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Abstract In this study, we investigated the interplay of habit-
ual (model-free) and goal-directed (model-based) decision
processes by using a two-stage Markov decision task in com-
bination with event-related potentials (ERPs) and computa-
tional modeling. To manipulate the demands on model-
based decision making, we applied two experimental condi-
tions with different probabilities of transitioning from the first
to the second stage of the task. As we expected, when the stage
transitions were more predictable, participants showed greater
model-based (planning) behavior. Consistent with this result,
we found that stimulus-evoked parietal (P300) activity at the
second stage of the task increased with the predictability of the
state transitions. However, the parietal activity also reflected
model-free information about the expected values of the stim-
uli, indicating that at this stage of the task both types of infor-
mation are integrated to guide decision making. Outcome-
related ERP components only reflected reward-related pro-
cesses: Specifically, a medial prefrontal ERP component (the
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feedback-related negativity) was sensitive to negative out-
comes, whereas a component that is elicited by reward (the
feedback-related positivity) increased as a function of positive
prediction errors. Taken together, our data indicate that
stimulus-locked parietal activity reflects the integration of
model-based and model-free information during decision
making, whereas feedback-related medial prefrontal signals
primarily reflect reward-related decision processes.

Keywords Decision making - Model-based - Model-free -
EEG - Reinforcement learning

Investment decisions (such as buying stocks) can be driven by
different types of information: In many cases, past experience
regarding the performance (i.e., the value) of a company may
serve as a good indicator of its future success. However, con-
sidering other information about the economic environment in
which the company is operating can also be helpful in guiding
decision making (Hodgkinson, Brown, Maule, Glaister, &
Pearman, 1999; Pezzulo, Rigoli, & Friston, 2015). In analogy
to this economic example, most current psychological theories
of value-based decision making propose that two qualitatively
distinct reinforcement-learning (RL) systems are involved in
regulating choice behavior (Balleine & O’Doherty, 2010;
Daw, Niv, & Dayan, 2005). The habitual or model-free RL
system learns to choose actions on the basis of their rewarding
or punishing consequences. Although computationally swift,
model-free learning is slow in adapting to changes in contingen-
cies, which is disadvantageous in dynamically changing envi-
ronments (Dayan & Niv, 2008; Doll, Simon, & Daw, 2012).
The goal-directed or model-based RL system uses experience to
learn an internal model or cognitive map of the environment
(Tolman, 1948). As a consequence, model-based decision
making allows greater behavioral flexibility but is also more
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costly in terms of cognitive resources (Dayan & Niv, 2008; Doll
etal., 2012).

Recent studies that have investigated the neural mecha-
nisms underlying model-free and model-based decision mak-
ing have revealed inconclusive results. The findings from
fMRI studies show no specific neural correlate of model-
based processes, but instead point toward overlapping neural
activity for both strategies in the ventral striatum (Daw,
Gershman, Seymour, Dayan, & Dolan, 2011; Deserno et al.
2015). In contrast, the results from a study using transcranial
magnetic stimulation showed that the disruption of prefrontal
cortex (PFC) function results in a specific deficit in model-
based behavior, pointing to the important role of the PFC in
strategic decision making (Smittenaar, FitzGerald, Romei,
Wright, & Dolan, 2013). One explanation for the ambiguity
in the current results might be that the temporal resolution of
fMRI is not sufficient to uncover separable neural mecha-
nisms underlying model-based and model-free decision
making.

In this study, we sought to shed light on this issue by taking
advantage of the high temporal resolution of electroencepha-
lography (EEG) in combination with a two-stage Markov de-
cision task (Daw et al., 2011) and computational (RL) model-
ing. On the basis of the previous literature, we focused on
three components of the event-related potential (ERP) that
have been associated with decision processes. To study
model-based decision processes, we looked into the
stimulus-locked P300 component. This component is a
parietally oriented positivity that occurs around 300-600 ms
after stimulus onset. The P300 is typically observed in exper-
imental situations in which an internal world model has to be
updated on the basis of task-relevant information (Donchin &
Coles, 1988; Nieuwenhuis, Aston-Jones, & Cohen, 2005).
Thus, the P300 might reflect the updating of model-based
representations (Cavanagh, 2015; Glascher, Daw, Dayan, &
O’Doherty, 2010). To investigate outcome-related decision
processes, we focused on the feedback-related negativity
(FRN) and the feedback-related positivity (FRP). Both of
these components have been linked to reward processing.
The FRN is elicited by negative outcomes and occurs between
200 and 300 ms after feedback onset (Miltner, Braun, &
Coles, 1997). The results of previous studies suggest that the
FRN is sensitive to negative prediction errors during RL
(Holroyd & Coles, 2002; Nieuwenhuis et al., 2002; Walsh &
Anderson, 2012). However, more recent work has indicated
that the FRN may signal surprise (unsigned prediction errors;
Cavanagh, Figueroa, Cohen, & Frank, 2012; Talmi, Atkinson,
& El-Deredy, 2013). The FRP is a positive-going deflection in
the same time window (200-300 ms) that seems to reflect
learning and is sensitive to positive reward prediction errors
(Arbel, Goforth, & Donchin, 2013; M. X.Cohen, Elger, &
Ranganath, 2007; Eppinger, Kray, Mock, & Mecklinger,
2008; Eppinger, Mock, & Kray, 2009).

To examine the neural dynamics of the interplay of model-
free and model-based decision mechanisms, we used a two-
stage Markov decision task in combination with ERPs and
computational modeling. To manipulate the demands on
model-based decision making, we applied two experimental
conditions with different probabilities of transitioning from
the first to the second stage of the task. In the 6040 condition,
the transition probabilities between task stages were more dif-
ficult to tell apart (60% common, 40% rare transitions), and
participants should be less able to predict the upcoming state.
In the 80-20 condition, the transition probabilities were more
differentiated, which should make it easier for individuals to
anticipate the state that they were transitioning to. Based on
the idea that the P300 component reflects the updating of
model-based state predictions (Donchin, 1981; Donchin &
Coles, 1988; Nieuwenhuis et al., 2005), we predicted that
the component should reflect the transition probability struc-
ture. That is, the P300 at the second stage should be more
differentiated for the 8020 than for the 60—40 condition. In
contrast, the prediction error information during outcome pro-
cessing should be reflected in the feedback-related ERP com-
ponents. In line with previous findings, we expected the FRN
amplitude to increase with the magnitude of negative reward
prediction errors, whereas we predicted that the FRP would
reflect positive prediction errors (M. X.Cohen et al., 2007;
Eppinger et al., 2008; Holroyd & Coles, 2002; Holroyd,
Nieuwenhuis, Yeung, & Cohen, 2003; Nieuwenhuis
et al., 2002).

Method
Participants

Twenty-one healthy young adults (mean age = 24.1, SD =
3.58; 11 male, 10 female) participated in the study. All partic-
ipants gave informed written consent prior to participation.
The ethics committee of the Max Planck Institute for Human
Development approved the study. Participants received a min-
imum payment of €21. An additional amount (bonus) of up to
€7 was paid, depending on the amount of reward that partic-
ipants earned in the task.

Stimuli

We generated 24 colored figures (“GoGos”) using free soft-
ware (available online on the www.gogos-crazybones.com
website) as the stimuli. For presentation purposes, the
stimuli were further processed in Photoshop. Stimulus
ratings, performed in pilot studies, had revealed no
significant differences in dominance, valence, complexity,
and recognizability. Each learning block involved a new set
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of six stimuli, to avoid carry over effects. All stimuli were
randomly assigned to task conditions for each participant.

