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Abstract

The association between subjective memory complaints (SMCs) and depressive symptoms has been widely reported and both
have been regarded as risk factors for dementia, such as Alzheimer’s disease (AD). Although SMCs arise as early as in middle
age, the exact neural correlates of comorbid depressive symptoms among individuals who are middle-aged and with SMCs have
not yet been well investigated. Because rich-club organization of the brain plays a key role in the pathophysiology of various
neuropsychiatric disorders, the investigation of rich club organization may provide insight regarding the neurobiological mech-
anisms of depressive symptoms in SMCs. In the current study, we compared the rich-club organization in the structural brain
connectivity between individuals who have SMCs along with depressive symptoms (SMCD) and individuals with SMCs but
without depressive symptoms (SMCO). A total of 53 individuals with SMCD and 91 individuals with SMCO participated in the
study. For all participants, high-resolution, T1-weighted images and diffusion tensor images were obtained, and the network
analysis was performed. Individuals with SMCD had lower connectivity strength between the precuneus and other rich-club
nodes than those with SMCO, which was significant after adjusting for potential confounders. Our findings suggest that
disruptions of rich-club connectivity strength of the precuenus are associated with depressive symptoms in middle-aged indi-
viduals with SMCs. Given that the precuneus is one of the commonly affected regions in the early stages of AD, our findings may
imply that the concomitant depressive symptoms in middle-aged individuals with SMCs could reflect structural alterations
related to AD.
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Introduction

Subjective memory complaints (SMCs) have been character-
ized as subjective reports of cognitive and memory problems
without objective deficits in the cognitive domain as shown in
mild cognitive impairment (MCI) or dementia (Hafkemeijer
et al., 2013; Yasuno et al., 2015). SMCs, which may occur
before the clinical diagnosis of MCI, have received increasing
attention with respect to their implications for the early detec-
tion of dementia (Scheef et al., 2012; Stewart et al., 2011). For
instance, various research in the past, including both clinical
and neuroimaging studies, have suggested that SMCs are con-
sidered as one of the most frequently observed symptoms in the
early stages of dementia (Juncos-Rabadan et al., 2012; Reisberg
& Gauthier, 2008; Stewart et al., 2008; Stewart et al., 2011; Sun
et al., 2016; Waldorff, Siersma, Vogel, & Waldemar, 2012;
Yasuno et al., 2015). In addition, some studies have found that
SMCs are associated with an increased risk of developing
Alzheimer’s disease (AD) (Geerlings, Jonker, Bouter, Adér, &
Schmand, 1999; Jessen et al., 2010) and progressive cognitive
impairment (Buckley R. F. et al., 2016; Lista et al., 2015).

Because depressive symptoms are frequently observed in
subjects with SMCs (Hohman, Beason-Held, & Resnick,
2011; Montejo et al., 2014; Sousa, Pereira, & Costa, 2015),
previous studies have suggested that SMCs may constitute
symptom constellations of depression (Balash et al., 2013;
Balash, Mordechovich, Shabtai, Merims, & Giladi, 2010;
Buckley et al., 2013; Chin, Oh, Seo, & Na, 2014; Zlatar,
Moore, Palmer, Thompson, & Jeste, 2014). However, given
that depressive symptoms also are known to be a risk factor
for developing cognitive impairment and dementia, and the
severity of depressive symptoms in older adults are well cor-
related with the burden of AD pathology (Lavretsky et al.,
2009), the comorbidity of depressive symptoms in subjects
with SMCs may play a significant role in the potential pro-
gression from SMCs to dementia.

As mentioned above, the association between depressive
symptoms and SMCs has been one of the most robust findings
in scientific research (Brigola et al., 2015; Lehrner et al., 2014;
Montejo Carrasco et al., 2017; Sousa et al., 2015; Zlatar, Muniz,
Galasko, & Salmon, 2017). However, the neural correlates of
the comorbidity between depressive symptoms and SMCs have
not yet been elucidated. Previous neuroimaging studies have
shown that depressive symptoms in nondemented elderly are
associated structural brain abnormalities, especially in AD-
related structures, such as limbic structures (Dotson,
Davatzikos, Kraut, & Resnick, 2009; Szymkowicz et al.,
2018; Zhou et al., 2016). Thus, concomitant depressive symp-
toms in the presence of SMCs may be the result of early struc-
tural alterations of the brain while in progression towards AD,
rather than a symptom in itself or one of the reflective features
related to SMCs. Therefore, understandings of the neural mech-
anisms underlying the comorbidity of depressive symptoms in

@ Springer

SMCs may provide important insights into the early diagnosis
and intervention for individuals at risk for dementia.

Furthermore, recent research has shown that SMCs are as-
sociated with the onset of cognitive impairment that occurs
approximately two decades subsequent to the SMCs (Kaup,
Nettiksimmons, LeBlanc, & Yaffe, 2015), which suggests that
SMCs may be a very early symptom of an insidious neurode-
generative diseases, such as AD. In addition, individuals with
SMCs as early as in middle-age have shown significant cortical
thinning in several brain regions that are commonly affected in
AD, including the entorhinal, posterior cingulate, and inferior
parietal cortices, compared with healthy control subjects
(Schultz et al., 2015). However, most previous studies related
to SMCs and depression have primarily focused on the elderly
(Brigola et al., 2015; Montejo Carrasco et al., 2017). Given that
SMC:s can arise as early as middle-age, along with the fact that
management of early risk factors may mitigate further cogni-
tive impairment (Byers & Yaffe, 2011; Hughes & Ganguli,
2009), it would be more informative and beneficial to investi-
gate the neural mechanisms of depressive symptoms in middle-
aged individuals with SMCs rather than in the elderly.

