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Abstract The capacity limitation of working memory requires
that only relevant information gains access to the workspace,
while irrelevant information is kept out. Thus, the ability to use
attention to filter out irrelevant information is an important
factor in how efficiently the limited storage space is used.
Here, we examined to what degree the requirement to flexibly
change filter settings affects filtering efficiency. Participants
were presented with visual objects in different colors, and a
cue presented in advance indicated which objects had to be
stored. The contralateral delay activity, an event-related brain
potential that reflects working-memory load was used to assess
filtering efficiency during the retention interval. The data of two
experiments showed that when filter settings had to be adjusted
on a trial-by-trial basis, more irrelevant information passed the
gate to working memory. Moreover, this switching-induced
filtering deficit was restricted to those items that matched the
previous, but currently irrelevant, filter settings. Thus, lingering
effects of the selection history seem to counteract goal-directed
encoding, and thus constitute an important attentional limitation
for the efficient utilization of our limited workspace.
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Complex cognition is determined by our ability to briefly store
information and keep it in an active and accessible state.

However, the storage capacity of working memory (WM;
Baddeley & Hitch, 1974; Cowan, 2001) is highly limited.
For instance, estimates of visual WM suggest that only about
three objects can be maintained at a time (e.g., Luck & Vogel,
1997). This capacity limitation requires that only information
relevant to our current goals be stored, suggesting a strong
relationship between selective attention and WM (see
Gazzaley & Nobre, 2012, and Kiyonaga & Egner, 2013, for
recent reviews). Accordingly, there is growing interest in how
attentional processes support control over the contents ofWM
(e.g., Liesefeld, Liesefeld, & Zimmer, 2014).

One method to examine the role of attentional filtering
for WM is to present relevant, to-be-stored visual stimuli
along with distractors that should be prevented from being
encoded into WM. Gazzaley and colleagues provided ev-
idence that in such situations, early visual processing is
modulated by both the enhancement of task-relevant and
the suppression of task-irrelevant stimuli (Gazzaley,
Cooney, McEvoy, Knight, & D’Esposito, 2005).
Moreover, Vogel, McCollough, and Machizawa (2005)
showed that when these filtering processes fail, irrelevant
material gains access to WM. Crucially, filtering efficiency
proved to be a critical source of individual differences in
WM performance: Low-WM individuals stored more irrel-
evant information than did high-capacity individuals. Thus,
filtering ability seems to be an important factor of the
efficient utilization of the limited workspace. This idea
has been further elaborated by findings showing impaired
filtering in relation with WM deficits in older age
(Gazzaley et al., 2008; Gazzaley, Cooney, Rissman, &
D’Esposito, 2005; Jost, Bryck, Vogel, & Mayr, 2011;
Sander, Werkle-Bergner, & Lindenberger, 2011).

These and other findings provide converging evidence that
attention functions as a Bgatekeeper^ for WM, and therefore
as a critical determinant of WM efficiency (e.g., Awh, Vogel,

* Kerstin Jost
Kerstin.Jost@psych.rwth-aachen.de

1 Institute of Psychology, RWTH Aachen University, Jägerstrasse
17-19, D-52066 Aachen, Germany

2 Department of Psychology, University of Oregon, Eugene, OR, USA

Cogn Affect Behav Neurosci (2016) 16:207–218
DOI 10.3758/s13415-015-0380-5

http://crossmark.crossref.org/dialog/?doi=10.3758/s13415-015-0380-5&domain=pdf


& Oh, 2006). It is typically assumed that this gatekeeping
function relies on templates of the currently relevant features
that specify attentional filter settings (Bundesen, 1990;
Bundesen, Habekost, & Kyllingsbæk, 2005; Desimone &
Duncan, 1995). Thus, it is important to understand the
functionality/constraints associated with filter settings. For ex-
ample, real-world cognitive functioning requires not just static
selection of goal-relevant information, but also the ability to
flexibly adjust the filter settings to changing requirements.

Two different theoretical pathways might lead from de-
mands on flexibly changing filter settings to reduced WM
performance. First, the efficiency of static filter settings and
the dynamic of switching such settings might rely on common
resources. Furthermore, the robust relationship between indi-
vidual differences in WM capacity and filter efficiency im-
plies that the negative effects of flexible switching demands
would be particularly strong for individuals with low WM
capacity.

