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Abstract
Although a growing number of studies have investigated the neural mechanisms of reinforcement learning, it remains unclear
how the brain responds to feedback that is unreliable. A recent theory proposes that the reward positivity (RewP) component of
the event-related brain potential (ERP) and frontal midline theta (FMT) power reflect separate feedback-related processing
functions of anterior cingulate cortex (ACC). In the present study, the electroencephalogram (EEG) was recorded from partic-
ipants as they engaged in a time estimation task in which feedback reliability was manipulated across conditions. After each
response, they received a cue that indicated that the following feedback stimulus was 100%, 75%, or 50% reliable. The results
showed that participants’ time estimates adjusted linearly according to the feedback reliability. Moreover, presentation of the cue
indicating 100% reliability elicited a larger RewP-like ERP component than the other cues did, and feedback presentation elicited
a RewP of approximately equal amplitude for all of the three reliability conditions. By contrast, FMT power elicited by negative
feedback decreased linearly from the 100% condition to 75% and 50% condition, and only FMT power predicted behavioral
adjustments on the following trials. In addition, an analysis of Beta power and cross-frequency coupling (CFC) of Beta power
with FMT phase suggested that Beta-FMT communication modulated motor areas for the purpose of adjusting behavior. We
interpreted these findings in terms of the hierarchical reinforcement learning account of ACC, in which the RewP and FMT are
proposed to reflect reward processing and control functions of ACC, respectively.
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Introduction

Adaptive decision making depends on a network of neural sys-
tems for cognitive control that includes the anterior cingulate
cortex (ACC), a brain area believed to contribute to multiple

cognitive functions, such as action selection (Holroyd & Coles,
2002), conflict monitoring (Carter & Van Veen, 2007), and task
switching (Johnston, Levin, Koval, & Everling, 2007). In the
reinforcement learning domain, the ACC is proposed to utilize
reward-related feedback from the environment to regulate be-
havior (Botvinick, 2007; Holroyd & Coles, 2002), as suggested
by converging evidence from human EEG studies (for reviews
see Holroyd & Umemoto, 2016; Sambrook & Goslin, 2015;
Walsh &Anderson, 2012), functional magnetic resonance imag-
ing (fMRI) studies (Holroyd, Nieuwenhuis, Yeung, Nystrom,
Mars, Coles, & Cohen, 2004; Nieuwenhuis, Slagter, Alting
von Geusau, Heslenfeld, & Holroyd, 2005a), and nonhuman
animal studies (Warren, Hyman, Seamans, & Holroyd, 2015).
Recent developments of this proposal in the context of hierarchi-
cal reinforcement learning (HRL) hold the ACC responsible for
motivating the selection and execution of extended goal-directed
behaviors (HRL-ACC theory; Holroyd & McClure, 2015;
Holroyd & Yeung, 2012). According to this proposal, the ACC
utilizes the reward signals to learn the value of extended, goal-
directed behaviors, as opposed to the values of more specific
actions that comprise the extended behaviors. Nevertheless,
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exactly how the ACC utilizes these reward signals to regulate
behavior remains unclear (Holroyd & Umemoto, 2016;
Umemoto, HajiHosseini, Yates & Holroyd, 2017).

Although feedback processing by ACC has been stud-
ied extensively, relatively few studies have examined the
effect of unreliable or uncertain feedback on ACC. In a
task in which feedback probabilities varied dynamically,
the fMRI blood-oxygen-level dependent signal in the
ACC was correlated with a computational estimate of re-
ward volatility, in which simulations were used to adjust
subject learning rates (Behrens et al., 2007). Similarly,
Khamassi et al. (2011) developed a computational model
that simulates how ACC interacts with lateral prefrontal
cortex to regulate behavior in uncertain and volatile envi-
ronments. Rodent electrophysiological (Karlsson, Tervo,
& Karpova, 2012) and human fMRI (O ’Reil ly,
Schüffelgen, Cuell, Behrens, Mars, & Rushworth, 2013)
studies also indicated ACC sensitivity to uncertainty when
updating a model of the environment. Although as noted
numerous human electrophysiological studies have exam-
ined feedback processing by ACC (for reviews, see
Sambrook & Goslin, 2015; Walsh & Anderson, 2012),
only a few of these studies investigated how reliability
modulates feedback processing (Ernst & Steinhauser,
2015; Ernst & Steinhauser, 2017; Schiffer, Siletti,
Waszak, & Yeung, 2017). Moreover, these studies exam-
ined the electrophysiological effects of feedback process-
ing only in the time domain, i.e., using the event-related
brain potential (ERP), and reported inconsistent results.
Furthermore, most of these studies only tested two feed-
back conditions (reliable or not), leaving unresolved the
question of whether the ACC control signal scales para-
metrically with feedback reliability.

To address these questions, we examined the effect of feed-
back reliability on several electrophysiological measures of
feedback processing. In particular, our analysis focuses on
frontal midline theta oscillations (FMT, Cavanagh & Frank,
2014; Cohen et al., 2011), the reward positivity (RewP; Baker
& Holroyd, 2011; Holroyd, Pakzad-Vaezi, & Krigolson,
2008), and Beta power (HajiHosseini & Holroyd, 2015a;
Marco-Pallarés, Münte, & Rodríguez-Fornells, 2015), all of
which have been associated with feedback processing by
ACC in humans.

