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Abstract The brain is an intricate network, not only structur-
ally but also functionally. On the functional level, connectivity
in the brain is organized in separable yet interacting networks
that support information processing by maintaining a ready
state, even in the absence of external stimulation. It has been
hypothesized that an insular-opercular network underlies the
processing of emotionally salient information and that indi-
vidual differences in functional connectivity within this net-
work correspond to individual differences in trait anxiety.
Here, we tested this relationship by applying graph analysis
to multiple regions of interests delineating the insular-
opercular network to estimate the characteristic path length
that quantifies the overall information exchange efficiency
within a given network. We found that people scoring high
on the anxiety-related temperament-dimension harm avoid-
ance had decreased insular-opercular network efficiency in
the resting state, as indicated by a higher characteristic path
length. Furthermore, people scoring high on harm avoidance
showed generally reduced functional connectivity between
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brain regions; the relationship between harm avoidance and
insular-opercular network efficiency remained significant
when controlling for mean connectivity within this network.
No such results were found for other resting-state networks.
The results provide insights into how personality is organized
in the human brain and point toward clinically relevant
endophenotypes for affective and mood disorders.
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Affective disorders and mood disorders represent a consid-
erable burden for inflicted patients and for society because
of the tremendous costs for health care (Berger, Edelsberg,
Treglia, Alvir, & Oster, 2012; Ilyas & Moncrieff, 2012;
Simon, 2003; Smit et al., 2006; Wittchen et al., 2011).
Psychiatric disorders are thought to have a dimensional
instead of a categorical character, with psychopathology
lying at the extreme end of otherwise normal individual
variation (Plomin, Haworth, & Davis, 2009; Trull,
Tragesser, Solhan, & Schwartz-Mette, 2007).
Understanding the normal anxiety response is therefore an
important step toward an evidence-based treatment of such
disorders (Bateson, Brilot, & Nettle, 2011; Montag, Reuter,
Jurkiewicz, Markett, & Panksepp, 2013).

All personality theories, which provide taxonomies to char-
acterize and explain individual differences in behavior, agree on
a personality dimension linked to trait anxiety. These theories
describe anxiousness as a key personality dimension and define
it as responsiveness of an individual to aversive stimuli of pun-
ishment or uncertainty (Cloninger, 1986; Costa & McCrae,
1992; Eysenck, 1947; Gray, 1971; Panksepp, 1998). The anx-
ious personality is thought to underlie anxiety disorders, either
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as a risk factor (Clark, Watson, & Mineka, 1994) or as an
endophenotype (Leonardo & Hen, 2006). A thriving question
is how trait anxiety is represented in the brain. The application
of neuroimaging techniques to study individual differences in
anxiety in healthy human research participants has the potential
of revealing brain regions and neural circuitry that may serve as
biomarkers or drug targets for the treatment of affective disor-
ders (for review on structural imaging and anxiety, see Montag
et al., 2013; for a review on a functional magnetic resonance
imaging and anxiety, see Etkin & Wager, 2007).

In recent years, the cognitive, affective, and behavioral neu-
rosciences have witnessed a paradigm shift toward an integra-
tive view of brain functioning as an intricate network of highly
specialized processing units (Smith, 2013). Several large-scale
brain networks are not only conjointly activated during task
conditions but also become apparent in the resting brain in
the form of spatio-temporal synchronies in the blood oxygen-
level dependent (BOLD) time series of intrinsically generated
brain activity (Fox & Raichle, 2007; van den Heuvel &
Hulshoff Pol, 2010). In the context of fMRI, the resting state
is defined as a condition where the research participant does not
engage in a behavioral task but is instructed to lie still, with
closed eyes, and without thinking of anything in particular.
Synchronous fluctuations in resting-state fMRI are interpreted
as functional connectivity (Friston, Frith, Liddle, &
Frackowiak, 1993), a concept closely related yet not redundant
to anatomical links through white matter tracts (Greicius,
Supekar, Menon, & Dougherty, 2009; Honey et al., 2009;
van den Heuvel, Mandl, Kahn, & Hulshoff Pol, 2009). The
architecture of functional networks is considerably stable
across time (Shehzad et al., 2009), preserved across different
states of consciousness (Fukunaga et al., 2006; Greicius et al.,
2008; Vincent et al., 2007), and not only parallels the topogra-
phy of stimulus-evoked brain activation (Dosenbach et al.,
2007) but also is able to predict neural activity during task
performance (Gordon, Stollstorff, & Vaidya, 2011). All this
evidence suggests that resting-state brain activity is not a neural
correlate of ongoing information processing but rather reflects a
ready state that maintains responsiveness to external events and
facilitates adaptation to changing environmental demands
(Raichle, 2010, 2011).

This view on resting-state brain connectivity makes it a
promising research target for the neural correlates of personal-
ity. Personality traits are conceptualized as behavioral disposi-
tions that explain and predict behavior across different situa-
tions. Early on, personality theorists have argued that these
traits should be considered as neuropsychological systems with
the purpose of triggering consistent behavioral responses to
functionally equivalent stimuli (Allport, 1937). Accordingly,
individual differences in behavior are thought to stem from
variability in these systems (Eysenck, 1947). Large-scale net-
works, as described in the resting-state literature, might consti-
tute a functional neural basis for these hypothesized
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neuropsychological systems, and, in turn, individual differences
in the networks” architecture and reactivity to stimulation might
underlie individual differences in behavioral dispositions.

In line with the dimensional character of anxiety and anxiety
disorders, the insular-opercular network has been hypothesized
to be a major contributor to anxiety disorders (Sylvester et al.,
2012). The insular-opercular network is an intrinsic connectiv-
ity network centering on the anterior insular (Seeley et al.,
2007) and comprising anterior cingular, anterior prefrontal, tha-
lamic, and striatal sites, as well as the amygdala and cortical
areas along the operculum. Task-based neuroimaging studies
have shown that elevated levels of trait anxiety are associated
with increased activity within the insular-opercular network
(Hajcak, McDonald, & Simons, 2003; Most, Chun, Johnson,
& Kiehl, 2006; Paulus, Rogalsky, Simmons, Feinstein, & Stein
2003). This stronger activation has been discussed as a com-
pensatory mechanism for reduced processing efficiency, a
claim backed up by the observation that activity increases are
paralleled by decreases in within-network connectivity during
task processing (Basten, Stelzel, & Fiebach, 2011).

First, evidence from resting-state fMRI points toward a role
of the insular-opercular network in anxiety as well: Patients
diagnosed with social and generalized anxiety disorders show
aberrant within-network connectivity, with either increased or
decreased connectivity depending on neural site (Liao et al.,
2010; Pannekoek et al., 2013; Roy et al., 2013). But also in the
nonpathological range, state and trait anxiety measures corre-
late with within-network connectivity. Although the majority
of studies reports positive relationships between anxiety and
connectivity strength on specific within-network routes (Baur,
Hanggi, Langer, & Jéncke, 2013; Markett et al., 2013; Seeley
etal., 2007), other studies report both increases and decreases,
depending on the route under study (Aghajani et al., 2014).