Task

Participants performed a modified version of the two-stage
Markov decision task developed by Daw and colleagues
(2011; see also Eppinger, Walter, Heekeren, & Li, 2013, for
a detailed description). The task involves two decision stages
(see Fig. 1). At the second stage of the task, participants have
to learn which of four stimuli is associated with the highest
reward probability. The reward probabilities fluctuate over
time (see the lower part of Fig. 1a). Thus, participants have
to constantly update the expected reward values of these stim-
uli to perform optimally. To get to the second stage of the task,
participants have to choose one of two options at the first stage
(one of the figures with a yellow background color in the
online version of Fig. 1a). In the illustrative example in
Fig. 1a, the left option at the first stage is associated with a
higher probability of transitioning (60%/80%) to the lower left
options at the second stage (blue background color), and a
lower probability (40%/20%) of transitioning to the lower
right options at the second stage (brown background color).
The reverse is true for the right stimulus at the first stage.
Each experimental session consisted of four blocks, which
were separated by breaks. One block consisted of 116 trials of
the two-stage Markov decision task. Each transition probabil-
ity condition was completed twice. The conditions alternated
within participants and were counterbalanced across partici-
pants. Before each block, participants were fully informed

about the transition probability conditions and received a cue
regarding the actual transition probabilities.

To support understanding of the task, we applied a cover
story. The cover story concerned a businessman who had to
decide between two airline carriers (represented by the figures
with yellow background colors in online Fig. 1a), each of
which would bring him to one of two islands. The airlines
were somewhat unreliable with respect to their destinations
(80/20 and/60/40 transition structures). At each of the islands,
the businessman could trade with one of two populations of
inhabitants (represented online by the figures on blue and
brown background colors). The productivities (reward proba-
bilities) of the populations changed across time. The task of
the businessman was to make as much money as possible by
tracking information about the reward probabilities of the op-
tions at the second stage and the transition structure at the first
stage. Each of the four conditions involved a new set of
stimuli.

Trial procedure

The trial procedure (see Fig. 1b) started with a fixation period
(500 ms). After fixation, the first-stage choice options were
displayed randomly on either the left or the right side of the
screen. Participants had to indicate their choice within 2 s of
stimulus presentation by using the “f” (left) or the “j” (right)
key on a standard computer keyboard. If no response occurred
within 2 s, the trial was aborted. The first-stage stimuli were
followed by a fixation period (500 ms). At the second stage,
we presented two colored squares for 1 s. The colors of these

A) 2-stage Markov decision task  B) Trial Procedure
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Fig. 1 a Schematic figure of the two-stage Markov decision task. In this
task, participants have to constantly update reward predictions at the
second stage (model-free decision making) and use these reward predic-
tions to make goal-directed (model-based) decisions at the first stage. To
manipulate the degree of model-based decision making, we applied two
different versions of the task: In the 6040 condition, the transition prob-
abilities were difficult to differentiate (60% common, 40% rare
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transitions). Therefore, participants should be uncertain regarding their
predictions of the upcoming state. In the 80-20 condition, the transition
probabilities were easier to tell apart (80% common, 20% rare transi-
tions). Thus, predictions regarding these state transitions should be more
differentiated. Reward probabilities for the four decision options at the
second stage of the task changed slowly and independently, according to
Gaussian random walks. b Trial procedure of the two-stage task
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squares indicated the state that participants had transitioned to
(we will refer to this time period as the state transition phase).
After 1 s, the corresponding stimuli (GoGo figures) were pre-
sented on top of the colored squares for 2 s (see Fig. 1b).
Participants had to make their decision between the two stim-
uli (GoGo figures) within 2 s by using the same keys as in the
first decision (“f” and “j”). If no response occurred within 2 s,
three white question marks appeared on the screen for 1 s, and
the trial was aborted (<1% of the trials across all participants).
Below, we will refer to this stage as the choice period. This
period was followed by a fixation phase (500 ms). The choices
were either rewarded (10 € cents) or not rewarded (0 € cents).
The probability of getting a reward was determined by a
Gaussian random walk with a standard deviation of .025 and
reflecting boundaries of .25 and .75 (Doll et al., 2012). The
feedback stimuli were displayed for 1 s and were followed by
another fixation period (500 ms). Overall, each trial lasted
7.5 s (see Fig. 1b).

Procedure

During preparation for the electroencephalogram (EEG), par-
ticipants completed a demographic questionnaire and the BIS/
BAS personality questionnaire (Carver & White, 1994). Prior
to the experimental task participants completed a computer-
ized training session, which was supervised by a research
assistant. In the first part of the training, participants were
introduced to the reward probability structure of the second
stage of the task. To familiarize participants with the probabi-
listic reward structure, they had to perform ten choices be-
tween options with a fixed reward probability of 60%. To
support their understanding of probabilistic information, we
always referred to the reward probabilities in terms of absolute
numbers (i.e., receiving a reward in approximately six of ten
cases). Thereafter, participants were given ten additional trials,
in which they had to find the option with the highest reward
probability (out of two choice options). Upon their successful
completion of this part, the research assistant explained that
the reward probabilities would change slowly across the ex-
periment. For illustration purposes, two examples of the ran-
dom walks were displayed (see Fig. 1). In the next training
phase, participants were introduced to the transition probabil-
ities connecting the first and the second stage of the task. That
is, we informed them about the fact that there were common
and rare transitions and showed them a graphical illustration
of the transition structure (similar to Fig. 1). Then partici-
pants performed ten trials in which they practiced the
transitioning from the first-stage to the second-stage op-
tions. At the end of the practice session, participants
conducted 30 trials of the experimental task (involving
all stages as well as the probabilistic rewards) using a
different stimulus set of “GoGo” figures. Thereafter, par-
ticipants were placed ~1 m in front of a computer (CRT)

screen in an electrically shielded room to perform the
four blocks of the two-stage Markov decision task.

Data analysis

Behavioral data were analyzed using SPSS (SPSS Inc.,
Chicago, IL) and R (R Development Core Team, 2010). The
RL model was implemented and fitted in MATLAB (The
Mathworks Inc., Natick, MA). EEG data were processed
using BrainVision Analyzer 2 (Brain Products GmbH).

Behavioral data

We defined stay—switch behavior as the probability to repeat a
choice at the first stage as a function of the transition (common
or rare) and the outcome (reward, no reward) on the previous
trial. The mean stay probabilities were analyzed using mixed-
effects logistic regression, as implemented in the Ime4 pack-
age (Bates, Maechler, Bolker, & Walker, 2013) in R (R
Development Core Team, 2010). The analysis involved the
within-participants factors Transition Probability Condition
(80-20, 60—40), Previous Transition Type (common, rare),
and Previous Outcome (rewarded, no reward).

On the basis of our model simulations and the results of
previous studies (Daw et al., 2011; Deserno et al., 2015;
Eppinger et al., 2013), we expected that a pure model-free
decision strategy would be reflected in a main effect of reward
(Fig. 2a). That is, participants should stick to options that had
been rewarded previously and should switch away from op-
tions that had been punished on the previous trial. Model-
based decision making should be reflected in an interaction
between the factors Transition on the Previous Trial and
Reward on the Previous Trial (Fig. 2a).