Previous studies have shown that FMT, which consists of
4-8 Hz EEG oscillations distributed over frontal-central areas
of the scalp, is modulated by feedback valence with greater
power for negative than positive feedback stimuli (Cohen,
Wilmes, & Vijver, 2011; Hajihosseini & Holroyd, 2013; Li,
Baker, Warren, & Li, 2016). There is widespread agreement
that FMT reflects a contribution of ACC to cognitive control
(Cavanagh & Frank, 2014; Holroyd & Umemoto, 2016;
Verguts, 2017). FMT is associated with various cognitive pro-
cesses related to memory (Hsieh & Ranganath, 2013;

Rutishauser et al., 2010), conflict processing, and sensitivity
to punishment (Cavanagh & Frank, 2014, Cavanagh &
Shackman, 2015). Increases in FMT power also seem to im-
prove behavioral performance by modulating neural synchro-
ny in other brain regions via phase-amplitude coupling
(Verguts, 2017; see also Holroyd, 2016). Furthermore, a
meta-analysis by Cavanagh and Shackman (2015) revealed
that FMT power is positively correlated with trial-by-trial be-
havioral adjustments across various tasks that demand cogni-
tive control, although it remains unclear whether those signals
are causally involved in the behavioral changes (Holroyd &
Umemoto, 2016).

A large number of ERP studies have examined the RewP, a
robust deflection in the ERP that is more negative-going for
error or nonreward feedback stimuli than for correct or reward
feedback stimuli in trial-and-error learning and guessing tasks
(Miltner et al., 1997). An early theory of this ERP component
emphasized the role of negative reward prediction error (RPE)
signals carried to ACC by the midbrain dopamine system in
enhancing the negative deflection, suggesting the more com-
mon name feedback error-related negativity or feedback-
related negativity (FRN) (Holroyd & Coles, 2002). More re-
cently, this ERP component has been renamed because of
evident greater sensitivity to positive RPE signals than nega-
tive RPE signals (Holroyd, Pakzad-Vaezi, & Krigolson, 2008;
Holroyd & Umemoto, 2016; Proudfit, 2015).

Importantly, both the FRN (to negative feedback) and
RewP (to positive feedback) are typically calculated by taking
the difference between the ERPs to positive and negative feed-
back stimuli, which removes overlap with other ERP compo-
nents (Holroyd & Krigolson, 2007); thus, when measured by
using the difference wave approach, the two components ac-
tually reflect the same phenomenon (Holroyd & Umemoto,
2016). In line with the dopamine hypothesis, substantial evi-
dence confirms that the signal encodes a reward prediction
error signal (Sambrook & Goslin, 2015). On the other hand,
evidence that RewP amplitude relates to behavioral adjust-
ments, as suggested by basic principles of reinforcement
learning (Sutton & Barto, 1998), is less consistent (Holroyd
&Umemoto, 2016;Walsh &Anderson, 2012). Instead, RewP
amplitude may reflect motivation by ACC for performing the
task at hand at a global level, rather than for instigating chang-
es in task performance from one trial to the next (Holroyd &
Umemoto, 2016; Umemoto et al., 2017).

Beta oscillation also are involved in feedback processing
(HajiHosseini et al., 2012; Li et al., 2016; Marco-Pallarés et
al., 2008). Enhanced Beta power has been elicited over differ-
ent brain areas to various task events, such as over frontal
cortex to feedback indicating monetary gain (HajiHosseini et
al., 2012; Marco-Pallarés, Münte, & Rodríguez-Fornells,
2015), over sensorimotor areas to correct feedback (Luft et
al., 2013), and over DLPFC in a working memory task
(Altamura et al., 2010). By contrast, we recently found that

950 Cogn Affect Behav Neurosci (2018) 18:949–963



high-frequency Beta (and low-frequency Gamma) activity
was reduced when feedback information was uninformative
compared with informative (Li et al., 2016). These studies
suggest that Beta oscillations recorded over different cortical
regions may correspond to specific cognitive mechanisms that
are activated in different task contexts. Meanwhile, several
studies have suggested that the neuronal communication be-
tween large-scale cortical networks underlying cognitive pro-
cesses could be manifested by cross-frequency coupling
(CFC) between lower and higher frequencies (Siegel,
Donner, & Engel, 2012; Canolty & Knight, 2010). In a rein-
forcement learning task in particular, Beta power was reported
to couple with FMT (Cohen et al., 2009). Therefore, we also
examined CFC between FMTand Beta to understand how the
brain uses the feedback information to update behavior from
trial to trial.

We asked participants to conduct a time-estimation task
in which the reliability of feedback varied from 100%, 75%,
to 50% across three different stimulus conditions, despite
holding constant the overall probabilities of positive versus
negative feedback across the conditions. After participants
made a response on each trial, a cue indicating the reliability
of the following feedback stimulus was presented. We ex-
amined the RewP, FMT, and Beta power to elucidate how
ACC processes reliable versus unreliable reward informa-
tion to regulate behavior. We predicted that behavioral ad-
justments should correlate more strongly with FMT power
than with RewP amplitude (Holroyd & Umemoto, 2016).
Additionally, to investigate modulation by ACC of motor
areas (Cohen & Ranganath, 2007; Luft et al., 2013), we
explored CFC between FMT phase and Beta power over
motor cortex. In this way, this experiment contributes to
fMRI research in humans (Behrens et al., 2007; O’Reilly
et al., 2013) and to invasive studies in nonhuman animals
(Karlsson, Tervo, & Karpova, 2012) that have explored the
role of ACC in regulating behavior in dynamic learning
environments.

Methods

Subjects

Twenty (8 females) healthy, right-handed adults with mean
age of 22 (±2.2) years participated in the study. The study
was approved by the local ethics committee, and subjects gave
written informed consent before the experiments began.
Subjects had normal or corrected-to-normal vision and report-
ed no neurological disorders. The subjects received 50
Chinese Yuan (approximately 7.6 U.S. dollars) for their par-
ticipation and extra money when they made a correct response
during the task (25-35 Yuan total).

