.892 -0.149 0.965 -0.215 1.288 0.052 0.982

C. Cognitive Control Components
General-EF 0.412 1.039 0.603 0.938 -0.254 0.905 -0.277 0.725 -0.121 1.225 -0.482 0.981
Working Memory Span -0.052 0.941 -0.202 1.008 0.225 1.213 -0.095 0.993 0.428 0.863 0.006 0.709

BRIEF
Behavior Regulation 54.3 10.7 55.1 12.5 49.4 9.3 49.2 8.1 46.4 6.6 51.5 11.9
Metacognition 56.6 12.2 57.7 12.2 50.8 8.5 50.2 7.6 50.4 8.0 53.0 12.6

Task-switching Behaviour
All-repeat RT 596 180 583 93.5 525 60 538 56 584 84 533 69
Mixed-repeat RT 672 197 661 160.4 593 110 594 70 670 112 599 88
Switch RT 903 515 862 276.4 733 247 701 176 815 176 707 193
All-repeat Error Rate 2.56 2.15 3.09 1.88 2.63 2.89 1.63 1.39 2.47 1.46 1.82 1.78
Mixed-repeat Error Rate 3.28 2.97 3.55 3.14 2.39 2.39 1.71 1.81 1.80 1.73 2.04 2.56
Switch Error Rate 5.95 6.15 7.67 6.41 4.99 5.61 3.15 2.80 5.02 4.15 4.59 5.01

Task-switching ERPs
Early Mixing Positivity 28.8 13.5 24.5 11.1 20.9 8.2 23.7 10.5 15.6 5.8 18.7 8.9
Late Mixing Positivity 34.0 17.5 30.1 13.6 25.5 11.3 29.8 16.3 17.8 9.2 21.7 11.5

Early Switch Positivity 30.0 16.5 28.0 12.1 26.2 10.9 26.7 12.1 24.6 8.5 27.0 11.7
Late Switch Positivity 32.8 13.2 32.5 15.8 25.7 10.8 28.3 11.5 21.7 11.2 27.1 10.9

Task-switching MVPA
Max Class – Mixing 58.61 6.42 56.11 3.67 55.99 3.47 56.39 4.13 57.18 2.80 56.55 3.06
Max Class – Switch 56.63 3.61 56.66 3.74 56.61 4.52 57.09 3.89 56.91 3.79 56.33 3.68

For all components, high scores indicate poorer performance (e.g., greater Risk Propensity, greater Psychological Distress, poorer General-EF. EF =
Executive Function.
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components, indicating that Adolescents reported poorer psy-
chological wellbeing and performed more poorly on cognitive
control tasks than both Young Adults and Adults. These find-
ings are consistent with the significant Age effect on the
BRIEF Behavioural Regulation and Metacognition Indices
(BRI: F(2,156) = 27.72, p < 0.0001, pη

2 = 0.26; MI: F(2,156) =
14.03, p < 0.0001, pη

2 = 0.15), where Adolescents reported
lower cognitive control than both Adult and Young Adult
groups (BRI: p < 0.0001, p = 0.001; MI: both p < 0.0001).

Task-switching

Behavioural Data Both median RT and percent errors
(Figure 3) showed significant main effects of Trial Type
(Table 6). There was a significant mixing cost for RT (69
ms) but not error rate, whereas switch cost was significant
for both RT (156 ms) and error rate (2.67%).

There was a significant Age effect on both RT and error
rate, with the Adolescent group responding more slowly than
Young Adults and less accurately than both Young Adults and
Adults. While the Trial Type x Age interaction was significant
for both RT and error rate, only RT switch cost was signifi-
cantly larger for Adolescents compared to Adults.

ERPs Figure 4A shows ERP waveforms over the cue-target
interval (CTI) for each trial type at three posterior midline sites
where differences were most pronounced. The scalp distribu-
tion of early and later sections of the mixing- and switch-
positivity are shown in Figure 4B. Outcomes of statistical
analyses are shown in Table 6.

Mixing-positivity All-repeat and repeat trials differentiated af-
ter 250 ms with a Bmixing-positivity^ for repeat trials emerg-
ing across the N2/P3 period, and extending posteriorly to the
end of the CTI, with a reverse late effect evident more anteri-
orly (Figure 4). The amplitude of both early (mean latency:
373 ± 55 ms; mean amplitude: 23 ± 11 μV/cm2) and the late
(652 ± 134 ms; 28 ± 15 μV/cm2) sections of the mixing-
positivity varied significantly across Age groups, with larger
early and late mixing positivity in Adolescents and Young
Adults compared with Adults. Adolescents also had a larger
early mixing positivity compared to Young Adults.

