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Abstract
Efficient integration of environmental information is critical in goal-directed behavior. Motivational information regarding potential
rewards and costs (such as required effort) affects performance and decisions whether to engage in a task. While it is generally
acknowledged that costs and benefits are integrated to determine the level of effort to be exerted, how this integration occurs
remains an open question. Computational models of high-level cognition postulate serial processing of task-relevant features and
demonstrate that prioritizing the processing of one feature over the other can affect performance.We investigated the hypothesis that
motivationally relevant task features alsomay be processed serially, that people may prioritize either benefit or cost information, and
that artificially controlling prioritization may be beneficial for performance (by improving task-accuracy) and decision-making (by
boosting the willingness to engage in effortful trials). We manipulated prioritization by altering order of presentation of effort and
reward cues in two experiments involving preparation for effortful performance and effort-based decision-making. We simulated
the tasks with a recent model of prefrontal cortex (Alexander & Brown inNeural Computation, 27(11), 2354–2410, 2015). Human
behavior was in line with model predictions: prioritizing reward vs. effort differentially affected performance vs. decision.
Prioritizing reward was beneficial for performance, showing striking increase in accuracy, especially when a large reward was
offered for a difficult task. Counterintuitively (yet predicted by the model), prioritizing reward resulted in a blunted reward effect on
decisions. Conversely, prioritizing effort increased reward impact on decision to engage. These results highlight the importance of
controlling prioritization of motivational cues in neuroimaging studies.
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Introduction

Adaptive behavior requires information in the environment to be
processed promptly, evaluated, and integrated with one’s goals.
The efficiency of such integration is critical for selecting appro-
priate behavioral responses, especially when achieving a goal
requires exerting mental or physical effort. While difficult tasks
are perceived as aversive (Kool, McGuire, Rosen, & Botvinick,

2010), humans are willing to engage in such tasks if a reward is
expected upon completion (Shenhav, Botvinick, &Cohen, 2013;
Westbrook & Braver, 2015). The factors that drive and support
motivation while expecting or engaging in effortful behavior
have received considerable attention in psychology and neuro-
science research (Westbrook & Braver, 2015). Behavioral and
neuroimaging findings show that the perceived value of rewards
decreases as a function of the effort required to obtain it (Apps,
Grima, Manohar, & Husain, 2015; Botvinick, Huffstetler, &
McGuire, 2009; Croxson, Walton, O’Reilly, Behrens, &
Rushworth, 2009) and that anticipating having to perform amore
difficult task affects reward feedback evaluation (Gheza, De
Raedt, Baeken, & Pourtois, 2018). While reward and effort are
motivationally opposed, brain regions typically implicated in
processing reward also are involved in registering task difficulty,
suggesting a potential overlap between reward-related and effort-
related motivational mechanisms (Vassena et al., 2014).

Generally, motivational information has differential effects
on behavior depending on the valence of the information.
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Information regarding prospective rewards leads to faster re-
action times and higher accuracy in tasks requiring cognitive
control (Chiew & Braver, 2016; Janssens, De Loof, Pourtois,
& Verguts, 2016; Krebs, Boehler, &Woldorff, 2010; Locke &
Braver, 2008; van den Berg, Krebs, Lorist, &Woldorff, 2014),
inhibition (Boehler, Hopf, Stoppel, & Krebs, 2012; Boehler,
Schevernels, Hopf, Stoppel, & Krebs, 2014; Rosell-Negre
et al., 2014), and perceptual discrimination (Schevernels,
Krebs, Santens, Woldorff, & Boehler, 2014). Furthermore,
reward information can affect high-level control strategies
(Braem, 2017). Information regarding upcoming task-
difficulty (and consequent required effort) influences task
preparation (Krebs, Boehler, Roberts, Song, & Woldorff,
2012; Vassena et al., 2014; Vassena, Cobbaert, Andres, Fias,
& Verguts, 2015; Vassena, Gerrits, Demanet, Verguts, &
Siugzdaite, 2018), improving task performance when in-
creased control is required (Aarts & Roelofs, 2010; Bugg &
Smallwood, 2016). This process is likely mediated by in-
creased attentional allocation (Maunsell & Treue, 2006),
which enhances neural activity in task-related structures and
results in performance improvements. This mechanism is
known as proactive control (Braver, 2012) and has the func-
tion of adapting performance to internal goals. Information
regarding effort also influences decision-making: typically
when given a choice, people tend to avoid more demanding
tasks (Kool et al., 2010) and prefer knowing in advance how
much effort the task will require (Apps et al., 2015).

Although both reward and effort information is consistent-
ly observed to influence behavior and brain activity, it remains
unclear how such information is integrated to guide behavior.
Most studies rely on the assumption that information coming
from multiple sources (i.e., benefit and cost, such as reward
and task-difficulty) is processed simultaneously and integrat-
ed. Furthermore, relatively little attention has been given to
the possibility that cost and benefit information may differen-
tially influence task performance compared with decision-
making. Comparisons between effects of cost and benefit in-
formation on decisions as opposed to task accuracy are scarce.
We challenge the assumption of simultaneous processing and
unbiased integration, by proposing that reward and cost infor-
mation is processed in a serial fashion, and that depending on
the task context, either reward or cost may be prioritized. One
straightforward way of assessing information integration is
manipulating the order in which such information is present-
ed. Simultaneous presentation of multiple information sources
leaves the subject free to process information in an uncon-
strained fashion. Presenting the same information serially en-
forces an order of processing, potentially reducing or increas-
ing the impact of the piece of information coming first on task
performance or decisions whether to engage in the task at all.

Evidence that order of processing affects behavior comes
from judgment and decision-making literature: how informa-
tion is presented can influence preferences, and therefore

decisions. For example, framing a problem in terms of gains
or losses modulates willingness of people to take risky deci-
sions: a gain-frame makes people risk-averse, whereas a loss-
frame encourages risk-seeking behavior (Gonzalez, Dana,
Koshino, & Just, 2005; Kühberger, 1998; Kühberger,
Schulte-Mecklenbeck, & Perner, 1999). Moreover, an anchor
(i.e., numerical value presented before the task) typically in-
fluences subsequent numerical estimates of quantities or prob-
abilities (Furnham & Boo, 2011; Jacowitz & Kahneman,
1995; Strack & Mussweiler, 1997). These effects are known
as biases or heuristics, strategies deployed to process efficient-
ly the information available in the environment when re-
sources (such as time or concentration) are limited. Both fram-
ing and anchoring can be seen as contextual variables
influencing processing of subsequent information (De
Martino, Kumaran, Seymour, & Dolan, 2006; Kahneman &
Tversky, 1979). Furthermore, pronounced order effects have
been observed in delay-discounting tasks (Kirby &
Maraković, 1996; Reynolds, 2006), where people make a se-
ries of decisions between immediate smaller rewards and de-
layed bigger rewards (Robles, Vargas, & Bejarano, 2009).

Several (neuro)computational models describing cognitive
processes, such as working memory, prediction, and reason-
ing, also suggest that information processing and mapping
may influence subsequent task-performance. In such models,
different pieces of task-relevant information are processed in a
serial fashion, and each feature is represented at one level of a
neural, temporal, or representational hierarchy within prefron-
tal cortex (PFC) (Alexander, Vassena, Deraeve, & Langford,
2017; Badre, 2008; Badre & D’Esposito, 2007; Collins &
Frank, 2012; Koechlin, Ody, & Kouneiher, 2003). The
Hierarchical Error Representation model (HER, Alexander
& Brown, 2015) suggests that different mappings of informa-
tion are learned during task performance: information about
context tends to be prioritized, i.e., processed first.
Simulations of the HER model demonstrate that interfering
with this learned prioritization can produce changes in behav-
ior, including prolonged learning times and increased error
rates (Alexander & Brown, 2015). Consequently, the HER
model suggests that order effects may derive from differences
in the mapping of information (as a function of which one
information source is prioritized), with consequences on pro-
cessing efficiency and task performance.

In summary, findings from judgment and decision-making
psychology and computational modeling converge in suggest-
ing that order of presentation may affect performance and
decision. In the context of motivational information, these
hypotheses have never been tested. Models, such as the
HER, have been developed to account for the role of PFC in
processing complex information, maintaining goals, and guid-
ing decisions (Alexander & Brown, 2018; Alexander et al.,
2017). Critically, neuroimaging studies investigating motiva-
tion have consistently implicated several subregions of PFC.
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Expecting to perform an effortful task is associated with in-
creased activity in medial and lateral PFC, activity that par-
tially overlaps with expectation of a larger reward (Vassena
et al., 2014). Activity in lateral PFC also is consistently ob-
served in studies manipulating effort and task load (Aarts &
Roelofs, 2010; Locke & Braver, 2008; McGuire & Botvinick,
2010; Sohn, Albert, Jung, Carter, & Anderson, 2007; Vassena
et al., 2018). Furthermore, activity in medial PFC scales with
the subjective value of the expected reward discounted by the
required effort (Apps & Ramnani, 2014; Chong et al., 2017).
This functional overlap between motivational information
coding and typical control and working-memory coding sug-
gests an underlying shared computation across context. In
other words, the same computational architecture that sub-
serves task-relevant information in cognitive control also
may explain the involvement of these regions in motivational
information coding.

Generally, studies of value-based decision-making utilize
simultaneous presentation of multiple information sources, as-
sume that these sources are weighted equally and integrated,
and do not address how this putative integrationmay occur. The
goal of this study was twofold. First, we investigated the gen-
eral question of whether manipulating the order of processing
of motivational information could influence subsequent behav-
ior in a manner consistent with serial information integration.
Second, we tested the HERmodel as a candidate account of the
mechanisms underlying information integration by simulating
the model on Experiments 1 and 2 and compared model behav-
ior to observed behavior. The HER model predicts that priori-
tizing one information source over the other (for example ben-
efit over cost) may influence task performance and choice be-
havior, thus providing a novel hypothesis on how individuals
process multiple sources of motivational information.

Existing accounts of value-based decision-making would
favor the possibility that, when presented simultaneously, and
with ample time in which to register information, task-
difficulty and reward cues are processed to produce a net-
value that governs specific behaviors, such as decisions to
engage in a task or the level of effort to expend in task perfor-
mance. One could learn, for example, the value of engaging in
a task as the level of reward, which is then discounted by the
required effort (as a function of task-difficulty), as suggested
by neuroeconomic perspectives (Kivetz, 2003; Westbrook &
Braver, 2015). Conversely, the net-value of engaging in a task
could be conceived as the cost of performing the task (in terms
of prospective effort expenditures), which is then offset by the
prospective reward of successfully completing the task. While
a rational model of value might suggest that these two dispa-
rate fashions of integrating reward and effort information
might result in the same net-value, ample evidence, as de-
scribed above, suggests that this is not necessarily the case.
In line with the predictions of the HER model, such serial
processing may reflect the prioritization of reward or cost

information, with the variable processed first becoming a con-
text for the second variable (e.g., effort may be processed first
and influence subsequent processing of reward information),
rather than simultaneous integration of equally weighted in-
formation sources (Vassena, Deraeve, & Alexander, 2017).
Furthermore, it may be the case that disrupting prioritization
strategies through manipulating order information may shift
net-value estimates in a task-dependent manner. More specif-
ically, enforcing an order consistent with a person's usual pri-
oritization may have little effect on one task, while producing
profound effects on other tasks.