A second possibility is suggested by research on the per-
formance costs that arise in task-switching situations. A major
source of such costs is stimulus-induced interference due to
long-term memory representations of the task sets that are
used within the same experimental context (e.g., Mayr,
Kuhns, & Hubbard, 2014; Rubin & Meiran, 2005; Waszak,
Hommel, & Allport, 2003). Similarly, in WM situations that
require different filter settings, proactive interference from the
currently irrelevant setting may make efficient filtering diffi-
cult, even when the currently relevant setting is fully
implemented.

In the present work, we examined to what degree the de-
mands of flexibly changing attentional templates actually neg-
atively affect filtering in WM, and if so, what the potential
reasons for such a flexibility deficit might be. To explore these
questions, we used a Bfilter-switching^ paradigm. As in the
filtering paradigm introduced by Vogel et al. (2005), partici-
pants had to encode objects of a particular color (e.g., red) and
to ignore objects in other colors. However, which color was
relevant switched randomly from trial to trial, requiring dy-
namic adjustments of the filter settings.

We were particularly interested in the degree to which the
delay activity measured by means of event-related potentials
(ERPs) would indicate increased representation of the irrele-
vant information in the filter-switching condition. Such an
effect would suggest constraints on the ability to flexibly reset
the gatekeeper to WM. Furthermore, because it has already
been shown that filtering efficiency in static situations is relat-
ed to WM capacity, it is important to know the degree to
which the ability to flexibly change the filter is also related
to WM capacity.

WM and filtering performance was measured by means of
the change-detection task (Luck & Vogel, 1997; Phillips,
1974), in which a varying number of visual stimuli have to
be stored (without manipulating them). After a retention

interval of about 1 s, memory for the stored items is tested.
Given that the capacity of visual WM is on average about
three to four items, increasing the number of items in the
memory display would lead to an overload, and hence to a
decrease of WM performance. In addition, by measuring the
delay activity by means of ERPs—specifically, the so-called
contralateral delay activity (CDA)—the number of stored
items can be tracked.

The CDA is a sustained negative wave measured over the
posterior cortex that is largest contralateral to the memorized
hemifield. Its amplitude increases with the number of repre-
sentations being held in visual WM, and reaches an asymp-
totic limit at each individual’s specific memory capacity
(Vogel & Machizawa, 2004). Thus, it provides a measure of
the contents of visual WM. More importantly, via a filtering
paradigm in which both relevant and irrelevant information
are presented together in a memory display (first described
by Vogel et al., 2005), the CDA can also be used to track the
extent to which irrelevant information is stored in WM. The
important question here was whether the amplitude of the
CDAwould also increase with the number of irrelevant items.
Therefore, we compared the amplitude of a distractor condi-
tion containing two relevant (i.e., targets) plus two irrelevant
(i.e., distractors) objects with the amplitudes of conditions in
which only relevant objects were presented, either two or four.
The rationale is as follows: If in the distractor condition irrel-
evant objects are perfectly excluded from being stored and
only the two relevant objects are maintained, then the CDA
amplitude should be similar to the amplitude in the condition
with only two relevant items. If, however, filtering is ineffi-
cient and two relevant plus two irrelevant items are stored,
then the amplitude should be similar to that in the condition
with four relevant objects. Consequently, the relative position
of the distractor condition’s CDA amplitude in comparison to
the two no-distractor conditions should serve as an indicator
of filtering efficiency.

We explored to what degree filtering efficiency is reduced
when the filter settings need to be adjusted. In Experiment 1,
we compared filtering performance as measured with the
CDA amplitude in pure and mixed blocks. In mixed blocks,
two different selection criteria switched in random order,
whereas in the pure blocks the selection criterion remained
constant. To examine the relationship between WM capacity
and filter-switching ability, we also assessed WM capacity
with an independent measure. This allowed us to split partic-
ipants into groups of high and low capacity. Our results from
Experiment 1 will show that demands on flexible filtering
actually do compromise the efficiency of filtering, and that
this filter-switching effect also affects individuals with good
filtering abilities.