Switch-positivity Differentiation between repeat and switch
trials emerged first over the posterior P2, and then again be-
fore N2 onset, resolving by the end of the P3 (Figure 4). The
early section of the switch-positivity (283 ± 24 ms; 27 ± 12
μV/cm2) was laterally and parietally distributed (Figure 4B)
and did not vary with Age. The late switch-positivity (433 ±
62 ms; 29 ± 13 μV/cm2) was more clearly defined
centroparietally and was larger for Adolescents than Young
Adults and Adults.

MVPA Figures 5 shows the outcomes fromMVPA analyses for
mixing cost and switch cost2. Peak differentiation between
repeat and all-repeat trials and between switch and repeat trials
occurred before target onset in 96% and 95% of participants,
respectively.

The average classification rate for mixing cost peaked
around 200 ms at just greater than 55% correct and differed
significantly from chance between 100 ms and 800 ms post-
cue (Figure 5Ai). Maximum classification rate varied from
50% to 75%, with a mean of 57% around 300 ms post-cue
(Figure 5Bii & iii). For switch cost (Figure 5B), the average
classification rate peaked around 250 ms at just over 55%
correct and differed significantly from chance between
150 ms and 700 ms post-cue (Figure 5Bi). The average max-
imum classification rate for switch cost also was 57% at
around 300 ms (Figures 5Bii and iii). There were no effects
of Age group or sex on maximum classification rate (Table 6).

Associations between predictors, outcomes,
and cognitive control mediators

Pearson correlations (uncorrected) between predictor, out-
come, and cognitive control measures were used to identify
variables to enter into the mediation model (Table 7).
Correlations between all measures are shown in online at
https://osf.io/hs9me/.

Predictor and outcome relationships (X➔ Y) The two predic-
tor components that had high loadings from self-report mea-
sures correlated moderately to strongly with outcome compo-
nents, which all relied on self-report. Not surprisingly, given
that they have high loadings from different sections of the
same questionnaire (CARE), the Risk Propensity component
strongly correlated with the Risky Behaviours component. The
Impulsivity component positively correlated with all three out-
comes components. Note that the two predictor components
that had high loadings from behavioural scores did not corre-
late with any of the outcome components.

2 Based on individually estimated null classification rates (using p value <
0.05, uncorrected), the peak classification score of some participants did not
differ significantly from chance. Specifically, 10% (N = 17) did not signifi-
cantly discriminate switch and repeat trials and 20% (N = 36) did not signif-
icantly discriminate all-repeat and repeat trials (47 participants in total). To
determine whether Bdiscriminators^ (N = 121) and Bnondiscriminators^ (N =
47) differed in any way that may impact further analyses, we compared the two
groups using independent samples t-tests on all other variables using FDR
(alpha < 0.05) corrected t-tests. The groups did not differ on any MVPA,
behavioural, or ERP task-switching measures, nor did they differ by age,
sex, or any predictor, outcome, and cognitive control variable (p = 0.168 –
0.979). Excluding the 47 Bnondiscriminators^ did not affect the MVPA anal-
yses (p = 0.173 –0.793). Consequently, all further analyses were conducted on
the entire sample of 168 participants.
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Predictors and cognitive control relationships (X➔ M) The
Impulsivity component (which consisted primarily of the
BIS-11) correlated stronger with the BRIEF Behavioural
Regulation and Metacognition indices and weaker with the
General-EF and the WM Span components, as well as RT
switch cost from the task-switching paradigm. The Impulsive
Decisions component (which represents preference for fast
choices without regard for strength of evidence from the
IST) also correlated moderately with General-EF and weaker
with the late switch-positivity amplitude. The Delay Aversion
component (a behavioural measure which also taps into im-
pulsive choices or a preference for fast decisions that do not

optimise rewards from the CGT) correlated strongly with the
General-EF component, RT switch cost, early and late switch-
positivity amplitude, error mixing cost, as well as Behavioural
Regulation and Metacognition BRIEF indices. Finally, the
Work & Aggression component correlated weakly with both
RT switch cost and the BRIEF Behavioural Regulation index.
Overall, this pattern of findings indicates that participants who
reported being impulsive and who showed evidence of impul-
sive choices and aversion to slow and considered decision-
making performed more poorly on tasks that require cognitive
control, showed more effortful preparation to set-shift, and
reported poorer levels of cognitive control.