The human brain is organized into a large-scale network
(Gong et al., 2009; Hagmann et al., 2008; Hagmann et al.,
2007), which is characterized by an optimal balance between
the integration and segregation of information (Latora &
Marchiori, 2001). Recent neuroimaging research have found
that several hub regions, such as the superior frontal, superior
parietal, insula, and precuneus in the human brain, play an
important role in the interregional communication and hierar-
chical organization of the brain (van den Heuvel & Sporns,
2011; van den Heuvel et al., 2013; Yoon et al., 2016). These
network hubs have been known to form a central core otherwise
known as rich-club that is highly interconnected with each oth-
er. Notably, rich-club brain regions, which also are referred to as
network hubs, have been involved in global integration of in-
formation (van den Heuvel & Sporns, 2011; van den Heuvel
etal., 2013). Previous studies have suggested that disruptions in
rich-club brain regions may contribute to the pathophysiology
of several neuropsychiatric and neurodegenerative diseases in-
cluding schizophrenia, depression, and AD (Fischer, Wolf,
Scheurich, Fellgiebel, & Alzheimer's Disease Neuroimaging
Initiative, 2015; van den Heuvel et al., 2013; Yoon et al.,
2016). Because alterations in rich-club organization may occur
before the occurrence of any conspicuous symptoms related to
a disease (McColgan et al., 2015), the investigation of rich-club
organizations may provide structural network-based informa-
tion that is relevant to the early stage of disease.

To identify the neurobiological mechanism of comorbid
depressive symptoms of SMCs in a sample of middle-aged
adults, the current study investigated whether there were dif-
ferences in rich-club organization in the structural brain net-
work between individuals with SMCs who had coexisting
depressive symptoms (SMCD) and individuals with SMCs
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but without depressive symptoms (SMCO). In the case that
depressive symptoms are merely one of many symptoms re-
lated to SMCs, one might expect that there are no differences
in the structural brain network between the SMCD and SMCO
groups. However, under the assumption that depressive symp-
toms in SMCs may be a marker for disruptions in the struc-
tural brain network, there may be between-group differences
in alterations of the structural brain network that can be ex-
plained by the level of depressive symptoms. Therefore, we
hypothesized that the structural disruptions of rich-club con-
nectivity are associated with the manifestation of depressive
symptoms in individuals with SMCs.

Materials and methods
Participants

Initially, a total of 150 participants who had complaints about
their memory or with cognitive difficulty were recruited. The
participants were administered the Subjective Memory
Complaints Questionnaire (SMCQ) (Youn et al., 2009) to deter-
mine whether they had SMCs. Participants who answered “yes”
to 1 or more of the 14 questions of the SMCQ were considered
as having SMCs, whereas those who answered “no” to all 14
questions were regarded as not having SMCs. Based on this
criterion, 6 participants answered “no” to all 14 questions of
the SMCQ and therefore were excluded from the study. A total
of 144 participants were finally enrolled in the study.

All participants met the following criteria: 1) aged between 45
and 65 years; 2) years of education >6; 3) the scores of the
Korean version of the Mini Mental Status Examination
(MMSE-K) (Park, 1989) >26; and 4) the scores of the Korean
version of Clinical Dementia Rating (CDR-K) (Choi et al., 2001)
= 0. We excluded individuals with any of the following: 1)
suspected or diagnosed with mild cognitive impairment or de-
mentia; 2) suspected or diagnosed with any major neurological or
psychiatric illnesses, including major depressive disorder
(MDD); 3) any contraindications to magnetic resonance imaging
(MRI); 4) visual or hearing impairments severe enough to inter-
fere with questionnaire response; 5) a history of medications that
could affect cognitive and emotional functions in the past 3
months; or 6) any other major medical problems. All of the
participants were interviewed by two board-certified psychiatrists
using the CDR-K and the Korean version of the Structured
Clinical Interview for DSM-IV (SCID-IV-K) (Hahn et al.,
2000). The CDR scale is a widely accepted structured interview
in which subjects are rated as having scores of 0 (asymptomatic),
0.5 (equivocal or mild impairment), 1 (mild), 2 (moderate), or 3
(severe dementia) (Choi et al., 2001; Morris, 1997).

Written, informed consent was obtained from all partici-
pants, and the study protocol was approved by the
Institutional Review Board of Ewha W. University.

Clinical assessments

Participants with depressive symptoms were previously de-
fined as those who have subclinical depression (Hayakawa
et al., 2013; Lavretsky & Kumar, 2002). In the current study,
as in other previous studies, the term subclinical depressive
symptoms refers to having significant depressive symptoms,
which is based on the cut-off score of 14 on the Korean ver-
sion of Beck Depression Inventory-II (BDI-II-K) (Sung et al.,
2008), while not meeting the DSM-IV diagnostic criteria for
MDD. The cutoff score of 14 on the BDI-II-K was used to
classify participants with SMCs into two groups: individuals
with SMCs who had depressive symptoms (n = 53, hereafter
referred to as the SMCD group) and those with SMCs who did
not have depressive symptoms (n = 91, hereafter referred to as
the SMCO group).