These pioneering studies provide evidence for an important
role of the insular-opercular network in trait anxiety and anx-
iety disorders. By doing this, however, they only describe
relationships on the level of activity of single neural sites or
connectivity on specific routes within the network, while
neglecting the overall architecture of the network as a whole.
Although a functional link between two brain areas is the
basic entity of a network, brain functioning can be better un-
derstood as an interplay between multiple functional connec-
tivities embedded into a network of multiple brain areas. That
is, an association between anxiety and single functional con-
nectivities, as reported in previous work, can only be a first
(yet important) step toward the discovery of network corre-
lates of anxiety. In this study, we therefore seek to zoom out
from single brain areas and their connectivity and take a per-
spective on anxiety on the basis of network efficiency.
Network efficiency is a graph-analytical concept. Graph anal-
yses make use of algorithms to describe network properties
based on the representation of a network as a set of nodes that
are connected to each other by edges. In the case of resting-
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state networks, brain regions of interest are defined as network
nodes, and the functional connectivity between each pair of
nodes as a connecting edge (Fornito, Zalesky, & Breakspear,
2013). This allows for the calculation of network metrics that
describe the efficiency of information flow through the net-
work, or the relative importance of single nodes to the network
architecture. Compared to the earlier studies in the field that
focused merely on bivariate relationship between two network
nodes (Aghajani et al., 2014; Baur et al., 2013; Markett et al.,
2013; Seeley et al., 2007), our present approach takes the
richness of connectivity throughout the entire network into
account by characterizing the network as a whole and describ-
ing characteristics in the organization of functional connectiv-
ity at a level superordinate to single connections.

As outlined earlier, decreased insular-opercular processing
efficiency has been put forward as an explanation for increased
reactivity of single parts of the network in highly anxious par-
ticipants (Basten et al., 2011; Sylvester et al., 2012). Here,
processing efficiency refers to the metabolic demands of a neu-
ral system to create a given output. Reduced processing effi-
ciency would therefore be compensated by an increase in neu-
ral activation to produce a similar output. A potential neural
basis for a processing deficit could be reflected in the overall
information exchange capability between different parts of the
network. In graph-analytical terms, this can be described by the
network’s characteristic path length. This measure quantifies
the average shortest path along functional connections between
any pair of nodes, either directly or by traveling through other
nodes. Shorter path lengths allow for faster information ex-
change, hence, a shorter characteristic path length reflects
higher network efficiency. Thus, one could expect a positive
correlation between anxiety scores and individual insular-
opercular characteristic path lengths (i.e., a decreased network
efficiency in highly anxious participants). Throughout this ar-
ticle, we will use the term network efficiency to refer to the
graph-analytical concept of characteristic path length, and the
term processing efficiency to refer to the relationship between
metabolism and system output, as outlined earlier.

In the context of this study, we seek to relate the insular-
opercular network’s characteristic path length to trait anxiety as
conceptualized by the harm-avoidance construct in the
Temperament and Character Inventory (TCI; Cloninger,
Svrakic, & Przybeck, 1993). Harm avoidance is a temperament
dimension that describes the heritable tendency to react overly
cautiously, nervously, pessimistically, and passively and to re-
spond intensely to stimuli of punishment and nonreward
(Cloninger, 1986). Conceptually, the harm-avoidance tempera-
ment resembles the conceptualization of anxiety as a behavioral
inhibition system because it taps the same idea that anxiety arises
from uncertainty (Gray & McNaughton, 2000). Various self-
report measures of anxiety are highly correlated (Montag et al.,
2013); the correlation between harm avoidance and trait anxiety
from the Spielberger inventory (Spielberger, 1989), for instance,

falls in the range of .6 to .8 (Jiang et al., 2003). This large
proportion of shared variance between different measures has
motivated researchers, including ourselves, to use composite
scores of several measures to assess this shared variance
(Bijsterbosch, Smith, Forster, John, & Bishop, 2014; Markett,
Montag, & Reuter, 2011). In this study, however, we focus on a
single questionnaire, the TCI. Because of the high level of ag-
gregation, the findings are more abstract and less easy to interpret
when many different measures are used. We choose the TCI
because elevated levels of harm avoidance have been described
in patients diagnosed with anxiety disorders (Nery et al., 2008;
Ongﬁr, Farabaugh, losifescu, Perlis, & Fava, 2005), pointing
toward the role of harm avoidance as an endophenotype or dis-
position of anxiety disorders. Also, the TCI offers four subscales
of harm avoidance (Anticipatory Worry, Fear of Uncertainty,
Shyness, and Fatigability) that allow for a more fine-grained
perspective on the different facets of trait anxiety. And also, the
TCI has been most extensively applied in many neuroimaging
studies on anxiety, which helps to relate our findings to the body
of literature in the field (Markett, Montag, & Reuter, 2016).

Method
Participants

Forty-eight healthy female participants (mean age = 22.83, SD
= 6.7 years) gave their informed written consent to participate
in the study. We chose to invite females only to control for
possible gender effects because males could not have been
included in sufficient numbers for this study (because we re-
cruited mainly from psychology classes). All participants were
free of neurological or psychiatric disorders, as indicated by a
screening questionnaire. The study protocol was carried out in
accordance with the Declaration of Helsinki and was approved
by the local ethics committee at the University Clinics in Bonn.

Personality assessment

All participants filled in the Temperament and Character
Inventory (TCI) before the acquisition of imaging data. This
was done on a different day than MRI scanning, but not more
than 2 weeks before image acquisition. Besides the TCI, par-
ticipants filled in a battery of other psychometric tests. Based
on the extensive use of the TCI in neuroimaging of anxiety
(Markett et al., 2016), we choose to focus exclusively on this
assessment tool. The TCI consists of 240 items with a dichot-
omous response format and aims to measure four tempera-
ment (novelty seeking, harm avoidance, reward dependence,
persistence) and three character dimensions (self-directedness,
cooperation, self-transcendence). For psychometric reasons,
the complete TCI was administered. Given our clear hypoth-
esis and to circumvent the need to control for multiple testing,
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we only analyzed the items for the temperament harm avoid-
ance, including its four subscales.

Image acquisition

From each participant, 245 T2*-weighted volumes were obtain-
ed on a Siemens Avanto 1.5 T scanner (Siemens, Erlangen,
Germany) at the Life & Brain Center in a single 12-min session.
Each volume consisted of 38 slices (thickness: 3 mm, interslice
gap: 1 mm, in plane resolution: 3 mm X 3 mm) scanned in
interleaved order (TR: 3.06 s, TE: 45 ms, flip angle: 90°, field
of view: 192 mm). Participants were instructed to lie as still as
possible, with their eyes closed, and without thinking about
anything in particular and without falling asleep. After the func-
tional scan, a high-resolution structural T1-weighted image with
160 sagittal slices, with 1 mm thickness, was acquired from
each participant using a Magnetization Prepared Rapid
Gradient Echo (MP-RAGE) sequence (field of view: 256 mm,
in-plane resolution: 1 mm x 1 mm). Foam padding was used to
constrain head movements during image acquisition.

Image analysis

All analyses were carried out in MATLAB (MathWorks) using
the REST toolbox (www.restfmri.net) in SPMS8 (www.fil.ion.
ucl.ac.uk/spm), the Data Processing Assistant for Resting State
fMRI (DPARSF; Yan & Zhang, 2010) and the Brain
Connectivity Toolbox (BCT; Rubinov & Sporns, 2010).
Preprocessing contained the following steps in the described
order: (1) removal of the first 10 volumes; (2) slice timing to the
middle slice; (3) realignment; (4) controlling for 12 voxel-
specific movement parameters (three voxel-specific transla-
tions, three voxel-specific rotations, and six corresponding
squared items; Satterthwaite et al., 2013) by means of linear
regression; (5) coregistration of the mean functional image with
the high-resolution structural scan; (6) additional motion cor-
rection by modeling time points with excessive motion as sep-
arate regressors and controlling for nuisance signals extracted
from white matter (SPM’s tissue probability map thresholded at
.9 and warped into native space using the inverse transforma-
tion matrix from SPM’s unified segmentation routine), cerebro-
spinal fluid (thresholded at 70 %), and the global mean signal
by means of linear regression; (7) band-pass filtering (.01—.08
Hz); (8) spatial normalization using the T1-unified segmenta-
tions of the structural image; and (9) spatial smoothing with a
Gaussian kernel with a full width of 6 mm at half maximum.
Preprocessing step six (additional motion correction) was
carried out by “scrubbing” bad time points (frame wise dis-
placement > .5), including one time point before and two time
points after marked time points by means of linear regression
(Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). A
mean of 2.79 frames was treated as “bad” time points (range:
0-27). Three participants with excessive motion (classified as
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outliers according to the Tukey, 1977, criterion, i.e. 1.5% in-
terquartile range above the third quartile of the distribution)
were excluded from subsequent analyses.