For our follow-up analyses, we calculated model-based
(mb) and model-free (mf) difference values based on stay
probabilities (see Fig. 2a).

*  Model-based (mb) difference values were calculated as:

Pr(mb) = [common rewarded + rare unrewarded]

—[common unrewarded + rare rewarded]

e Model-free (mf) difference values were calculated as:

Pr(mf) = [common rewarded + rare rewarded]

—[common unrewarded + rare unrewarded]

We then compared the model-based and model-free differ-
ence values, using repeated measures analyses of variances
(ANOVAs) with the factor Transition Probability (80—20 vs.
60—40) (Fig. 2¢).
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Fig. 2 Figure 2a): Model predictions. Left panel: Simulations show that
model-free decision-making isreflected in a main effect of reward. That is,
the probability of repeating the same first stage choice (staybehavior)
depends on whether the choice on the previous trial was rewarded or
not. Right panel: Modelbasedbehavior is reflected in an interaction
between transition on the previous trial and reward on theprevious trial.
That is, model-based behavior takes reward information as well as
knowledge of the transitionstructure into account.Figure 2b): Empirical
data. Probability of repeating the same first stage choice (stay behavior) as
a functionof the transition on the previous trials (common, rare transition)

Computational modeling

As had been described in prior studies (Daw et al., 2011;
Eppinger et al., 2013; Wunderlich, Smittenaar, & Dolan, 2012),
we fitted each participant’s choice behavior using a hybrid RL
algorithm. The model acquired state—action values via separate
model-free and model-based decision-making algorithms. Both
Q values were weighted by the parameter omega (€2), to compute
the overall state—action value of the first-stage options. The
“model-basedness” parameter 2 was held constant across trials
and constrained to range between 0 and 1. If omega approached
0, the behavior was mostly model-free (primarily driven by re-
ward). In contrast, an omega of close to 1 would indicate mostly
model-based choice behavior—that is, choices reflecting an in-
teraction of transition structure and reward. We assumed that
participants would select actions according to a softmax function.
The choice probabilities were determined by the state—action
values.

For the model fitting, we estimated the free parameters of
the hybrid model for each block and participant individually
via maximum likelihood. We first iterated all parameters
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and the outcome received on the previoustrial (reward, no reward). Stay
probabilities are displayed separately for the two transition
probabilityconditions (60-40 vs. 80-20), error bars reflect the standard
error of the mean (SEM).Figure 2¢): Difference values (stay
probability) for model-based behavior [common rewarded +
rareunrewarded] — [rare rewarded + common unrewarded] and model-
free behavior [common rewarded + rarerewarded] — [common
unrewarded + rare unrewarded]. Difference values are displayed
separately for thetwo transition probability conditions (60-40 vs. 80-
20), error bars reflect the standard error of the mean(SEM).

individually by using grid search to get a rough estimate.
Subsequently, we extracted the 12 best-fitting parameter com-
binations in both transition probability conditions and entered
them as starting values for precise parameter estimation, using
the MATLAB routine fMincon. The parameters were held
constant across trials but were allowed to vary across partici-
pants and between blocks within participants. We used the
individually estimated parameters of the model to compute
reward prediction errors (RPEs) and Q values at the second
stage for each trial. For the ERP analyses, the RPEs were split
between valences (positive, negative). Furthermore, prediction
errors, Q¢ values at the first stage, and Q values for the chosen
option at the second stage were split between magnitudes (low,
medium, high). We defined the RPe magnitude factor as the
33rd, 66th, and 100th percentiles of the respective range (with-
in each individual). This procedure guaranteed comparable
values for each category of RPe magnitude and similar
amounts of trials per category (see Fig. 4c in the Results).
We acknowledge that this split between small, medium, and
large prediction errors (Q values) was somewhat arbitrary.
Future studies should try single-trial regression approaches
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(Fischer & Ullsperger, 2013) to uncover the neural dynamics
of learning-related changes in prediction error signaling.

Description of the computational model

The task consisted of two stages and three states (first
stage, S| —State A; second stage, S, —States B & C; see
Fig. 1). Each state was associated with two actions (a4,
ag). At both stages (i), a state—action value function
QOsi(a) was learned that mapped each state—action pair
to its expected value. We refer to the model-based value
function at the first stage as Oy | 51, and to the model-
free value function as Qur | si-

Model-free state—action values Model-free state—action
values at the second stage were updated using SARSA(N)
temporal difference learning (Rummery & Niranjan, 1994).
The state—action pairs were updated in each trial ¢ according
to the equation

Ourisa(ast+1) = Oy psalast) + az [r(t)_QMﬂSZ(av t):|7

where q is the learning rate at a given stage (here, 2), and 7(7)
is the reward received in that trial.

The state—action value and the reward at the second stage
were then used to update the model-free values at the first
stage. This updating mechanism followed the same
temporal-difference learning rule, with an additional parame-
ter \, allowing for eligibility traces:

Ourisi(at+1) = Oy pisi(a,t)
+ag [QMF\sz (@chosen 1)~ ris1 (4, f)}

+ a1\ [”(t)*QMﬂsz(av t)} .

Psi(ai,t) =

Eligibility traces are not assumed to carry over from trial to
trial because the task structure involved constantly changing
reward probabilities (determined by the random walks) for
each option.

Model-based state—action values Model-based state—action
values are computed for each trial using Bellman’s equation
(Sutton & Barto, 1998) by taking the model-free state—action
values from the second stage and the transition probabilities
into account.

QMB\Sl(al) = HighTran*max [QMF\SZ(“)] + LowTran*max [QMF\SZ(a)]:
Oupjsi (a2) = LowTran*max {QMF\SZ (a)} + HighTran*max [QMF‘SZ(a)] .

In this equation, HighTran is defined as the higher transi-
tion probability of the current condition (either .8 or .6) and
LowTran is defined as the lower transition probability of that
condition (either .2 or .4). Participants were explicitly
instructed about the nature of the transition probabilities prior
to each block.

Finally, in the full hybrid model the On. state—action value
was calculated as the weighted sum of the model-based and
model-free values:

Onetist = 2*Qypis1(a) + (17Q) *Opy pisa (@),

where ) is the weighting parameter. At the second stage, the
Onet State—action value is equal to the model-free state—action

value (Onet | 52 = Quir | 2)-

Softmax rule Choice probabilities at each stage were calcu-
lated according to a softmax rule:

exp (51 *[QNeﬂSl (ar,1) + w*rep(al)} )

(exp (61 *[QNeqSl(alat) + W*r@P(GI)} )) + (exp (51 *[QNeqSl (a2, 1) + ﬂ*rep(az)} ))

)

where f3; is the inverse softmax temperature parameter,
controlling the distinctiveness of the choices. We allowed
both learning parameters («;, a,) and the softmax tem-
perature parameters (3, 3,) to differ between both stages.
The indicator function rep(a) is defined as 1 if a is a top-
stage action and is the same as was chosen on the previ-
ous trial and zero otherwise. Taken together, the function
rep(a) and the parameter 7t captures the degree of persev-
eration (7t > 0) or switching (7t < 0) at the first-stage
options (Lau & Glimcher, 2005).