Previous studies have shown that individuals with SMCs
have commonly reported memory problems (Cook &
Marsiske, 2006; Jessen et al., 2007; Kurt, Yener, & Oguz,
2011). Moreover, deficits in visual and working memory func-
tions have also been frequently observed in individuals with
depression (Christopher & MacDonald, 2005; Hammar et al.,
2011; Kalska et al., 1999; Porter et al., 2003). Thus, visual and
working memory domains were the primary choice of assess-
ment in both SMCD and SMCO groups using the following
three cognitive tasks implemented in the Korean version of
Cambridge Neuropsychological Test Automated Battery
(CANTAB) (Kim et al., 2009; Kim & Cho, 2012; Kim
et al., 2014; Sharma, 2013). Visual memory performance
was measured using the Spatial Recognition Memory
(SRM) task and Delayed Matching to Sample (DMS) task,
whereas working memory was evaluated using the Spatial
Working Memory (SWM) task. The SRM task has a two-
forced-choice discrimination paradigm that evaluates spatial
recognition memory (Owen et al., 1995). The outcome of the
SRM task includes the percentage of correct responses.
During the DMS task, the participants were asked to recall
the visual components of a complex, abstract target stimulus
provided, and then identify it from the four target patterns
provided after a delay (Robbins et al., 1994). The outcome
measure of the DMS task includes the percentage of correct
responses. Finally, the SWM task is a self-ordered search task,
which evaluates working memory. Participants were
instructed to search for tokens without returning to previous
token locations (Owen et al., 1995). The outcome measure of
the SWM is total number of errors.

Each raw score of the above mentioned three tasks was
converted to a standardized Z score. Among the three tasks,
as the SWM raw scores indicated the total number of errors, the
scores of SWM were reversed such that positive Z scores rep-
resent better performance. The composite score for the visual
memory domain was constructed by averaging Z scores of the
correct responses in the SRM and DMS tasks. The standardized
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Z score of the total errors in the SWM task was used as the
representative score for the working memory domain.

Imaging data acquisition

High-resolution T1-weighted and diffusion-weighted images
were acquired using a 3.0 Tesla Philips Achieva MR scanner
(Philips Medical System, Bests, Netherlands). Magnetization-
prepared rapid gradient echo imaging sequence was used to
obtain a three-dimensional T1-weighted images with the fol-
lowing acquisition parameters: repetition time (TR) = 7.4 ms,
echo time (TE) = 3.4 ms, flip angle (FA) = 8°, field of view
(FOV) =220 X 220 mm?, slice thickness = 1 mm, number of
excitation (NEX) = 1, 180 contiguous sagittal slices. In addi-
tion to b0 image without weighting, diffusion-weighted im-
ages were acquired from 32 different directions with the fol-
lowing parameters: b = 1,000 s/mz, TE =68 ms, TR = shortest,
matrix = 96 x 96, FOV = 200 X 200 mm?, flip angle = 90°,
NEX = 2, slice thickness = 1.8 mm. Additional axial proton
density/T2-weighted images were acquired to evaluate struc-
tural abnormalities in the brain with the following parameters:
TR =3,000 ms, TE = 9.5/90 ms, FA = 90°, FOV =202 X 201
mm?>, slice thickness = 2.5 mm, NEX = 1. Acquisition param-
eters for sagittal fluid-attenuated inversion recovery images
were as follows: TR = 8,000 ms, TE = 332 ms, inversion time
=2,400 ms, FA =90°, FOV =250 X 250 mmz, slice thickness
=0.6 mm, NEX = 1.

Image processing

T1-weighted image of each participant was parcellated into 34
cortical and 7 subcortical regions per each hemisphere using
the FreeSurfer program (http://surfer.nmr.mgh.harvard.edu)
(Desikan et al., 2006). A total of 68 cortical and 14 subcortical
regions-of-interests (ROIs) was defined as the nodes of the
structural brain network (van den Heuvel & Sporns, 2011).
A T1-weighted image of each participant was coregistered to
the corresponding nondiffusion image (b = 0 s/m?) using af-
fine transformation. All cortical and subcortical ROIs in the
native space were inversely transformed to the diffusion
space.

Diffusion-weighted images were linearly registered to the
non-diffusion image (b = 0 s/m?) in order to correct for head
motion and eddy current distortions. Diffusion tensor was
fitted and fractional anisotropy (FA) values were computed
within each voxel using the Diffusion Toolkit (http://
trackvis.org/) (Wang, Beener, Sorensen, & Wedeen, 2007).

Network construction
Detailed information on the network construction is described

elsewhere (Yoon et al., 2016). In brief, white matter tracts
were reconstructed using the deterministic fiber tracking on
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the basis of Fiber Assignment by Continuous Tracking
(FACT) algorithm (Mori, Crain, Chacko, & van Zijl, 1999).

A streamline was terminated when it reached a voxel with a
FA value < 0.1, had a turning angle > 45 degrees, or exceeded
the ROI. Through these processes implemented in the
Trackvis (http://trackvis.org) software package, all fiber
tracts interconnecting 82 ROIs were reconstructed.
Streamlines shorter than 10 mm were considered as being
spurious and were not included in further analysis.