Table 5 Outcomes of age group x sex ANOVA for (A) Predictor (B) Outcome and (C) Cognitive control PCA component scores

COMPONENTS Factor F df p pη
2 Direction of significant effects

A. Predictors

Risk propensity Age 1.888 2, 162 0.155 0.023

Sex 16.045 1, 162 <0.0001 0.090 M>F**

Age*Sex 2.581 2, 162 0.079 0.031

Delay aversion Age 10.617 2, 162 <0.0001 0.116 AG1>AG2**, AG1>AG3**

Sex 0.110 1, 162 0.740 0.001

Age*Sex 0.386 2, 162 0.680 0.005

Impulsive decisions AgeSex 5.926
5.761

2, 162
1,162

0.003
0.018

0.068
0.034

AG1>AG2*, AG1>AG3*
M<F*

Age*Sex 1.084 2, 162 0.341 0.013

Impulsivity Age 2.206 2, 162 0.113 0.027

Sex 0.286 1, 162 0.593 0.002

Age*Sex 1.189 2, 162 0.307 0.014

Work and aggression Age
Sex

3.948
5.997

2, 162
1,162

0.021
0.015

0.046
0.036

AG1>AG3*, AG2>AG3*
M>F*

Age*Sex 2.385 2, 162 0.095 0.029

B. Outcomes

Psychological distress Age 4.980 2, 162 0.008 0.058 AG1>AG2†, AG1>AG3*

Sex 0.900 1, 162 0.344 0.006

Age*Sex 1.594 2, 162 0.206 0.019

Risky behaviours Age 0.436 2, 162 0.647 0.005

Sex 2.051 1, 162 0.154 0.012

Age*Sex 2.253 2, 162 0.108 0.027

Quality of life Age 0.309 2, 162 0.734 0.004

Sex 0.230 1, 162 0.632 0.001

Age*Sex 0.852 2, 162 0.429 0.010

C. Cognitive Control

General-EF Age 13.579 2, 162 <0.0001 0.144 AG1>AG2**, AG1>AG3**

Sex 0.159 1, 162 0.690 0.001

Age*Sex 0.820 2, 162 0.442 0.010

Working memory span Age 1.240 2, 162 0.292 0.015

Sex 2.913 1, 162 0.090 0.018

Age*Sex 0.208 2, 162 0.812 0.003

For all components, high scores indicate poorer performance (e.g., greater Risk Propensity, greater Psychological Distress, poorer General-EF.

EF = Executive Function. For significant Age Group and Sex effects, simple comparisons show differences between Adolescent (AG1), Young Adults
(AG2) and Adult (AG3) groups, as well as males (M) and females (F). Only significant contrasts are reported. †p < 0.05; *p < 0.01; **p < 0.001.
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Cognitive control and outcome relationships (M➔ Y) There
were no significant correlations between task switching mea-
sures of cognitive control and outcome components. The
General-EF component was only weakly correlated with the
Psychological Distress component, and unlikely to survive cor-
rection for multiple comparisons. In contrast, BRIEF indices
correlated with all three outcome components, and most strong-
ly with Psychological Distress. So, self-report measures of cog-
nitive control, but not behavioural measures of cognitive con-
trol, correlated with self-report measures of psychological
wellbeing, engagement in risky behaviours, and quality of life.

Mediation and Moderation analyses

Mediation models were run only for significant paths between
predictor and outcome components (Table 7). For consistency,
all cognitive control variables were entered as mediators, irre-
spective of whether they significantly correlated with predic-
tor and/or outcome components. Cognitive control mediators
included the two cognitive control components extracted from
PCA (General-EF,WM-Span), the Behaviour Regulation and
Metacognition indices of the BRIEF, and both mixing cost
and switch cost measures from the task-switching paradigm
(RT, error rate, early-positivity, late-positivity, MVPA max
classification rate). The full table of mediation results are pre-
sented in the supplementary materials (https://osf.io/hs9me/).
We discuss the significant models and describe the Bayesian
evidence for the null hypothesis (i.e., no mediation effect)
where applicable.

BRIEF Indices as mediators Because the BRIEF indices
showed the strongest correlations with both predictor and
outcome components, we first examined them as media-
tors. Figure 6A shows that the relationship between
Impulsivity and Psychological Distress (β = 0.527) was
significantly mediated by both Metacognition (top) and
Behaviour Regulation (bottom) indices, with strong
Bayes Factors supporting these mediation effect.
Specifically, the Impulsivity ➔ Psychological Distress re-
lationship was reduced by β = 0.22 ([0.095, 0.353], pFDR
< 0.001, BF10 = 106) when controlling for Metacognition
and by β = 0.326 ([0.227, 0.439], pFDR < 0.001, BF10 =
2.13 x 1011) when controlling for Behavioural Regulation.
Although both mediation (indirect) effects were highly sig-
nificant, in both cases the remaining Impulsivity ➔

Psychological Distress relationship (direct effect) remained
significant, indicating that self-report measures of cognitive
control only partially mediate this relationship.