Choice probabilities were calculated similarly as:

exp [52 *Ones2 (@1, t)]

Psz (a1 s t) =
€xp (ﬁz *Oners2 (@1, f)) +exp (/7’2 *ONerjs2 (@2 t))

Taken together, the model contained seven parameters (c,
Qa, B1s B2, T, A, ), with Q = 0 indicating pure model-free
learning and €2 = 1 indicating pure model-based decision
making.
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EEG recordings and ERP analysis

EEG and electrooculography (EOG) were recorded continuous-
ly from 64 passive Ag/AgCl electrodes embedded in an elastic
plastic cap, using BrainVision Recorder (Brain Products GmbH,
Gilching, Germany). The recording locations were based on the
international 10-10 system; recording electrodes were refer-
enced online to the right mastoid, and re-referenced offline to
the average of the left and right mastoids. The EEG signals were
filtered with a band-pass filter in the range of 0.01 and 100 Hz
and were digitized with a sampling rate of 1000 Hz. The ground
electrode was placed above the forehead. Vertical and horizontal
EOGs were recorded next to each eye and below the left eye.
Electrode impedances were kept below 5 kQ.

For the statistical analyses, the EEG data were low-pass fil-
tered at 30 Hz using an Infinite Impulse Response filter. EEG
data were epoched (200 to 600 ms) and averaged dependent on
stage, transition, and obtained reward. The epochs were
baseline-corrected by subtracting the average of the 200-ms
prestimulus activity. All epochs were time-locked to the onset
of the stimulus. Vertical and horizontal eye movements were
corrected using a regression approach (Gratton, Coles, &
Donchin, 1983). Trials containing remaining ocular, or other
artifacts, were rejected using a threshold criterion (200-mV dif-
ference, 30-uV gradient). To avoid differences in trial numbers
of the ERP averages, the trial numbers in the frequent conditions
(80%, 60%, 40%) were adjusted to the trial numbers in the
lowest-frequency condition (20%). In this procedure, 21 trials
were randomly chosen from each transition probability condi-
tion and used to calculate the individual participant ERP aver-
ages at feedback onset. The averages at the onset of the second-
stage stimuli contained a minimum number of 44 trials per
condition.

Minimum trial numbers for the FRN averages were deter-
mined on the basis of previous work, suggesting that the number
of'trials (21 in the present study) was sufficient to obtain reliable
FRN amplitudes in younger adults (Marco-Pallares, Cucurell,
Miinte, Strien, & Rodriguez-Fornells, 2011). For stimulus-
evoked P300 components, previous studies had recommended
trial numbers around 30-60 trials (Cohen & Polich, 1997; Luck,
2005). Thus, with 44 trials per condition, we were well within
this range. Nevertheless, future work should consider the use of
bootstrapping methods to improve sensitivity and reliability of
the EEG data.

The P300 component at the second stage was measured as
the mean amplitude in the 330- to 430-ms time window after
stimulus onset. The FRP was measured as the mean amplitude
in the 280- to 380-ms time window after feedback onset. The
time windows were placed at the peaks of the components,
which were determined by visual inspection of the grand aver-
ages. The EEG signals at the different electrode sites were aver-
aged into six topographical regions of interest: left anterior (F7,
F5, F3), middle anterior (F1, Fz, F2), right anterior (F4, F6, F8),
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left central (T7, CS, C3), middle central (C1, Cz, C2), right
central (C4, C6, T8), left posterior (P7, PS5, P3), middle posterior
(P1, Pz, P2), and right posterior (P4, P6, P8). The 9 ROIs were
then pooled in two experimental factors Anterior-Posterior and
Hemisphere, each involving three levels (anterior, central and
posterior as well as left, medial and right, respectively). To ex-
amine the mean P300 amplitudes, we applied a repeated mea-
sures ANOVA involving the within-participant factors
Transition Probability Condition (80-20, 60—40), Transition
Type (common, rare), Anterior—Posterior (anterior, central, pos-
terior), and Hemisphere (left, medial, right). For the analysis of
the FRP component, the ANOVA design involved the factor
Outcome (reward, no reward) as an additional predictor. For
the model-based ERP analyses, we used ANOVA designs in-
volving the factors Transition Probability Condition (80-20, 60—
40), Q Value/RPE Magnitude (low, medium, high), Anterior—
Posterior (anterior, central, posterior), and Hemisphere (left, me-
dial, right).

The FRN was defined using peak-to-peak measures at elec-
trode FCz (Frank, Woroch, & Curran, 2005; Yeung & Sanfey,
2004). To calculate the peak-to-peak measures, we first applied a
low-pass filter of 15 Hz. Subsequently, a semiautomatic algo-
rithm was used to identify the maximum positive peak in a time
window of 130240 ms after feedback onset. From that latency,
the most negative peak until 325 ms after stimulus onset was
identified. The amplitude of the component was defined as the
difference between the two peak measures. For our statistical
analyses, we applied a repeated measures ANOVA involving
the within-participants factors Transition Probability Condition
(8020, 60-40) and Reward (rewarded, unrewarded). For the
model-based analyses of the FRN, a repeated measures
ANOVA with the factors Prediction Error Valence (positive,
negative), Magnitude (low, medium, high), and Transition
Probability Condition (80-20, 60-40) was conducted.

Bonferroni corrections were applied when necessary, and
corrected p values are reported throughout (p level < .05).
Whenever necessary, the Greenhouse—Geisser correction
(Geisser & Greenhouse, 1958) was applied. The original F val-
ue, the adjusted p values, and the epsilon values (¢) are given.
Effect sizes (eta-squared, 1) are provided where applicable
(Cohen, 1973).

Correlation analysis

We investigated the relationships between the behavioral, elec-
trophysiological, and computational model parameters across
individuals by calculating Pearson correlation coefficients across
both transition probability conditions. As behavioral measures,
we entered the model-based and model-free difference scores
(see the Method section and Fig. 2a) in the correlation analysis.
To test for relationships with parameters from the computational
model, we used the fitted parameters for each individual.
Furthermore, we calculated amplitude difference values for the
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second-stage P300 transition effects (P300-Tran: Common —
Rare), as well as the second-stage P300 expected value effects
(P300 Qv High Qvae — Low Qvane), and entered them into
the correlation analysis. Finally, we used each individual’s fitted
model parameters to calculate the optimal action on each trial,
and calculated the probability with which each participant chose
this option. This procedure resulted in a value that indicated the
likelihood that a participant would choose the best option on a
given trial.

Results
Choice behavior

As in previous studies (Daw et al., 2011; Eppinger et al., 2013),
choice behavior at the first stage (proportion stay trials) was
analyzed depending on whether the choice on the previous trial
had been rewarded and whether the transition on the previous
trial had been common (60%/80%) or rare (40%/20%). Given
that the first-stage choice proportions were binomial (stay = 1,
switch = 0), we used a mixed-effects logistic regression (see
Table 1 and the Method section; Daw et al., 2011; Eppinger
et al., 2013). This analysis revealed a significant main effect of
reward (p < .001), showing that participants stayed with options
that had previously been rewarded and switched away from
options had not been rewarded on the previous trial (reward-
based, model-free decision making; see Fig. 2a and b). A sig-
nificant interaction between reward and transition type (p <
.001) indicated that in addition to rewards, the participants also
took the transition structure into account (model-based decision
making; see Fig. 2a and b). Most interestingly, the analysis also
revealed a significant three-way interaction between transition
probability condition, transition type, and reward (p < .001). To
follow up on the three-way interaction, we performed separate
analyses for each of the transition probability conditions. For the
8020 condition, these analyses revealed significant main ef-
fects of transition type and reward (ps < .001), as well as a
significant interaction between the two factors (p < .001). For

the 6040 condition, the main effect of transition type was not
significant (p = .26). However, we did find a significant main
effect of reward and a significant interaction between transition
type and reward (ps < .001). Together, these findings suggest
that even though participants were less able to differentiate be-
tween common and rare transitions in the 6040 condition, there
was still evidence for a significant model-based contribution to
their decision making in this condition. To directly test for dif-
ferences in model-based behavior between the transition proba-
bility conditions, we calculated model-based and model-free
difference values (for more details, see Fig. 2a and the Method
section). As is shown in Fig. 2b and c, these analyses revealed
enhanced model-based behavior in the 8020 relative to the 60—
40 condition (p < .001, 777 = .66). No effect of transition proba-
bility was observed for model-free behavior (p = .51).