Task

Subjects performed a modified time-estimation task (Miltner
et al., 1997). As shown in Fig. 1, at the beginning of each trial,
a fixation B+^ appeared on the screen for 500 ms to indicate
participants to prepare to respond. Then, following delivery of
a 50-ms pure tone (1,500 Hz, 65 dB) via an earphone, partic-
ipants were required to press the space key when they believed
that 1 s had elapsed. A blank screen was then presented for a
random duration, selected from a uniform distribution be-
tween 800-1,200 ms at 1-ms intervals, and a color circle ap-
peared on the screen for 1,000 ms. Participants were instructed
that a red, white, and blue circle indicated that the feedback on
that trial would be 100% reliable, 75% reliable, and 50% re-
liable (see below); the mappings between the different cue
colors and probabilities were counterbalanced across subjects.
Next, the cue stimulus was replaced with a blank screen that
lasted for a randomly determined 800–1,200-ms interval.
Finally, a 1,000-ms feedback stimulus indicated the trial out-
come: subjects were instructed that B√^ indicated a correct
response, and B×^ indicated an incorrect response. Each con-
dition consisted of 65 trials, for 390 trials total. All of the
visual stimuli subtended less than 5°.

In the 100% reliable condition, participants conducted the
standard time estimation task in which positive and negative
feedback stimuli were determinedwith equal frequency (50%/
50%) according to a staircase procedure (Miltner et al., 1997).
Correct feedback was delivered when the response time oc-
curred within a time window that was initialized at 900-1,100
ms poststimulus; the size of this window decreased by 10 ms
each time the participant received correct feedback and in-
creased by 10 ms each time they received error feedback. In
the 75% reliable condition, however, the feedback stimuli
were delivered according to this procedure on only 75% of
the trials; on the remaining 25% of the trials, which were
selected at random, the feedback stimuli were delivered at
random with equal probability. Finally, in the 50% reliable
condition, the feedback stimuli on all of the trials were deliv-
ered at random (with equal probability). Note that even in the
100% condition, the outcomes were difficult to predict, be-
cause the subjects always received 50%/50% feedback, such
that they could not determine the outcomes on their own ac-
cord unless their response was especially bad or especially
good. The task was administered using E-prime software
(Psychology Software Tools, Inc).

Post-task questionnaires

After the task was completed, participants were required to
answer two questions based on their subjective experience.
First, they were asked to rate their perception of the subjective
reliability of feedback in each of the conditions by choosing
from a list of five values (0, 25%, 50%, 75%, and 100%).
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Second, they were asked to rate how happy the different cues
made them feel according to a 7-point Likert scale (1 = very
unhappy, 7 = very happy).

Electrophysiological data recording and analysis

EEG data were recorded with a 64-channel amplifier system
(BrainProduct, München, Germany) with reference electrodes
placed on FCz. The impedances of all the electrodes were kept
less than 10 kΩ. Vertical electrooculograms (EOGs) were re-
corded below the left eye and the horizontal EOG was record-
ed from the right orbital rim. The EEG and EOG were ampli-
fied and filtered using a 0.05–100-Hz bandpass and continu-
ously digitized at 1,000-Hz/channel for offline analysis. The
EEG data were re-referenced to both of the left and right
mastoids. Trials contaminated by eye-blinks and movements
were corrected using an infomax Independent Component
Analysis algorithm (runica) (Delorme and Makeig, 2004). In
addition, any trials containing a peak-to-peak deflection ex-
ceeding 80μVwere excluded from the analysis. Less than 5%
trials in each condition were excluded after artifact rejection.

For EEG offline analysis, EEG signals were bandpass fil-
tered between 0.1-30 Hz and segmented from −200 ms before
and 800 ms after the three cue events (100%, 75%, and 50%
reliability) and six feedback events (three reliabilities × two
valences) separately. BRewP-like^ ERP components to each
of the three cues were constructed by subtracting the ERP to
100% cue from the ERPs to the other two cues and then
assessed as the mean amplitude of these difference waves at
channel Fz within 240-340 ms following feedback onset, as
suggested by a meta-analysis (Sambrook & Goslin, 2015).
Likewise, RewPs were constructed by subtracting the ERP
to correct feedback from the ERP to incorrect feedback, sep-
arately for each reliability condition and assessed as the mean
amplitude at channel Fz within the 240–340-ms time window.
Fz was selected as the channel of interest, because RewP
amplitude peaked at this site. Additionally, the P3b, a
positive-going ERP component within 300–600-ms time win-
dow following stimulus onset, was analyzed, because this
component has been frequently reported in the literature on
feedback processing (Bernat et al., 2011; Li et al., 2010).
Given that theories of P3b generation are not closely related
to ACC function (Nieuwenhuis, Aston-Jones, & Cohen,

2005b), the method and results of the P3b analysis are report-
ed in supplementary materials (SOM, Figure S1).

To extract both phase-locked (ERP) and nonphase-locked
(ERD/ERS) brain responses, a time-frequency representation
(TFR) of each single EEG epoch was calculated using the
continuous wavelet transform (CWT) (Mouraux et al., 2003;
Mouraux and Iannetti, 2008), from 1 to 40 Hz in steps of 0.5
Hz, and from −500 preceding to 1,000 ms after the event of
interest (Cavanagh et al., 2010) in steps of 1 ms. For each
frequency band, the magnitude of the event-related changes
in oscillation amplitude was estimated as follows: ER% (t, f )
= [P (t, f ) - R (f )] /R (f ) × 100, where P (t, f)= |F(t, f)|2 is the
power spectral density at each time-frequency point (t, f ), and
R (f ) is the average power in baseline interval (−400 to −100
ms) before cue onset and feedback onset. Hence, CWT results
are expressed in ER% as a function of time and frequency. For
statistical analysis, time-frequency magnitudes were averaged
for each condition within specific time-frequency-spatial re-
gions of interests: FMT (4–8 Hz, 200-400 ms) at channel Fz
(Cavanagh et al., 2010; Li et al., 2016) and Beta (13–25 Hz,
400-800 ms) at channels F3&F4 (HajiHosseini & Holroyd,
2015a). For completeness, the analyses of cue-related beta
power (Figure S2) and feedback-related delta power (Figure
S3) are reported in the supplementary materials.