To investigate the influence of prioritizing reward over cost
information and vice-versa on behavior, we adapted a mental
effort task previously used to investigate the neural correlates
of reward and difficulty coding (Vassena et al., 2014, 2015). In
Experiment 1, we investigated the effect of prioritizing reward
over difficulty (cost) information on task performance. In
Experiment 2, we tested the effect of prioritizing reward over
difficulty information on the decision to engage or not in a
proposed task. To investigate the hypothesis that motivational
informationmay be processed serially, and prioritized depend-
ing on task context, we simulated each experiment using the
HER model to derive qualitative predictions regarding behav-
ioral performance, which we compared with actual behavioral
patterns observed in our subjects.

Experiment 1

Materials and methods

Experiment 1. Participants

Forty-one healthy subjects participated in this experiment
(mean age 19 ± 1 years; 7 males). Participants were recruited
through the online platformExperimetrix among the students of
the first-year bachelor of psychology. Participants received a
credit for their participation, plus a monetary compensation
depending on task-performance (up to 4 euros). This amount
was calculated based on points accumulated at the end of the
experiment. At the beginning of the session, each participant
gave written, informed consent. Sample size was determined a
priori based on previous studies investigating the effect of dif-
ficulty and reward on task-performance (Janssens et al., 2016;
Krebs et al., 2010; Schevernels et al., 2014; Vassena et al.,
2015) and on our unpublished data from a similar experiment
investigating neural correlates of task-preparation and decision-
making under different reward and difficulty conditions.

Experiment 1. Procedure

The goal of Experiment 1 was to investigate the influence of
prioritization of difficulty and reward information on
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performance. A mental effort task was adapted from our pre-
vious work (Fig. 1c; Vassena et al. 2014, 2015). This para-
digm was selected, because participants consistently report
difficult trials to be more effortful compared with easy trials
(both in pilot data and in our above-mentioned studies).

At the beginning of each trial, two motivational cues were
presented serially. The motivational cues consisted of grey
circles with vertical and horizontal black lines (Fig. 1a). The
horizontal lines represented task difficulty on the current trial:
a line in the lower part of the circle signaled an easy trial, and a
line in the upper part of the circle signaled a difficult trial. The
vertical lines represented potential reward in case of correct
response: a line in the left part of the circle indicated no re-
ward, and a line in the right part of the circle indicated high
reward. This resulted in four possible combinations of task
difficulty and potential reward. Furthermore, difficulty and
reward information could be presented simultaneously (both
first and second cue showing both lines) or sequentially (the
first cue showing a horizontal line, the second a vertical line or
vice-versa; Fig. 1b). The goal of this procedure was to com-
pare simultaneous presentation of reward and difficulty infor-
mation with serial presentation, keeping different orders of
presentation into account.

The trial was structure as follows: At the beginning of
every trial, a blank white screen was shown (500 ms), follow-
ed by the first cue presented centrally on the screen (2,000
ms). A short blank screen (50 ms) separated the first cue from

the presentation of the second cue (500 ms), after which the
task began. The task consisted of two arithmetic operations (2
additions or an addition and a subtraction). The operations
remained on the screen for 1,500 ms, after which two possible
results were displayed: one on the left and one on the right.
Participants had to select the result that they thought was cor-
rect by pressing the left or the right response button depending
on the position of the correct result. The response time limit
was 1,000 ms. Feedback was then presented, showing the
amount of obtained reward (points) in case of correct response
(1,000 ms). In case of an incorrect response, the word Berror^
was shown on the screen. If no response was recorded within
the time limit, the words Brespond faster^ were presented.

This setup resulted in a 3 x 2 x 2 design, with factors order
(simultaneous, difficulty first, reward first), difficulty (easy,
difficult), and reward (low, high). Thirty trials per conditions
were presented to each participant in a randomized order (360
trials in total). Following a correct response, subjects received
feedback indicating the number of points they earned (100
points for high-reward trials, 0 points for no-reward trials).
The difficulty manipulation was implemented by exploiting
the reliable effect of decade-crossing. In the difficult condi-
tion, both operations implied carrying or borrowing (e.g., 5 +
8 − 6). In the easy condition, none of the operations implied
carrying or borrowing (e.g., 5 + 1 + 1). As shown in previous
research, this procedure consistently shows difficulty effects
(in either accuracy or reaction time data, and in ratings

Fig. 1 Stimuli and trial-structure in Experiment 1. a Motivational cues
used in both experiments. Vertical bars indicate the amount of potential
reward (small, large). Horizontal bars indicate the difficulty level (easy or
hard), and therefore required effort. b Example of cue presentation when
difficulty information is prioritized (left panel) and when reward is

information is prioritized (right panel). c Trial-structure in Experiment
1. Two cues are presented one after the other, indicating difficulty level
and potential reward in the upcoming trial. Cues are followed by an
arithmetic operation, with two possible results. Participants selected the
correct response and received feedback
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concerning perceived difficulty; Vassena et al., 2014, 2015).
Before task execution, a short training phase was administered
(12 trials) to acquaint participants with the cues, speed of
presentation, and easy and hard trial types. Participants were
instructed to respond as accurately and quickly as possible.
During task execution, participants had nine breaks, during
which they could rest briefly. The total duration of the task
was approximately 35 minutes (not including breaks).

Experiment 1. Analysis

Data were analyzed with the generalized linear mixed models
approach using the R package lme4 (Bates, Mächler, Bolker,
& Walker, 2014). For binary outcome dependent variables
(accuracy), we used generalized linear mixed models. For
continuous dependent variables (choice RTs and performance
RT), we used linear mixedmodels. RT data also were z-scored
and log-transformed to prevent violations of the assumption of
normality. Trials where participants made an error at the cal-
culation task were excluded from the RT analysis. For each of
the dependent variables of interest, we performed a model
building procedure. First, we estimated a benchmark model,
including a random intercept and a random slope for each
subject. Subsequently, three models were estimated, each in-
cluding the benchmark model plus one of the fixed effects for
order, difficulty, and reward. Each of these three models was
compared against the benchmark model following a likeli-
hood ratio testing procedure. The goal of this procedure was
to determine which factors in the model provided a significant
contribution in explaining the variance in the dependent var-
iable at hand. Subsequently, a new benchmark model was
determined, including a random intercept and a random slope
for subject and the fixed effects that proved significance in the
previous testing. Each interaction was tested separately
against this new benchmark model. Follow-up pairwise com-
parisons were used to assess significant interactions. To pro-
vide a numerical estimate of effect size, for each model we
also calculated the Ω0

2, an analogous of the R2 for
(generalized) linear mixed models, which compares the resid-
ual variance of the tested model against the residual variance
of a (fixed) intercept-only null model (Xu, 2003). This calcu-
lation was performed on the model fits run on averages per
participant per condition. It should be noted that the use of
such measures in the linear mixed models framework is de-
bated (Nakagawa & Schielzeth, 2013); however, it can pro-
vide an intuitive measure comparable to effect sizes computed
in linear models. A further caveat is that given that the esti-
mated model, including interactions, will always explain a
larger portion of the variance compared with the simple mod-
el, including only the intercept. Therefore, this measure might
not be optimal to judge effect size for interactions. Finally,
95% confidence intervals (CI) were computed with the Wald
method implemented in the lme4 package. The hypotheses of

the current study mainly focused on accuracy. RT results also
are reported for completeness.

Experiment 1. Results

Statistical significance of the results was assessed by likeli-
hood ratio testing. χ2 and p values refer to comparisons be-
tween the benchmark model and the same model plus the
fixed effect or interaction of interest (see Experiment 1,
Methods, Analysis section). Likelihood ratio test results for
accuracy are reported. We observed a significant fixed effect
of difficulty and reward, with an additional nonsignificant
trend for order (difficulty χ2(1) = 2108, p < 0.0001, Ω0

2 =
0.39, reward χ2(1) = 36.36, p < 0.0001, Ω0

2 = 0.44, order
χ2(2) = 4.55, p = 0.10, Ω0

2 = 0.34). Accuracy was higher for
easier trials (Measy = 0.97 ± 0.03, CI [ 2.54, 2.84 ], Mhard =
0.73 ± 0.11, CI [−2.84, −2.54]) and for high reward trials (Mno

reward = 0.84 ± 0.08, confidence interval [CI] [−0.37, −0.19],
Mhigh reward = 0.87 ± 0.06, CI [0.19, 0.37]). A significant
difficulty X reward interaction was observed (χ2(1) = 11.402,
p < 0.001, Ω0

2 = 0.50). Follow-up comparisons revealed that
the effect of high reward on accuracy was significant both in
the easy (t(40) = 2.55, p ≤ 0.05), Mhigh reward – no reward = 0.01)
and in the hard condition (t(40) = 5.88, p ≤ 0.0001, Mhigh reward

– no reward = 0.05) but greater in the hard condition.
Furthermore, a significant order X reward interaction was ob-
served (χ2(4) = 19.39, p < 0.001, Ω0

2 = 0.49). The effect of
reward in improving accuracy was significant in the simulta-
neous (t(40) = 5.6, p < 0.0001, Mhigh reward – no reward = 0.05)
and reward first condition (t(40) = 5.8, p < 0.0001,Mhigh reward –

no reward = 0.12) but not in the difficulty first condition (t(40) =
0.54, p = 0.59, Mhigh reward – no reward = 0.01). Finally, a sig-
nificant order X difficulty interaction was observed (χ2(4) =
12.76, p < 0.05, Ω0

2 = 0.49). Accuracy was significantly re-
duced for hard trials in all conditions, showing the strongest
impact when the difficulty cue was presented first (t(40) =
−14.03, p < 0.0001, Mhard – easy = −0.28), average impact
when presented simultaneously (t(40) = −12.99, p < 0.0001,
Mhard - easy = −0.25), and the weakest impact when difficulty
was presented last (t(40) = −11.9, p < 0.0001, Mhard – easy =
−0.22) (Fig. 2).

Analysis of RTs revealed a significant effect of difficulty
(χ2(1) = 330.5, p < 0.0001, Ω0

2 = 0.46), a trend for effect of
reward (χ2(1) = 2.37, p = 0.12, Ω0

2 = 0.13), and no effect of
order (χ2(2) = 2.08, p = 0.35). Participants responded faster to
easy trials (M = 434.37 ± 48.15, CI [−0.37, −0.30]) compared
with hard trials (M = 543.14 ± 72.14, CI [0.30, 0.37]).
Participants responded more slowly to high-reward trials (M
= 491 ± 53 ms, CI [−0.06, 0.01]) compared with no-reward
trials (M = 486 ±54ms, CI [−0.01, 0.06]), perhaps due tomore
careful responding in light of the reward at stake (although this
difference did not reach significance). A significant reward X
difficulty interaction also was observed (χ2(2) = 6.8, p < 0.05,
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Ω0
2 = 0.47) and a trend for the order X reward interaction

(χ2(5) = 8.84, p = 0.12, Ω0
2 = 0.47). To test whether these

interactions were mainly driven by the marginally significant
fixed effect of reward, we established a new benchmark model
that included the trend-level fixed effect of reward. When
tested against this benchmark, the reward X difficulty interac-
tion added only a marginal contribution (χ2(1) = 3.6, p = 0.06),
whereas the order X reward interaction was no longer signif-
icant (χ2(4) = 5.62 1, p = 0.23). For this reason, no follow-up
comparisons were performed on these interactions.