Graph construction

We modeled the whole-brain network as a weighted undirect-
ed graph G = (V,E), with nodes (vertices) V based on the 160
regions of interest (ROIs) from the Dosenbach atlas
(Dosenbach et al., 2010), which provides a meta-analytically
derived whole brain parcellation scheme based on functional
activation during task fMRI. For edges E, time courses were
extracted as the mean BOLD time series from all regions of
interest (spheres with 5-mm radius), and linear correlations
were computed between time series. Correlation coefficients
were standardized using Fisher’s r-to-z transformation to ap-
proximate a Gaussian distribution. To facilitate between-
subjects comparisons, the z standardized connectivity matrices
were thresholded at different costs (.1 to .25, in increments of
.05). Equating the number of network edges across partici-
pants by thresholding at a fixed set of costs (i.e., percentage
of edges) prevents the biasing of network metrics by individ-
ual differences in edge density. Network metrics were calcu-
lated for each cost and then averaged for between-subjects
comparison (van Wijk, Stam, & Daffertshofer, 2010).

Graph-theoretical metrics

To obtain the characteristic path length of the insular-
opercular network for each individual, each thresholded con-
nectivity matrix was first transformed into a connection-length
matrix by computing the matrix’s inverse. Then, the shortest
paths between each pair of nodes were calculated by the
Dijkstra algorithm. In brief, this algorithm finds shortest paths
from a source node to all other nodes by constructing shortest-
path trees to all other nodes in the network. The calculation of
shortest paths was based on the full network, consisting of all
160 vertices in the graph. The characteristic path length of the
insular-opercular network was then calculated as the average
of all shortest paths between the 32 nodes labeled as “insular-
opercular network” by Dosenbach et al. (2010) (for an over-
view of insular-opercular nodes see (Fig. 1)). By first taking
connectivity in the whole brain into account and then
narrowing down on the insular-opercular network, we ensured
that the shortest paths between two insular-opercular nodes
that traverse nodes outside the network were also considered
when calculating the characteristic path length. We also com-
puted the global clustering coefficient and mean connectivity
as further measures of integration that provide information on
network efficiency. The mean clustering coefficient was de-
termined by first computing, for each of the 160 nodes in the
whole-brain network, the fraction of each node’s neighbors
that are themselves neighbors to each other. Then, these values
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were averaged across all nodes labeled as insular opercular.
Mean connectivity was determined by averaging all edges
within the insular-opercular network.

To obtain discriminant validity, we also analyzed the other
five networks from the Dosenbach atlas in a similar fashion.
These networks included the fronto-parietal (34 nodes), the
default mode (21), the sensorimotor (33), the cerebellar (18),
and the visual network (22). Characteristic path length, global
clustering coefficient, and mean connectivity were also com-
puted for the whole-brain network based on 160 nodes.

Results

Neither the network-efficiency measures nor harm avoidance
was correlated with participants’ age (all || < .2). The corre-
lation between the harm-avoidance scale and the characteristic

Table 1  Partial correlation coefficients (top row) and corresponding
values (one-tailed, bottom row) for the association between the insular-
opercular network’s characteristic path length and harm avoidance and its
four subscales (HA1: Anticipatory Worry, HA2: Fear of Uncertainty,

path length controlling for mean framewise displacement
(FD) was significant (r = .422, p = .002, one-tailed: see
Table 1). In line with our prediction, increasing network effi-
ciency, as indexed by a shorter characteristic path length, was
accompanied by decreasing levels of harm avoidance. There
was also a negative partial correlation between harm avoid-
ance and the global clustering coefficient (» = -.353, p = .029,
one-tailed) and between harm avoidance and mean connectiv-
ity (r=-.334, p = .013, one-tailed). Because random networks
with higher mean connectivity tend to exhibit decreased
shortest-path lengths and higher clustering coefficients, we
reran the correlation analysis between harm avoidance, char-
acteristic path lengths, and the global clustering coefficient
while also controlling for mean within-network connectivity.
The correlation between harm avoidance and the characteristic
path length remained significant after controlling for mean
connectivity (r=.284, p = .032); the correlation between harm

HA3: Shyness with Strangers, and HA4: Fatigability). Coefficients are
in the top row are corrected for mean framewise displacement;
coefficients in the bottom row are corrected for mean framewise
displacement (FD) and mean connectivity (MC)

Harm Anticipatory Fear Shyness Fatigability
Avoidance Worry of
Uncertainty
FD controlled 4223 .306%* 269 A416%* 222
significance .002 .022 .026 .002 .073
FD & MC .284%* 154 .092 .198 .323%
controlled
significance .032 .163 .280 101 .017
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avoidance and the global clustering coefficient, however, did
not (r =-.126, p = .211).

Table 1 gives partial correlations for the relationships be-
tween the characteristic path length and the four subscales.
The top row gives coefficients for the relationship between
the subscales and insular-opercular characteristic path length
controlled for mean FD, and the bottom row gives the same
coefficients, while additionally controlling for mean connec-
tivity within the insular-opercular network. When only con-
trolling mean FD, characteristic path length was significantly
intercorrelated with the facets Anticipatory Worry (HA1) and
Shyness (HA3). After controlling for mean connectivity, only
the facet Fatigability (HA4) was significantly intercorrelated
with characteristic path length, indicating that this aspect of
the harm-avoidance construct contributes to the observed re-
lationship between network efficiency (characteristic path
length) in the insular-opercular network and trait anxiety.

We next examined the relationship between harm avoid-
ance and properties of the other five resting-state networks.
Partial correlation coefficients are given in Table 2. The coef-
ficients in the top row suggest similar relationships between
harm avoidance and other resting-state networks as reported
for the insular-opercular network. However, when controlling
for mean connectivity, the relationships between harm avoid-
ance and the characteristic path lengths and global clustering
coefficients in all five networks fall beneath the statistical
threshold, indicating some specificity for the insular-
opercular network. A formal comparison of the partial corre-
lation coefficients using Meng’s z test indicated significant
differences between the harm-avoidance—insular-opercular
path length correlation and the correlations between harm
avoidance and the path lengths of the fronto-parietal, cerebel-
lar, and visual networks (all ps < .05). The partial correlations
between harm avoidance and characteristic path length in the
default mode network (z = .29, p =.38) and in the somato-
motor network (z = .594, p =.276) were not significantly
smaller than the partial correlation between harm avoidance
and path length in the insular-opercular network.