The findings of Experiment 1 left the question of why
exactly frequent filter changes produce the filtering problems.
As we indicated above, one possibility is that filtering
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efficiency per se and dynamic filtering might rely on shared
resources. The second possibility is that the problems arise
from the fact that filter settings relevant in the recent past
remain potent sources of interference, such that distractors that
match these settings are more difficult to filter out. To distin-
guish between these two possibilities, we added in
Experiment 2 a second distractor condition in which
distractors were presented in a color that was never relevant
throughout the experiment.

Method

Participants

A total of 22 students of the RWTH Aachen University par-
ticipated in Experiment 1, and another 28 took part in
Experiment 2. All participants were healthy, had normal or
corrected-to-normal vision, and gave informed consent.
Thirteen of the participants were excluded from the analyses
because of extensive eye movements or other artifacts in the
electrophysiological measurements. The final samples of
Experiments 1 and 2 comprised data from 16 (mean age of
25 years; 14 female, two male) and 21 (mean age of 23 years;
12 female, nine male) participants.

Stimuli, task, and procedure

Measurement of filtering efficiency in Experiment 1 On
each trial, participants were presented with an array of red
and/or blue rectangles (each 0.41° × 1.31° of visual angle)
of varying orientations (45°, 90°, 135°, and 180°), and the
task was to remember the orientations of only the objects in
the relevant color. Set size (i.e., the number of relevant items,
either two or four targets) and distractor presence (no
distractors or two distractors) were manipulated orthogonally.
This resulted in four different conditions, such that on half of
the trials only relevant items were presented (i.e., in either red
or blue), and on the other half distracting items were presented
along with the task-relevant ones (i.e., the memory display
contained blue and red objects).

The critical conditions for investigating filtering efficiency
by means of the CDAwere the conditions set size 2, set size 4,
and set size 2 + 2 distractors (in the following referred to as the
distractor condition). The number of targets in the distractor
condition was equal to the number of targets in the set size 2
condition, whereas the total number of items in the distractor
condition was equal to the number of targets in the set size 4
condition (see Fig. 1b). Filtering efficiency was indexed by
the relative position of the distractor condition’s CDA am-
plitude in comparison to the two no-distractor conditions: If
filtering distractors is highly efficient, such that only targets
are stored, then the CDA amplitude in the distractor

condition should be similar to the amplitude in the set size
2 condition. If, however, filtering is inefficient, and not
only targets but also distractors are stored, then the ampli-
tude should be more similar to that in the set size 4 con-
dition. Note that a similar rationale cannot be applied to the
set size 4 + 2 distractors condition, because the design did
not include a no-distractor condition with the same total
number of items (i.e., set size 6). Apart from that, the
CDA amplitude increase usually reaches an asymptotic lim-
it with WM capacity, which is around three or four items
(see Vogel & Machizawa, 2004). As a consequence, in the
above-capacity range, as in the set size 4 + 2 distractors
condition, the CDA is not sensitive to differentiating be-
tween storing targets and storing distractors. The reason to
nevertheless include this condition was to obtain equal
numbers for the distractor and no-distractor trials and to
encourage filtering (see also Jost et al., 2011). For the sake
of completeness, ERPs and behavioral data from this con-
dition are included in Fig. 1 and in Table 1 below.

The relevant color in each trial was indicated by a
color cue presented in advance (see Fig. 1a). This color
cue remained the same in the pure blocks, but switched
randomly in mixed blocks. Note that we tried to keep
factors that could affect filtering performance (such as
the color of distractors and the order of pure and mixed
blocks) constant across participants.

To measure the CDA, a bilateral display is essential. This
means that on both sides of the fixation cross a complete
memory array was presented (i.e., two 3.61° × 6.2° rectangular
regions centered 2.8° to the left and right of the central fixation
cross), but only the items in one hemifield were to be remem-
bered. This was indicated by an arrow presented in ad-
vance (see Fig. 1a). The CDA, calculated as the amplitude
difference between contralateral and ipsilateral activity, al-
lows for isolating the lateralized effects of visual WM
from nonspecific bilateral activity. Consequently, the
CDA reflects maintenance in visual WM (Vogel &
Machizawa, 2004).