Experiment 1. Interim discussion

Experiment 1 investigated effects of order of presentation of
motivational information on task performance. We adapted a
task previously used in neuroimaging research to investigate
reward and effort anticipation during task-preparation
(Vassena et al., 2014). Cues indicating reward amount and task
difficulty were presented serially (in both possible orders), as
well as simultaneously (as in the original fMRI experiment). As
suggested by the HER model simulations, we predicted effects
of prioritizing reward or difficulty information on task-related
preparation and consequent influence on accuracy.

The results show a striking influence of prioritizing reward
as opposed to difficulty information on task performance.
Naturally, accuracy is higher in easy trials and in trials with
high reward prospect. However, when reward cues are pre-
sented first, accuracy at the task is comparable to the

simultaneous condition. Conversely, when effort is presented
first, the otherwise present reward effect is abolished. The
similarity between the Reward first and simultaneous con-
firms the model-based predictions.

Importantly, the second cue always lasted 500 ms. Previous
studies have shown that reward information can be correctly
processed when presented for as short as 200 ms before task
onset (Janssens et al., 2016). Moreover, effect of reward on
attention-related brain processes as measured through EEG can
arise as early as 200 ms (P2) and 400 ms (P3, Schevernels et al.,
2014). These time intervals are all shorter than the one used in
the current experiment. This suggests that subjects in our exper-
iment have sufficient time to process reward cues when present-
ed second, and differences in behavior are due to the contextual
influence of effort information on reward processing. It should
be noted that the effect of difficulty we observe is partially driven
by task difficulty itself. However, this alone could not explain the
influence presentation order on performance.

Experiment 2

Materials and Methods

Experiment 2. Participants

Thirty-five healthy subjects participated in this experiment
(mean age 24 ± 5 years; 8 males). Participants were recruited

Fig. 2 Experiment 1. a Average accuracies in each difficulty and reward
condition, in the three possible orders (simultaneous, difficulty first,
reward first). Errors bars show one standard error of the mean. The
black circles show that when difficulty information is prioritized,
reward effect is absent. b Upper panel: summary of confirmed model

predictions. (see Computational model section below). Lower panel: av-
erage reward effect (differences in accuracy in the high reward vs. low
reward condition) c.Average RTs at the calculation task in each difficulty
and reward condition, in the three possible orders (simultaneous, difficul-
ty first, reward first). Errors bars show one standard error of the mean
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through the online platform Experimetrix and received a mon-
etary compensation for participation. A portion of the amount
was calculated based on points accumulated at the end of the
experiment. The maximum possible remuneration was 13
euros. At the beginning of the session, each participant gave
written, informed consent. Sample size was determined a
priori, based on previous studies investigating the effect of
difficulty and reward on task-performance (Janssens et al.,
2016; Krebs et al., 2010; Schevernels et al., 2014; Vassena
et al., 2015) and on our unpublished data from a similar ex-
periment investigating neural correlates of task-preparation
and decision-making under different reward and difficulty
conditions.

Experiment 2. Procedure

The goal of Experiment 2 was to investigate the effect of
prioritization on decision-making. The same paradigm from
Experiment 1 was adapted to include a choice period where
participants could decide to perform the proposed task or a
default task with minimal effort and low reward (Fig. 3). As in
Experiment 1, two cues were presented, indicating potential
reward and task difficulty in three possible orders (simulta-
neous, difficulty first, reward first). In this experiment, how-
ever, the reward conditions were low reward (50 points) and

high reward (100 points). The difficulty manipulation was
equivalent to Experiment 1, and the same arithmetic opera-
tions were used. After the second cue, a screen was presented
with the text BAccept?^. The response time limit was 1,000
ms. Half of the participants had to press the left button to
accept (and the right to reject). This was counterbalanced in
the other half of the participants, who had to press the right
button to accept (and the left to reject). An BAccept^ response
meant deciding to engage in a trial with the potential reward
and difficulty level indicated by the cues preceding the
BAccept^ screen. In case of BReject^ response, a standard trial
type would occur instead, with a very easy task (easier than
the easy level, i.e., 5 + 0 + 0), for a much smaller amount of
points (5 points). The timing of the rest of the task was equiv-
alent to Experiment 1.

Reward conditions and consequences of rejecting a trial
were explained to the participants at the beginning of the ex-
periment. Total number of trials, trials per condition, breaks,
and total duration were the same as in Experiment 1. A train-
ing phase was included to acquaint participants with the cues,
procedure, and difficulty levels. Participants were asked to
consider carefully their choices and not always respond
BAccept^ or BReject.^ Moreover, they were instructed to be
as fast as possible, because late responses would mean losing
the chance to perform the trial (and earn points).

Fig. 3. Stimuli and trial-structure in Experiment 2. a Motivational cues
used in both experiments. Vertical bars indicate the amount of potential
reward (small, large). Horizontal bars indicate the difficulty level (easy or
hard), and therefore required effort. b Example of cue presentation when
difficulty information is prioritized (left panel), and when reward is infor-
mation is prioritized (right panel). c Trial-structure in Experiment 2. Trial

and time are the same as in Experiment 1, with one added display after the
cues, asking participants if they are willing to BAccept,^ namely engage
in a trial with the proposed potential reward and difficulty level. In case of
negative response, a very easy trial follows, for only 5 points reward.
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Experiment 2. Analysis

The same analysis procedure was used as in Experiment 1.
Choice data (accept vs. reject) and choice RTs data were ana-
lyzed. Accuracy and RTs at the task also were analyzed. For
binary variables (choice data and accuracy data), generalized
mixed models were used. For RT data, linear mixed models
were used. RT data were z-scored and log-transformed to pre-
vent violations of the assumption of normality. Trials where
participants rejected the task were excluded from RT analysis,
as well as trials where participants made an error at the calcu-
lation task. As our hypothesis concerned decision-making, we
mainly focus on the choice data.

Experiment 2. Results

Data from one participant were excluded, because this person
always accepted the proposed task. Statistical significance
was assessed by likelihood ratio testing. χ2 and p values refer
to comparisons between the benchmark model and the same
model plus the fixed effect or interaction of interest (see
Experiment 1, Methods, Analysis section). Likelihood ratio
test results for choice data (accept vs. reject) are reported.
The analysis revealed a significant fixed effect of difficulty
and a fixed effect of reward, while order had no influence
(difficulty χ2(1) = 212.83, p < 0.0001, Ω0

2 = 0.39, reward
χ2(1) = 448.13, p < 0.001, Ω0

2 = 0.44, order χ2(2) = 1.07, p =
0.59). Participants were more likely to accept an easy option
(M = 0.92 ± 0.13, CI [0.75, 0.99]) compared with a hard one
(M = 0.84 ± 0.23, [−0.99, −0.75), and a high-reward option
(M = 0.93 ± 0.10, CI [1.17, 1.43]) compared with a low-
reward option (M = 0.82 ± 0.27, CI [−1.43, −1.17]). We ad-
ditionally observed a significant difficulty X reward interac-
tion (χ2(1) = 11.55, p < 0.0001, Ω0

2 = 0.50). This interaction
was driven by a larger effect of reward in the hard (Mhigh reward

- low reward = 0.16) as opposed to easy condition (Mhigh reward -

low reward = 0.06), although both differences were significant at
follow-up t-tests (easy t = 2.26, p < 0.05, hard t = 4.38, p <
0.0001). Interestingly, the order X reward interaction also was
significant (χ2(4) = 9.80, p < 0.05,Ω0

2 = 0.48). This interaction
was driven by a larger reward effect in the simultaneous con-
dition (Mhigh reward - low reward = 0.13, t(33) = 4.63, p < 0.0001)
compared with the difficulty first (Mhigh reward - low reward =
0.12, t(33) = 4.79, p < 0.0001) and especially reward first
condition (Mhigh reward - low reward = 0.09, t(33) = 3.68, p <
0.001), although all three differences were statistically signif-
icant. The order X difficulty interaction did not show a signif-
icant effect (χ2(4) = 2.38, p = 0.67) (Fig. 4).

In our analyses for choice RTs, likelihood ratio test results
yielded no significant fixed effects of order, difficulty, or re-
ward (order χ2(2) = 2.62, p = 0.27, difficulty χ2(1) = 0.39, p =
0.53, reward χ2(1) = 0.10, p = 0.75). No significant interactions
were observed. For completeness, the same analysis was

rerun, including trials in which participants accepted the task
at hand, but made an error at the calculation task. The only
difference was a trend towards significant for the effect of
order (χ2(2) = 5.21, p = 0.07).

Likelihood ratio tests for accuracy at the calculation task
yielded a significant effect of difficulty (χ2(1) = 1819.3, p <
0.0001, Ω0

2 = 0.77) and no effects of reward (χ2(2) = 0.09, p =
0.76) or order (χ2(2) = 0.24, p = 0.89). As a note, when rejected
trials were included in the analysis (when participants received
the very easy task for very low reward), the reward effect was
significant (χ2(1) = 8.53, p < 0.01, higher accuracy also was
higher in the high reward trials (M = 0.84 ± 0.06) compared with
low-reward trials (M = 0.82 ± 0.07)). Participants were more
accurate in the easy task (M = 0.97 ± 0.04, CI [2.83, 3.21])
compared with the hard task (M = 0.69 ± 10, CI [−3.21,
−2.83]). The order X reward interaction was marginally signifi-
cant (χ2(5) = 10.10, p = 0.07, Ω0

2 = 0.77). As this replicated the
results obtained in the accuracy data of Experiment 1, this effect
was investigated further. High reward improved accuracy in the
simultaneous (Mhigh reward-low reward = 0.02, t(33) = 2.37, p < 0.05)
and reward first condition (Mhigh reward-low reward = 0.03, t(33) =
2.25, p < 0.05) but not in the difficulty first condition (Mhigh

reward-low reward = −0.009, t(33) = −0.81, p = 0.43). This confirms
our previous results showing that the reward effect was abolished
in the difficulty first condition. Finally, the difficulty X reward
interaction showed a trend towards significance (χ2(2) = 4.27, p =
0.12), whereas the order X difficulty interaction was not signif-
icant (χ2(4) = 5.09, p = 0.28) (Fig. 5).