Table 2 Relationships between resting-state networks and harm
avoidance. Coefficients in the top row (I) are partial correlation
coefficients controlling for mean framewise displacement. Coefficients

We also analyzed the relationship between harm avoidance
and network measures at the whole-brain level. Here, harm
avoidance was positively related to characteristic path length
(r = 421, p = .004) and negatively to the global clustering
coefficient (» = -.351, p = .02) and mean connectivity (r =
-.379, p = .011). When additionally controlling for mean con-
nectivity, however, the partial correlations between harm
avoidance and characteristic path length and the global clus-
tering coefficient ceased to be significant (see Table 2).

All results are based on graph-theoretical measures aver-
aged across four different cost thresholds (i.e., sparsity levels;
see Method). Results, however, were robust with regard to the
thresholding procedure: Graph metrics and questionnaire
measures were significantly correlated at all cost thresholds,
except for the highest threshold of .25, where the correlation
coefficients fell short of formal significance for some of the
analyses.

Discussion

The rationale of this study was to assess whether trait anxi-
ety—as operationalized by the temperament dimension harm
avoidance—modulates the overall behavior of the insular-
opercular network in the resting state. This hypothesis was
grounded on a recent assumption that activity of the insular-
opercular network correlates with trait anxiety (Sylvester
et al., 2012). We applied graph analysis to multiple regions
of interest to estimate the insular-opercular network’s charac-
teristic path length as a measure for network efficiency.
Participants scoring high on harm avoidance showed an in-
creased characteristic path length, indicating less efficient in-
formation exchange in the insular-opercular network at rest.
Previous studies had shown that functional connectivity on
single routes within the network is altered in anxious people.
Our study extends this evidence from single connections to
the organization of the network as a whole. The relationship
between harm avoidance and the characteristic path length

in the bottom row are partial correlation coefficients controlling for
mean framewise displacement and mean connectivity

Default Mode Fronto-Parietal

Somato-Motor

Cerebellum Visual

CPL CcC MC CPL CC MC CPL

I 416 -389  -374 .106 -203 -253 318
I 223 -.146 -178 .052 .168
Insular-Opercular Whole brain

CPL CcC MC CPL CC MC
I 422 -353 -334 421 -351 -379
I 284 -.126 213 192

CcC MC CPL CcC MC CPL CcC MC
-279
-.034

-280 155
-072

-.358
-.099

-.362 182 -236
-.269 320

-345

CPL = characteristic path length, CC = global clustering coefficient, MC = mean connectivity. Significant partial correlations are printed in boldface
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remained significant after controlling for mean connectivity,
which itself was negatively related to harm avoidance.

Harm avoidance can be split into four facets that allow for a
detailed analysis of the present these findings. When control-
ling for mean within network connectivity, only the correla-
tion between the “fatigability”” subscale and insular-opercular
characteristic path length reached statistical significance, un-
like the correlations between insular-opercular path length and
Anticipatory Worry, Fear of Uncertainty, and Shyness that
were all not significant. In a previous study on the relationship
between harm avoidance and connectivity within the insular-
opercular network (Markett et al., 2013), we found less spe-
cific associations between the subscales and insular connec-
tivity: All four facets were associated with insular-cingulate
connectivity on their own, and the highest correlation was
observed for the shyness scale. Of note, the shyness scale also
showed the nominally largest correlation with characteristic
path length in this study without controlling for mean connec-
tivity. The relationship, however, vanished when mean con-
nectivity was considered as confound.

Within the TCI personality framework, fatigability reflects
the idea that highly anxious people tire much quicker, presum-
ably as a result of their heightened status of cautious alertness
(Cloninger et al., 1993). According to the questionnaire items,
fatigability refers to having less energy, feeling less secure and
energetic, needing more time or support to recover from stress
as well as minor illness and everyday adversity, and having
more difficulties to adapt to new situations because of getting
weary and worried. Fatigability is a core symptom of gener-
alized anxiety disorder, according to DSM-5, and strong links
to major depression and depressive symptoms have been re-
ported (Nyman et al., 2011). The harm-avoidance facets have
not been investigated thoroughly in the context of neuroimag-
ing studies, even though the harm-avoidance scale itself has
been widely applied (Markett et al., 2016). We are aware of
three neuroimaging studies that report data on the facets, and
two of these studies report associations with the fatigability
scale: Pujol Lopez, Deus, Cardoner, and Vallejo (2002) report-
ed increased surface volume of the right anterior cingulate in
healthy participants scoring high on fatigability. The anterior
cingulate is one of the core areas of the insular-opercular net-
work (Seeley et al.,, 2007). Tuominen et al. (2012) found
higher availability of mu-opioid receptors throughout the
insular-opercular network in highly fatigable participants.
This finding was interpreted as an upregulation of receptors,
presumably in consequence of a lower endogenous opioid
drive that could result in heightened anxiety and fatigability.
These two studies support the present finding that aspects of
the cingulo-opercular network contribute to fatigability in the
context of harm avoidance. Task fMRI studies are needed to
characterize this contribution further. Regarding task fMRI, an
interesting perspective comes from studies that suggest that
the insular-opercular network might be involved in the

maintenance of task sets and task-relevant tonic alertness
(Dosenbach et al., 2006; Sadaghiani & D’Esposito, 2014). It
would be interesting to assess the possibility that heightened
fatigability leads to disruptions in the insular-opercular net-
work’s ability to maintain tonic alertness, maybe by decreas-
ing the networks overall efficiency. This could be probed in a
within-subjects design by manipulating fatigability and ob-
serving changes in insular-opercular connectivity and network
efficiency.

The specificity of these findings with respect to the fatiga-
bility facet—when controlling for mean connectivity—raises
the question of why the other three subscales produced non-
significant findings with respect to insular-opercular network
efficiency. It is conceivable that these aspects of harm avoid-
ance are not encoded within the network’s overall efficiency,
but in other network properties. In our previous study, antici-
patory worry, fear of uncertainty, and shyness correlated with
insular-cingulate and insular-frontal connectivities, a finding
that is in line with this view. Pessimistic worry in the antici-
pation of problems, on the other hand, does also bear a cog-
nitive component, and cognitive processes are more domi-
nantly associated with prefrontal sites. Studies have shown
that anticipatory worry correlates with task-elicited activity
and glucose consumption in dorsolateral prefrontal cortex
(Tillfors, Furmark, Marteinsdottir, & Fredrikson, 2002).
Furthermore, task fMRI studies point toward aberrant func-
tional interactions between prefrontal control regions and sub-
cortical areas in highly anxious participants (Basten et al.,
2011; Bishop, Duncan, Brett, & Lawrence, 2004), and evi-
dence from structural tractography suggests that individual
differences in prefrontal-subcortical white matter projections
represents a neurostructural correlate of anxiety (Montag
etal., 2013). Although the insular-opercular network has been
most dominantly implicated in anxiety (Vaidya & Gordon,
2013), other resting-state networks such as the fronto-
parietal control network comprising the dorsolateral prefrontal
cortex, medial anterior cingulate, and the intraparietal lobule
(Dosenbach et al., 2008) and the default-mode network have
also been hypothesized to play a relevant role (Sylvester et al.,
2012). Our findings of reduced network efficiency in highly
harm-avoidant participants, however, seems to have some
specificity for the insular-opercular network: Even though
harm avoidance was intercorrelated with the characteristic
path lengths of some other networks, these relationships were
no longer significant when mean connectivity was taken into
account.