To examine whether age moderated the relationships in
the above mediation models, we compared the mediation
effect of each BRIEF Index at the mean age of each Age
Group: Adolescents (16.8 yr), Young Adults (20.8 yr),
and Adults (28.4 yr). The mediation (indirect) effect of
both Metacognition and Behaviour Regulation Indices
on the Psychological Distress ➔ Impulsivity relationship
was significant for each group, indicating that age does
not significantly moderate the above mediation effect (for
MI and BRI, respectively: Adolescents: β = 0.207 [0.097,
0.32], p ≤ 0.0001, and β = 0.315 [0.216, 0.42], p ≤

Fig. 3. Behavioural task-switching measures. Left: Median RT (ms).
Right: Error rate (percentage) for each trial type and mixing/switch costs
from the task-switching paradigm. Plots display the distribution of each

data series with a superimposed box and whisker plot. Notch centre is the
mean score, box edges = 1st and 3rd quartile, whisker ends = ± 1.5 inter-
quartile range. Numbers represent group averages
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0.0001; Young Adults: β = 0.205 [0.096, 0.32], p =
0.0004, and β = 0.316 [0.22, 0.42], p ≤ 0.0001; Adults:
β = 0.206 [0.09, 0.33], p = 0.0004, and β = .314 [.216,
.42], p ≤ 0.0001).

The relationship between Impulsivity ➔ Quality of Life
(β = 0.414) was significantly reduced by β = 0.118 ([0.024,
0.208], pFDR = 0.021, BF10 = 1.23), when Behavioural
Regulation index was included as a mediator (Figure 6B).

Table 6 Task-switching statistical results for (A) Behavioural, (B) ERP, (C)MVPA measures

Variable Factor df F p pη
2 Direction of significant effects

A. Behaviour

RT Trial 2,324 110.7 <0.0001 0.406 Mixing Cost**, Switch Cost**

Age 2,162 5.988 0.003 0.069 AG1>AG2**

Sex 1,162 1.481 0.225 0.009

Trial*Age 4,324 3.854 0.017 0.045 Switch: F(2,162) = 3.935, p=.021, pη
2 =.046; AG1>AG2*

Trial*Sex 2,324 1.076 0.313 0.007

Sex*Age 2,162 0.429 0.652 0.005

Trial*Sex*Age 4,324 0.041 0.976 0.001

Error rate Trial 2,324 56.283 <0.0001 0.258 Switch Cost**

Age 2,162 5.378 0.005 0.062 AG1>AG2*,AG1>AG3†

Sex 1,162 0.161 0.689 0.001

Trial*Age 4,324 3.044 0.032 0.036 Switch: F(2,162) = 2.567, p = 0.080, pη
2 = 0.031; AG1>AG2†