An envelope-to-signal (ESC) measure was used to assess
cross-frequency coupling (CFC) between FMT oscillations
and Beta oscillations (Bruns & Eckhom, 2004; Onslow,
Bogacz, & Jones, 2011). Single-trial EEG data were separate-
ly bandpass filtered from 4-8 Hz (FMT) and 13-25 Hz (Beta).
FMT phase and Beta power were then extracted using the
Hilbert transform. For each subject and each experimental
condition, correlations between the amplitude envelope of
amplitude of the Beta oscillation (Abeta) and the phase angle
of the FMT oscillation (YFMT) were calculated as ESC = r
(Abeta, YFMT). The obtained ESC values (in the range between
−1 and 1) were transformed to Z scores using the Fisher r-to-z
transformation.

Correlation analysis

To evaluate the relationship between behavioral performance
and electrophysiological responses to feedback, Pearson cor-
relation analyses were performed between △RT values and
RewP amplitude, FMT power, and Beta power. For each elec-
trophysiological measure, we calculated a difference of differ-
ences, first by subtracting the EEG activities following correct
feedback from that following incorrect feedback, separately
for the 100% condition and 50% conditions, and then by
subtracting these difference values in the 50% condition from
the difference values in the 100% condition. For instance, the
FMT difference value was calculated as (100%_FMTIncorrect -
100%_FMTCorrect) − (50%_FMTIncorrect - 50%_FMTCorrect).
In addition, △RT values were calculated using a comparable

500ms 50ms RT 800-1200ms 1000ms 800-1200ms 1000ms

Cue Feedback

Fig. 1 Task design
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formula. These difference measures isolated the interaction of
the effect feedback valence with the effect of feedback valid-
ity. Finally, three Pearson correlations were performed sepa-
rately between △RT data and each of the EEG measures,
namely, the difference RewP, the difference FMT, and the
difference Beta values.

Results

Subjective rating scores

Aone-way ANOVAon subjective reports of feedback reliabil-
ity revealed that the reports differed across the reliability con-
ditions, F (2, 38) = 23.82, p < 0.001, η2 = 0.56 (Fig. 2a).
Pairwise comparisons revealed that subjective reliability in
the 100% condition (87%, standard error of the mean [SEM]
= 3.3%) was significantly larger than subjective reliability in
the 75% condition (63%, SEM = 4.6%, t (19) = 4.9, p <
0.001), which in turn was significantly larger than subjective
reliability in the 50% condition (mean = 44%, SEM = 5.1%, t
(19) = 2.6, p < 0.02).

Likewise, a one-way ANOVA on the participants’ ratings
of subjective happiness to the cue stimuli revealed a main
effect of reliability, F (2, 38) = 24.21, p < 0.001, η2 = 0.56
(Fig. 2b). Follow-up t tests demonstrated that participants felt
happier when they saw the 100% reliability cue (5.75, SEM =
0.28) than when they saw the 75% reliability cue (4.2, SEM =
0.26, t (19) = 5.82, p < 0.001) or when they saw the 50%
reliability cue (3.65, SEM = 0.2, t (19) = 6.19, p < 0.001).
However, happiness scores were not statistically different be-
tween the 75% cue condition and 50% cue condition (p =
0.11).

RT results

To measure participants’ behavioral adjustments, the change
in RT was calculated as the absolute value of the change be-
tween trial n and trial n+1, separately for each feedback con-
dition. A two-way ANOVA on these RT differences with re-
liability condition (100%, 75%, and 50%) and feedback va-
lence (positive and negative) as factors revealed a main effect
of valence, F (1, 19) = 41.12, p < 0.001, η2 = 0.68, and an
interaction between reliability and valence, F (2, 38) = 24.42,
p < 0.001, η2 = 0.56 (Fig. 2c). Follow-up t tests indicated
effects of valence in the 100% reliability condition (p <
0.001, η2 = 0.74), the 75% reliability condition (p < 0.001,
η2 = 0.56), and the 50% reliability condition (p < 0.05, η2 =
0.2). The main effect of reliability was not significant, F (1.2,
23.63) < 1, p = 0.53, η2 = 0.03 (Fig. 2c).

These absolute changes in RT suggest that participants’
behavioral adjustments were more sensitive to reliable than
unreliable feedback. Evidently, they adjusted their behavior

more in the 100% reliability condition, because these trials
provided the most useful information for doing so. This ob-
servation aligns with the subjective rating of happiness data
mentioned above, which indicated that participants preferred
the 100% reliability condition.

To investigate whether subjects realized that they were too
fast or too slow based on an internal representation of the
response, we also examined the direction of the changes as a
function of RT. For this purpose, we first divided the error
trials (in which subjects received negative feedback) into fast
error (mean - 1 SD) and slow error trials (mean + 1 SD) for
each participant. Then, we calculated the RT adjustment by
subtracting the RT on each error trial (fast or slow) from the
RT on the subsequent trial and averaged these difference
values separately in the three reliability conditions. These data
were submitted to a two (trial type: slow or fast) by three
(reliability: 100%, 75%, and 50%) repeated measures
ANOVA. There was a significant main effect of trial type, F
(1, 19) = 95.12, p < 0.001, η2 = 0.83 (Figure S4). Post-hoc
tests revealed that the difference value for fast error trials (232
ms) was significantly larger than that for the slow error trials
(−327 ms), p < 0.001. The main effect of reliability did not
reach significance, F (2, 38) = 2.19, p = 0.13, η2 = 0.10, and
there was no significant interaction effect between reliability
and trial type, F (2, 38) < 1, p = 0.46, η2 = 0.04. Post-hoc one-
sample t tests against zero revealed that the difference value
after fast error trials was positive, t (19) = 11.82, p < 0.001,
indicating response slowing, and the difference value after
slow error trials was negative, t (19) = 6.97, p < 0.001, indi-
cating response speeding. In other words, participants sped up
when they were too slow and slowed down when they were
too fast following trials with error feedback, irrespective of the
reliability of the feedback. When considered with the previous
analysis (Fig. 2c), these RT results indicate that the partici-
pants adjusted their task performance based both on external
feedback and on an internal representation of their response.