Liao et al. (2010) were able to demonstrate causal interac-
tions between different resting-state networks. Future studies
may want to assess the strength of such interactions, especially
between the fronto-parietal control and the insular-opercular
network in the context of trait anxiety and anxiety disorders.
Recent data suggest that some aspects of anxiety are reflected
in between network connectivity (Bijsterbosch et al., 2014).
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Even though our study did not find evidence for a global rela-
tionship between harm avoidance and network efficiency at the
whole-brain level that could not be better explained by a re-
duced mean connectivity, we still found reduced mean connec-
tivity across the entire brain in highly harm-avoidant partici-
pants. This finding corroborates another recent report of a neg-
ative relationship between overall brain-wide functional con-
nectivity and anxiety-related personality traits (Servaas et al.,
2015) and is further in line with structural imaging work that
reports widespread reductions in white matter microstructure of
long association fibers in individuals who score high on neu-
roticism (Bjernebekk et al., 2013). Given the correspondence of
structural and functional connectivity at the global network lev-
el (Misi¢ et al., 2016), our results support also the idea that the
“anxious brain” is characterized by having weaker functional
and structural connections that may disrupt information flow
and exchange at a global level (Servaas et al., 2015). Future
studies may want explore hierarchical network clustering to
unravel associations between personality traits and the organi-
zation of functional connectivity at the whole-brain, the be-
tween-network, and the within-network levels.

For the Fear subscale, it is also likely that subcortical brain
regions play a dominant role: Commonly, fear is distinguished
from anxiety as an emotion elicited by direct and immediate
threat to the individual (Gray, 1971). In contrast, anxiety is the
emotion provoked by situations of high uncertainty. Anxiety
and fear can be functionally dissociated between prefrontal
sites, different nuclei of the amygdala and the periaqueductal
gray (Mobbs et al., 2007), and it would be interesting to see
whether such dissociation could also be obtained using func-
tional connectivity mapping of the resting brain.

An important point that warrants discussion is the direction
of the effect, because it appears to be at odds with previous
findings of higher functional connectivity on selected within-
network routes in this group of participants (Baur et al., 2013;
Markett et al., 2013; Seeley et al., 2007). For the analyses of
path lengths, between-node connectivity is transformed into a
distance measure where higher functional connectivity reflects
a shorter distance. Therefore, the path length between two
strongly coupled brain regions is low, reflecting fast and effi-
cient information exchange. Following this logic, an effect in
the opposite direction (an inverse relationship between anxiety
and path length) would have seemed plausible. On the other
hand, some studies have reported not only higher but also
lower functional connectivity in the highly anxious, depend-
ing on the neural sites under scrutiny (Aghajani et al., 2014;
Liao et al., 2010). Characteristic path length is an aggregate
measure of all connections in a network. Less efficient net-
work behavior (i.e., a high characteristic path length) in a
group of participants is therefore possible, even if some paths
in their networks are shorter.

Another thriving question is how activity in resting-state
networks relates to the processing of affective stimuli in task
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situations. Following Raichle (2011), resting-state networks
maintain a ready state of brain activity that facilitates respon-
siveness to environmental demands. If personality is encoded
in the properties of resting-state networks as our results sug-
gest, a prediction from individual differences in resting-state
network activity on relevant stimulus-evoked brain activity
should be possible, just in the same way as personality ques-
tionnaires can predict neural responsiveness to emotional
stimuli (Canli et al., 2001). In the cognitive domain, it has
been shown that brain activity during working memory tasks
can be predicted from the activity within resting-state net-
works (Gordon et al., 2011). Future studies may want to assess
to what extent similar results can be obtained for the process-
ing of fear- and anxiety-related stimuli. Graph theory provides
tools to describe patterns in connectivity data and can help to
characterize properties of networks that are thought to underlie
cognitive and affective processing. This might be relevant for
the specification of neurobehavioral theories: A prominent
psychological theory on attentional control, for instance, dis-
cusses the relevance of trait anxiety for processing efficiency,
which refers to the relationship between the efforts or re-
sources invested during task performance and the quality of
task performance (Eysenck, Derakshan, Santos, & Calvo,
2007). Predictions of this theoretic account have been success-
fully tested using task fMRI (Basten et al., 2011), yet it re-
mains unclear why trait anxiety would affect processing effi-
ciency. One possible account would be suboptimal informa-
tion exchange capability between relevant brain areas, which
might be reflected in network efficiency as indexed by path
lengths in relevant functional networks. Future studies may
want to study the relationships between properties of resting-
state networks such as network efficiency and task-evoked
activation, and to characterize changes in network behavior
in different psychological contexts, such as the resting state or
during task (Cohen, Gallen, Jacobs, Lee, & D’Esposito,
2014).

A limitation of this study is the restriction of the sample to
female participants. Only females were invited to control for
possible gender effects. Controlling for gender in the context
of research on anxiety is important because females usually
report higher levels of trait anxiety (e.g., Montag et al., 2010).
Future studies, however, should assess whether similar rela-
tionships can also be obtained in a male sample or whether
resting-state correlates of personality are dimorphic with re-
spect to gender.

Despite of its great success in the cognitive and affective
neurosciences, the effective translation of task fMRI into clin-
ical applications is still pending (Matthews, Honey, &
Bullmore, 2006). Hope has been raised that resting-state
fMRI will eventually produce valid and reliable biomarkers
for psychiatric disorders (Fox & Greicius, 2010), and, indeed,
the application of multivariate pattern classification to resting-
state scans can predict disease state in major depression
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(Craddock, Holtzheimer, Hu, & Mayberg, 2009). Research
into personality correlates of resting-state fMRI can comple-
ment such data-driven approaches to disease state by provid-
ing endophenotypes that are grounded in neuropsychological
theory. In the context of this study, it would be interesting to
examine the organization of functional connectivity within the
insular-opercular network in patients suffering from anxiety
disorders, and to assess whether abnormalities are contingent
on symptom severity and sensitive to symptom improvement
after therapeutic interventions.

References

Aghajani, M., Veer, 1. M., van Tol, M.-J, Aleman, A., van Buchem, M. A.,
Veltman, D. J., . . .van der Wee, N. J (2014). Neuroticism and extra-
version are associated with amygdala resting-state functional connec-
tivity. Cognitive, Affective, and Behavioral Neuroscience, 14(2), 836—
848. doi:10.3758/s13415-013-0224-0

Allport, G. (1937). Personality: A psychological interpretation. New
York, NY: Holt, Rinehart & Winston.

Basten, U., Stelzel, C., & Fiebach, C. J. (2011). Trait anxiety modulates
the neural efficiency of inhibitory control. Journal of Cognitive
Neuroscience, 23(10), 3132-3145. doi:10.1162/jocn_a_00003

Bateson, M., Brilot, B., & Nettle, D. (2011). Anxiety: An evolutionary
approach. Canadian Journal of Psychiatry, 56(12), 707-715.

Baur, V., Hénggi, J., Langer, N., & Jancke, L. (2013). Resting-state func-
tional and structural connectivity within an insula—amygdala route
specifically index state and trait anxiety. Biological Psychiatry, 1-8.
doi:10.1016/j.biopsych.2012.06.003

Berger, A., Edelsberg, J., Treglia, M., Alvir, J. M. J., & Oster, G. (2012).
Change in healthcare utilization and costs following initiation of
benzodiazepine therapy for long-term treatment of generalized anx-
iety disorder: A retrospective cohort study. BMC Psychiatry, 12,
177. doi:10.1186/1471-244X-12-177

Bijsterbosch, J., Smith, S., Forster, S., John, O. P., & Bishop, S.J. (2014).
Resting state correlates of subdimensions of anxious affect. Journal
of Cognitive Neuroscience, 26(4), 914-926.