Trial*Sex 2,324 0.136 0.873 0.001

Sex*Age 2,162 1.987 0.140 0.024

Trial*Sex*Age 4,324 1.362 0.256 0.017

B. ERPs

Early mixing Age 2,162 8.063 0.0004 0.091 AG1>AG2†, AG1>AG3**,AG2>AG3†

Positivity

Sex 1,162 0.068 0.794 <0.001

Age*Sex 2,162 2.252 0.108 0.027

Late mixing Age 2,162 6.944 0.001 0.079 AG1>AG3**,AG2>AG3†

Positivity

Sex 1,162 0.342 0.559 0.002

Age*Sex 2,162 1.546 0.216 0.019

Early switch Age 2,162 0.927 0.398 0.011

Positivity Sex 1, 62 0.017 0.896 <0.001

Age*Sex 2,162 0.337 0.715 0.004

Late switch Age 2,162 5.231 0.006 .061 AG1>AG2*,AG1>AG3*

Positivity

Sex 1 162 1.411 0.237 0.009

Age*Sex 2 162 0.507 0.604 0.006

C. MVPA

Max Class – Mixing Age 2 162 1.298 0.276 0.016

Sex 1 162 1.527 0.218 0.009

Age*Sex 2 162 1.978 0.142 0.024

Max Class – Switch Age 2 162 0.059 0.943 0.001

Sex 1 162 0.001 0.977 <0.001

Age*Sex 2 162 0.183 0.833 0.002

Mixing Cost = Repeat – All-repeat, Switch Cost= Switch – Repeat. Max Class = Maximum Classification Rate. M = Male, F = Female. For significant
Age Group and Sex effects, simple comparisons show differences between Adolescent (AG1), Young Adults (AG2) and Adult (AG3) groups, as well as
males (M) and females (F). For Trial*Age interaction, ANOVAs were conducted on switch and mixing costs to compare the three age groups. †p < 0.05;
*p < 0.01; **p < 0.001 (uncorrected). Only significant contrasts are reported.
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Although statistically significant, this mediation effect was
weak and not supported by the Bayes factor. Age did not
significantly moderate this relationship (Adolescents
(β = 0.117 [0.021, 0.22], p = 0.014), Young Adults
(β = 0.118 [0.021, 0.22], p = 0.014), Adults (β = 0.117
[0.018, 0.22], p = 0.018).

The Behavioural Regulation index also significantly medi-
ated the relationship between Work & Aggression and
Psychological Distress, β = 0.156 ([0.042, 0.259], pFDR =
0.041, BF10 = 4.98. Although the mediation effect was weak
and only weakly support by Bayesian analysis, the direct ef-
fect was no longer significant (Figure 6C) indicating a full
mediation effect. Again, age did not moderate this mediation
effect (Adolescents, β = 0.143 [0.041, 0.25], p = 0.008; Young
Adults, β = 0.143 [0.04, 0.25], p = 0.007; Adults, β = 0.14
[0.038, 0.25], p = 0.009).

All remaining BRIEF mediation models had BF01 < 16,
indicating weak evidence of mediation.

Other cognitive control variables as mediatorsNo other cog-
nitive control variable significantly mediated any rela-
tionship between predictor and outcome components.
The exact evidence for the null in each model can be
found at https://osf.io/hs9me/. There was between 20
and 50 times more evidence for the null in the vast
majority of mediation models (57/70); 15 of those
models showed at least 150 times more evidence for
the null.

Discussion

This study examined whether variability in cognitive con-
trol ability mediates the relationship between level of
impulsivity/reward processes and maladaptive outcomes
in adolescence and young adulthood. We first discuss
age and sex effects, and the relationships between

Fig. 4. Task-switching ERPs. (A) Cue-locked ERP average waveforms (with standard error) at three midline sites for each trial type. (B) Scalp
distribution of cue-locked switch positivity and mixing positivity. Black stars on the headplots represent the electrodes included in the hotspot
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impulsivity/reward-related behaviours, outcome compo-
nents tapping into risky behaviours and wellbeing, and
cognitive control ability. We then discuss the outcomes
of the mediation analyses in the context of risk-taking

models. Finally, we consider the implications of the differ-
ent findings arising from self-report and behavioural mea-
sures purportedly tapping into the same constructs.

Fig. 5. MVPA outcomes for switch cost (switch vs. repeat trials; A)
mixing cost (repeat vs. all-repeat trials; B). Mean classification rate wave-
form are shown for switch cost (Ai) and mixing cost (Bi) spanning from
50 ms pre-cue to 1,000 ms post-target. Aii (switch cost) and Bii (mixing

cost) show the distribution of the maximum classification rate, with the
latency of themaximum classification shown inAiii (switch cost) and Biii
(mixing cost)
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Effect of Age and Sex on Predictors, Outcomes,
and Cognitive Control

Adolescents performed more poorly than adults across a
number of levels, whereas there were few differences
between young adults and adults.3 Specifically, adoles-
cents showed greater difficulty regulating behaviour to
optimise outcomes and reported higher benefits of anti-
social behaviours specifically related to work conduct
and aggression (e.g., getting into a fight, being truant
from school/work). Although they did not differ signifi-
cantly from adults in self-reported level of quality of life
or engagement in risky and antisocial behaviours (eg.,
alcohol, drugs), adolescents reported higher levels of
psychological distress and poorer behaviour regulation
and metacognition. This could suggest an awareness that
they are not yet proficient in controlling their behaviour
and using experience to guide future actions or result
from the fact that these measures share common variance
(see Do self-report and task-based measures tap into the
same underlying constructs?). Adolescents also per-
formed more poorly than adults on behavioural and elec-
trophysiological measures of cognitive control, showing
poorer reasoning, cognitive flexibility, planning, and

more effortful and less efficient proactive control pro-
cesses. Effects of sex were few and not entirely consis-
tent (e.g., men reported higher benefits from risky behav-
iours, but showed better ability to control impulsive
choices to adjust for risk than females) and did not in-
teract with age.