Computational modeling results

To analyze differences in the model parameters between the two
transition probability conditions, we used paired ¢ tests. The
analysis revealed no difference in the weighting (model-
basedness) parameter Q (¢ = 0.09, p = .92). However, it did
reveal a significant main effect of transition probability condi-
tion on the inverse temperature parameter (3 ) at the first stage (¢
=3.37, p < .01). As is shown in Table 2, 3; was lower for the
high (80-20) than for the low (60—40) transition probability
condition. This finding suggests that in the high transition prob-
ability condition it was easier for participants to distinguish the
first-stage choice options. In addition, the learning rate at the
second stage (a,) was significantly higher for the 80-20 than
for the 60—40 condition, indicating that the participants gave
more weight to recent reward outcomes in the high transition
probability condition.

Stimulus-locked ERPs at the first stage The analysis of the
stimulus-locked P300 at the first stage revealed no significant
main effects or interactions involving the factor Transition
Probability Condition, Transition Type, or Reward (ps >
.05). Furthermore, an additional analysis of the previous

Table 1  Estimates of the logistic regression analysis Table 2 Optimal model parameters in each condition

Predictor Estimate p Value X o [ Gy A T Q -LL
(Intercept) 1.18 <.001 6040 Transition Probability Condition

Condition 0.09 <.001 25th percentile 0.25 0.24 3.81 3.04 0.01 0.04 042 106.19
Transition 0.09 <.01 Median 041 042 8.61 410 0.10 0.09 0.66 130.53
Outcome 0.19 <.001 75th percentile 0.73 0.65 14.68 542 028 0.19 0.84 14581
Condition x Transition 0.11 <.001 80-20 Transition Probability Condition

Condition x Outcome 0.03 >.05 25th percentile 0.11 0.46 4.09 3.39 0.01 0.07 0.39 107.67
Transition X Outcome 0.43 <.001 Median 046 0.60 594 443 036 0.13 0.58 114.28
Condition x Transition x Outcome 0.24 <.001 75th percentile 0.76 0.76  7.79 6.49 0.79 024 0.76 120.24
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transitions and rewards on the first-stage ERPs (in analogy to
the analysis of stay—switch behavior) did not reveal significant
main effects of previous reward or transition or the expected
interaction between previous transition and reward (ps > .05).
In a further analysis, we used the individually estimated pa-
rameters of the hybrid RL model to calculate state—action
values at the first stage (Qne; values). The calculated state—
action values were then split into low (Que < 33rd percentile),
medium (33rd < Que¢ < 66rd percentile), and high (Quec>
66rd percentile) magnitudes, and used to inform the
stimulus-locked ERP analysis at the first stage. Again, as is
shown in Supplementary Fig. 3, we did not find significant
main effects of condition or magnitude, or a significant inter-
action of condition and magnitude (ps > .05).

A) Transition probability effects

Transition probability
-=20% =-=-40%
— 80% — 60%

Pz -6

330ms - 430ms
0 uv 3

C) Correlations

Stimulus-locked ERPs at the second stage: Transition
phase An analysis of the ERPs in the state transition period at
the second stage (when the background colors were presented;
see Fig. 1b) revealed main effects of probability condition in the
N200 and the P300 components, Fs(1, 20) > 5.31, ps < .03, ngzs
> .03. As is shown in Supplementary Fig. 4, these modulations
seem to reflect a general amplitude shift in the ERPs in the high-
demand (60—40) as compared to the low-demand (80-20) tran-
sition probability condition. Interestingly, we also found evi-
dence for a main effect of transition type, F(1, 20) = 15.60, p
< .001, ngz = .04, as well as a significant interaction between
probability condition and transition type in the late time window
of the ERP, F(1, 20) = 4.73, p = .04, ,” = .01. Consistent with
previous reports, we refer to this component as the late positive
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Fig. 3 a Top: ERPs elicited by second-stage stimuli at electrode Pz,
displayed separately for the 80-20 condition (gray) and the 6040 con-
dition (black), as well as the common transitions (solid lines) and rare
transitions (dashed lines). Dashed vertical lines indicate the time window
that was used for the analysis as well as for generation of the topographic
maps. Bottom: The topographic map displays the difference between
common and rare transitions in the 80-20 condition in a time window
0f 330-430 ms. b Top: ERPs elicited by second-stage stimuli at electrode
Pz, displayed separately for low (gray dashed), middle (gray dotted), and
high (gray solid) state action (Q) values. Black solid lines reflect the
difference between ERPs to the high and low Q values. Dashed vertical
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P300 [common - rare] Pz (uV)

Q-Value Magnitude

lines indicate the time window that was used for the statistical analysis as
well as for generation of the topographic maps. Botfom: The topographic
map displays the difference between high and low Q values in a time
window of 330-430 ms. ¢ Scatterplot of correlations between the inverse
temperature parameter at the second stage (/3,) and the P300 amplitude at
Pz (averaged across conditions). d Mean P300 amplitudes as a function of
Q-value magnitude, displayed separately for the 80—20 condition (dashed
gray line) and the 60—40 condition (solid gray line), as well as averaged
across conditions (black solid line). Error bars reflect the standard errors
of the means (SEMs)
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complex (LPC) (S. Sutton & Ruchkin, 1984). Previous work
suggested that the LPC is sensitive to physical expectancy de-
viations during language processing (Kutas & Hillyard, 1980).
However, some more recent evidence has suggested that the
LPC might reflect the volatility of decision rules during learning
(Bland & Schaefer, 2011). As is shown in Supplementary Fig. 4,
the interaction effect reflects a greater LPC for rare than for
common transitions in the 80-20 condition (p < .001, ngz =
.09), but no such effect in the 6040 condition (p = .12, 77g2 =
.01). These results suggest that, on the basis of the background
colors, the participants were able to differentiate between com-
mon and rare transitions in the low-demand (80—20) condition,
but not in the high-demand (60—40) condition. To make sure that
the baseline period for the subsequent ERPs in the choice phase
was not confounded by condition differences in the transition
phase, we analyzed the late time window in the state transition
ERPs (see the shaded area in Supplementary Fig. 4). This anal-
ysis revealed no significant differences between conditions (see
Supplementary Fig. 5).