Bishop, S., Duncan, J., Brett, M., & Lawrence, A. D. (2004). Prefrontal
cortical function and anxiety: Controlling attention to threat-related
stimuli. Nature Neuroscience, 7(2), 184—188. doi:10.1038/nn1173

Bjoernebekk, A., Fjell, A. M., Walhovd, K. B., Grydeland, H., Torgersen,
S., & Westlye, L. T. (2013). Neuronal correlates of the five factor
model (FFM) of human personality: Multimodal imaging in a large
healthy sample. Neurolmage, 65, 194-208.

Canli, T., Zhao, Z., Desmond, J. E., Kang, E., Gross, J., & Gabrieli, J. D.
(2001). An fMRI study of personality influences on brain reactivity
to emotional stimuli. Behavioral Neuroscience, 115(1), 33-42.

Clark, L. A., Watson, D., & Mineka, S. (1994). Temperament, personal-
ity, and the mood and anxiety disorders. Journal of Abnormal
Psychology, 103(1), 103—116.

Cloninger, C. R. (1986). A unified biosocial theory of personality and its
role in the development of anxiety states. Psychiatric Developments,
4(3), 167-226.

Cloninger, C. R., Svrakic, D. M., & Przybeck, T. R. (1993). A psychobi-
ological model of temperament and character. Archives of General
Psychiatry, 50(12), 975-990.

Cohen, J. R., Gallen, C. L., Jacobs, E. G., Lee, T. G., D’Esposito, M., & 9.
(2014). Quantifying the reconfiguration of intrinsic networks during
working memory. PLoS One, 9(9), e106636. doi:10.1371/journal.
pone.0106636

Costa, P. T., Jr., & McCrae, R. R. (1992). Revised NEO Personality
Inventory (NEO-PI-R) and NEO Five Factor inventory (NEO-FFI)
(Professional manual). Odessa, FL: Psychological Assessment
Resources.

Craddock, R. C., Holtzheimer, P. E., Hu, X. P., & Mayberg, H. S. (2009).
Disease state prediction from resting state functional connectivity.
Magnetic Resonance in Medicine, 62(6), 1619-1628. doi:10.1002
/mrm.22159

Dosenbach, N. U. F.,, Fair, D. A., Cohen, A. L., Schlaggar, B. L., &
Petersen, S. E. (2008). A dual-networks architecture of top-down
control. Trends in Cognitive Sciences, 12(3), 99-105. doi:10.1016/].
tics.2008.01.001

Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K.
K., Dosenbach, R. A. T., . . . Petersen, S. E. (2007). Distinct brain
networks for adaptive and stable task control in humans.
Proceedings of the National Academy of Sciences of the United
States of America, 104(26), 11073-11078. doi:10.1073
/pnas.0704320104

Dosenbach, N. U. F., Nardos, B., Cohen, A. L., Fair, D. A., Power, J. D.,
Church, J. A., ... Schlaggar, B. L. (2010). Prediction of individual
brain maturity using fMRI. Science, 329(5997), 1358—1361.
doi:10.1126/science. 1194144

Dosenbach, N. U., Visscher, K. M., Palmer, E. D., Miezin, F. M., Wenger,
K. K., Kang, H. C,, ... Petersen, S. E. (2006). A core system for the
implementation of task sets. Neuron, 50(5), 799-812.

Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: A
meta-analysis of emotional processing in PTSD, social anxiety dis-
order, and specific phobia. The American Journal of Psychiatry,
164(10), 1476.

Eysenck, H. J. (1947). Dimensions of personality. Piscataway, NJ:
Transaction.

Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007).
Anxiety and cognitive performance: Attentional control theory.
Emotion, 7(2), 336.

Fornito, A., Zalesky, A., & Breakspear, M. (2013). Graph analysis of the
human connectome: Promise, progress, and pitfalls. Neurolmage,
80(C), 426-444. doi:10.1016/j.neuroimage.2013.04.087

Fox, M. D., & Greicius, M. (2010). Clinical applications of resting state
functional connectivity. Frontiers in System Neuroscience, 4, 19.
doi:10.3389/fnsys.2010.00019

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain
activity observed with functional magnetic resonance imaging.
Nature Reviews Neuroscience, 8(9), 700-711. doi:10.1038/nrm2201

Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. S. (1993).
Functional connectivity: The principal-component analysis of large
(PET) data sets. Journal of Cerebral Blood Flow and Metabolism:
Official Journal of the International Society of Cerebral Blood Flow
and Metabolism, 13(1), 5-14. doi:10.1038/jcbfim.1993.4

Fukunaga, M., Horovitz, S. G., van Gelderen, P., de Zwart, J. A., Jansma,
J. M., Ikonomidou, V. N., . . . Duyn, J. H. (2006). Large-amplitude,
spatially correlated fluctuations in BOLD fMRI signals during ex-
tended rest and early sleep stages. Magnetic Resonance Imaging,
24(8), 979-992. doi:10.1016/j.mri.2006.04.018

Gordon, E. M., Stollstorff, M., & Vaidya, C. J. (2011). Using spatial
multiple regression to identify intrinsic connectivity networks in-
volved in working memory performance. Human Brain Mapping,
33(7), 1536-1552. doi:10.1002/hbm.21306

Gray, J. A. (1971). The psychology of fear and stress. London, UK:
Weidenfeld and Nicolson.

Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety.
Oxford, UK: Oxford University Press.

Greicius, M. D., Kiviniemi, V., Tervonen, O., Vainionpad, V., Alahuhta,
S., Reiss, A. L., & Menon, V. (2008). Persistent default-mode net-
work connectivity during light sedation. Human Brain Mapping,
29(7), 839-847. doi:10.1002/hbm.20537

@ Springer


http://dx.doi.org/10.3758/s13415-013-0224-0
http://dx.doi.org/10.1162/jocn_a_00003
http://dx.doi.org/10.1016/j.biopsych.2012.06.003
http://dx.doi.org/10.1186/1471-244X-12-177
http://dx.doi.org/10.1038/nn1173
http://dx.doi.org/10.1371/journal.pone.0106636
http://dx.doi.org/10.1371/journal.pone.0106636
http://dx.doi.org/10.1002/mrm.22159
http://dx.doi.org/10.1002/mrm.22159
http://dx.doi.org/10.1016/j.tics.2008.01.001
http://dx.doi.org/10.1016/j.tics.2008.01.001
http://dx.doi.org/10.1073/pnas.0704320104
http://dx.doi.org/10.1073/pnas.0704320104
http://dx.doi.org/10.1126/science.1194144
http://dx.doi.org/10.1016/j.neuroimage.2013.04.087
http://dx.doi.org/10.3389/fnsys.2010.00019
http://dx.doi.org/10.1038/nrn2201
http://dx.doi.org/10.1038/jcbfm.1993.4
http://dx.doi.org/10.1016/j.mri.2006.04.018
http://dx.doi.org/10.1002/hbm.21306
http://dx.doi.org/10.1002/hbm.20537

1048

Cogn Affect Behav Neurosci (2016) 16:1039—-1049

Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009).
Resting-state functional connectivity reflects structural connectivity
in the default mode network. Cerebral Cortex, 19(1), 72-78.
doi:10.1093/cercor/bhn059

Hajcak, G., McDonald, N., & Simons, R. F. (2003). Anxiety and error-
related brain activity. Biological Psychology, 64(1-2), 77-90.
doi:10.1016/S0301-0511(03)00103-0

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P.,
Meuli, R., & Hagmann, P. (2009). Predicting human resting-state
functional connectivity from structural connectivity. Proceedings of
the National Academy of Sciences of the United States of America,
106(6), 2035-2040. doi:10.1073/pnas.0811168106

Ilyas, S., & Moncrieff, J. (2012). Trends in prescriptions and costs of
drugs for mental disorders in England, 1998-2010. The British
Journal of Psychiatry: the Journal of Mental Science, 200(5),
393-398. doi:10.1192/bjp.bp.111.104257

Jiang, N., Sato, T., Hara, T., Takedomi, Y., Ozaki, I., & Yamada, S.
(2003). Correlations between trait anxiety, personality and fatigue:
Study based on the Temperament and Character Inventory. Journal
of Psychosomatic Research, 55(6), 493-500.