This pattern of findings is consistent with adolescence as a
period of continuing development of cognitive control pro-
cesses, with difficulties regulating behaviour, especially in
reward-related and/or emotional contexts (Casey, Jones,
Hare, 2008; Stanford, Greve, Boudreaux, Mathias &
Brumbelow, 1996; Steinberg et al., 2008). The continued de-
velopment of cognitive control processes from adolescence
into adulthood is well documented (Luna, Garver, Urban,
Lazar & Sweeney, 2004; Ridderinkhof, Band & Logan,
1999; Sander, Lindenberger & Werkle-Bergner, 2012).
Adolescents (and children) appear to require greater activation
of cognitive resources and associated brain networks to per-
form a demanding cognitive task at the same or lower level
than adults (Karayanidis, Jamadar & Sanday, 2013;
Blakemore & Choudhury, 2006; Coch & Gullick, 2012)—a
type of developmental equivalent of the compensation-related
utilisation of neural circuits hypothesis (CRUNCH; Reuter-
Lorenz & Cappell, 2008). This may result in inefficient im-
plementation of cognitive control processes, especially when
the emotional stakes are high (Diamond, 2013). Importantly,
in relation to this study, the observed age effects are consistent
with risk-taking models’ profile of adolescents showing

3 Given the sparse andweak differences between young adult and adult groups
(higher Work & Aggression component and larger mixing positivity ampli-
tude), they require replication before further interpretation.

Fig. 6. Graphical summary of the significant mediation models.
Description of the Total Effect (TE), Indirect Effect (IE), and Direct
Effect (DE) of (A) self-report BRIEF Metacognition (Ai) and
Behavioural Regulation (Aii) indices on the relationship between
Impulsivity and Psychological Distress components, (B) self-report
BRIEF Behavioural Regulation indices on the relationship between

Impulsivity and Quality of Life components, and (C) self-report BRIEF
Behavioural Regulation indices on the relationship between Work &
Aggression and Psychological Distress components. The standardized
Beta value for each path/effect is presented, with associated p value and
Bayes factor (BF10)
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continuing maturation of cognitive control and reward-related
processes, as well as higher levels of psychological distress.

Relationships between Predictors, Outcomes,
and Cognitive Control

Higher levels of (self-reported) impulsivity were moderately
to strongly correlated with higher psychological distress,
greater engagement in risky behaviours, and poorer quality
of life (outcome PCA components), as well as with poorer
self-reported cognitive control, but only weakly with task-
based (behavioural and electrophysiological) measures of
cognitive control. In contrast, task-based measures of impul-
sive decision-making and difficulty optimising reward were
not associated with any outcomes components but did corre-
late with both task-based and self-report measures of cognitive
control. These findings are consistent with previous evidence
that self-report and behavioural measures of impulsivity are
not robustly associated and that only the former correlate with
self-reported level of wellbeing and risk-taking (Skippen
et al., 2019; for review see Cyders & Coskunpinar, 2011;
Sharma, Markon & Clark, 2014; Stahl et al., 2014; for further
discussion, see Do self-report and task-based measures tap
into the same underlying constructs?).

A similar pattern of relationships was found for the self-
report outcome components; they correlated moderately
strongly with the self-report BRIEF indices but not with
task-based measures of cognitive control. Thus, contrary to
the predictions of risk-taking models, the association between
cognitive control measures and either predictor or outcome
components was weak, except amongst measures derived
from the same level of analysis (i.e., exclusively self-report
or exclusively behavioural).

In contrast to self-reported impulsivity, neither self-report
measures of reward-seeking behaviours nor task-based mea-
sures of controlling impulsive choices to optimise reward sig-
nificantly correlated with any outcome component.4 This is
unlikely to be due to a measurement error (e.g., low variance),
because many of these measures did show significant effects
of age and/or sex, and controlling for age did not change the
pattern of correlations. This finding is surprising, because con-
trary to the basic tenet of risk-taking models, one’s ability to
control impulsive choices to optimise reward was not related
to their current level of risk-taking or maladaptive outcomes.
Because current attitudes and behaviour are likely to have a

stronger impact on future outcomes (Bø, Billieux, Gjerde,
Eilertsen & Landrø, 2017; Moffitt et al. 2011), it is possible
that these relationships will emerge more strongly in longitu-
dinal perspectives.