Fiber tracts interconnecting 68 cortical and 14 subcortical
nodes were combined to reconstruct the structural brain net-
work comprising a set of nodes and edges. To reduce the risk
of false-positive connections, a threshold of the number of
fiber tracts was applied similar to previous studies (Lo et al.,
2010; Shu et al., 2011). Specifically, the structural connection
of two nodes by an edge was considered as established if there
is a minimum of three streamlines that are connected between
the two nodes. Fiber numbers determined by streamline track-
ing may reflect the white matter structure (Houenou et al.,
2007) and have been used as a weight for network edges
(Batalle et al., 2012; Shu et al., 2011; Yan et al., 2011;
Zhang et al., 2011). Finally, the weighted structural networks
represented as symmetric 82 x 82 matrices were constructed
for each individual.

Assessment of global network metrics

The network analysis was performed using the Brain
Connectivity Toolbox (http://www.brain-connectivity-
toolbox.net). The connectivity strength, global efficiency
(Egiob), local efficiency (Ej,c), and clustering coefficient were
computed in each matrix to assess graph metrics of the global
topological organization of whole-brain structural connectivi-
ty network. Connectivity strength is defined as the sum of all
the streamlines connecting between nodes (Rubinov &
Sporns, 2010). Global efficiency is a measure of network in-
tegration and defined as the average inverse shortest path
lengths between all pairs of nodes (Latora & Marchiori,
2001), whereas local efficiency is a measure of segregation
of structural connectivity network and is defined as the effi-
ciency computed on node neighborhoods (Rubinov & Sporns,
2010; Watts & Strogatz, 1998). To measure network segrega-
tion, the weighted clustering coefficient of a node was com-
puted and was defined as the likelihood of the neighborhoods
being connected with each other (Onnela, Saramaki, Kertesz,
& Kaski, 2005). The mean clustering coefficient of a network
was calculated as the average of the clustering coefficient
across all nodes.

Assessment of rich-club organization

The rich-club nodes were selected according to the guidelines
provided in previous studies (van den Heuvel & Sporns, 2011;
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Yoon et al., 2016). Briefly, because random networks also
show increasing network connections due to the fact that
nodes with a higher degree also have a higher probability of
being interconnected by chance, we computed the normalized
rich club coefficient to show the existence of rich club orga-
nization in a network. Rich-club coefficient, ¢ (k), is typically
normalized relative to a set of comparable random networks of
equal size and similar connectivity distribution (van den
Heuvel & Sporns, 2011). As such, for each network, m =
1,000 random networks were computed by shuffling the links,
preserving the weights and the degree sequence and thus all
node degrees including the hubs in the network. Like other
previous studies (van den Heuvel et al., 2013), a normalized
rich-club coefficient ¢ norm (k) of greater than 1 over a range
of k is defined as the existence of rich club organization in a
network. The presence of rich club organization was identified
by performing a two-tailed #-test with the permutation testing
(10,000 permutations) of the area under the curve (normalized
weighted rich-club coefficient against degree) for each group
versus random network. The comparison of rich-club coeffi-
cient between the two groups was performed with the general
linear model (GLM) after adjusting for age and sex (Fig. S1,
see online Supplementary Material).

We defined rich-club nodes as the top 10 highest ranking
nodes (12%) on the basis of the degree of nodes within the
group-averaged structural brain network (van den Heuvel
et al., 2013; Yoon et al., 2016). The selected rich-club nodes
include the superior frontal cortex (SFC), superior parietal
cortex (SPC), precuneus, putamen, and thalamus, all bilater-
ally. Rich-club nodes are likely to be highly connected with
each other compared to connections that would be expected
by random chance (van den Heuvel & Sporns, 2011). All
connections between nodes in each structural matrix were
categorized into one of the following categories: “rich-club
connections,” which are defined as the number of all connec-
tions linking rich-club nodes; “feeder connections,” which are
defined as the number of connections linking rich-club to non-
rich-club nodes, and “local connections,” which are defined as
the number of connections linking between non-rich-club
nodes (van den Heuvel & Sporns, 2011).

Statistical analyses

For the baseline demographic data, the independent #-test and
the chi-square test were used for the continuous variables and
the dichotomous variables, respectively. The group differ-
ences in cognitive functions were also assessed using analysis
of covariance (ANCOVA) with age, sex, and years of educa-
tion as covariates.

Global network metrics including global efficiency, local
efficiency, and clustering coefficient of the whole-brain struc-
tural connectivity network were compared between the
SMCD and SMCO groups using the general linear model

(GLM) after adjusting for age, sex, and years of education.
The GLM also was used to examine differences in rich-club,
feeder, and local connections between the SMCD and SMCO
groups using age and sex as covariates. Partial eta squared
(npz) was used to estimate the effect size. Spearman correla-
tion analysis was performed to estimate the associations be-
tween clinical characteristics and connectivity strength in rich-
club connections in the SMCO and SMCD groups.

Correction for multiple comparisons was performed using
a permutation-based test (Hurtz et al., 2014; Nichols &
Holmes, 2002). Data were tested against an empirical null
distribution by running 10,000 synthesized permutations with
a threshold of p < 0.05. (Westfall, Young, & Wright, 1993).
All analyses were performed using the STATA 13.0
(StataCorp, College Station, TX).

Results
Basic information
Clinical characteristics

There were no significant differences in age, gender, years of
education, and MMSE-K scores between the SMCD and
SMCO groups (Table 1). The SMCD group (mean + SD,
5.57 +3.08; median, 5.0; interquartile range, 3.0e, genshowed
higher scores on the SMCQ compared with the SMCO group
(mean + SD, 3.52 + 2.54; median, 3.0; interquartile range, 1.0-
5.0) (t=-4.29, P <0.001).