Stimulus-locked ERPs at the second stage: Choice period
The analysis of the stimulus-locked P300 at the second stage
revealed a significant main effect of transition type, F(1, 20) =
22.15,p<.001,e=1, n2 = .53, which reflected a greater P300
amplitude for common (80% and 60%) than for rare (20% and
40%) transitions. Moreover, we found a significant interaction
between probability condition and transition type, F(1, 20) =
6.48, p < .05, = 1, 17> = .25. Separate analyses for each of the
probability conditions showed a greater P300 amplitude after
common than after rare transitions in the 80-20 condition (p <
.001, 772 =.56). This was not the case for the 60—40 condition
(p = .23). As is shown in Fig. 3a, the more model-based be-
havior in the 80-20 condition was associated with a greater
P300 component for common than for rare transitions. No
such effect was observed for the 60—40 condition.

To examine whether the P300 component reflected the ex-
pected value of choice options at the second stage, we used the
individually estimated parameters of the hybrid RL model (the
state—action Q values at the second stage) to inform the ERP
analysis (see the Method section for details). This analysis
showed a significant main effect of expected value magnitude,
F(2,40) =15.41, p < .001, e = .98, 772 = .44. As is shown in
Fig. 3b and d, the P300 amplitude increased with the magni-
tude of the state—action values. Furthermore, we obtained a
main effect of transition probability condition, F(1,20) =4.54,
p<.05 ¢=1,1" =.19. As is shown in Fig. 3d, the P300
amplitude was higher overall for the 80-20 than for the 60-40
condition. However, the analysis did not reveal a significant
interaction between probability condition and expected value
magnitude (p = .52), indicating that the expected-value effects
in the P300 were independent of model-based (transition
probability) effects.

Outcome-locked ERPs

To examine the signatures of model-free and model-based
processes at the reward stage, we focused on the ERP compo-
nents that have previously been shown to covary with predic-
tion error information: the FRN elicited by negative outcomes,
and the FRP, which occurs in response to rewarding
outcomes.

Feedback-related negativity The analysis of FRN ampli-
tudes revealed a significant main effect of reward, F(1, 20) =
10.27, p < .01, € = 1, 7’ = .34, demonstrating higher ampli-
tudes for no reward than for reward feedback, which was in
line with previous studies of the FRN. As is shown in Fig. 4a
the analysis did not show significant main effects or interac-
tions involving the factor Probability Condition or Transition
Type (ps > .13, i°s < .10).

To investigate whether the FRN reflected RPEs at the sec-
ond stage, we used the individually estimated RPE estimates
of the hybrid RL model (averaged into three levels of magni-
tude) to inform the ERP analysis. This analysis showed a
significant main effect of RPE valence, F(1, 20) = 8.09, p =
01, 77 = .29, which reflected the greater FRN for negative
than for positive RPEs. However, the analysis did not reveal a
significant effect of RPE magnitude on the FRN (p > .70).
Thus, the present results suggest that the FRN (as defined
using peak-to-peak measures) is affected by the valence, but
not by the magnitude, of prediction errors (see Fig. 4b and d).

Feedback-related positivity The FRP is a positive compo-
nent in the time window of the FRN that is elicited by reward
and that has been shown to reflect learning (Arbel et al., 2013;
Cohen et al., 2007; Eppinger et al., 2008; Eppinger et al.,
2009). As with the FRN, we examined whether the FRP was
modulated by the transition probability condition as well as by
the valence and magnitude of RPEs. The results of this anal-
ysis showed a significant main effect of RPE magnitude, F(2,
40) = 5.00, p < 05, € = .96, n2 = .20. Moreover, the analysis
revealed a significant interaction between RPE valence and
magnitude, F(2, 40) = 9.68, p < .001, € = .99, 772 = .33.
Separate analyses for the factor RPE Valence showed a sig-
nificant main effect of magnitude for positive RPEs, F(2, 40)
=16.66,p <.001, £ = .87, 1" = .45 (see Fig. 4d). No magnitude
effect was observed for negative RPEs (p = .50). Taken to-
gether, our results show that the FRP is sensitive to the mag-
nitude of positive, but not of negative, RPEs.

ERP-behavioral correlations
To investigate relationships between the behavioral, elec-
trophysiological, and computational model parameters

across individuals, we calculated Pearson correlation co-
efficients. As is shown in Supplemental Table 1, we found
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Fig.4 a Feedback-locked ERPs at electrode FCz for rewards (black) and
no rewards (gray), displayed separately for the two transition probability
conditions (8020 vs. 60-40). b Top: Feedback-locked ERPs at electrode
FCz for negative (gray) and positive (black) reward prediction errors,
displayed separately for low, medium, and high magnitudes of prediction
error. Bottom: The topographic map displays the difference in the FRPs
between high- and low-magnitude prediction errors in a time window of

a significant positive correlation between the P300 ampli-
tude difference (common minus rare transitions) and the
inverse temperature at the second stage (r = .55, p < .01).
Moreover, we found that the P300 difference correlated
positively with the probability of choosing the better op-
tion at that stage (» = .46, p < .05). These findings suggest
that a greater ability to predict the upcoming state on the
basis of knowledge of the transition structure (as reflected
in the P300) is associated with more optimal choice be-
havior. Interestingly, we did not find significant correla-
tions between the Q-value P300 effect and any of the
behavioral measures (see Table 3), indicating that the
present associations cannot be explained in terms of dif-
ferences in the expected values of the choice options.
Taken together, our results show that the P300 amplitude
at the second stage reflects individual differences in the
ability to integrate model-based knowledge of the transi-
tion structure with the decision values of the choice op-
tions, and that it predicts optimal performance.
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280-380 ms. ¢ Mean magnitudes and frequencies of positive and nega-
tive reward prediction errors, averaged across conditions in a time win-
dow of (280-380 ms). Error bars reflect the standard errors of the means
(SEMs). d Amplitudes of the FRN and FRP at electrode FCz as function
of prediction error magnitude (low, medium, high). Error bars reflect the
standard errors of the means (SEMs)

Discussion

Current decision-making theories suggest that value-based deci-
sions arise from the interaction of two distinct decision systems:
(1) a model-free system that is involved in making habitual de-
cisions based on past experience, and (2) a model-based system
that subserves goal-directed decisions that are based on a cog-
nitive model of the environment (Balleine & O’Doherty, 2010;
Daw et al., 2005). So far, neuroimaging studies have been in-
conclusive as to whether the neural mechanisms underlying
model-free and model-based decision processes can be dissoci-
ated (Daw et al., 2011; Deserno et al., 2015). In contrast to
previous approaches, which had used functional imaging
(fMRI), we took advantage of the high temporal resolution of
ERPs in combination with computational (reinforcement-
learning) modeling to examine the neural dynamics of model-
free and model-based decision mechanisms.

Consistent with previous studies, we applied a two-stage
Markov decision task that allowed for a dissociation of model-
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free and model-based contributions to choice behavior
(adapted from Daw et al., 2011; Eppinger et al., 2013; see
Fig. 1). The idea of the task was to integrate model-free infor-
mation about the reward as well as model-based information
about the (Markovian) transition structure. A pure model-free
learner learns an expected value for a decision option from his
past experiences with that same option, but ignores the state
transition structure of the task (see Fig. 2a). A model-based
learner integrates model-free information about the values of
the decision options with information about the transition
structure of the task to inform choice behavior (see Fig. 2).!
To investigate the dynamics in the interaction between these
two decision systems, we manipulated the demands on model-
based decision making by applying two different transition
probability structures (see Fig. 1). In the high-demand struc-
ture (60—40 condition), the common and rare transitions were
difficult to differentiate, and participants should have been
uncertain about the upcoming stimulus (state). In the low-
demand structure (80—-20 condition), the transition probabili-
ties were easier to tease apart, which should support model-
based behavior.