Surprisingly, the preceding analysis indicates that the par-
ticipants’ RT adjustments were sensitive to the degree of error
even in the 50% reliability condition when the feedback was
random. To examine this more closely, we averaged the RT
data in the 50% reliability condition separately according to
four subconditions: actual correct and feedback correct; actual
incorrect and feedback correct; actual correct and feedback
incorrect; actual incorrect and feedback incorrect. Actual cor-
rect trials were defined as trials where the participant’s actual
RT occurred within a 900–1,100-ms window, and actual in-
correct trials were defined otherwise. We then considered the
absolute change in RT following each trial type and submitted
these values to a two (actual correctness: correct and incorrect)
by two (feedback valence: correct and incorrect) ANOVA.
This test revealed statistically significant main effects of feed-
back valence, F (1, 19) = 4.48, p < 0.05, η2 = 0.19, and actual
correctness, F (1, 19) = 15.63, p = 0.001, η2 = 0.45.
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Furthermore, there was a significant interaction effect, F (1,
19) = 9.63, p < 0.01, η2 = 0.34. As illustrated in Fig. 2d,
participants made larger adjustments after incorrect feedback
(197 ms) than after correct feedback (158 ms) but only when
they were actually incorrect (p < 0.001), not when they were
actually correct (p = 0.93). These findings indicate that partic-
ipants adjusted their behavior more on the following trial
when, based on an internal evaluation of their performance
on the present trial, they determined that their response was
probably incorrect rather than correct. Nevertheless, these ad-
justments also were largest on error trials when the feedback
confirmed, rather than disconfirmed, their internal evalua-
tion—indicating that they also considered external informa-
tion about their performance, even when this feedback was
entirely unreliable.

ERP results

Cue-related activities

As seen by inspection, the cue stimuli elicited a RewP-like
ERP component (Fig. 3a). Paired sample t tests conducted on
the amplitude of the difference waves between the 75% and
100% conditions, and between the 50% and 100% conditions,
revealed that this RewP-like component in the 75% condition
(mean = −2.84 μV, SEM = 0.89) was not significantly differ-
ent in amplitude from that in the 50% condition (mean = −2.71
μV, SEM = 0.89), t (19) = 0.35, p = 0.73. Notably, both the
RewP-like component in the 75% condition and the 50%

condition were significantly different from 0 μV, t(19) =
3.21, p = 0.005, and t(19) = 3.06, p < 0.01 (Fig. 3b). The scalp
distributions showed that the observed RewP-like component
peaked over a frontocentral area of the scalp (Fig. 3c).

Feedback -related activities

Feedback-related ERPs are presented in Fig. 4a. A one-way
repeated measures ANOVA on RewP amplitude elicited by
the feedback stimuli across the 100% (mean = −4 μV, SEM =
0.78), 75% (mean = −3.95μV, SEM= 0.77) and 50% (mean =
−3.41μV, SEM= 1.01) conditions did not reveal a statistically
significant main effect, F (2, 38) < 1, p = 0.86, η2 = 0.01 (Fig.
4b).1 For all of three reliability conditions, the RewP was
distributed over a frontocentral area of the scalp (Fig. 4c).

Given that we found an interaction between feedback va-
lence and actual correctness on RT adjustments in the 50%
reliability condition (Fig. 2d)—indicating that participants
evaluated their performance not only on the basis of external
feedback but also on an internal representation of their perfor-
mance—we also examined whether RewP amplitude was
modulated by the consistency of the feedback with their inter-
nal representations in the 50% reliability condition. However,
there was no statistically significant difference in the size of

1 Note that the RewP effect was robust to different time window utilized to
calculate its amplitude (i.e., 270-300ms and 250-300ms) and to alternative
measurement approaches (i.e., peak detection).

30

40

50

60

70

80

90

100

100% 75% 50%

a Subjective reliability

***

*** ***

1

2

3

4

5

6

7

100% 75% 50%

b Happiness scores

120

140

160

180

200

220

240

260

100% 75% 50%

Correct Incorrect

c Change in RT

Actual_incorrectActual_correct

220

200

180

160

Incorrect
Correct

Feedback_valence

d RT Change in the 50%
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these signals between expectancy conditions (please see the
SOM).

Time frequency results

Cue-related FMT

A one-way ANOVA on FMT power with reliability condition
(100%, 75%, and 50%) as the factor failed to reveal a main
effect of reliability, F (2, 38) = 1.65, p = 0.21, η2 = 0.08 (Fig. 5).

Feedback-related FMT Power

A two-way repeated measure ANOVA on FMT power
with reliability (100%, 75%, and 50%) and valence

(correct and incorrect) as independent variables revealed
a main effect of reliability, F (2, 38) = 10.67, p < 0.001,
η2 = 0.36, a main effect of valence, F (1, 19) = 19.98, p <
0.001, η2 = 0.51, and an interaction between reliability
and valence, F (2, 38) = 6.5, p < 0.005, η2 = 0.26 (Figs.
6 and 7a). Post-hoc tests revealed the reliability effect
only for incorrect feedback, F (2, 18) = 10.62, p =
0.001, η2 = 0.54, but not for correct feedback, F (2, 18)
< 1, p = 0.44, η2 = 0.09. Post-hoc t tests indicated that
incorrect feedback elicited greater FMT power in the
100% reliability condition than that in the 75% reliability
condition (p < 0.03), which was significantly larger than
FMT power in the 50% reliability condition (p < 0.01).