Leonardo, E. D., & Hen, R. (2006). Genetics of affective and anxiety
disorders. Annual Review of Psychology, 57, 117-137. doi:10.1146
/annurev.psych.57.102904.190118

Markett, S., Montag, C., & Reuter, M. (2011). The nicotinic acetylcholine
receptor gene CHRNA4 is associated with negative emotionality.
Emotion, 11(2), 450.

Markett, S., Montag, C., & Reuter, M. (2016). Anxiety and harm avoid-
ance. In J. R. Absher & J. Cloutier (Eds.), Neuroimaging personality,
social cognition, and character. New York, NY: Academic Press.

Markett, S., Weber, B., Voigt, G., Montag, C., Felten, A., Elger, C., &
Reuter, M. (2013). Intrinsic connectivity networks and personality:
The temperament dimension harm avoidance moderates functional
connectivity in the resting brain. Neuroscience, 240, 98-105.
doi:10.1016/j.neuroscience.2013.02.056

Matthews, P. M., Honey, G. D., & Bullmore, E. T. (2006). Applications of
fMRI in translational medicine and clinical practice. Nature Reviews
Neuroscience, 7(9), 732-744. doi:10.1038/nrn1929

Misié, B., Betzel, R. F., de Reus, M. A., van den Heuvel, M. P, Berman, M.
G., Mclntosh, A. R., & Spomns, O. (2016). Network-level structure-
function relationships in human neocortex. Cerebral Cortex, 1, 12.

Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N.,
Seymour, B., . . . Frith, C. D. (2007). When fear is near: Threat
imminence elicits prefrontal-periaqueductal gray shifts in humans.
Science , 317(5841), 1079-1083. doi:10.1126/science. 1144298

Montag, C., Basten, U., Stelzel, C., Fiebach, C. J., & Reuter, M. (2010).
The BDNF Val66Met polymorphism and anxiety: Support for ani-
mal knock-in studies from a genetic association study in humans.
Psychiatry Research, 179(1), 86-90.

Montag, C., Reuter, M., Jurkiewicz, M., Markett, S., & Panksepp, J.
(2013). Imaging the structure of the human anxious brain: A review
of findings from neuroscientific personality psychology. Reviews in
the Neurosciences, 24(2). doi:10.1515/revneuro-2012-0085

Most, S. B., Chun, M. M., Johnson, M. R., & Kiehl, K. A. (2006).
Attentional modulation of the amygdala varies with personality.
Neurolmage, 31(2), 934-944. doi:10.1016/j.neuroimage.2005.12.031

Nery, F. G., Hatch, J. P., Glahn, D. C., Nicoletti, M. A., Serap Monkul, E.,
Najt, P,, . .. Soares, J. C. (2008). Temperament and character traits in
patients with bipolar disorder and associations with comorbid alco-
holism or anxiety disorders. Journal of Psychiatric Research, 42(7),
569-577. doi:10.1016/j.jpsychires.2007.06.004

Nyman, E., Miettunen, J., Freimer, N., Joukamaa, M., Miki, P., Ekelund,
J., ... Paunio, T. (2011). Impact of temperament on depression and
anxiety symptoms and depressive disorder in a population-based
birth cohort. Journal of Affective Disorders, 131(1-3), 393-397.
doi:10.1016/j.jad.2010.12.008

@ Springer

Ongiir, D., Farabaugh, A., Tosifescu, D. V., Perlis, R., & Fava, M. (2005).
Tridimensional personality questionnaire factors in major depressive
disorder: Relationship to anxiety disorder comorbidity and age of
onset. Psychotherapy and Psychosomatics, 74(3), 173—-178.
doi:10.1159/000084002

Panksepp, J. (1998). Affective neuroscience. London, UK: Oxford
University Press.

Pannekoek, J. N., Veer, I. M., van Tol, M.-J., van der Werff, S. J. A.,
Demenescu, L. R., Aleman, A., ... van der Wee, N. J. A. (2013).
Resting-state functional connectivity abnormalities in limbic and
salience networks in social anxiety disorder without comorbidity.
European Neuropsychopharmacology, 23(3), 186—195.
doi:10.1016/j.euroneuro.2012.04.018

Paulus, M. P., Rogalsky, C., Simmons, A., Feinstein, J. S., & Stein, M. B.
(2003). Increased activation in the right insula during risk-taking
decision making is related to harm avoidance and neuroticism.
Neurolmage, 19(4), 1439-1448. doi:10.1016/S1053-8119(03
)00251-9

Plomin, R., Haworth, C. M. A., & Davis, O. S. P. (2009). Common
disorders are quantitative traits. Nature Reviews Genetics, 10(12),
872-878. doi:10.1038/nrg2670

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen,
S. E. (2012). Spurious but systematic correlations in functional con-
nectivity MRI networks arise from subject motion. Neurolmage,
59(3), 2142-2154.

Pujol, J., Lopez, A., Deus, J., Cardoner, N., & Vallejo, J. (2002).
Anatomical variability of the anterior cingulate gyrus and basic di-
mensions of human personality. Neurolmage. Retrieved from
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=
pubmed&id=11906225&retmode=ref&cmd=prlinks

Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive
Sciences, 14(4), 180-190. doi:10.1016/j.tics.2010.01.008

Raichle, M. E. (2011). The restless brain. Brain Connectivity, 1(1), 3—12.
doi:10.1089/brain.2011.0019

Roy, A. K., Fudge, J. L., Kelly, C., Perry, J. S. A., Daniele, T., Carlisi, C., .
.. Emnst, M. (2013). Intrinsic functional connectivity of amygdala-
based networks in adolescent generalized anxiety disorder. Journal
of the American Academy of Child & Adolescent Psychiatry, 52(3),
290-299.¢2. doi:10.1016/j.jaac.2012.12.010

Rubinov, M., & Spoms, O. (2010). Complex network measures of brain
connectivity: Uses and interpretations. Neurolmage, 52(3), 1059—
1069. doi:10.1016/j.neuroimage.2009.10.003

Sadaghiani, S., & D’Esposito, M. (2014). Functional characterization of
the cingulo-opercular network in the maintenance of tonic alertness.
Cerebral Cortex, 25(9), 2763-2773. doi:10.1093/cercor/bhu072

Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead,
J., Calkins, M. E., ... Wolf, D. H. (2013). An improved framework
for confound regression and filtering for control of motion artifact in
the preprocessing of resting-state functional connectivity data.
Neurolmage, 64, 240-256. doi:10.1016/j.neuroimage.2012.08.052

Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H.,
Kenna, H., . . . Greicius, M. D. (2007). Dissociable intrinsic connec-
tivity networks for salience processing and executive control.
Journal of Neuroscience, 27(9), 2349-2356. doi:10.1523
/INEUROSCI.5587-06.2007

Servaas, M. N., Geerligs, L., Renken, R. J., Marsman, J.-B. C.,
Ormel, J., Riese, H., & Aleman, A. (2015). Connectomics
and neuroticism: an altered functional network organization.
Neuropsychopharmacology, 40(2), 296-304. doi:10.1038
/mpp.2014.169