Consistent with our prediction, the behavioral results
showed that model-based decision making was sensitive to
changes in the transition probabilities. As is shown in
Fig. 2¢, reduced demands on the representation of the transi-
tion structure in the 80-20 condition led to greater model-
based behavior, as in the high-demand structure (the 6040
condition). Contrary to previous findings, an analysis of the
computational model parameters revealed no significant dif-
ference in the “model-basedness” parameter €2 between tran-
sition probability conditions (Daw et al., 2011; Wunderlich
etal., 2012). Instead, the analysis showed a significantly lower
inverse temperature parameter (/3;) at the first stage of the task
for the high as compared to the low transition probability
condition (see Table 2).

Taken together, the behavioral results suggest that the ma-
nipulation of the transition probability structure led to a more
differentiated model-based choice pattern at the first stage of
the task. At first sight, the absence of condition differences in
the “model-basedness” parameter ({2) seems surprising.
However, when considering Fig. 2b, it becomes clear that in
both conditions participants showed a Transition X Reward
interaction (which has been interpreted as the hallmark of
model-based behavior). In fact, our results in the high-
demand (60—40) condition look very similar to the results in
younger adults published in previous studies using a 70-30
transition matrix (Daw et al., 2011; Deserno et al., 2015;
Wunderlich et al., 2012). What differs between the two

! It should be noted that the transition probabilities were instructed and trained
in order to avoid learning effects. Moreover, the transition probabilities were
explicitly cued at the beginning of each block to make participants aware of the
condition they were in.

transition probability conditions is the degree of model-
based behavior. In the results of the model fitting, this greater
differentiation in the model-based choice pattern was reflected
in changes in the inverse temperature parameter of the softmax
function at the first stage of the task. To verify whether we
could replicate the empirical results using the computational
model, we simulated the data by manipulating €2 while hold-
ing the temperature parameter at the first stage constant, and
vice versa. The results of the simulations mimicked the em-
pirical results, showing that increasing €2 leads to a shift from
model-free to model-based behavior, whereas changing the
temperature parameter makes the first-stage choice pattern
more differentiated (see Supplementary Fig. 1). Furthermore,
rerunning the model fitting with a fixed inverse temperature
parameter at the first stage resulted in the expected differences
between transition probability conditions in the {2 parameter
(see Supplementary Fig. 2), This suggests that the [ at the first
stage was capturing variance that would otherwise be captured
by the model-basedness parameter ).

Thus, consistent with the findings of the regression analy-
sis, the results of the model fitting suggest that even in the
high-demand (60—40) condition, younger participants showed
evidence for model-based behavior. Making the state transi-
tions more predictable in the low-demand (80-20) condition
made the model-based choice pattern more distinct; that is,
participants had a clearer representation of the upcoming op-
tions. Consistent with this interpretation, we found that the
inverse temperature parameter at the first stage was negatively
correlated with the probability of choosing the best option at
the second stage (see Supplemental Table 1). This correlation
suggests that the more differentiated the choice patterns at the
first stage of the task, the higher the probability of choosing
the option with the highest reward probability at the second
stage of the task. Thus, the better participants were at
predicting their transition to the second stage, the better they
were at choosing the option with the highest expected value.

In summary, the present behavioral results suggest that the
manipulation of the transition probability structure led to more
distinct model-based choice behavior. The more participants
were able to differentiate common and rare transitions at the first
stage of the task, the better they were at predicting the upcoming
stimulus, which boosted their performance at the second stage
of the task.

An analysis of the ERPs at the state transition period
showed a greater LPC for rare relative to common transitions
in the low-demand (80-20) condition, but no such effect in the
high-demand (60—40) condition. This finding suggests that
with more differentiated transition probabilities, participants
are able to predict the upcoming states. The reduced LPC
component for common (80%) transitions reflects a higher
expectedness of that transition and a reduced need for the
updating of task-relevant information (Bland & Schaefer,
2011; Donchin, 1981; Donchin & Coles, 1988).
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In line with our predictions, the stimulus-evoked P300 at the
second stage reflected model-based decision processes—that is,
processes that were sensitive to the expected value of the options
as well as to the transition structure of the task. As is displayed in
Fig. 3a the analysis showed a greater P300 amplitude after com-
mon than after rare transitions in the 80-20 condition (see
Fig. 3a). No such effect was observed for the 60—40 condition.
Thus, the P300 was enhanced in the condition in which partic-
ipants had more differentiated (and reliable) predictions regard-
ing the state transitions. This is in line with the suggestion that
the choice-related P300 component may reflect state prediction
errors (Glascher et al., 2010). Importantly, as is shown in Fig. 3b,
the same P300 component that was sensitive to the probability
of state transitions was also sensitive to the expected values of
the choice options. Moreover, the expected-value effect in the
P300 was independent of the transition probability condition
(see Fig. 3b and d). Taken together, these findings indicate that
the P300 component may reflect the integration of model-based
information about the transition structure of the task with model-
free information about the expected values of the choice options
during decision making. In support of this idea, we found pos-
itive correlations between the P300 amplitude difference be-
tween common and rare trials and both the inverse temperature
parameter ((3,) and the probability of choosing the currently best
option at the second stage. These findings indicate an associa-
tion of the P300 effect with (a) the degree to which participants
were able to differentiate the choice options at the second stage
(the inverse temperature parameter 3,) and (b) the degree to
which they were able to implement optimal choice behavior.

What remains unclear is the relationship between the LPC
effects during the state transition period and the P3 effects at the
second-stage choice period. In our interpretation of the data, the
state transition effects reflect the predictability of the upcoming
states, which is higher in the 80-20 than in the 6040 condition.
In contrast, the effects in the second-stage choice period seem to
reflect the fact that participants are predicting the values of op-
tions and that these predictions are more differentiated in the
high- than in the low-demand condition. Thus, it seems that
the phase reversal of the two ERP components reflects the func-
tional demands that are induced by the task.

Consistent with our results, findings from a recent fMRI
study provided initial evidence for a key role of the ventrome-
dial prefrontal cortex (vmPFC) in the integration of model-
based and model-free value signals (Lee, Shimojo, &
O’Doherty, 2014). Consistent with this idea, findings from a
simultaneous EEG—fMRI study suggested that the P300 is gen-
erated by an attentional/arousal network involving the brain
stem (presumably locus coeruleus, LC) as well as the anterior
cingulate (ACC) and the ventromedial/orbitofrontal cortex
(Walz et al., 2013). Together, these findings are consistent with
the LC-P300 hypothesis, proposing that the P300 reflects the
response of the locus coeruleus—norepinephrine (LC-NE) sys-
tem to the outcome of decision making processes in the ACC
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and orbitofrontal cortex (Aston-Jones & Cohen, 2005;
Nieuwenhuis et al., 2005). Taking these findings and theoretical
ideas into account, it could be argued that the ventromedial/
orbitofrontal cortex is involved in the integration of model-
based and model-free value information (Wilson, Takahashi,
Schoenbaum, & Niv, 2014). This integration process may trig-
ger selective attention in parietal areas (as reflected in the P300
response) to facilitate optimal choice behavior. In support of
this interpretation, recent evidence from single-unit cell record-
ings in monkeys showed a clear relationship between LC activ-
ity and the pupil response (Joshi, Li, Kalwani, & Gold, 2016),
which has repeatedly been shown to be associated with P300
activity (Hong, Walz, & Sajda, 2014; Murphy, Robertson,
Balsters, & O’Connell, 2011; Nieuwenhuis et al., 2005).