Likelihood ratio test results for RTs at the calculation task
produced a significant effect of difficulty and reward (difficul-
ty χ2(1) = 85.5, p < 0.001,Ω0

2 = 0.34, reward (χ2(1) = 7.79, p <
0.01, Ω0

2 = 0.26) and no effect of order (χ2(2) = 0.17, p =
0.91). Participants responded faster in easy trials (M = 488 ±
78ms, CI [−0.23, −0.15,]) compared with hard trials (M = 829
± 130 ms, CI [0.15, 0.23]). Participants responded slightly
slower in high-reward trials (M = 660 ± 94 ms, CI [0.02,
0.1]) compared with low-reward trials (M = 655 ± 92 ms, CI
[−0.1, −0.02]), perhaps due to more careful selection of the
response in light of the reward at stake. Furthermore, the dif-
ficulty X reward interaction was significant (χ2(1) = 8.94, p <
0.01, Ω0

2 = 0.36), while the order X difficulty (χ2(4) = 0.87,
0.92) and order X reward (χ2(4) = 1.06, p = 0.9) interactions
were not. High reward significant slowed down responses in
the hard condition (Mhigh reward-low reward = 11 ms, t(31) = 2.24,
p ≤ 0.05), while it had no effect in easy condition (Mhigh reward-

low reward = 0.17 ms, t(31) = −0.04, p = 0.97).

Experiment 2. Interim discussion

Experiment 2 investigated the effect of order of motivational
information on decision-making. We hypothesized that order
might affect preference and consequent choice when partici-
pants could decide which trials to engage in. This would be in
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line with results from decision-making psychology, demon-
strating the influence of order on choice behavior. Our results
indeed showed that order affects decisions to engage in the
task. Naturally, participants were more inclined to accept trials
providing higher reward and requiring lower effort.

Acceptance rates when difficulty was presented first were
comparable to simultaneous presentation; however, when re-
ward was presented first, the effect of reward on acceptance
rates was reduced. This confirms that both first and second
cues were adequately processed, as shown by the significant

Fig. 4. Experiment 2, decision-making. a Choice data (average
probability of accepting the given level of difficulty and reward) per
every condition. Error bars indicate one standard error of the mean.
Black circles show the smaller reward effect when reward is prioritized,
as compared to when difficulty is prioritized, and simultaneous

presentation. b Upper panel: summary of confirmed model predictions
(see Computational model section). Lower panel: average reward effect
(differences in probability of accepting in the high reward vs. low reward
condition) c. Average choice RTs per condition. Error bars indicate one
standard error of the mean.

Fig. 5. Experiment 2, calculation task results. aAverage accuracies at the
calculation task in all conditions. The error bars show one standard error
of the mean. Black circles show that reward effect is abolished when
difficulty is prioritized. These results replicate experiment 1. b Average

RTs at the calculation task in all conditions. The error bars show one
standard error of the mean. c Average reward effect (differences in RT
in the high reward vs. low reward condition)
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effect of difficulty and reward on decision both in the difficul-
ty first and reward first conditions. Furthermore, this shows
that prioritizing effort information makes decisions more de-
pendent on the potential reward available. Crucially, and in
contrast to our findings in experiment 1, this also suggests that
during simultaneous presentation when one can choose to
engage or not, task difficulty information is prioritized
(whereas during performance, reward information appears to
be prioritized). The similarity between the difficulty first and
simultaneous condition confirm model-based predictions.

Importantly, accuracy during task performance results rep-
licated our results from Experiment 1, even though the deci-
sion component was introduced, and the sample size was
smaller. This confirms that order of presentation of motiva-
tional information affects task performance even with greater
delay between cue presentation and task execution.

Computational model

Computation model. Methods

In line with the Hierarchical Error Representation (HER)
model (Alexander & Brown, 2015) of dorsolateral and medial
prefrontal cortex (PFC), our behavioral results indicated that
manipulating prioritization of motivational information affect-
ed performance and decision-making. To test the validity of
the HERmodel as a candidate underlyingmechanism, we also
simulated both tasks (code available upon request) to derive
qualitative predictions regarding the possible influences of our
order manipulation on accuracy during performance of the
calculation task and decision-making.

The HER framework models how task-relevant information
is processed in PFC by representing the likelihood of events
(predictions), mismatches between predictions and actual
events (prediction errors), the likelihood of contexts (higher-
level links between stimuli and prediction error history attached
to them), and mismatch between expected and actual context.
The HER computational architecture suggests that PFC is or-
ganized in a hierarchical, layer-wise structure, with inferior
layers representing concrete, response-related stimuli (putative-
ly encoded by posterior-medial PFC), while superior layers
represent context-related information (putatively encoded by
anterior-lateral PFC). Previous simulations demonstrate differ-
ences in the model's behavioral performance during task con-
ditions in which the model is forced to represent that task in an
inefficient manner (Alexander & Brown, 2015). When two
sources of information are required to determine a correct re-
sponse, the model learns to map information that more directly
identifies the correct response to lower hierarchical levels asso-
ciated with concrete predictions. When this mapping is
disrupted through, e.g., manipulations of the order of presenta-
tion of information sources, the model learns to perform the
task less quickly and with more overall error.

To simulate the model on the effort and reward tasks de-
scribed in this study, the following changes were made. First,
to simulate performance on the calculation task (Experiment 1),
one output was modeled, reflecting the level of effort exerted by
the model to perform the calculation task. Model output was
used as input to a sigmoid function, which represented the prob-
ability of the model performing the task correctly for a given
level of effort:

P correctð Þ ¼ 1

1þ exp−β E−Dð Þ ð1Þ

where E is the level of effort indicated by the model output,
D is the difficulty of the task, β (value = 2) is a scale
parameter. Large values of β indicate rapid increases in
the probability of a correct response for modest increases
in E. Feedback to the model was delivered as V = R-E,
where R is the level of reward earned by the model on a
specific trial. If the model delivered an incorrect response, R
= 0. When the model correctly performed a trial, the value
of R depended on the reward condition (Fig. 6b, x axis).
When R was greater than E, the net-value V of the trial
was positive, leading to an increased level of effort on the
next trial in the same reward/effort condition. Conversely,
when R was less than E, the net-value of the trial was
negative, and less effort was expended on the next trial.
The model thus adaptively modulated its behavior based
on feedback over the course of the experiment.

Fig. 6. The HER model. a Hierarchical mapping of information. When
integrating two sources of information, the HER model learns to map
each source to a distinct hierarchical level (Left and Middle frames).
This mapping is determined automatically by the model. Sources of
information that are prioritized (i.e., processed first) are mapped to the
higher level. Sources of information that most reduce outcome
uncertainty are mapped to the lower level. This information-to-level map-
ping may change depending on task demands. In the forced mapping
BReward 1st^ (left), the model represents reward at the higher level: this
corresponds to prioritizing reward. In the forced mapping BEffort 1st^
(middle), the model represents effort at the higher level: this corresponds
to prioritizing effort. In the flat version of the model (right), both sources
of information are mapped to the same layer. bDepending on the task, the
model learns different mappings of reward and effort information to hi-
erarchical levels. In the decision task (upper frames), the model learns to
map effort information to the higher level - the model's behavior is similar
to prioritizing effort. Model’s behavior is different when reward informa-
tion is force-mapped to the higher level (Fig. 6a, reward prioritized). This
pattern is reversed for the performance task: the model learns to map
reward information to the 2nd level – the model’s behavior is similar to
prioritizing reward. In the flat version of the model, behavior for all
conditions is identical despite changes in salience of effort and reward
information analogous to order manipulations. c. The model's behavior
under free mapping conditions is more similar to the prioritizing effort
condition in the decision task (left frame) relative to the prioritizing
reward condition (computed as the sum of the squared difference between
the model's choice/performance in the Reward 1st/Effort 1st conditions
and the Free condition). The reverse is true for the performance task
(right frame). Behavior is the same for all conditions using the flat
model.
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To simulate choice behavior (Experiment 2), four outputs
were modeled. Two outputs reflected the model's prediction of
the possible reward to be obtained from either engaging in a
prospective task or accepting a lower, default reward, and two
outputs reflected the model's prediction of the level of diffi-
culty entailed in accepting the default and nondefault options.
The net value of accepting the default or nondefault option
was calculated as the difference between the predicted reward

and predicted effort for each option. This net value was trans-
lated into choice behavior using a softmax function:

P O1ð Þ ¼ expβV1

∑2
n¼1expβVn

ð2Þ

where V is the net predicted value (Reward minus
Effort) of each option and β is a temperature parameter
with that was set to 2.
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For each task, the model was simulated in 3 different condi-
tions (Fig. 6). In the first condition (Reward 1st), the mapping of
effort and reward information was manually specified such that
reward information was represented in the higher layer, while
effort was represented in the lower layer. This mapping is
equivalent to forcing themodel to prioritize reward information.
In the HER model, this mapping forced the model to learn
output predictions based on effort information, and these pre-
dictions were contextualized by reward-related information af-
ter the model had learned the overall average predictions based
on the effort information alone. In the second condition (Effort
1st), the forced mapping was reversed such that reward infor-
mation was represented in the higher layer while effort was
represented in the lower layer; in this case, effort information
contextualized reward information. This mapping is equivalent
to forcing the model to prioritize effort information. Finally, in
the third condition (Simultaneous), the model was free to select
the hierarchical level in which effort and reward information
was mapped. This mapping is equivalent to the simultaneous
presentation condition, i.e., the model is free to prioritize either
effort or reward information.

Two factors influence how the HER model selects map-
pings of information to hierarchical levels (Alexander &
Brown, 2015). The first factor concerns how effectively each
source of information reduces uncertainty regarding the out-
comes of behavior. When multiple sources of information are
presented simultaneously, information that better reduces un-
certainty regarding an outcome is preferentially represented at
the lower hierarchical level, reflecting its utility in determining
correct behavior. The second factor relates to the representa-
tion of information over time: stimuli presented at long delays
before a response tend to be mapped to higher hierarchical
levels, while temporally proximal stimuli that require an im-
mediate response are mapped to lower hierarchical levels.
Together, these factors suggest that contextual information,
used to modulate processing of subsequent cues with imme-
diate behavioral relevance, is prioritized, i.e., represented at
superior hierarchical levels. The forced mappings in our sim-
ulations therefore correspond to experimental conditions in
which reward information is prioritized (Reward 1st) and ef-
fort information is prioritized (Effort 1st). Our simultaneous
mapping simulations correspond to the simultaneous condi-
tion in which subjects are free to view both sources of infor-
mation ad libitum.

For both the performance and choice tasks, the model ex-
perienced two difficulty levels crossed with eight reward
levels, allowing us to examine how the model's behavior
changed with differences in reward and effort level. Eight
reward levels were used (rather than the two used in the ex-
periments) to ensure that model predictions were not due to a
particular reward value. The model was simulated for 15,000
trials in each task and condition, for a total of 6 different
simulation modes, and each mode was repeated 100 times.