Because we hypothesized that RewP amplitude and
FMT power reflect different ACC functions, we predicted
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that they would show different patterns of activity as a
function of feedback reliability and valence. To compare
these two signals directly, we first calculated the differ-
ence values between the incorrect feedback condition and
the correct feedback condition separately for the three
reliability conditions, and then calculated the Z-scores of
FMT power and RewP amplitude for the three reliability
conditions for each participant. A two-way ANOVA with
reliability (100%, 75%, and 50%) and measurement type
(FMT and RewP) as within-subjects factors revealed no
significant main effect of measurement type, F (1, 19) <
1, p = 1.0, η2 = 0.0, and no significant main effect of
feedback reliability, F (2, 38) = 2.75, p = 0.10, η2 =
0.13. However, the interaction between reliability and
measurement type was marginally significant, F (1.5,
28.2) = 3.57, p = 0.054, η2 = 0.16 (Fig. 7b). To explore
this interaction further, a post-hoc analysis suggested that

the normalized difference in FMT power between incor-
rect and correct trials in the 100% reliability condition
was significantly larger than that in the 50% reliability
condition (p < 0.001). No statistically significant differ-
ences were found with respect to the normalized RewP
amplitudes between the 100% and 50% reliability condi-
tion (p = 0.88). These results suggest qualitatively differ-
ent behaviors between the RewP and FMT in this task.

Feedback-related Beta power

A comparable, three-way ANOVA on Beta power that also
included channel as a factor (F3 and F4) demonstrated a main
effect of reliability, F (1.2, 23.2) = 18.82, p < 0.001, η2 = 0.50,
a main effect of valence, F (1, 19) = 6.57, p < 0.02, η 2 =0.26,
and an interaction between valence and reliability, F (1.5, 29)
= 4.04, p < 0.02, η2 = 0.18 (Fig. 7c). Post-hoc t tests revealed
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an effect of valence in the 100% reliable condition (p < 0.005)
but not in the 75% reliable condition (p = 0.29) nor the 50%
reliable condition (p = 0.70). There was no main effect of
electrode and no interaction between electrode and other fac-
tors: all F < 1. However, the three-way interaction effect

among electrode, valence, and reliability was significant, F
(2, 38) = 3.68, p < 0.05, η2 = 0.16 (Fig. 8a). Post-hoc t tests
revealed an effect of valence in the 100% reliable condition at
channel F3 (p < 0.005) and at channel F4 (p < 0.05); no other
significant results were observed.
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FMT-Beta cross-frequency coupling (CFC) following feedback

To explore functional connectivity between FMT and
Beta power, CFC was computed between the phase angle
of FMT at channel Fz and Beta power across the entire
scalp during 0–800-ms period following feedback onset.
Inspection of Fig. 8b and c suggested different CFC pat-
terns over left and right motor areas, as predicted. To test
this result, a three-way ANOVA on these CFC values
with lateralization (C3, C4), reliability (100%, 75%,
50%), and valence (correct, incorrect) as factors revealed
a main effect of valence, F (1, 19) = 10.92, p < 0.005, η2

= 0.37, indicating that the CFC value for the incorrect
feedback (0.004) was significantly larger than that for
the correct feedback (−0.009). Furthermore, the main ef-
fect of lateralization, F (1, 19) = 5.22, p < 0.04, η2 =
0.22, and the interaction between reliability and laterali-
zation (Fig. 8d), F (2, 38) = 3.64, p < 0.04, η2 = 0.16,
were statistically significant; paired t tests revealed that
the CFC value at C4 was significantly larger than that at
C3 in the 100% condition (p < 0.005) but not in the 75%
(p = 0.44) and 50% conditions (p = 0.56). Additionally,
there was a marginally significant interaction between
valence and lateralization (Fig. 8e), F (1, 19) = 4.11, p
< 0.06, η2 = 0.18; further tests showed that the CFC

value at C4 was significantly larger than that at C3 only
following incorrect (p < 0.005) but not following correct
feedback (p = 0.64).

Correlation analysis

The difference in difference values (see methods) for
FMT power was significantly correlated with the change
in response times following these trials, r = 0.47, p <
0.04, indicating that greater differences in FMT power
between incorrect feedback and correct feedback in the
100% reliability condition compared with the 50% condi-
tion were associated, across participants, with larger be-
havioral adjustments following these trials (Fig. 9, left
panel). In contrast, the difference in difference values in
RewP amplitude was not related to the change in response
times, r = −0.17, p = 0.49 (Fig. 9, right panel); a compar-
ison of these slopes using the R package function cocor
(Diedenhofen & Musch, 2015), which implements Hittner
et al.’s Z procedure, confirmed that these two correlations
were significantly different from each other (p < 0.05,
Hittner, May, & Silver, 2003). The difference in differ-
ence values in Beta power was not related to the change
in response times, r = 0.2, p = 0.39.
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Finally, given arguments that FMT power reflects the re-
ward positivity in the frequency domain (Bernat et al., 2008;
Bernat et al., 2011; Cohen et al., 2011), we also correlated the
difference in differences for FMT power against the difference
in differences in RewP amplitude across subjects. As expect-
ed, the two measures were uncorrelated (p > 0.05).

Discussion

The current EEG study investigated the involvement of ACC
in regulating behavior in response to unreliable feedback. We
utilized three EEG signals related to feedback processing by
ACC for this purpose: FMTas a putative measure of cognitive
control, the RewP as an index reward processing, and Beta
and FMT-Beta CFC as indices of binding between the first
two processes. We adopted a modified time-estimation task in
which the reliability of the feedback stimuli was systematical-
ly varied across conditions from 100%, 75%, to 50%, as indi-
cated by a cue presented to the participants after their response
on each trial. Participants’ subjective ratings of reliability de-
creased with reliability across the conditions, indicating that
the manipulation was successful. The RT data showed that
participants made larger behavioral adjustments when feed-
back was more reliable than when feedback was less reliable,
suggesting that feedback reliability influenced their reinforce-
ment learning process. Nevertheless, they continued to rely
somewhat on the feedback even when it was completely ran-
dom, especially when error feedback agreed with their own
internal representation of response correctness. Accordingly,
we found that the 100% reliable cue elicited larger RewP than
the 75% and 50% reliable cues did, which is in line with
participants’ subjective rating of happiness. Moreover, an in-
teraction effect between reliability and feedback valence was
found for both feedback-elicited FMT and Beta power, sug-
gesting that reliability modulated the psychological processes

indexed by these two EEG signals. Furthermore, we found
that coupling of FMT phase with Beta power was associated
with behavioral adjustments on the following trial.