Each trial began with a 200-ms colored arrow cue present-
ed above a fixation cross, which indicated both the relevant
hemifield and the relevant color. After a variable interval of
200–400 ms, the memory array was presented for 200 ms,
followed by a 900-ms retention interval. Memory for the
stored items was tested with a single-item probe test array in
which the probe was either identical to the object presented at
the same location or had changed in orientation. Participants
responded by pressing one of two buttons on a handheld
gamepad (right for Bchange^ and left for Bno change^), and
accuracy was stressed. After the response, an intertrial interval
of 2 s followed.

The testing consisted of eight blocks alternating between
pure and mixed conditions after every second block (i.e., pure,
pure, mixed, mixed, etc.). Each pair of consecutive pure
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blocks contained one block in which red was the relevant
color and one block in which blue was the relevant color.
All participants started with two pure blocks.

Each block contained 128 trials with equal numbers (i.e.,
eight trials) for the combinations of experimental condition
(i.e., number of relevant and irrelevant items), relevant side
of the memory array, andmatch of the memory and test arrays.
The trial sequence was random. Moreover, in the mixed-block
trials, red and blue occurred as relevant colors equally often in
each of the mentioned combinations (i.e., for four trials each).
Altogether, 128 trials were run for each experimental condi-
tion and block type. Prior to the testing session, participants
were familiarized with the task in a practice block.

Measurement of filtering efficiency in Experiment 2 Here,
only mixed blocks were realized; that is, the filter criterion
randomly changed across trials between Bred is relevant^
and Bblue is relevant^. Again, distractors were presented in
the currently irrelevant color: blue distractors when red was
relevant, and vice versa. Moreover, we here included another
distractor condition, with green distractors—that is, in a color
that was never relevant.1 We expected that these distractors
would be easier to ignore than the red and blue ones. Again,
the distractor conditions contained two targets and two
distractors (in the same color), and the distractor conditions
were compared with no-distractor conditions that included
either two or four targets (i.e., set size 2 and set size 4). The
condition with four targets + two distractors (cf. Exp. 1) was
not realized here. The size and orientation of the rectangles, as
well as the stimulus presentation and timing, were similar to
those aspects of Experiment 1.

The experiment consisted of 14 blocks with 64 trials each
and equal numbers for all combinations of experimental condi-
tion, color, relevant side, match of memory, and test arrays (i.e.,
two trials each). Moreover, the possible transitions from one
trial to the next were also completely balanced within a block
for all Condition × Color combinations (64 possible transitions
in the case of eight different Condition × Color combinations).
Altogether, 224 trials were run for each experimental condition.

Estimation ofWM capacity The EEG part is ideally suited to
capture filtering efficiency. However, due to only small set sizes
and ceiling effects, it is suboptimal for estimating individual
WM capacities. Because of this, and to obtain an independent
measure of WM capacity, a standard, behavioral version of the
change-detection paradigm (see Luck & Vogel, 1997) was run

prior to the EEG part. Here, only relevant items were presented
in varying numbers: two, four, six, or eight items. The task was
to maintain the color of each object (squares 0.75° × 0.75° in
size). The colors were randomly selected from a set of highly
discriminable colors (red, green, blue, yellow, purple, black,
and white). All stimuli were presented for 200 ms within a
centered 6.2° × 6.2° region on a gray background and were
followed by a retention interval of 900 ms. Trials were present-
ed in three blocks, each containing 20 trials for each set size.

TheWM capacityKwas estimated with a standard formula
(see Cowan, 2001; Pashler, 1988; Vogel & Machizawa,
2004)—that is, K = S × (H – F), where S is the set size, H is
the hit rate, and F is the false alarm rate. Set sizes 4, 6, and 8
were included in this measure.

Electrophysiological recording and analysis

The EEG was recorded from 61 Ag/AgCl electrodes inserted
into an elastic cap (Easycap, Brain Products, Munich,
Germany) with predefined electrode positions, according to
the 10–20 System. The electrodes were referenced to the nose
tip. The horizontal electrooculogram (EOG) was recorded from
two electrodes placed approximately 1 cm to the left and right
of the external canthi of the eyes. The vertical EOGwas record-
ed from an electrode mounted beneath the left eye and from
electrode FP1. The left or right mastoid served as the ground
(counterbalanced across participants), and impedances were
kept below 7 kΩ. Signals were recorded with two 32-channel
DC amplifiers (Brain Amps, Brain Products, Munich,
Germany), sampled at 500 Hz and low-pass filtered at 250 Hz.