Does cognitive control ability mediate
the relationship between impulsivity/perceived risk
benefit and maladaptive outcomes?

Mediation analyses showed that, consistent with our predic-
tion, the effect of self-reported impulsivity on level of psycho-
logical distress was partially mediated by level of behaviour
regulation and metacognitive ability derived from the BRIEF.
A similar but weaker partial mediation effect was found for
behaviour regulation on the effect of impulsivity, as well as the
perceived benefits of antisocial work behaviour and aggres-
sion, on quality of life. Note that, again, all variables in this
significant mediation model were derived (almost) exclusive-
ly from self-report instruments. In contrast, behavioural (or
EEG) cognitive control measures derived from neuropsycho-
logical and experimental tasks did not mediate the significant
relationships between self-reported impulsivity and any out-
come component.

The correlations between impulsivity/reward-related pre-
dictor components, outcome components, and cognitive con-
trol variables remained for the most part significant when
controlling for age (Table 7). Therefore, although adolescents
show continuing development of processes related to reward-
seeking, impulsive choices, cognitive control, and psycholog-
ical distress, the intercorrelations between these variables re-
main largely stable across the adolescent to adult age range.
Moreover, age did not significantly moderate any of the above
mediation effects: self-reported level of cognitive control me-
diated the relationship between impulsivity and both psycho-
logical distress and quality of life equally across the adoles-
cent to adult age range. This finding is inconsistent with the
strong prediction of dual systems models that higher risk-
taking and greater incidence of maladaptive outcomes in ad-
olescents are due to differences in relative rate of maturation
of reward-related and cognitive control-related networks. It
questions the key premise that adolescents engage in more
risks because of protracted development of neural networks
that support behaviour regulation versus reward mechanisms
(Romer et al., 2017). Rather, the fact that this mediation effect
was present independently of age suggests that variability in
experiences gained through exploration, rather than age per se,
can better account for individual variability in behaviour reg-
ulation and risk-taking behaviours across the lifespan (Romer
et al. 2017). However, it is important to note that the absence
of significant moderating effects of age in our data may have
been influenced by low statistical power, as a result of divid-
ing our sample into three age groups.

4 The only exception was the significant correlation between perceived risk
benefit (predictor) and level of engagement in risky behaviours (outcome)
components, which have strong loadings from different forms of the same
questionnaire (self-report CARE). This relationship was not mediated by
self-report or task-based measures of cognitive control or vary with age. It is
likely to be partially due to smearing of constructs across the two forms of the
questionnaire (how much benefit from vs. how often do you engage in) and is
not discussed further.
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Do self-report and task-based measures tap
into the same underlying constructs?

Measures derived from self-evaluation more strongly predict-
ed risk-taking and maladaptive outcomes than performance
measures. Specifically, the Impulsivity component, based
largely on the BIS-11, and the BRIEF indices correlated
stronglywith Psychological Distress but weaker with the other
outcome components. Moreover, the BRIEF indices were the
only significant mediators between Impulsivity and outcome
components. At face value, these findings suggest that an
individual’s evaluation of their metacognitive ability and level
of self-regulation is a more sensitive predictor than measures
derived from their performance. However, there are a number
of other, not mutually exclusive, alternative explanations.

Self-report and task-based (behavioural and ERP) mea-
sures may tap into different aspects of behaviour (McAuley,
Chen, Goos, Schachar & Crosbie, 2010). Across the board,
self-report measures intercorrelated, irrespective of their des-
ignated status (i.e., predictors, mediators, or outcomes), and
task-based measures also intercorrelated, albeit more weakly.
Other studies also have reported that self-report and behav-
ioural measures of cognitive control are not strongly correlat-
ed (e.g., stop-signal and Stroop tasks: Allom, Panetta, Mullan
&Hagger, 2016; neuropsychological measures: Burgess et al.,
1998; Rabin et al., 2006). This could arise, at least partly,
because self-report and task-based measures differ in the pe-
riod of assessment: the former often require a retrospective
assessment over a period ranging from weeks to months,
whereas the latter assess average ability at the time of testing.
While both may be influenced by situational variability (e.g.,
fatigue, boredom), self-report measures are likely to represent
more stable, trait-like characteristics and task-based measures
to be influenced more strongly by state variability (Sharma
et al., 2014). Additionally, self-report measures typically re-
quest a broad evaluation covering a range of abilities as they
impact everyday life (e.g., ability to plan ahead, evaluate cost-
benefits before engaging in risky behaviour), whereas task-
based measures target the implementation of distinct cognitive
abilities in a Bsanitised^ lab environment (e.g., planning your
strategy before initiating a response). Therefore, as suggested
by McAuley et al. (2010), task-based assessments are sensi-
tive to level of specific cognitive skills, whereas self-report
assessments may evaluate the application of those skills and
abilities in everyday life. The fact that correlations between
different task-based measures were overall weak is consistent
with the idea that task-based measures tend to assess distinct
or minimally overlapping cognitive processes.