The relationship between the RewP and FMT, and whether
it reflects a signed or unsigned RPE signal, has been the subject
of some controversy (Cavanagh, Zambrano-Vazquez, & Allen,
2012; Holroyd, HajiHosseini, & Baker, 2012). Because FMT
power has been previously said to be related to RPEs (Cohen,
Elger, & Ranganath, 2007; Marco-Pallarés et al., 2008), one
might expect to observe similar patterns of FMT and RewP in
this experiment. However, recent evidence suggests that these
phenomena are dissociable. On this account, unexpected, task-
related events elicit an increase in FMT power, with the portion
of FMT oscillations that is coherent in phase across trials
appearing in the ERP as a series of positive and negative de-
flections, including a negative-going ERP component at ap-
proximately 250 ms post-feedback called the N200 (Holroyd
et al., 2008). Like FMT, the N200 is elicited by unexpected,
task-relevant stimuli irrespective of whether the task involves
reinforcement learning (Holroyd, 2004). In line with the dopa-
mine theory of this component, negative RPE signals conveyed
to ACC enhance N200 amplitude following unexpected error
feedback (Warren & Holroyd, 2012), whereas positive RPE
signals suppress N200 amplitude (Baker & Holroyd, 2011;
Holroyd et al., 2008; Holroyd, Krigolson, & Lee, 2011;
Holroyd & Umemoto, 2016).

Consistent with this inference, we observed clear disso-
ciations between FMT power and RewP amplitude. In par-
ticular, FMT power was not correlated with RewP ampli-
tude. Consistent with this, increased FMT power following
feedback presentation was associated with greater feedback
reliability, but the same was not true of RewP amplitude,
which was about the same amplitude across conditions
(Figs. 4b and 7a). In addition, FMT power, but not RewP
amplitude, was associated with feedback-related adjust-
ments to behavior. Similar discrepant patterns between
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RewP amplitude and FMT power have been reported in our
prior studies (Hajihosseini & Holroyd, 2013; Li et al.,
2016). For example, we previously found that neutral feed-
back elicited larger RewP amplitudes than did negative
feedback, whereas no significant difference in FMT power
was observed between these two conditions (Li et al., 2016).
This discrepancy may stem from the fact that the RewP is a
phasic signal, not an oscillation. Because phasic EEG peaks
contain energy in a wide range of frequency bands (Yeung,
Bogacz, Holroyd, Nieuweunhuis, & Cohen, 2007), the ERP
technique may be better able than wavelet- and Fourier-
based methods to discriminate the RewP from noise.

These observations support the argument that the RewP
and FMT power index distinct cognitive phenomena
(Holroyd et al., 2012; Holroyd & Umemoto, 2016;
HajiHosseini & Holroyd, 2013), namely, that the RewP re-
flects RPE signals communicated to ACC, whereas FMT
power reflects the role of ACC in sustaining effortful control
over the task at hand (Holroyd & Umemoto, 2016). Multiple
lines of evidence indicate that FMT reflects a signal produced
by ACC for cognitive control (Cavanagh & Frank, 2014;
Cavanagh & Shackman, 2015; Holroyd, 2016; Holroyd &
Umemoto, 2016). For example, converging findings suggest
that the FMT oscillations play an essential role in feedback
learning and behavioral adaptation (Cavanagh & Shackman,
2015; HajiHosseini & Holroyd, 2013). More specifically,
FMT oscillations have been associated with action adjust-
ments across various tasks, including probabilistic learning
(Cavanagh, 2010), time-estimation (Irene, Ridderinkhof, &
Cohen, 2011), and learning efficiency (Luft et al., 2013). In
the present study, we found that FMT power linearly de-
creased from the most reliable feedback condition to the least
reliable feedback condition. The interpretation of this finding
is straightforward: the control level was maximized on the
trials when it was the most useful and minimized otherwise.

By contrast, RewP amplitude was not correlated with be-
havioral adjustments in the present study. This lack of corre-
spondence between RewP amplitude and trial-to-trial changes
in behavior echoes many similar findings from previous stud-
ies. Whereas several studies have reported that the RewP am-
plitude predicts future behavior (Cohen & Ranganath, 2007;
Holroyd & Krigolson, 2007), several other RewP studies have
not (Chase, Swainson, Durham, Benham, Cools, 2011; Luft et
al., 2013; see Walsh & Anderson, 2012; Holroyd &
Umemoto, 2016 for reviews). For example, Walsh and
Anderson (2011) observed that instructions about reward
probability in a learning task dramatically changed participant
behavior but did not affect RewP amplitude, revealing a clear
dissociation between RewP amplitude and behavior.
Although the reinforcement learning theory of the RewP holds
that this ERP component indexes the use by ACC of a
dopamine-dependent RPE signal for modulating future behav-
ior (Holroyd & Coles, 2002), this modulation was conceived

as regulating a high-level decision system over action policies,
not over the actions themselves (Holroyd & Coles, 2002).
More recently, the HRL-ACC theory developed this account
by proposing that the RewP reflects motivational factors re-
lated to task performance (Holroyd & Yeung, 2012; Holroyd
& Umemoto, 2016), whereas FMT power indexes the cogni-
tive control signal applied by ACC over other action-
production systems (Holroyd & Umemoto, 2016; see also
Holroyd, 2016). On this view, behavioral changes should be
better predicted by FMT power than by RewP amplitude, as
we observed.