Data preprocessing and ERP averaging were run with the
Brain Vision Analyzer software. The signals were filtered
offline with a band-pass of 0.1–30 Hz (24 dB/oct) and a 50-
Hz notch-filter. Epochs (starting 100 ms before the onset of
the arrow cue and lasting until the end of the retention interval)
containing eye movements, blinks, and other artifacts were
excluded from further analysis.

Horizontal eye movements were rejected by means of a
two-step procedure suggested by Luck (2014; see also
Woodman & Luck, 2003). In the first step, trials with horizon-
tal EOG amplitudes exceeding a threshold were detected and
removed by means of a semiautomatic procedure. The ampli-
tude criterion was initially set to 25μV (which should capture
eye movements of >1.5°), but individually adjusted by visual
inspection of the single-trial waveforms such that clearly vis-
ible artifacts were rejected. Note that this criterion also leads to
a rather high number of false alarms when the signal is noisy.
In some participants, more than 50% of the data were rejected
with this criterion (i.e., because of too many eye movements
and/or too much noise). These participants were excluded.

In the second step, we computed averaged horizontal EOG
waveforms for the attend-left and attend-right trials, to assess
whether the ERPs were contaminated with very small

1 Note that the target–distractor color mapping was the same for all par-
ticipants (i.e., switching between red and blue, with green never relevant).
In a behavioral study, we systematically varied the mappings across par-
ticipants (i.e., we also realized the mappings switching between red and
green, with blue never being relevant, and switching between blue and
green, with red never being relevant) but did not find reliable differences
in the effects of interest for the different mappings.
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systematic eye movements. The residual activity was <2μV
on average, and <3μV for each individual participant (which
corresponds to an average eye movement of less than 0.2°;
Lins, Picton, Berg, & Scherg, 1993).

After rejection of eye movements, the EEGwas segmented
into 1,100-ms epochs starting 100 ms before the onset of the
memory array and covering the whole retention interval.
Remaining artifacts were detected and excluded by means of
a semiautomatic procedure with the following criteria: The
maximum allowed voltage step between two adjacent sam-
pling points was 20μV, the maximum allowed absolute

difference in a segment was 100μV, and the minimum
allowed difference within 100 ms was 0.5μV. On average,
4 % and 3 % of the trials (maximal 12 %) were excluded in
Experiments 1 and 2, respectively.

In Experiment 1, ERPs were averaged for each of the four
conditions and for pure and mixed blocks separately; the
waveforms were based on 91 trials, on average (minimum
73 trials). In Experiment 2, ERPs were averaged for each of
the four conditions (aggregated across colors) and were based
on 147 trials, on average (minimum 118). All averages were
corrected with a 100-ms prestimulus baseline.

Fig. 1 Stimulus sequence, design, and results of Experiment 1. a
Example of a distractor trial, in which only blue items are to be stored,
as is indicated by the color of the cue presented in advance. Note that for
investigating contralateral delay activity (CDA), a bilateral display is
essential (see the text for details). Memory for stored items is tested
with a single probe. The task is to decide whether the orientation of the
probe has changed or not. b The three conditions for which amplitudes of
the CDA are compared, in order to investigate filtering efficiency
(exemplarily for Bblue is relevant^). Critical is the amplitude of the
distractor condition in comparison to the two no-distractor conditions;

efficient filtering is indicated by a distractor condition amplitude similar
to that in the two-target condition (set size 2). In contrast, an amplitude in
the distractor condition that is almost as large as that in the set size 4
condition indicates that not only the targets but also the distractors are
stored, and hence inefficient filtering. c Grand average event-related po-
tential difference waves (contralateral minus ipsilateral) in pure and
mixed blocks. Negative voltage is plotted upward. Filtering efficiency
is worse in the mixed blocks that is, when filter settings switch, and hence
need to be adjusted