To assess the importance of hierarchical organization on the
behavior of the model, we simulated a flat version of the HER
model with a single hierarchical layer. As with previous simu-
lations (Alexander & Brown, 2015), the flat model was able to
store multiple items in internal representation; thus, on each
trial, the internal representations of the single hierarchical layer
of the model included the current effort level and the current
reward level. In order to simulate salience effects that may
result from longer processing times for one stimulus compo-
nent in our order manipulation, the internal representation in
the model for the shorter-duration component was set to 0.5
(1.0 for the longer-duration component). In the simultaneous
condition, both internal representations were set to 1.0.

Computational model. Simulations

The behavior of the model on both the choice and perfor-
mance tasks differed between the forced mapping conditions
BReward 1st^ and BEffort 1st^ (Fig. 6b). It should be noted
that, besides the manual mapping of reward and effort infor-
mation to different hierarchical levels, all parameters and task
contingencies were identical for these conditions; differences
in behavior are therefore due entirely to the layer to which
information was mapped. In the decision task, the model
was generally more likely to accept effortful trials (i.e., select
the nondefault option) in the BReward 1st^ than in the BEffort
1st^ condition. Likewise, in the performance task, the model’s
performance was generally higher in the BReward 1st^ condi-
tion than the BEffort 1st^ condition. Generally, these findings
suggest that prioritizing reward may attenuate the subsequent-
ly computed (prospective or experienced) effort.

Of additional interest is the model's behavior under the Free
condition, in which effort and reward information were
mapped automatically by the model to hierarchical levels.
Here, we see that in the choice task, the model's behavior is
more similar to the BEffort 1st^ condition, while in the perfor-
mance task, the model's behavior is more similar to the
BReward 1st^ condition (Figs. 2c and 4c). Because the model
was free to select the mapping of effort and reward informa-
tion, the similarity in behavior implies that, for each task, the
Free model selected mappings consistent with the prioritizing
effort in the choice task, and prioritizing reward in the perfor-
mance task. Analysis of the representations maintained at each
level in the Free condition for each task confirmed this: the
model is more likely to represent effort information in the
higher level in the choice task and reward information in the
performance task. Previous work (Alexander & Brown,
2015,2018) suggested that the mapping of information to hi-
erarchical levels in the HER model is partly determined by
how effectively each source of information reduces response
or outcome uncertainty, with information more effective at
reducing uncertainty mapped to lower hierarchical layers. In
our Free simulations, reward information reduces uncertainty
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about choice more effectively than effort, while effort infor-
mation more effectively reduces uncertainty about perfor-
mance outcome.

In contrast to the above, simulations of the flat model
showed no differences between simulation conditions in either
the choice task, nor in the performance task. While observing
no differences in behavior of the flat model does not necessar-
ily confirm the importance of hierarchical structures in pro-
cessing multidimensional stimuli, it does appear to rule out a
simple salience account in explaining differences in behavior
due to order effects. Hierarchical organization is one means by
which order effects might be realized; alternately, order effects
might also be due to lateral interactions between representa-
tional units (Botvinick, 2008).

Finally, our model simulations provide a theoretical frame-
work for analyzing our empirical data. First, and most gener-
ally, our simulations suggest that the behavior of subjects un-
der one of our order manipulations (Reward 1st, Effort 1st)
may be more similar to behavior under the simultaneous con-
dition (Free mapping for the model) than under the alternate
order manipulation. In other words, this suggests that when
reward and effort information are presented simultaneously,
subjects may apply a preferred mapping of effort and reward
information (equivalent to either prioritizing effort, or priori-
tizing reward).

Second, andmore specifically, the model suggests the map-
ping of information to levels (Fig. 6a, BReward 1st^ & BEffort
1st^) may be task-dependent (Fig. 6c). Choice behavior in the
Reward 1st condition, for example, may be more similar to the
simultaneous condition (reward is prioritized by the model),
while performance behavior may be more similar for the
Effort 1st condition (effort is prioritized by the model).
Finally, and most specifically, our simulations suggest how
the specific tasks may be affected by the order manipulation:
performance accuracy on the calculation task should be al-
tered for the Effort 1st condition, while choice behavior should
be altered for the reward 1st condition.

Computational model. Interim discussion

Results of model simulation of experiment 1 (performance task)
were in line with subjects’ behavior: performance was altered
primarily in the Effort 1st condition (model: Fig. 6b, subjects:
Fig. 2). Prioritizing reward had similar effects as simultaneous
presentation (higher accuracy in the large reward condition),
while prioritizing effort differed substantially, consistent with
effects in the model derived from the forced-mapping of infor-
mation to hierarchical layers (Fig. 6b-c). Additionally, the map-
ping learned by the model under the Free condition on the
performance task corresponds to subject behavior in the simul-
taneous and Reward 1st conditions, consistent with the hypoth-
esis that task information is mapped to specific hierarchical
layers in a task-dependent fashion (Fig. 6c).

Results of model simulation of experiment 2 were also in
line with participants’ behavior. Choices were mainly altered
in the Reward 1st condition. Prioritizing effort led to similar
choice behavior as in the simultaneous condition. Prioritizing
reward resulted in increased effort acceptance.

Overall, the two qualitative predictions of the model, that
prioritization may influence the hierarchical mapping of infor-
mation and that prioritization of reward vs. difficulty may be
task-dependent, are supported by our findings. Furthermore,
the qualitative predictions describing the specific manner in
which prioritization influences choice and performance also
matched participants’ behavior.

General discussion

In this study, we investigated the hypothesis of a task-
dependent hierarchical mapping of reward and difficulty in-
formation. We manipulated prioritization of cost and benefit
information prior to task-performance and decision-making
(either prioritizing reward or prioritizing difficulty informa-
tion). We simulated the same tasks using the HER model,
which postulates serial processing of information.
Behavioral results confirmed the model predictions, showing
task-dependent hierarchical mapping. In a performance task,
reward information was prioritized, while in a decision-
making task, difficulty information was prioritized.
Furthermore, forced prioritization of costs reduced the effect
or reward on performance accuracy, while forced prioritiza-
tion of reward reduced the impact of rewards on choices.
These results support both general and specific predictions
of the HER model, suggesting that when multiple sources of
information are simultaneously available, prioritizing one or
the other source can dramatically affect behavior.

Previous evidence suggests that the order in which different
information sources are presented affects subsequent behavior
(Furnham & Boo, 2011; Kühberger, 1998), and the presence
of order effects is well-known in the judgment and decision-
making literature (Busemeyer, Wang, & Townsend, 2006;
Furnham & Boo, 2011; Jacowitz & Kahneman, 1995;
Kühberger et al., 1999). Despite the known influence of infor-
mation order on subsequent behavior, there has been relatively
little study of how order effects may influence motivationally
salient information and if such effects would be consistent
across different task-contexts, such as task-performance and
choice. This is especially relevant to the field of cognitive
neuroscience, in which extensive work has been conducted
to identify regions of the brain that encode decision variables
related to reward, cost, and value (Behrens, Woolrich, Walton,
& Rushworth, 2007; Botvinick et al., 2009; Kolling, Behrens,
Mars, & Rushworth, 2012; Kurniawan, Guitart-Masip,
Dayan, & Dolan, 2013; O’Doherty, 2014; Rangel & Hare,
2010; Rushworth & Behrens, 2008; Rushworth, Kolling,
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Sallet, & Mars, 2012; Shenhav et al., 2013; Vassena et al.,
2014; Verguts, Vassena, & Silvetti, 2015). Generally, studies
of this kind provide information related to decision variables
simultaneously and without controls on the subjective salience
assigned to each information source, nor the behavioral task
for which that information is to be used. One possibility raised
by the present study is that associations of neural regions with
a particular decision variable are confounded both by differ-
ences in the salience of various information sources, as well as
the behavior that is to be informed by that information. A
region identified as being related to reward representation,
for example, may only represent reward due to salience-
related processing differences, or due to the nature of the task
(e.g., choice vs. performance).

Is there a reason to believe such confounds may exist?
Generally, regions within PFC are identified as being critical
to integrating information related to value-based decision-mak-
ing, especially DLPFC and MPFC (Gläscher, Daw, Dayan, &
O’Doherty, 2010; Lee, Shimojo, & O’Doherty, 2014; Rangel,
Camerer, & Montague, 2008; Rushworth & Behrens, 2008;
Vassena, Holroyd, & Alexander, 2017). Recent computational
models of PFC postulate serial processing and hierarchical cod-
ing of such information (Badre, 2008; Badre & D’Esposito,
2007), where components of compound stimuli are coded at
different levels of this neural hierarchy (Alexander & Brown,
2015, 2018; Collins & Frank, 2012; Collins & Frank, 2016;
Koechlin, 2014). A consequent prediction of these models is
that the different features composing complex stimuli are
mapped on to different hierarchical levels, and the top-down
integration of information along the hierarchy drives behavioral
responses. However, it is frequently not specified how this
mapping is realized, and it is generally declared by fiat that
one dimension of a compound stimulus acts as a context vari-
able modulating responses to the other dimension (Badre,
Kayser, & D’Esposito, 2010). This assumption is clearly ob-
served in the neuroeconomics literature in which the level of
effort is frequently assumed tomodulate subjective responses to
reward (Botvinick et al., 2009; Botvinick & Rosen, 2009;
Kivetz, 2003). Moreover, it may be that the optimal variable-
to-level mapping varies depends on task requirements, and as-
sumptions about the mapping that may be valid in one task
context may be invalid in another, thus leading to inaccurate
predictions. However, these assumptions had never been tested
in the context of processing compound motivational informa-
tion. Influential frameworks such as the Expected Value of
Control theory (Shenhav et al., 2013) have proposed that cost
and benefit may be integrated in a compound value signal (to
determine the optimal level of control to be allocated) in so far
as engaging in the effortful task leads to a reward. However, this
account does not consider the possibility that prioritizing cost
over benefit (over vice-versa) may alter behavior.

In experiment 1, our results demonstrate a clear improve-
ment in accuracy when the high-reward cue is immediately

available in the reward-first and simultaneous conditions,
while presenting difficulty information first abolishes this re-
ward effect. In experiment 2, prioritizing reward attenuates the
difference in choosing to engage in hard vs easy trials. The
comparison between the two experiments demonstrates that
order of motivational information differentially affects differ-
ent cognitive processes, namely task performance and deci-
sion-making. Separate instantiations of the HER model were
used tomodel behavior for decision-making and performance,
and it was observed that, for each task, the model learned a
different mapping of effort and reward information to internal
hierarchical levels. While we assumed that our order manipu-
lations in experiment 1 and 2 promoted a forced mapping of
effort and reward information (as in model simulation condi-
tions Reward 1st and Effort 1st), our results remain ambiguous
regarding how information is processed during the simulta-
neous condition. In the simultaneous condition, subjects were
allowed an extended period of time (2,500ms) to process both
sources of information. This extended processing time might
allow subjects to execute multiple processing strategies rele-
vant to imminent tasks, i.e., subjects may be able to organize
information into separate hierarchical structures related to
choice behavior and task performance. While the HER model
in its present form maintains hierarchically structured infor-
mation about only a single task at any point, this does not rule
out that multiple task-related hierarchical structures might co-
exist, either within the same region or in different hemispheres
(Koechlin, Basso, Pietrini, Panzer, & Grafman, 1999), and
that the mapping of information to structure is maintained
independently for each active task hierarchy. In this case,
one might expect that curtailing the time allowed for subjects
to process information in the simultaneous condition could
impose additional constraints on hierarchical mapping and
potentially force subjects to prioritize processing strategies
related to either choice or performance behavior. As a result,
if subjects are only allowed time sufficient to execute one
processing strategy during simultaneous presentation, the dif-
ferences we observe in experiment 2 between the decision and
performance phases may attenuate or disappear.