Shehzad, Z., Kelly, A. M. C., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin,
L. Q., ... Milham, M. P. (2009). The resting brain: Unconstrained
yet reliable. Cerebral Cortex, 19(10), 2209-2229. doi:10.1093
/cercor/bhn256

Simon, G. E. (2003). Social and economic burden of mood disorders.
Biological Psychiatry, 54(3), 208-215.


http://dx.doi.org/10.1093/cercor/bhn059
http://dx.doi.org/10.1016/S0301-0511(03)00103-0
http://dx.doi.org/10.1073/pnas.0811168106
http://dx.doi.org/10.1192/bjp.bp.111.104257
http://dx.doi.org/10.1146/annurev.psych.57.102904.190118
http://dx.doi.org/10.1146/annurev.psych.57.102904.190118
http://dx.doi.org/10.1016/j.neuroscience.2013.02.056
http://dx.doi.org/10.1038/nrn1929
http://dx.doi.org/10.1126/science.1144298
http://dx.doi.org/10.1515/revneuro-2012-0085
http://dx.doi.org/10.1016/j.neuroimage.2005.12.031
http://dx.doi.org/10.1016/j.jpsychires.2007.06.004
http://dx.doi.org/10.1016/j.jad.2010.12.008
http://dx.doi.org/10.1159/000084002
http://dx.doi.org/10.1016/j.euroneuro.2012.04.018
http://dx.doi.org/10.1016/S1053-8119(03)00251-9
http://dx.doi.org/10.1016/S1053-8119(03)00251-9
http://dx.doi.org/10.1038/nrg2670
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11906225&retmode=ref&cmd=prlinks
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&id=11906225&retmode=ref&cmd=prlinks
http://dx.doi.org/10.1016/j.tics.2010.01.008
http://dx.doi.org/10.1089/brain.2011.0019
http://dx.doi.org/10.1016/j.jaac.2012.12.010
http://dx.doi.org/10.1016/j.neuroimage.2009.10.003
http://dx.doi.org/10.1093/cercor/bhu072
http://dx.doi.org/10.1016/j.neuroimage.2012.08.052
http://dx.doi.org/10.1523/JNEUROSCI.5587-06.2007
http://dx.doi.org/10.1523/JNEUROSCI.5587-06.2007
http://dx.doi.org/10.1038/npp.2014.169
http://dx.doi.org/10.1038/npp.2014.169
http://dx.doi.org/10.1093/cercor/bhn256
http://dx.doi.org/10.1093/cercor/bhn256

Cogn Affect Behav Neurosci (2016) 16:1039-1049

1049

Smit, F., Cuijpers, P., Oostenbrink, J., Batelaan, N., de Graaf, R., &
Beekman, A. (2006). Costs of nine common mental disorders:
Implications for curative and preventive psychiatry. Journal of
Mental Health Policy and Economics, 9(4), 193-200.doi.10.1038
/npp.2014.169

Smith, S. (2013). Introduction to the Neurolmage special issue “Mapping
the Connectome”. Neurolmage, 80(C), 1. doi:10.1016/j.
neuroimage.2013.07.012

Spielberger, C. D. (1989). State-trait anxiety inventory: Bibliography
(2nd ed.). Palo Alto, CA: Consulting Psychologists Press.

Sylvester, C. M., Corbetta, M., Raichle, M. E., Rodebaugh, T. L.,
Schlaggar, B. L., Sheline, Y. I, . . . Lenze, E. J. (2012). Functional
network dysfunction in anxiety and anxiety disorders. Trends in
Neurosciences, 35(9), 527-535. doi:10.1016/j.tins.2012.04.012

Tillfors, M., Furmark, T., Marteinsdottir, 1., & Fredrikson, M. (2002).
Cerebral blood flow during anticipation of public speaking in social
phobia: A PET study. Biological Psychiatry, 52(11), 1113-1119.

Trull, T. J., Tragesser, S. L., Solhan, M., & Schwartz-Mette, R. (2007).
Dimensional models of personality disorder: Diagnostic and
Statistical Manual of Mental Disorders Fifth Edition and beyond.
Current Opinion in Psychiatry, 20, 52-56.

Tukey, W. (1977). Exploratory data analysis. New York, NY: Addison-
Wesley.

Tuominen, L., Salo, J., Hirvonen, J., Négren, K., Laine, P., Melartin, T.,
... Hietala, J. (2012). Temperament trait Harm Avoidance associates
with p-opioid receptor availability in frontal cortex: a PET study
using [(11)C]Jcarfentanil. Neurolmage, 61(3), 670-676.
doi.10.1016/j.neuroimage.2012.03.063

Vaidya, C. J., & Gordon, E. M. (2013). Phenotypic variability in resting-
state functional connectivity: Current status. Brain Connectivity,
3(2), 99-120. doi:10.1089/brain.2012.0110

van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain
network: A review on resting-state fMRI functional connectivity.
European Neuropsychopharmacology, 20(8), 519-534.
doi:10.1016/j.euroneuro.2010.03.008

van den Heuvel, M. P., Mandl, R. C. W., Kahn, R. S., & Hulshoff Pol, H.
E. (2009). Functionally linked resting-state networks reflect the un-
derlying structural connectivity architecture of the human brain.
Human Brain Mapping, 30(10), 3127-3141. doi:10.1002
/hbm.20737

van Wijk, B. C., Stam, C. J., & Daffertshofer, A. (2010). Comparing brain
networks of different size and connectivity density using graph the-
ory. PLoS One, 5(10), e13701.

Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van
Essen, D. C,, . .. Raichle, M. E. (2007). Intrinsic functional archi-
tecture in the anaesthetized monkey brain. Nature, 447(7140), 83—
86. doi:10.1038/nature05758

Wittchen, H. U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M.,
Jonsson, B., . . . Steinhausen, H.-C. (2011). The size and burden
of mental disorders and other disorders of the brain in Europe 2010.
European Neuropsychopharmacology, 21(9), 655-679. doi:10.1016
/j.euroneuro.2011.07.018

Yan, C. G., & Zhang, Y. F. (2010). DPARSF: A MATLAB toolbox for
“pipeline” data analysis of resting-state fMRI. Frontiers in System
Neuroscience. doi:10.3389/fnsys.2010.00013

@ Springer


http://dx.doi.org/10.1038/npp.2014.169
http://dx.doi.org/10.1038/npp.2014.169
http://dx.doi.org/10.1016/j.neuroimage.2013.07.012
http://dx.doi.org/10.1016/j.neuroimage.2013.07.012
http://dx.doi.org/10.1016/j.tins.2012.04.012
http://dx.doi.org/10.1016/j.neuroimage.2012.03.063
http://dx.doi.org/10.1089/brain.2012.0110
http://dx.doi.org/10.1016/j.euroneuro.2010.03.008
http://dx.doi.org/10.1002/hbm.20737
http://dx.doi.org/10.1002/hbm.20737
http://dx.doi.org/10.1038/nature05758
http://dx.doi.org/10.1016/j.euroneuro.2011.07.018
http://dx.doi.org/10.1016/j.euroneuro.2011.07.018
http://dx.doi.org/10.3389/fnsys.2010.00013

	Anxious personality and functional efficiency of the insular-opercular network: A graph-analytic approach to resting-state fMRI
	Abstract
	Method
	Participants
	Personality assessment
	Image acquisition
	Image analysis
	Graph construction
	Graph-theoretical metrics

	Results
	Discussion
	References