Table 1 Experiment 1: Performance in the change-detection task

Condition

Set Size 2 Set Size 2 +2 Distractors Set Size 4 Set Size 4 +2 Distractors

Block Type M SD M SD M SD M SD

Pure blocks 85.40 10.06 85.69 9.88 69.42 10.03 67.20 8.75

Mixed blocks 88.24 9.88 85.26 10.04 71.67 10.50 67.74 10.25

The data show percentages of correct responses as a function of experimental condition and block type
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As in other studies (e.g., Jost et al., 2011; Vogel et al.,
2005), the CDAwas computed by subtracting ipsilateral from
contralateral activity, averaged across hemispheres and across
occipital to parietal electrode positions (i.e., O1/O2, PO7/
PO8, PO3/PO4, P7/P8, P5/P6, P3/P4, and P1/P2). As can be
seen in the figures below, the CDA followed the N2pc, started
around 350–400 ms after the onset of the memory array, and
lasted until the end of the retention interval. To keep the num-
ber of analyzed intervals when investigating filtering efficien-
cy and distractor effects at a minimum, we predefined a time
window of interest, in which the CDA proved to be sensitive
to increasing numbers of stored items. To test for these set-size
effects, analyses of variance (ANOVAs) were run separately
for consecutive time windows of 100-ms length starting
400 ms after the onset of the memory array (i.e., 400–
500 ms, 500–600 ms, etc.). Amplitudes were then aggregated
across the significant time windows for further analyses. Note
that only the no-distractor conditions, set size 2 and set size 4,
were included in the superordinate ANOVAs. Thus, the time
intervals of interest for testing filtering efficiency and
distractor effects were defined independently of the distractor
conditions. For Experiment 1, the analyses revealed a time
window of interest between 500 and 900 ms (see the Results
section for detail).

The main hypothesis of Experiment 1 was that more irrele-
vant material would be stored in mixed than in pure blocks. The
amplitude of the distractor condition relative to the two no-
distractor conditions served as an indicator for filtering efficien-
cy. More precisely, we expected that in pure blocks the
distractor condition would be more similar to the set size 2
condition, and that in mixed blocks the distractor condition
would be more similar to the set size 4 condition. To test for
these differences, an ANOVAwas run for the mean amplitudes
of the predefined time window (i.e., 500–900 ms) including the
factors Condition (set size 2, distractor, set size 4) and Block
Type (pure vs. mixed blocks), followed by t tests meant to test
the distractor effects for significance and to directly compare
the sizes of the distractor effects between block types.

In Experiment 2, the most important contrast was between
the two distractor conditions. We expected that distractors in a
color that was never relevant could be filtered out more easily.
Thus, we expected to find a smaller CDA amplitude for this
condition than for distractors in a color that was only currently
irrelevant. The time interval of interest for this analysis was
between 600 and 900 ms. Again, this interval was predefined
independently of the distractor conditions—that is, by means
of significant set-size effects (set size 2 vs. set size 4) mea-
sured in 100-ms intervals. Note that we here included only
five of the posterior electrode pairs (i.e., O1/O2, PO7/PO8,
PO3/PO4, P7/P8, and P5/P6), because two pairs (P3/P4 and
P1/P2) did not show substantial set-size effects (no significant
differences in any of the 100-ms length time windows be-
tween 400 and 1,100 ms).

Results

Experiment 1

CDA and filtering efficiency Figure 1c illustrates the CDAs
in the retention interval. A general pattern here is that the
amplitude of the CDA (i.e., the sustained negativity starting
around 350–400 ms) increased with set size. ANOVAs run for
time windows of 100-ms length revealed significant set-size
effects (set size 2 vs. set size 4) between 500 and 900 ms, with
F values varying between minF(1, 15) = 8.20, p = .012, and
maxF(1, 15) = 27.95, p < .001. This result suggests that the
CDA indexed the number of active representations in visual
WM (see Vogel &Machizawa, 2004), and the significant time
windows between 500 and 900 ms therefore were taken as the
time of interest for further analyses. The comparison of the
distractor with the no-distractor conditions (i.e., the relative
position of the distractor condition’s amplitude) in this time
window, therefore, can be utilized to measure whether and to
what degree irrelevant material was unnecessarily stored.