There were no significant differences in visual memory
performance (mean Z score = SD, 0.09 + 0.76 vs. —0.20 +
0.72, P = 0.050) and working memory performance (0.09 +
0.96 vs. —0.21 £ 1.07, P = 0.151) between the SMCO and
SMCD groups (Table 2).

Global network metrics

There were no significant differences in global network topolo-
gies, including connectivity strength (mean = SD. 0.266 + 0.027
vs. 0.267 £0.027, np2= 0.000, permutation adjusted P = 0.867),
global efficiency (0.016 + 0.002 vs. 0.015 = 0.002, 771,2 =0.004,
permutation adjusted P = 0.417), and clustering coefficient
(0.007 £+ 0.001 vs. 0.007 + 0.001, 77p2 = 0.000, permutation
adjusted P = 0.762) between the SMCO and SMCD groups.

Primary analyses
Rich-club organization
There were no differences in connectivity strength of rich-club

connections (np2 = 0.017, permutation-adjusted P = 0.122),
feeder connections (77,,2 = 0.001, permutation-adjusted P =
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Table 1 Characteristics of study participants
SMCO SMCD P value
(n=91) (n=53)
Gender (male : female) 18:73 8:45 0.481
Age (yr) 53.5+5.5(49.0~57.0) 54.4 +5.7 (50.0~57.0) 0.360
Education (yr) 14.9 +£2.3 (12.0~16.0) 14.1 £2.4 (12.0~16.0) 0.057
MMSE-K 27.8 £ 1.0 (27.0~28.0) 27.5+ 1.5 (26.0~29.0) 0.260
SMCQ-K 3.5+2.5(1.0~5.0) 5.6 £3.1(3.0~7.0) <0.001*
BDI-II-K 7.3 £3.7 (5.0~10.0) 20.5 + 7.0 (16.0~22.0) <0.001*

Means and standard deviation values are denoted as mean + standard deviation (interquartile range).

SMCO, subjective memory complaints without depressive symptoms; SMCD, subjective memory complaints with depressive symptoms; MMSE-K,
Korean version of Mini-mental status examinations; SMCQ-K, Subjective memory complaints questionnaire for Korean; BDI-II-K, Korean version of

Beck depression inventor

0.757), and local connections (771,2 = 0.003, permutation-
adjusted P = 0.529) between the SMCD and SMCO groups
(Figure 1). Likewise, there were no significant differences in
network efficiency of rich-club connections (np2 = 0.012,
permutation-adjusted P = 0.197), feeder connections (np2 =
0.001, permutation-adjusted P = 0.701), and local connections
(np2 = 0.001, permutation-adjusted P = 0.790) between the
two groups (Figure 1).

To examine region-specific alterations in rich-club connec-
tions, we computed the connectivity strength of each rich-club
node linking to other rich-club nodes. Rich-club connections of
the SFC, SPC, precuneus, putamen, and thalamus were

Table 2 Scores of Cambridge neuropsychological test automated

battery
SMC (n = 144) P value®
SMCO SMCD
(n=91) (n=53)

Visual Memory composite 0.1+£0.8 -02+0.7 0.050

(Z_scores) (-03~0.7)  (-0.7~03)

Delayed Matching to Sample (DMS)

Correct response (%)° 85.9+9.1 83.9+113  0.385
(80.0~90.0)  (75.0~95.0)

Spatial Recognition Memory (SRM)

Correct response (%)° 754+106 71.0+9.7 0.029*
(70.0~80.0)  (65.0~80.0)

Working memory (Z_scores) 0.1 +1.0 02+ 1.1 0.151
(=0.6~0.8) (-1.2~0.5)

Spatial Working Memory (SWM)

Total errors™® 384+194 446+21.6 0.556
(24.0~53.0)  (30.0~64.0)

* Age, gender, and education adjusted P value from ANCOVA.
® Lower scores indicate higher performance.

¢ Means and standard deviation values of individual raw scoresare denot-
ed as mean + standard deviation (interquartile range of scores).

*P<0.05
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calculated in each hemisphere. Connectivity strength between
the precuneus and other rich-club nodes was lower in the
SMCD group than in the SMCO group (77,,2 = 0.030,
permutation-adjusted P = 0.040) (Figure 2). When we examined
the left and the right precuneus, respectively, only the connectiv-
ity strength of the left precuneus was significantly reduced in the
SMCD group (771,2 = 0.039, permutation-adjusted P = 0.019) than
in the SMCO group, while that of the right precuenus showed no
significant group differences (np2 = 0.015, permutation-adjusted
P = 0.150). To ensure the robustness of our results, we also
compared the connectivity strength of the precuneus between
the two groups after adjusting for age, sex, years of education,
and the composite scores of the visual memory and working
memory functions, which also showed significant group differ-
ences (77},2 = 0.030, permutation-adjusted P = 0.041). There were
no differences in rich-club connectivity of other rich-club nodes
between the groups (SFC, np2 = 0.016, permutation-adjusted P =
0.150; SPC, np2 = 0.002, permutation-adjusted P = 0.617; thala-
mus, 771,2 = 0.001, permutation-adjusted P = 0.771; putamen, np2
= 0.001, permutation-adjusted P = 0.793).