More generally, our results suggest that, during task perfor-
mance, increased effort allocation may be promoted by pre-
senting reward information first (i.e., participants performing
better on high reward/hard trials). During decisions, however,
optimal allocation seems to occur when effort information is
presented first, as participants accept more often high reward/
hard trials. This can be considered an adaptive behavior as
task difficulty never exceeds participants’ capacities (i.e., the
task is doable, with high overall accuracy) and such a choice
grants a higher reward. In other words, presenting reward first
seems beneficial for performance, while generally increasing
acceptance during choice (irrespective of difficulty), which in
some contexts may be considered an inefficient strategy. For
example, in a limited resources context (i.e., patients with
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reduced attentional capacity or motivation), allocating effort
only to circumstances granting more benefit might be espe-
cially relevant.

The future implications of these results are manifold. First,
Experiment 1 suggests that changing the configuration in
which information is presented—by prioritizing either benefit
or cost information—can affect (and potentially improve) per-
formance, and especially effort allocation. This might be par-
ticularly relevant for educational purposes in school settings.
Moreover, this could be helpful to restructure task instructions
for patients with disorders of motivation, such as depression.
As a caveat, one should note that in the current experiments
we only measured performance and choice, and we did not
look at subjective effort investment, as typically evaluated
through neurophysiological measures (Gendolla, 2012;
Gendolla & Krüsken, 2001; Silvestrini & Gendolla, 2009).
Future research could bring our results one step further, inves-
tigating for example effects of order of presentation on effort
investment via measuring cardiovascular response. Moreover,
using eye-tracking one could further specify strategic atten-
tional allocation during cue presentation and task execution
(both decision and performance), Second, we specifically de-
signed and piloted this task to ensure high performance accu-
racy across easy and difficult conditions, under the assump-
tion that participants know that they will successfully com-
plete a trial if they decide to allocate effort and engage in it.
However, it is possible that uncertainty about the outcome
linked to a more difficult trial partially contributed to the mea-
sured effect, potentially leading to error avoidance effects.
Error prediction has indeed been proposed as a mechanism
affecting cognitive control exertion (Braver, 2012; Brown &
Braver, 2007; Brown & Braver, 2005). To clarify this poten-
tially contributing factor, future studies could exploit manipu-
lations where accuracy is matched between easy and hard
trials, specifically aiming at disentangling effects of prioritiz-
ing effort as compared to prioritizing outcome uncertainty on
decisions. In any case, this factor could not account for the
differences in choices as a function of prioritization.

Third, our results support the HER model as a plausible
candidate mechanism underlying processing of task-relevant
information across motivation and cognitive control contexts.
Future work should directly test neural predictions of the HER
model (for lateral and medial PFC activity), besides the be-
havioral predictions investigated here. Furthermore, neuro-
physiological data in animals suggests that dissociable subcor-
tical circuits are implicated in cost-benefit decisions (the ven-
tral tegmental area) and energization of effortful behavior
(substantia nigra, Varazzani, San-Galli, Gilardeau, & Bouret,
2015). These task conditions are conceptually comparable
with our choice and performance manipulation. Future studies
should investigate in humans the possibility that differential
effects of prioritization on performance versus choice may be
mediated by different neural cortico-subcortical circuits, as

recent computational work suggests (Silvetti, Vassena,
Abrahamse, & Verguts, 2018).

Fourth, Experiment 2 indicates that prioritizing benefit
over cost information influences preference and decision.
Recent research showed altered effort-based decision-making
in patients with depression (Silvia et al., 2016; Treadway,
Bossaller, Shelton, & Zald, 2012; Yang et al., 2014), schizo-
phrenia (Barch, Treadway, & Schoen, 2014; Culbreth,
Westbrook, & Barch, 2016; McCarthy, Treadway, Bennett,
& Blanchard, 2016), and bipolar disorder (Hershenberg
et al., 2016). Generally, these populations tend either to avoid
more effortful tasks or to show inefficient effort allocation.
Training based on prioritization might reveal new strategies
to improve efficiency in effort allocation.

Acknowledgments E.V. was supported by the Marie Sklodowska-Curie
action, with a standard IF-EF fellowship, within the H2020 framework
(H2020-MSCA-IF2015, Grant number 705630). W.H.A. was supported
by FWO-Flanders Odysseus II Award #G.OC44.13N.

Authors contributions E.V., J.D., and W.H.A. formulated the research
question, designed the experiments, discussed the results, and wrote the
manuscript. E.V. and W.H.A. analyzed the data. W.H.A conducted and
analyzed model simulations. E.V. collected the data.

Compliance with ethical standards

Competing financial interests The authors have no conflicting interests
to declare.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References

Aarts, E., & Roelofs, A. (2010). Attentional control in anterior cingulate
cortex based on probabilistic cueing. Journal of Cognitive
Neuroscience, 23(3), 716–727. https://doi.org/10.1162/jocn.2010.
21435

Alexander, W. H., & Brown, J. W. (2015). Hierarchical error representa-
tion: A computational model of anterior cingulate and dorsolateral
prefrontal cortex. Neural Computation, 27(11), 2354–2410. https://
doi.org/10.1162/NECO_a_00779

Alexander, W. H., & Brown, J. W. (2018). Frontal cortex function as
derived from hierarchical predictive coding. Scientific Reports,
8(1), 3843. https://doi.org/10.1038/s41598-018-21407-9

Alexander, W. H., Vassena, E., Deraeve, J., & Langford, Z. D. (2017).
Integrative modeling of pFC. Journal of Cognitive Neuroscience, 1–
10. https://doi.org/10.1162/jocn_a_01138

Apps, M. A. J., Grima, L. L., Manohar, S., & Husain, M. (2015). The role
of cognitive effort in subjective reward devaluation and risky deci-
sion-making. Scientific Reports, 5, 16880. https://doi.org/10.1038/
srep16880

Apps, M. A. J., & Ramnani, N. (2014). The anterior cingulate gyrus
signals the net value of others’ rewards. The Journal of
Neuroscience: The Official Journal of the Society for
Neuroscience, 34(18), 6190–6200. https://doi.org/10.1523/
JNEUROSCI.2701-13.2014

Cogn Affect Behav Neurosci (2019) 19:619–636 633

https://doi.org/10.1162/jocn.2010.21435
https://doi.org/10.1162/jocn.2010.21435
https://doi.org/10.1162/NECO_a_00779
https://doi.org/10.1162/NECO_a_00779
https://doi.org/10.1038/s41598-018-21407-9
https://doi.org/10.1162/jocn_a_01138
https://doi.org/10.1038/srep16880
https://doi.org/10.1038/srep16880
https://doi.org/10.1523/JNEUROSCI.2701-13.2014
https://doi.org/10.1523/JNEUROSCI.2701-13.2014


Badre, D. (2008). Cognitive control, hierarchy, and the rostro–caudal
organization of the frontal lobes. Trends in Cognitive Sciences,
12(5), 193–200.

Badre, D., & D’Esposito, M. (2007). Functional magnetic resonance
imaging evidence for a hierarchical organization of the prefrontal
cortex. Journal of Cognitive Neuroscience, 19(12), 2082–2099.
https://doi.org/10.1162/jocn.2007.19.12.2082

Badre, D., Kayser, A. S., & D’Esposito, M. (2010). Frontal cortex and the
discovery of abstract action rules. Neuron, 66(2), 315–326. https://
doi.org/10.1016/j.neuron.2010.03.025

Barch, D. M., Treadway, M. T., & Schoen, N. (2014). Effort, anhedonia,
and function in schizophrenia: Reduced effort allocation predicts
amotivation and functional impairment. Journal of Abnormal
Psychology, 123(2), 387–397. https://doi.org/10.1037/a0036299

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear
mixed-effects models using lme4. ArXiv Preprint ArXiv:1406.5823.
Retrieved from http://arxiv.org/abs/1406.5823

Behrens, T. E. J., Woolrich, M.W., Walton, M. E., & Rushworth, M. F. S.
(2007). Learning the value of information in an uncertain world.
Nature Neuroscience, 10(9), 1214–1221. https://doi.org/10.1038/
nn1954

Boehler, C. N., Hopf, J.-M., Stoppel, C. M., & Krebs, R. M. (2012).
Motivating inhibition – Reward prospect speeds up response can-
cellation. Cognition, 125(3), 498–503. https://doi.org/10.1016/j.
cognition.2012.07.018

Boehler, C. N., Schevernels, H., Hopf, J.-M., Stoppel, C. M., & Krebs, R.
M. (2014). Reward prospect rapidly speeds up response inhibition
via reactive control. Cognitive, Affective, & Behavioral
Neuroscience, 14(2), 593–609. https://doi.org/10.3758/s13415-
014-0251-5

Botvinick, M. M., Huffstetler, S., & McGuire, J. T. (2009). Effort
discounting in human nucleus accumbens. Cognitive, Affective, &
Behavioral Neuroscience, 9(1), 16–27. https://doi.org/10.3758/
CABN.9.1.16

Botvinick, Matthew M. (2008). Hierarchical models of behavior and
prefrontal function. Trends in Cognitive Sciences, 12(5), 201–208.
https://doi.org/10.1016/j.tics.2008.02.009

Botvinick, MatthewM., & Rosen, Z. B. (2009). Anticipation of cognitive
demand during decision-making. Psychological Research, 73(6),
835–842. https://doi.org/10.1007/s00426-008-0197-8

Braem, S. (2017). Conditioning task switching behavior. Cognition, 166,
272–276. https://doi.org/10.1016/j.cognition.2017.05.037

Braver, T. S. (2012). The variable nature of cognitive control: A dual
mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–
113. https://doi.org/10.1016/j.tics.2011.12.010

Brown, J. W., & Braver, T. S. (2007). Risk prediction and aversion by
anterior cingulate cortex. Cognitive, Affective, & Behavioral
Neuroscience, 7(4), 266–277. https://doi.org/10.3758/CABN.7.4.
266

Brown, Joshua W., & Braver, T. S. (2005). Learned predictions of error
likelihood in the anterior cingulate cortex. Science (New York, N.Y.),
307(5712), 1118–1121. https://doi.org/10.1126/science.1105783

Bugg, J. M., & Smallwood, A. (2016). The next trial will be conflicting!
Effects of explicit congruency pre-cues on cognitive control.
Psychological Research, 80(1), 16–33. https://doi.org/10.1007/
s00426-014-0638-5