The direct comparison of pure and mixed blocks revealed a
filtering deficit when the filter criteria switched randomly
from trial to trial. Under these conditions (see the CDAs in
mixed blocks on the right side of Fig. 1c), the amplitude of the
distractor condition was as large as in the set size 4 condition.
In contrast, in pure blocks (left side of Fig. 1c), the distractor
condition’s amplitude was more similar to the set size 2 am-
plitude and much smaller than in the set size 4 condition.
Analyses run for the time window between 500 and 900 ms
confirmed this pattern. An ANOVA with the factors Block
Type (pure vs. mixed blocks) and Condition (set size 2,
distractor, and set size 4) revealed a significant interaction,
F(2, 30) = 3.49, p = .044, GG-ε = .993, which was found to
be due to the different positions of the distractor conditions
relative to the no-distractor conditions: The difference be-
tween distractor and set size 2 was significantly smaller in
pure than in mixed blocks, t(15) = 1.85, p = .042, and the
difference between distractor and set size 4 was larger in pure
than in mixed blocks t(15) = 2.54, p = .012 (both contrasts
one-tailed).

Moreover, t tests comparing the distractor and no-distractor
conditions separately for the two block types confirmed this
pattern. For pure blocks, the distractor condition only margin-
ally differed from the set size 2 condition, t(15) = 1.81, p =
.091, but it was significantly different from the set size 4
condition, t(15) = 2.20, p = .044. In contrast, for mixed blocks
we observed a significant amplitude increase for the distractor
relative to the set size 2 condition, t(15) = 5.24, p = .001, but
no significant difference between the distractor condition and
the set size 4 condition, t(15) = 1.50, p = .154. This pattern of
results suggests that filtering efficiency was weaker in mixed
than in pure blocks, and thus that more of the irrelevant ma-
terial was stored when filter settings switched.
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WM performance in the change-detection task WM per-
formance was measured as the percentage of correct responses
in the change-detection task (see Table 1). As with the ERPs,
the focus was on the conditions set size 2, set size 4, and set
size 2 + 2 distractors. An ANOVA revealed a main effect of
block type,2 F(1, 15) = 5.15, p = .0385; a main effect of
condition, F(2, 30) = 178.84, p < .0001, ε = .7235; and, im-
portantly, a Block Type × Condition interaction, F(2, 30) =
3.27, p = .060, ε = .8717. Performance decreased with increas-
ing number of targets: That is, performance was, in general,
poorer for the set size 4 than for the set size 2 condition, F(1,
15) = 256.15, p < .0001. This effect reflects limited capacity
and did not differ for pure and mixed blocks (F < 1).

Most importantly, a switching-induced filtering deficit was
present in performance: In pure blocks, performance was as
good in the distractor condition as in the set size 2 condition,
but in mixed blocks it was significantly poorer than in the set
size 2 condition, t(15) = 3.90, p = .0014. This pattern indicates
that in mixed blocks, more of the irrelevant items occupied the
limited storage space. Moreover, in accordance with the ERP
results, performance differences between the distractor and set
size 2 conditions were significantly smaller in pure than in
mixed blocks, t(15) = 2.99, p = .005, and the difference be-
tween the distractor condition and the set size 4 condition was
larger in pure than in mixed blocks, t(15) = 1.73, p = .052
(both contrasts one-tailed).

Taken together, the behavioral results also provided evi-
dence that filtering is affected when filter settings switch,
and that more of the irrelevant material is encoded in WM.
Note that this pattern also held when the condition with four
targets + two distractors was taken into account.3

Individual differences in filtering In previous studies, it has
been shown that filtering efficiency is a critical source of in-
dividual differences in WM performance (e.g., Jost et al.,
2011; Vogel et al., 2005): Individuals who score low in esti-
mates of WM capacity are also less efficient in filtering out
irrelevant material. It is therefore an interesting question
whether the reduction in filtering efficiency caused by
switching between filter settings is also larger for low-
capacity than for high-capacity individuals. We, therefore, in-
vestigated individual differences in more detail.

The pattern of individual differences in pure blocks proved
to be similar to those from previous studies (see Jost et al., 2011;

Vogel & Machizawa, 2004; Vogel et al., 2005). The set-size
effect (i.e., the amplitude increase from set size 2 to set size 4)
significantly correlated with an individual’s WM capacity, r =
.628, p = .005: Individuals with lower WM scores were less
efficient at storing an increased number of items, as reflected in
a smaller amplitude increase from set size 2 to set size 4.
Moreover, filtering was also less efficient in low-capacity indi-
viduals. Filtering scores (the difference between the distractor
condition and the set size 4 condition) were smaller for low-
capacity than for high-capacity individuals, r = .449, p = .040
(see also the group differences on the left side of Fig. 2).