Secondary analyses

Relationships between rich-club organization
of the precuneus and clinical characteristics

The connectivity strength of rich-club connections in the
precuneus was significantly correlated with working memory
function (p = 0.370, P = 0.006) in the SMCD group
(Figure 3). However, there was no correlation between the
connectivity strength of the precuneus and working memory
function (p = —0.055, P = 0.603) in the SMCO group. In
addition, there were no relationships between the connectivity
strength of rich-club connections in the precuneus and visual
memory function in both the SMCO (p =—-0.132, P = 0.213)
and SMCD (p =-0.219, P=0.116) groups. In terms of within
group analysis, the connectivity strength of rich-club
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Fig. 1 The mean connectivity strength and efficiency of rich-club, feeder,
and local connections. *Error bars indicate standard error. There were no
differences in connectivity strength of rich-club connections (17,7 = 0.017,
permutation-adjusted P = 0.122), feeder connections (77, = 0.001,
permutation-adjusted P = 0.757), and local connections (7],,2 = 0.003,
permutation-adjusted P = 0.529) between the SMCD and SMCO

connections in the precuneus was not correlated with the se-
verity of depressive symptoms in both SMCO (p = —-0.091, P
= 0.391) and SMCD (p = —0.040, P = 0.774) groups,
respectively.

Exploratory analyses

Connectivity strength between the Hippocampus and other
brain regions

The hippocampus was not selected as a rich club region in the
current study, based on the definition of rich-club nodes as being
the top 10 highest ranking nodes (12 %) on the basis of the degree
of nodes within group-averaged structural brain network (van den
Heuvel et al., 2013; Yoon et al., 2016). However, as previous
studies have indicated, the hippocampus is one of the key brain
regions in the field of SMCs and depression (Sawyer et al., 2012;
Stewart et al., 2011; von Gunten et al., 2000; von Gunten & Ron,

groups. Likewise, there were no significant differences in network
efficiency of rich-club connections (n,,2 = 0.013, permutation-adjusted P
= 0.197), feeder connections (T]p2 = 0.001, permutation-adjusted P =
0.701), and local connections (npz = 0.001, permutation-adjusted P =
0.790) between the two groups

2004). Therefore, we have performed additional analyses, which
investigated the between-group differences in hippocampal con-
nectivity strength with other brain regions to provide more con-
textual information regarding the hippocampus (Figure 4). There
were no significant differences in hippocampal connectivity
strength between the SMCO and SMCD groups (mean + SD.
0.523 +0.178 vs. 0.536 + 0.169, sz = 0.002, permutation ad-
justed P =0.627).

Connectivity strength of the precuneus according
to the degree of depressive symptoms or the degree of SMCs

We have performed additional sensitivity analyses to investi-
gate how the rich-club connectivity of the precuneus may be
predicted by the degree of depressive symptoms or the degree
of SMCs (Supplementary Results-2 and Fig. S2, see online
Supplementary Material). The results from these additional
analyses show that the rich-club connectivity of the precuneus
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Fig. 2 Rich-club connectivity strength among the rich-club nodes. *Error
bars indicate standard error. Further analysis for the region-specific alter-
ations in the rich-club connections revealed that the connectivity strength
between the precuneus and other rich-club nodes was lower in the SMCD
group than in the SMCO group (npz = 0.030, permutation-adjusted P =

is associated with the severity of depressive symptoms but not
the degree of SMCs.

Discussion

To the best of our knowledge, this is the first study to demon-
strate that the connectivity strength of the precuneus was re-
duced in the SMCD group compared with the SMCO group,
which may suggest that structural disruptions in the rich-club
connections of the precuneus are associated with the manifes-
tation of depressive symptoms in SMCs.

It has been suggested that the hubs or rich-clubs of the brain
may be more vulnerable to structural changes in the brain
network due to the higher nodal degree of the hub regions
relative to non-rich-club regions (Crossley et al., 2014).
Previous studies have shown that rich-club connections were
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0.041). There were no differences in rich-club connectivity of other rich-
club nodes between the groups (superior frontal cortex, npz = 0.016,
permutation-adjusted P = 0.150; superior parietal cortex, np2 = 0.002,
permutation-adjusted P = 0.617; thalamus, 7],,2 = 0.001, permutation-
adjusted P =0.771; putamen, npz =0.001, permutation-adjusted P = 0.793)

lower in patients with neuropsychiatric diseases, such as
MDD (Yoon et al., 2016), schizophrenia (van den Heuvel
et al., 2013), and Huntington’s disease (McColgan et al.,
2015) compared with healthy controls. In the current study,
the reduced connectivity strength of the precuneus in the
SMCD group was significant after adjusting for potential con-
founders, including age, sex, years of education, and memory
functions. In addition, as shown in our additional sensitivity
analyses (Supplementary Results-2 and Fig. S2, see online
Supplementary Material), the rich-club connectivity of the
precuneus is associated with the severity of depressive symp-
toms but not the degree of SMCs. Taken together, our findings
suggest that alterations in the structural rich-club connections
of the precuneus are associated with the manifestation of de-
pressive symptoms in SMCs. Our results are in alignment with
the previous study, which demonstrated that connectome
structures related to the default mode network (DMN),
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Fig. 3 Correlations between working memory function and rich-club
connections of the precuneus between the SMCD and SMCO group.
The connectivity strength of rich-club connections in the precuneus
was significantly associated with the performance on working memory

including the precuneus were significantly reduced in MDD
patients compared with healthy controls (Korgaonkar et al.,
2014). Furthermore, our results support previous findings,
which identified several nodes—including the precuneus—
that exhibited significant differences between MDD patients
and healthy controls (GadElkarim et al., 2012), and those that
found associations between depressive symptoms in AD pa-
tients with cortical thinning in the temporal and parietal re-
gions, including the precuenus (Lebedeva et al., 2014).
Therefore, our findings imply that depressive symptoms in
middle-aged individuals with SMCs are more significant in
meaning than simply being one of the reflective features re-
lated to SMCs and represent structural alterations in connec-
tivity strength of the precuneus in rich-club organization.