We also found that the three reliability conditions elicited a
robust RewP but that, in contrast to FMT power, RewP am-
plitude did not differ in size across the three conditions. It is
particularly surprising that the 50% condition generated a
RewP, given that the participants were aware that the feedback
types in the 50% reliable condition occurred totally at random.
Although further analyses on RT in the 50% condition sug-
gested that participants adjusted their behaviors based on both
internal and external performance information, RewP ampli-
tude was not detectably different for the feedback that agreed
with the internal representations than for the feedback that did
not. We see two possibilities underlying this result. First, the
RPE may have been taken up by the cue, preventing modula-
tions of RewP amplitude to the feedback. Consistent with this
possibility, the scalp distributions and timing of the difference
waves between the 100% condition and other two conditions
suggest that the cue might have elicited a RewP. Furthermore,
the subjective rating scores indicated that participants pre-
ferred the 100% reliable feedback more than the other two
conditions, suggesting that the 100% reliable cue may have
been rewarding to them. This observation replicates a finding
in our previous study, in which we observed that a predictive
cue that indicated whether feedback on that trial would be
available or also not carried reward information (Wang et al.,
2016). The finding is in line with a monkey study in which
midbrain dopamine neurons signaled both the animal’s pref-
erence for an advance cue, indicating the size of a forthcoming
reward, as well as the standard RPE signal to the reward itself
(Bromberg-Martin &Hikosaka, 2009). That said, a strict com-
putational account of temporal difference learning would not
predict that RPE signals should be elicited by cues that do not
predict the subsequent outcome (Sutton & Barto, 1998).

Second, the RewP might reflect an obligatory response to
the feedback valence that is relatively insensitive to the verid-
icality of the outcomes. This possibility is supported by the
previous study that revealed a dissociation between the effects
of instruction on RewP amplitude and behavior (Walsh &
Anderson, 2011). Combined EEG and fMRI studies have
demonstrated that the RewP amplitude is strongly related to
in ventral striatal activation (Carlson, Foti, Mujica-Parodi,
Harmon-Jones, & Hajcak, 2011; Nieuwenhuis, Slagter,
Alting von Geusau, Heslenfeld, & Holroyd, 2005a),
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suggesting that RewP amplitude might index Blower level^
reward (Holroyd & Umemto, 2016; Shahnazian & Holroyd,
2016). These speculations call for further examination in fu-
ture studies.

Additionally, Beta power has been associated with feed-
back learning (Marco-Pallarés, Münte, & Rodríguez-
Fornells, 2015). An influential hypothesis holds that Beta os-
cillations desynchronize when behavioral change is needed,
encoding a so called status quo signal (Engel & Fries, 2010;
Luft et al., 2013). Accordingly, in one of our previous studies,
larger Beta power was observed following reward feedback
compared with nonreward feedback, the source of which was
localized to DLPFC (HajiHosseini & Holroyd, 2015a). In a
following study, it was shown that Beta power is enhanced
following incorrect feedback relative to correct feedback
when task instructions emphasize learning from errors
(HajiHosseini & Holroyd, 2015b). The current study replicat-
ed the scalp distribution of Beta power, which peaked at the
same channels near DLPFC as in the previous studies (F3 &
F4; Fig. 8a). Moreover, Beta power was enhanced following
negative feedback relative to positive feedback, but only when
the feedback was reliable. These findings suggest that Beta
power might reflect an aspect of RL that is unrelated to feed-
back valence, because Beta was elicited both by positive and
negative feedback (Engel & Fries, 2010; Luft et al., 2013; Li
et al., 2016; HajiHosseini & Holroyd, 2015b). We speculated
that Beta activity may reflect increasing levels of cognitive
effort associated with attention, as suggested by previous stud-
ies (Buschman, Denovellis, Diogo, Bullock, & Miller, 2012;
Buschman & Miller, 2007; Pesaran et al., 2008).

Lastly, neural synchrony across distributed neural networks
plays a key role in communicating information between dif-
ferent neural groups (Canolty & Knight, 2010; Siegel,
Donner, & Engel, 2012). In particular, FMT generated in
ACC appears to regulate binding of information between dif-
ferent brain regions, a process that requires effortful control
(Holroyd, 2016). This position is supported by recent compu-
tational modelling work that illustrates how CFC across wide
brain regions between FMT and gamma oscillations contrib-
utes to task performance (Verguts, 2017). In the current study,
an exploratory CFC analysis revealed coupling between ACC
FMT phase and Beta power over central motor areas (chan-
nels C3 & C4) in two feedback conditions, but only when
these feedback stimuli were 100% reliable. This observation
is in line with previous studies that indicated that FMTcouples
with Beta oscillations, as observed both with intracranial
(Axmacher, Henseler, Jensen, Weinreich, Elger, & Fell,
2010) and scalp (Cohen, Elger, & Fell, 2009) recordings, sug-
gesting that FMT-Beta coupling may reflect prefrontal control
over sensorimotor processing (Siegel, Donner, & Engel,
2012). The HRL-ACC theory proposes that a low-level actor
module (including DLPFC and the dorsal striatum) is respon-
sible for implementing action policies, e.g., guiding the motor

area to carry out movement (Holroyd & Yeung, 2012;
Holroyd & Umemoto, 2016). Our present findings demon-
strated that CFC between FMTand Beta may reflect this guid-
ance function from actor module to motor areas. Although the
precise function of Beta and Beta-FMT CFC remains un-
known, these results suggest how different EEG signals can
be utilized to investigate the different modules in the HRL-
ACC framework.

Conclusions

Manipulating feedback reliability had distinct effects on dif-
ferent measures of ACC function. In particular, unreliable
feedback reduced the impact of FMT power on behavioral
adaptations and diminished an effect of FMT phase-
amplitude coupling with Beta oscillations over motor cortex.
By contrast, feedback reliability had no impact on RewP am-
plitude. These findings support a role for ACC in the hierar-
chical control of behavior.
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