However, given of a lack in direct evidence for a relationship
between LC activity and the P300 response during decision
making, the LC-P300 account remains speculative. An alterna-
tive interpretation of the present results may be provided by the
context-updating theory of the P300 (Donchin & Coles, 1988).
According to this theory, the P300 reflects the updating of task-
relevant information (such as model-based information about
state transitions), which should be enhanced in the condition
with more differentiated transition probabilities (80-20 condi-
tion). In contrast, if participants cannot make reliable predictions
regarding the upcoming stimuli, such as in the 6040 condition,
it may be more difficult to update the task-relevant information
at the second stage. That is, this theory can account for the
observed transition probability effects in the P300, but it seems
difficult to reconcile with the increase of P300 ERP activity as a
function of expected value.

In a more exploratory analysis, we examined the relationship
between the outcome-related ERPs and prediction error infor-
mation. To investigate whether the FRN is related to the magni-
tude of RPEs (Holroyd & Coles, 2002), we used RPE estimates
from the RL model to inform the ERP analysis. Consistent with
the condition-based analyses, we observed an effect of predic-
tion error valence. As is shown in Fig. 4b, the FRN amplitude
was larger for negative than for positive RPEs. However, the
FRN showed no clear relationship to the magnitude of negative
RPEs (see Fig. 4b and d). These findings are in line with several
previous studies, suggesting that the FRN may not be as tightly
coupled to negative prediction errors as had previously been
thought (Arbel et al., 2013; Eppinger et al., 2008; Eppinger
et al., 2009; Hammerer, Li, Mueller, & Lindenberger, 2011).
In fact, several recent findings indicate that the FRN may be
sensitive to surprise (unsigned prediction errors), rather than to
signed prediction errors (Cavanagh & Frank, 2014). As such,
the FRN may reflect a more general teaching signal generated in
the ACC, which is not valence-specific (Botvinick, 2007;
Johansen & Fields, 2014) but may be involved in the hierarchi-
cal organization of effortful behavior (Holroyd & McClure,
2015). This interpretation would be consistent with findings
suggesting that FRN-like signals reflect surprise information in
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the medial frontal cortex that triggers control adjustments
(Cavanagh & Frank, 2014). It should also be noted that in the
present study, negative RPEs reflected the absence of a reward,
not a truly aversive outcome or punishment (such as an electric
shock). Thus, it could still be that with truly aversive outcomes,
the FRN might reflect the magnitude of negative prediction
errors (Talmi et al., 2013; Talmi et al., 2012).

Most interestingly, in contrast to the FRN, which did not
reflect RPE magnitude, we found evidence for an effect of
RPE magnitude in the reward-related ERPs signals. As is shown
in Fig. 4b, an FRP around 300 ms after feedback onset increased
as a function of the magnitude of positive RPEs. These results
are consistent with previous findings suggesting that the FRP
might be sensitive to RPEs (Arbel et al., 2013; Cohen et al.,
2007; Eppinger et al., 2008; Eppinger et al., 2009; Hammerer
et al., 2011; Herbert, Eppinger, & Kray, 2011). A recent study
using single-trial frequency analyses revealed that the FRP
reflected delta band activity that scaled with positive prediction
errors (Cavanagh, 2015). However, this prediction error infor-
mation in the feedback-related delta band response did not pre-
dict behavior. As in the present study, correlations with behav-
ioral adaption effects were only found for stimulus-locked delta
band (P300) activity. Consistent with previous neuroimaging
work (Gléscher et al., 2010), these findings suggest that activity
in the delta band may reflect hierarchically distinct types of
prediction error information. The results of the present study
support this idea by showing that stimulus-evoked P300 activity
reflects violations in state predictions and is tightly coupled to
behavior. In contrast, feedback-locked activity does seem to
reflect RPEs but is not reflective of behavioral adjustments.

Counter to our initial expectation, we did not find evidence
for model-based or model-free effects (or an interaction of such
effects) on the ERPs at the first stage. At first sight, this result
seems surprising, given that the behavioral dissociation is based
on choice behavior at the first stage. Thus, one would expect to
see correlates of these decision processes in the ERPs. Please
note, however, that previous fMRI studies using the same two-
state Markov task also did not show evidence for dissociable
neural correlates of model-based or model-free decision process-
es at the first stage of the task (Daw et al., 2011; Deserno et al.,
2015). We currently see two possible interpretations for the ab-
sence of these effects. On the one hand, the neural computations
to update model-based information may not be confined to the
first stage of the task, but rather may happen continuously
throughout the task. Therefore, the behavioral measure may only
reflect the application of a decision strategy that relies on the
integration of information across the different stages of the par-
adigm. On the other hand, due to averaging, ERPs may not be
sensitive enough to detect subtle fluctuations in choice behavior.
That is, the neural mechanisms that lead to the behavioral dis-
sociation at the first stage might be less tightly coupled to the
eliciting stimulus than is the case at the second stage and reward
delivery. Subsequent research should address this questions by

using parametric analyses of single-trial EEG measures (Fischer
& Ullsperger, 2013), or by using analysis techniques that are
sensitive to induced rather than to evoked EEG signals
(Herrmann, Munk, & Engel, 2004).

Finally, it should be noted that our electrophysiological
data are also consistent with more integrated RL architectures,
such as DYNA, which do not assume two competing control-
lers (Gershman, Markman, & Otto, 2014; Sutton, 1990). In
the DYNA architecture, behavior is completely controlled by
the model-free system; the model-based system only has an
indirect influence, by training the model-free system offline
using simulations of the state space of the task. Although the
DYNA architecture might be more in line with our electro-
physiological data, several aspects of this model are less
straightforward in terms of its predictions regarding neural
correlates. For example, DYNA assumes that the model-
based system replays experienced state—action pairs and uses
this information to simulate the state space. The neural corre-
lates of such a replay process are unclear, but presumably
would involve the hippocampus. Future work should try to
disambiguate the two approaches and test the neural predic-
tions arising from the two competing models.

Conclusions

The present findings support the idea of integrated neural pro-
cessing of model-based and model-free information during
decision making, but they also point to dissociable mecha-
nisms. As we showed in stimulus-locked analyses at the sec-
ond stage, the parietal activity (the P300) seems to reflect the
integration of model-based information about the transition
structure of the task with model-free information about the
expected values of choice options during decision making.
Moreover, the P300 component was associated with the abil-
ity to differentiate between choice options at the second stage,
and is predictive of optimal choice behavior. In contrast to the
P300, outcome-locked medial prefrontal activity only
reflected reward-related processes. Similar to previous stud-
ies, we found that the FRN was modulated by outcome va-
lence. However, the FRN did not reflect negative RPEs. This
finding may indicate that the FRN is sensitive to the relative
valences of outcomes, but does not reflect signed prediction
errors. In contrast, the FRP was sensitive to the magnitude of
positive prediction errors during learning, indicating that it
may reflect cortical processes involved in the updating of ex-
pected reward value in the medial PFC.
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