Busemeyer, J. R., Wang, Z., & Townsend, J. T. (2006). Quantum dynam-
ics of human decision-making. Journal of Mathematical
Psychology, 50(3), 220–241. https://doi.org/10.1016/j.jmp.2006.
01.003

Chiew, K. S., & Braver, T. S. (2016). Reward favors the prepared:
Incentive and task-informative cues interact to enhance attentional
control. Journal of Experimental Psychology: Human Perception
and Performance, 42(1), 52–66. https://doi.org/10.1037/
xhp0000129

Chong, T. T.-J., Apps,M., Giehl, K., Sillence, A., Grima, L. L., &Husain,
M. (2017). Neurocomputational mechanisms underlying subjective
valuation of effort costs. PLoS Biology, 15(2), e1002598. https://doi.
org/10.1371/journal.pbio.1002598

Collins, Anne G. E., & Frank, M. J. (2012). How much of reinforcement
learning is working memory, not reinforcement learning? A behav-
ioral, computational, and neurogenetic analysis. The European
Journal of Neuroscience, 35(7), 1024–1035. https://doi.org/10.
1111/j.1460-9568.2011.07980.x

Collins, Anne Gabrielle Eva, & Frank, M. J. (2016). Neural signature of
hierarchically structured expectations predicts clustering and trans-
fer of rule sets in reinforcement learning. Cognition, 152, 160–169.
https://doi.org/10.1016/j.cognition.2016.04.002

Croxson, P. L., Walton, M. E., O’Reilly, J. X., Behrens, T. E., &
Rushworth, M. F. (2009). Effort-based cost-benefit valuation and
the human brain. Journal of Neuroscience, 29(14), 4531–4541.
https://doi.org/10.1523/JNEUROSCI.4515-08.2009

Culbreth, A.,Westbrook, A., & Barch, D. (2016). Negative symptoms are
associated with an increased subjective cost of cognitive effort.
Journal of Abnormal Psychology, 125(4), 528–536. https://doi.org/
10.1037/abn0000153

De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006).
Frames, biases, and rational decision-making in the human brain.
Science, 313(5787), 684–687.

Furnham, A., & Boo, H. C. (2011). A literature review of the anchoring
effect. The Journal of Socio-Economics, 40(1), 35–42.

Gendolla, G. H., & Krüsken, J. (2001). The joint impact of mood state
and task difficulty on cardiovascular and electrodermal reactivity in
active coping. Psychophysiology, 38(3), 548–556.

Gendolla, G. H. E. (2012). Implicit affect primes effort: A theory and
research on cardiovascular response. International Journal of
Psychophysiology: Official Journal of the International
Organization of Psychophysiology, 86(2), 123–135. https://doi.org/
10.1016/j.ijpsycho.2012.05.003

Gheza, D., De Raedt, R., Baeken, C., & Pourtois, G. (2018). Integration
of reward with cost anticipation during performance monitoring
revealed by ERPs and EEG spectral perturbations. NeuroImage,
173, 153–164. https://doi.org/10.1016/j.neuroimage.2018.02.049

Gläscher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States versus
rewards: dissociable neural prediction error signals underlying
model-based and model-free reinforcement learning. Neuron,
66(4), 585–595. https://doi.org/10.1016/j.neuron.2010.04.016

Gonzalez, C., Dana, J., Koshino, H., & Just, M. (2005). The framing
effect and risky decisions: Examining cognitive functions with
fMRI. Journal of Economic Psychology, 26(1), 1–20. https://doi.
org/10.1016/j.joep.2004.08.004

Hershenberg, R., Satterthwaite, T. D., Daldal, A., Katchmar, N., Moore,
T. M., Kable, J. W., & Wolf, D. H. (2016). Diminished effort on a
progressive ratio task in both unipolar and bipolar depression.
Journal of Affective Disorders, 196, 97–100. https://doi.org/10.
1016/j.jad.2016.02.003

Jacowitz, K. E., & Kahneman, D. (1995). Measures of anchoring in
estimation tasks. Personality and Social Psychology Bulletin, 21,
1161–1166.

Janssens, C., De Loof, E., Pourtois, G., & Verguts, T. (2016). The time
course of cognitive control implementation. Psychonomic Bulletin
& Review https://doi.org/10.3758/s13423-015-0992-3

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of
decision under risk. Econometrica: Journal of the Econometric
Society, 263–291.

Kirby, K. N., &Maraković, N. N. (1996). Delay-discounting probabilistic
rewards: Rates decrease as amounts increase. Psychonomic Bulletin
& Review, 3(1), 100–104.

Kivetz, R. (2003). The effects of effort and intrinsic motivation on risky
choice. Marketing Science, 22(4), 477–502.

634 Cogn Affect Behav Neurosci (2019) 19:619–636

https://doi.org/10.1162/jocn.2007.19.12.2082
https://doi.org/10.1016/j.neuron.2010.03.025
https://doi.org/10.1016/j.neuron.2010.03.025
https://doi.org/10.1037/a0036299
http://arxiv.org/abs/1406.5823
https://doi.org/10.1038/nn1954
https://doi.org/10.1038/nn1954
https://doi.org/10.1016/j.cognition.2012.07.018
https://doi.org/10.1016/j.cognition.2012.07.018
https://doi.org/10.3758/s13415-014-0251-5
https://doi.org/10.3758/s13415-014-0251-5
https://doi.org/10.3758/CABN.9.1.16
https://doi.org/10.3758/CABN.9.1.16
https://doi.org/10.1016/j.tics.2008.02.009
https://doi.org/10.1007/s00426-008-0197-8
https://doi.org/10.1016/j.cognition.2017.05.037
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.3758/CABN.7.4.266
https://doi.org/10.3758/CABN.7.4.266
https://doi.org/10.1126/science.1105783
https://doi.org/10.1007/s00426-014-0638-5
https://doi.org/10.1007/s00426-014-0638-5
https://doi.org/10.1016/j.jmp.2006.01.003
https://doi.org/10.1016/j.jmp.2006.01.003
https://doi.org/10.1037/xhp0000129
https://doi.org/10.1037/xhp0000129
https://doi.org/10.1371/journal.pbio.1002598
https://doi.org/10.1371/journal.pbio.1002598
https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.1111/j.1460-9568.2011.07980.x
https://doi.org/10.1016/j.cognition.2016.04.002
https://doi.org/10.1523/JNEUROSCI.4515-08.2009
https://doi.org/10.1037/abn0000153
https://doi.org/10.1037/abn0000153
https://doi.org/10.1016/j.ijpsycho.2012.05.003
https://doi.org/10.1016/j.ijpsycho.2012.05.003
https://doi.org/10.1016/j.neuroimage.2018.02.049
https://doi.org/10.1016/j.neuron.2010.04.016
https://doi.org/10.1016/j.joep.2004.08.004
https://doi.org/10.1016/j.joep.2004.08.004
https://doi.org/10.1016/j.jad.2016.02.003
https://doi.org/10.1016/j.jad.2016.02.003
https://doi.org/10.3758/s13423-015-0992-3


Koechlin, E. (2014). An evolutionary computational theory of prefrontal
executive function in decision-making. Philosophical Transactions
of the Royal Society, B: Biological Sciences, 369(1655). https://doi.
org/10.1098/rstb.2013.0474

Koechlin, E., Basso, G., Pietrini, P., Panzer, S., &Grafman, J. (1999). The
role of the anterior prefrontal cortex in human cognition. Nature,
399(6732), 148–151. https://doi.org/10.1038/20178

Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cog-
nitive control in the human prefrontal cortex. Science, 302(5648),
1181–1185. https://doi.org/10.1126/science.1088545

Kolling, N., Behrens, T. E. J., Mars, R. B., & Rushworth, M. F. S. (2012).
Neural mechanisms of foraging. Science (New York, N.Y.),
336(6077), 95–98. https://doi.org/10.1126/science.1216930

Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010).
Decision making and the avoidance of cognitive demand. Journal
of Experimental Psychology. General, 139(4), 665–682. https://doi.
org/10.1037/a0020198

Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff,
M. G. (2012). The involvement of the dopaminergic midbrain and
cortico-striatal-thalamic circuits in the Integration of reward pros-
pect and attentional task demands. Cerebral Cortex (New York, NY),
22(3), 607–615. https://doi.org/10.1093/cercor/bhr134

Krebs, R.M., Boehler, C. N., &Woldorff, M. G. (2010). The influence of
reward associations on conflict processing in the Stroop task.
Cognition, 117(3), 341–347. https://doi.org/10.1016/j.cognition.
2010.08.018

Kühberger, A. (1998). The influence of framing on risky decisions: A
meta-analysis. Organizational Behavior and Human Decision
Processes, 75(1), 23–55. https://doi.org/10.1006/obhd.1998.2781

Kühberger, A., Schulte-Mecklenbeck, M., & Perner, J. (1999). The ef-
fects of framing, reflection, probability, and payoff on risk prefer-
ence in choice tasks.Organizational Behavior and Human Decision
Processes, 78(3), 204–231. https://doi.org/10.1006/obhd.1999.2830

Kurniawan, I. T., Guitart-Masip, M., Dayan, P., & Dolan, R. J. (2013).
Effort and valuation in the brain: The effects of anticipation and
execution. Journal of Neuroscience, 33(14), 6160–6169. https://
doi.org/10.1523/JNEUROSCI.4777-12.2013

Lee, S. W., Shimojo, S., & O’Doherty, J. P. (2014). Neural computations
underlying arbitration between model-based and model-free learn-
ing.Neuron, 81(3), 687–699. https://doi.org/10.1016/j.neuron.2013.
11.028

Locke, H. S., & Braver, T. S. (2008). Motivational influences on cogni-
tive control: Behavior, brain activation, and individual differences.
Cognitive, Affective, & Behavioral Neuroscience, 8(1), 99–112.
https://doi.org/10.3758/CABN.8.1.99

Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual
cortex. Trends in Neurosciences, 29(6), 317–322. https://doi.org/10.
1016/j.tins.2006.04.001

McCarthy, J. M., Treadway, M. T., Bennett, M. E., & Blanchard, J. J.
(2016). Inefficient effort allocation and negative symptoms in indi-
viduals with schizophrenia. Schizophrenia Research, 170(2–3),
278–284. https://doi.org/10.1016/j.schres.2015.12.017

McGuire, J. T., & Botvinick, M. M. (2010). Prefrontal cortex, cognitive
control, and the registration of decision costs. Proceedings of the
National Academy of Sciences of the United States of America,
107(17), 7922–7926. https://doi.org/10.1073/pnas.0910662107

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for
obtaining R2 from generalized linear mixed-effects models.
Methods in Ecology and Evolution, 4(2), 133–142. https://doi.org/
10.1111/j.2041-210x.2012.00261.x

O’Doherty, J. P. (2014). The problem with value. Neuroscience and
Biobehavioral Reviews, 43, 259–268. https://doi.org/10.1016/j.
neubiorev.2014.03.027

Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for
studying the neurobiology of value-based decision making. Nature

Reviews. Neuroscience, 9(7), 545–556. https://doi.org/10.1038/
nrn2357

Rangel, A., & Hare, T. (2010). Neural computations associated with goal-
directed choice. Current Opinion in Neurobiology, 20(2), 262–270.
https://doi.org/10.1016/j.conb.2010.03.001

Reynolds, B. (2006). A review of delay-discounting research with
humans: relations to drug use and gambling. Behavioural
Pharmacology, 17(8), 651–667.