In addition, self-report measures are likely to tap into com-
mon sources of variance. An individual is likely to bring the
same biases to the way they evaluate themselves in different
self-report instruments (McAuley et al., 2010). Most obvious-
ly, current mood is very likely to impact one’s perceived level

of cognitive control efficiency, psychological well-being, and
risk propensity. Likewise, one’s perception of how well they
regulate their behaviour at the current time may influence how
they evaluate their level of impulsivity and engagement in
risk-taking behaviours (e.g., one may evaluate having 5 drinks
as risky or reasonable, depending on how much they feel in
control over their decision to have them in that specific con-
text). Moreover, self-report questionnaires tap into constructs
that are not completely independent, such as impulsivity, be-
haviour regulation, emotion regulation, etc. The BRIEF indi-
ces were most strongly correlated with the Impulsivity predic-
tor and Psychological Distress outcome components (r = 0.54-
0.69), which received strong loadings from the BIS-11 and the
DASS, respectively. These questionnaires have several very
similar items. For instance, items used to measure behaviour
regulation in the BRIEF are largely identical to DASS items
used to assess mood (e.g., I tend to overreact to situations vs. I
overreact to small situations/problems, respectively), and the
BRIEF scales correlate moderately to strongly with measures
of anxiety and depression (Roth, Isquith & Gioia, 2005).
There also are many similar items in the BRIEF and the
BIS-11 (e.g., I don’t plan ahead for tasks vs. I plan tasks
carefully, respectively) or even identical ones (e.g., I say
things without thinking, is in both instruments).

Finally, the common variance between self-report mea-
sures of cognitive control and impulsivity could be partly
related multidimensional structure of impulsivity (Dawe &
Loxton, 2004; Gullo & Dawe, 2008). Specifically, the disin-
hibition component is more likely (than the reward sensitivity
component) to be related to the cognitive control construct of
response inhibition, and hence perceived ability to regulate
one’s behaviour, consistent with the conceptualisation of im-
pulsivity by some models of risk-taking (e.g., Steinberg,
Casey). However, in this case, we would have expected the
behavioural measures of impulsivity derived from the
CANTAB Gambling Task and Information Sampling Task
to be more strongly associated with the self-regulation index
of the BRIEF and behavioural/electrophysiological measures
of interference control from the task-switching paradigm,
which was not the case. We conclude that the multidimension-
al structure of impulsivity can’t account for the difference in
relationships between self-report and behavioural measures.
In addition, these data show that, while some aspects of im-
pulsivity may map directly onto difficulty in response inhibi-
tion, impulsivity is not fully encapsulated within or identifi-
able as a measure of cognitive control.

These findings caution against using single level of analy-
sis (self-report or behavioural) or single measures at each level
of analyses when seeking to quantify individual variability in
cognitive control ability, its relationship to impulsivity and
reward-related processes, and its impact on adaptive/
maladaptive behaviours. They also emphasise the need for
better-defined key constructs to reduce common variance
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across self-report measures of different constructs and im-
prove mapping between self-report and behavioural measures
of the same construct.

Conclusions

Overall, the pattern of age effects in predictor, outcome, and
cognitive control variables are broadly consistent with continu-
ing maturation across adolescence into young adulthood, and
plateau thereafter. Age effects were stronger on measures that
tapped into cognitive control processes and controlled decision-
making to optimise outcomes, consistent with adolescent risk-
taking models that argue for delayed maturation of cognitive
control as compared to reward drive processes. Also, consistent
with these models, self-reported level of cognitive control medi-
ated the relationship between self-reported levels of impulsivity
and psychological distress. However, first, this effect that was
not moderated by age, suggesting that individual variability in
cognitive control is more crucial to the relationship between risk-
taking/impulsivity and outcomes than age itself. Second, the
mediation effect was significant with self-report but not behav-
ioural or EEG-based measures of cognitive control. Finally, un-
like impulsivity, self-reported level of perceived reward-seeking
(benefit of risky behaviours, sensation-seeking) did not correlate
with psychological distress or quality of life.
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