In addition, it is noteworthy that the precuneus is one of the
vulnerable regions for amyloid deposition even in healthy
elderly individuals (Sperling et al., 2009). A previous study
has shown that amyloid deposition in the precuneus is well
correlated with structural alterations in the brain, such as
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composite in the SMCD group (p = 0.370, P = 0.006) (a), whereas there
was no correlation between the connectivity strength of the precuneus and
the performance on working memory composite in the SMCO group (p =
—0.055, P = 0.603) (b)

cortical atrophy in the precuneus among individuals who are
in the preclinical stages of AD (Chetelat et al., 2010).
Furthermore, disruptions of white matter connectivity in the
DMN, including the precuneus, have been reported in the
nondemented elderly with APOE €4 carrier (Brown et al.,
2011), which is a well-known genetic risk factor for AD as
can be found from our findings of lower precuneus connec-
tivity strength in the SMCD group. Previous studies may fur-
ther support this finding, as it has been reported that increased
amyloid deposition in the precuneus is present in patients with
a lifetime history of major depression compared with healthy
controls (Wu et al., 2014).

Similar to our results from the rich-club analysis, we ex-
pected that depressive symptoms in SMCs may influence ob-
jective measures of cognitive performance. However, al-
though the SMCD group showed significantly lower scores
only on the SRM task among the individual tasks that com-
prised the composite scores, there were no statistically signif-
icant differences in performance on visual and working
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Fig. 4 Connectivity strength of hippocampus between SMCO and SMCD. There were no significant differences in hippocampal connectivity strength
between the SMCO and SMCD (mean = SD. 0.523 +0.178 vs. 0.536 + 0.169, npz = 0.002, permutation adjusted P = 0.627)
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memory composites between the SMCO and SMCD groups.
As aforementioned, the current study only performed visual
and working memory tasks to determine cognitive function,
with the exclusion of other cognitive domains that have been
previously investigated in the past such as processing speed
and verbal memory (McDermott & Ebmeier, 2009; Nebes
etal., 2000). As such, there may be differences in performance
in other cognitive domains between the SMCD and SMCO
groups that the current study may have missed, such as
between-group differences in verbal memory or processing
speed. In addition, it is noteworthy that the current sample size
may be relatively small not be large enough to detect such a
small effect size of differences in visual and working memory
performance between the groups. The future studies with a
larger sample size will be needed to determine the cognitive
differences in individuals with SMCs according to the pres-
ence of concomitant depressive symptoms.

One of key findings of this study is that the SMCD group
showed a positive correlation between the connectivity
strength of the precuneus and working memory performance.
This finding may support the previous study which showed a
correlation between decreased white matter integrity
connecting the DMN (including the precuneus) and cingulo-
opercular network and lower working memory performance
in individuals with late onset depression (Yin et al., 2016). In
addition, another previous functional neuroimaging study also
revealed that depressive symptoms and verbal memory im-
pairment in non-demented elderly had interactive effects on
the DMN (Goveas et al., 2011). Given that the precuneus is
known to be a core region of DMN (Utevsky, Smith, &
Huettel, 2014) and alterations in rich-club organization could
occur before the occurrence of any pronounced symptoms
related to a disease (McColgan et al., 2015), our findings
may imply that depressive symptoms could render individuals
with SMCs more vulnerable to working memory impairment
by altering the structural connectivity strength of the
precuneus in rich-club organizations. However, it is notewor-
thy that the current study design is a cross-sectional study,
causal-relationship between the structural connectivity of the
precuneus, depressive symptoms and working memory im-
pairment could not be investigated in this study. Further re-
fined longitudinal studies would be helpful to elucidate the
detailed neurobiological mechanisms of working memory im-
pairment in individuals with SMCs and concomitant depres-
sive symptoms.

Although the hippocampus was not categorized as part of
the rich-club nodes in the current study, we analyzed the con-
nectivity strength of the hippocampus between the SMCD and
SMCO group to provide more insight with regard to the role
of the hippocampus in SMCs and depressive symptoms. We
expected that the SMCD group would show lower connectiv-
ity strength of the hippocampus as compared to the SMCO
group, considering that numerous previous studies have
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indicated that the hippocampus is one of the key brain regions
in SMCs and depression (Sawyer et al., 2012; Stewart et al.,
2011; von Gunten et al., 2000; von Gunten & Ron, 2004).
However, contrary to our expectation, there were no differ-
ences in connectivity strength of the hippocampus between
the SMCO and SMCD group. This finding may be partly
consistent with other previous studies, which suggested that
the hippocampus may be affected as depression progresses
rather than in the subclinical stage of depression (Hayakawa
et al., 2013; Taki et al., 2005). In addition, previous studies
have reported that asymptomatic APOE €4 carriers in healthy
elderly showed structural changes in the precuneus exclusive-
ly, and not in the hippocampus (Brown et al., 2011; Chen
etal., 2017). The current study may support that the alteration
in connectivity strength of the hippocampus is progression-
specific in the case of SMCs and depression.