Robles, E., Vargas, P. A., & Bejarano, R. (2009). Within-subject differ-
ences in degree of delay discounting as a function of order of pre-
sentation of hypothetical cash rewards. Behavioural Processes,
81(2), 260–263. https://doi.org/10.1016/j.beproc.2009.02.018

Rosell-Negre, P., Bustamante, J. C., Fuentes-Claramonte, P., Costumero,
V., Benabarre, S., & Barros-Loscertales, A. (2014). Reward antici-
pation enhances brain activation during response inhibition.
Cognitive, Affective, & Behavioral Neuroscience, 14(2), 621–634.
https://doi.org/10.3758/s13415-014-0292-9

Rushworth, M. F. S., & Behrens, T. E. J. (2008). Choice, uncertainty and
value in prefrontal and cingulate cortex.Nature Neuroscience, 11(4),
389–397. https://doi.org/10.1038/nn2066

Rushworth, Matthew F. S., Kolling, N., Sallet, J., & Mars, R. B. (2012).
Valuation and decision-making in frontal cortex: One or many serial
or parallel systems? Current Opinion in Neurobiology, 22(6), 946–
955. https://doi.org/10.1016/j.conb.2012.04.011

Schevernels, H., Krebs, R. M., Santens, P., Woldorff, M. G., & Boehler,
C. N. (2014). Task preparation processes related to reward predic-
tion precede those related to task-difficulty expectation.
NeuroImage, 84. https://doi.org/10.1016/j.neuroimage.2013.09.039

Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected
value of control: An integrative theory of Anterior Cingulate Cortex
function. Neuron, 79(2), 217–240. https://doi.org/10.1016/j.neuron.
2013.07.007

Silvestrini, N., & Gendolla, G. H. E. (2009). The joint effect of mood,
task valence, and task difficulty on effort-related cardiovascular re-
sponse and facial EMG. International Journal of Psychophysiology:
Official Journal of the International Organization of
Psychophysiology, 73(3), 226–234. https://doi.org/10.1016/j.
ijpsycho.2009.03.004

Silvetti, M., Vassena, E., Abrahamse, E., & Verguts, T. (2018). Dorsal
anterior cingulate-brainstem ensemble as a reinforcement meta-
learner. PLoS Computational Biology, 14(8), e1006370. https://doi.
org/10.1371/journal.pcbi.1006370

Silvia, P. J., Mironovová, Z., McHone, A. N., Sperry, S. H., Harper, K. L.,
Kwapil, T. R., & Eddington, K.M. (2016). Do depressive symptoms
Bblunt^ effort? An analysis of cardiac engagement and withdrawal
for an increasingly difficult task. Biological Psychology. https://doi.
org/10.1016/j.biopsycho.2016.04.068

Sohn, M.-H., Albert, M. V., Jung, K., Carter, C. S., & Anderson, J. R.
(2007). Anticipation of conflict monitoring in the anterior cingulate
cortex and the prefrontal cortex. Proceedings of the National
Academy of Sciences of the United States of America, 104(25),
10330–10334. https://doi.org/10.1073/pnas.0703225104

Strack, F., & Mussweiler, T. (1997). Explaining the enigmatic anchoring
effect: Mechanisms of selective accessibility. Journal of Personality
and Social Psychology, 73(3), 437.

Treadway, M. T., Bossaller, N. A., Shelton, R. C., & Zald, D. H. (2012).
Effort-based decision-making in major depressive disorder: A trans-
lational model of motivational anhedonia. Journal of Abnormal
Psychology, 121(3), 553–558. https://doi.org/10.1037/a0028813

van den Berg, B., Krebs, R.M., Lorist, M.M., &Woldorff, M. G. (2014).
Utilization of reward-prospect enhances preparatory attention and
reduces stimulus conflict. Cognitive, Affective, & Behavioral
Neuroscience, 14(2), 561–577. https://doi.org/10.3758/s13415-
014-0281-z

Varazzani, C., San-Galli, A., Gilardeau, S., & Bouret, S. (2015).
Noradrenaline and dopamine neurons in the reward/effort trade-

Cogn Affect Behav Neurosci (2019) 19:619–636 635

https://doi.org/10.1098/rstb.2013.0474
https://doi.org/10.1098/rstb.2013.0474
https://doi.org/10.1038/20178
https://doi.org/10.1126/science.1088545
https://doi.org/10.1126/science.1216930
https://doi.org/10.1037/a0020198
https://doi.org/10.1037/a0020198
https://doi.org/10.1093/cercor/bhr134
https://doi.org/10.1016/j.cognition.2010.08.018
https://doi.org/10.1016/j.cognition.2010.08.018
https://doi.org/10.1006/obhd.1998.2781
https://doi.org/10.1006/obhd.1999.2830
https://doi.org/10.1523/JNEUROSCI.4777-12.2013
https://doi.org/10.1523/JNEUROSCI.4777-12.2013
https://doi.org/10.1016/j.neuron.2013.11.028
https://doi.org/10.1016/j.neuron.2013.11.028
https://doi.org/10.3758/CABN.8.1.99
https://doi.org/10.1016/j.tins.2006.04.001
https://doi.org/10.1016/j.tins.2006.04.001
https://doi.org/10.1016/j.schres.2015.12.017
https://doi.org/10.1073/pnas.0910662107
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1016/j.neubiorev.2014.03.027
https://doi.org/10.1016/j.neubiorev.2014.03.027
https://doi.org/10.1038/nrn2357
https://doi.org/10.1038/nrn2357
https://doi.org/10.1016/j.conb.2010.03.001
https://doi.org/10.1016/j.beproc.2009.02.018
https://doi.org/10.3758/s13415-014-0292-9
https://doi.org/10.1038/nn2066
https://doi.org/10.1016/j.conb.2012.04.011
https://doi.org/10.1016/j.neuroimage.2013.09.039
https://doi.org/10.1016/j.neuron.2013.07.007
https://doi.org/10.1016/j.neuron.2013.07.007
https://doi.org/10.1016/j.ijpsycho.2009.03.004
https://doi.org/10.1016/j.ijpsycho.2009.03.004
https://doi.org/10.1371/journal.pcbi.1006370
https://doi.org/10.1371/journal.pcbi.1006370
https://doi.org/10.1016/j.biopsycho.2016.04.068
https://doi.org/10.1016/j.biopsycho.2016.04.068
https://doi.org/10.1073/pnas.0703225104
https://doi.org/10.1037/a0028813
https://doi.org/10.3758/s13415-014-0281-z
https://doi.org/10.3758/s13415-014-0281-z


off: A direct electrophysiological comparison in behaving monkeys.
The Journal of Neuroscience, 35(20), 7866–7877. https://doi.org/
10.1523/JNEUROSCI.0454-15.2015

Vassena, E., Cobbaert, S., Andres, M., Fias, W., & Verguts, T. (2015).
Unsigned value prediction-error modulates the motor system in ab-
sence of choice. NeuroImage, 122, 73–79. https://doi.org/10.1016/j.
neuroimage.2015.07.081

Vassena, E., Deraeve, J., & Alexander, W. H. (2017). Predicting motiva-
tion: Computational models of PFC can explain neural coding of
motivation and effort-based decision-making in health and disease.
Journal of Cognitive Neuroscience

Vassena, E., Gerrits, R., Demanet, J., Verguts, T., & Siugzdaite, R. (2018).
Anticipation of a mentally effortful task recruits dorsolateral pre-
frontal cortex: An fNIRS validation study. Neuropsychologia.
https://doi.org/10.1016/j.neuropsychologia.2018.04.033

Vassena, E., Holroyd, C. B., & Alexander, W. H. (2017). Computational
models of anterior cingulate cortex: At the crossroads between pre-
diction and effort. Frontiers in Neuroscience, 11. https://doi.org/10.
3389/fnins.2017.00316

Vassena, E., Silvetti, M., Boehler, C. N., Achten, E., Fias, W., & Verguts,
T. (2014). Overlapping neural systems represent cognitive effort and
reward anticipation. PLoS ONE, 9(3), e91008. https://doi.org/10.
1371/journal.pone.0091008

Verguts, T., Vassena, E., & Silvetti, M. (2015). Adaptive effort investment
in cognitive and physical tasks: A neurocomputational model.
Frontiers in Behavioral Neuroscience, 9. https://doi.org/10.3389/
fnbeh.2015.00057

Westbrook, A., & Braver, T. S. (2015). Cognitive effort: A neuroeconomic
approach. Cognitive, Affective, & Behavioral Neuroscience, 15(2),
395–415. https://doi.org/10.3758/s13415-015-0334-y

Xu, R. (2003). Measuring explained variation in linear mixed effects
models. Statistics in Medicine, 22(22), 3527–3541. https://doi.org/
10.1002/sim.1572

Yang, X.-H., Huang, J., Zhu, C.-Y., Wang, Y.-F., Cheung, E. F. C., Chan,
R. C. K., & Xie, G.-R. (2014). Motivational deficits in effort-based
decision making in individuals with subsyndromal depression, first-
episode and remitted depression patients. Psychiatry Research,
220(3), 874–882. https://doi.org/10.1016/j.psychres.2014.08.056

636 Cogn Affect Behav Neurosci (2019) 19:619–636

https://doi.org/10.1523/JNEUROSCI.0454-15.2015
https://doi.org/10.1523/JNEUROSCI.0454-15.2015
https://doi.org/10.1016/j.neuroimage.2015.07.081
https://doi.org/10.1016/j.neuroimage.2015.07.081
https://doi.org/10.1016/j.neuropsychologia.2018.04.033
https://doi.org/10.3389/fnins.2017.00316
https://doi.org/10.3389/fnins.2017.00316
https://doi.org/10.1371/journal.pone.0091008
https://doi.org/10.1371/journal.pone.0091008
https://doi.org/10.3389/fnbeh.2015.00057
https://doi.org/10.3389/fnbeh.2015.00057
https://doi.org/10.3758/s13415-015-0334-y
https://doi.org/10.1002/sim.1572
https://doi.org/10.1002/sim.1572
https://doi.org/10.1016/j.psychres.2014.08.056

	Task-specific prioritization of reward and effort information: Novel insights from behavior and computational modeling
	Abstract
	Introduction
	Experiment 1
	Materials and methods
	Experiment 1. Participants
	Experiment 1. Procedure
	Experiment 1. Analysis
	Experiment 1. Results
	Experiment 1. Interim discussion


	Experiment 2
	Materials and Methods
	Experiment 2. Participants
	Experiment 2. Procedure
	Experiment 2. Analysis
	Experiment 2. Results
	Experiment 2. Interim discussion

	Computational model
	Computation model. Methods
	Computational model. Simulations
	Computational model. Interim discussion


	General discussion
	References