This study has some limitations. First, the current study
design did not recruit subjects with depressive symptoms but
without any complaints of memory impairment as well as
healthy individuals. As such, we could not investigate the
individual effects of SMCs and depressive symptoms on the
structural brain networks. Future studies with balanced sam-
ples that include the four individual groups (SMCs only vs.
depressive symptoms only vs. SMCs with depressive symp-
toms vs. controls) would be practical in examining the exact
additive or interactive effects of SMCs and depressive symp-
toms on the structural brain network. Furthermore, although
the test scores of both SMCO and SMCD groups in the current
study were lower than those of healthy individuals with a
similar age range who have undergone the tasks in other stud-
ies (Rahman et al., 1999; Saunders & Summers, 2010;
Swainson et al., 2001) (Table S1, see online Supplementary
Material), it should be noted that the precise differences in
cognitive functions of the SMCs groups from healthy individ-
uals could not be determined in the current study. In addition,
as aforementioned, the current study only examined visual
and working memory composites to measure cognitive do-
mains. Therefore, the possibility that the SMCD group might
have lower performances in other cognitive domains, such as
verbal memory or processing speed, compared to those in the
SMCO group, have not been considered. As such, the exam-
ination of other cognitive domains is warranted in future stud-
ies. Fourth, as mentioned, a causal relationship between de-
pressive symptoms and alterations in the brain network of
individuals with SMCs could not be examined due to the
cross-sectional nature of the study design. Our findings can
only suggest that alterations in the structural rich-club connec-
tions of the precuneus are associated with the manifestation of
depressive symptoms in SMCs. Fifth, information related to
AD pathology, such as beta-amyloid in cerebrospinal fluid or
genetic information, such as APOE was not collected, despite
its potential role in affecting the rich-club organization as well
as cognitive impairment (Chen et al., 2015). Sixth, although
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our results suggest that individuals with SMCD may be vul-
nerable to alterations in rich-club connections in the
precuneus, the connectivity strength of rich-club connections
in the precuneus was not significantly correlated with depres-
sive symptoms. This lack of correlation between depressive
symptoms and the precuneus connectivity may suggest that
alterations in the structural circuits based on the binary diag-
nosis of depressive symptoms may not be the results of the
alterations of the brain in a relation to the severity of depres-
sive symptoms. This is consistent with previous research that
investigated the structural network in MDD patients, which
showed that network connections did not correlate with MDD
severity nor time since the onset of MDD (Korgaonkar et al.,
2014). It also is noteworthy that this lack of correlation may be
alternatively explained by the scores of depressive symptoms
in the SMCD group, which were skewed to the left side.
Seventh, individuals with SMCs in the current study were
enrolled under the criterion of having a score of one or higher
on the SMCQ. Although previous studies have often used
only one question in the enrollment of individuals with
SMCs (Geerlings et al., 1999; Laske et al., 2015; Schultz
et al., 2015), it should be noted that using a cutoff score of 1
or higher in a total of 14 scores from the SMCQ questionnaire
may be insufficient in classifying SMCs from healthy control.
However, the SMCQ scores of the current participants are
similar in range to other previous studies based on individuals
with SMC with normal cognitive function (Table S2, see
online Supplementary Material) (Kang et al., 2017; Seo
etal., 2017; Yim et al., 2017). Finally, because the effect size
of the between-group differences in the precuneus connectiv-
ity is relatively small (77p2= 0.03) (Cohen, 1973; Levine &
Hullett, 2002), it should be noted that the current study has
only 51.6% of statistical power to detect this difference.
Therefore, replication studies with a larger sample size using
a more conservative method to correct for multiple compari-
sons, such as a Bonferroni-class approach, are warranted to
obtain a more robust finding.

Nonetheless, the current study has the strength that it in-
vestigated the neural correlates of depressive symptoms in
middle-aged individuals with SMCs, a population and ap-
proach that had not been well elucidated before. Our study
suggests that reduced connectivity strength of the precuneus
in rich-club connections, an area that is essential for integrat-
ing information for cognitive and emotional processes
(Cavanna & Trimble, 2006; van der Velde et al., 2013), is
observed in individuals with SMCs and depressive symptoms,
relative to those in SMCs without depressive symptoms.
Given that the precuneus is one of the commonly affected
brain regions during the early stages of AD (Sperling et al.,
2009) and increased amyloid deposition in the precuneus was
reported in patients with MDD (Wu et al., 2014), our findings
may suggest that the concomitant depressive symptoms in
middle-aged individuals with SMCs may reflect early

structural network changes in rich-club organization related
to AD. Considering that SMCs can arise as early as in
middle-age and are associated with the future onset of cogni-
tive impairment that occur as late as two decades subsequent
to the SMCs (Kaup et al., 2015), earlier diagnosis as well as
appropriate management of its risk factors such as depressive
symptoms could be important in mitigating further cognitive
impairment (Byers & Yaffe, 2011; Hughes & Ganguli, 2009).
In this respect, our findings may provide important evidence
of alterations in the structural brain network related to depres-
sive symptoms in middle-aged individuals with SMCs, which
may further contribute to understanding the neural mecha-
nisms of concomitant depressive symptoms in SMCs.
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