Most importantly, the filtering performance of both low- and
high-capacity individuals was affected in the mixed blocks.
This is illustrated in Fig. 2, showing the CDA amplitudes sep-
arately for individuals with low capacity (mean capacity of 1.92
items) and individuals with high capacity (mean capacity of
3.29 items). For both groups, the amplitude of the distractor
condition was as large as the amplitude of the set size 4 condi-
tion, t(7) = 1.78, p = .118, and t(7) = 0.51, p = .629, for the low-
and high-capacity groups, respectively. Moreover, also for both
groups, the distractor condition significantly differed from the
set size 2 condition, t(7) = 4.73, p = .001, and t(7) = 2.83,
p = .013, for the low- and high-capacity groups, respectively.

If anything, the effect caused by filter switching was
larger for high-capacity individuals. This was due to the
fact that for low-capacity individuals, filtering efficiency
was weak even in pure blocks, and the distractor condition
here already differed significantly from the set size 2 con-
dition, which indicates inefficient filtering, t(7) = 1.95, p =
.047. In contrast, high-capacity individuals had more
Broom to move^. The difference from the set size 2 con-
dition became larger, t(7) = 2.31, p = .028, from pure to
mixed blocks, whereas the difference from the set size 4
condition became smaller, t(7) = 2.11, p = .037 (all con-
trasts one-tailed). These results clearly do not suggest that
filter switching affects low-capacity individuals more than
high-capacity individuals.

In order to quantify the extent to which reduced filtering in
mixed blocks affected the capacity for relevant items, we pre-
dictedWM capacity in the mixed blocks bymeans of the CDA-
filtering efficiency scores in the retention interval (see the sig-
nificant correlation betweenWMcapacity and filtering efficien-
cy above). The resulting regression analysis with WM capacity
K (assessed in the independent measure) as criterion and filter-
ing efficiency (amplitude difference between the set size 4 and
distractor conditions in pure blocks) as predictor wasK = 2.363
+ .866x. Inserting the mean filtering value of the mixed blocks
led to a prediction of WM capacity of 2.17 slots—and, hence, a
reduction of 0.43 slots (effect size d = 0.44).

Overall, the fact that WM capacity and static filtering effi-
ciency are related, but WM capacity and flexible filter
switching are not, is incongruent with the idea that filtering
and filter switching rely on common resources.

2 Performance was slightly better in mixed than in pure blocks. Although
this seems surprising at first glance, it turned out to result from the pre-
sentation order: All participants started with pure blocks. Thus, mixed
blocks benefited more from practice, which led to overall better
performance.
3 AnANOVAwith the factors Block Type (pure vs. mixed blocks), Set Size
(2 vs. 4), and Distractors (with or without distractors) revealed a significant
Block Type × Distractor interaction, F(1, 15) = 8.63, p = .0102, but no
three-way interaction (F < 1), indicating that the increased distractor effect
in mixed relative to pure blocks was independent of set size.
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Experiment 2

CDA and filtering efficiency In Experiment 2, we aimed at
exploring the filter deficit in mixed blocks in more detail; that
is, we investigated whether filtering is in general reduced
when the filter settings need to be constantly adjusted, or
whether the filter deficit is restricted to stimuli in a color
that is potentially relevant. Figure 3b illustrates the CDAs
of the four conditions. This shows the typical pattern of a
set-size effect. The CDA amplitude increased with increas-
ing number of targets. ANOVAs for the 100-ms time

windows revealed that the set-size effect was significant
between 600 and 900 ms, minF(1, 20) = 4.91, p = .039,
and maxF(1, 20) = 12.12, p = .002. As in Experiment 1,
this time window was taken as the time of interest for the
subsequent analyses.

The most important difference, however, was that between
the two distractor conditions: Analyses for the time window
between 600 and 900 ms revealed that the amplitude of the
CDA was larger for the condition with only currently irrele-
vant distractors (i.e., distractor irrelevant) than for distractors
that were never relevant (distractor non relevant), t(20) =

Fig. 3 Design and results of Experiment 2. a The four conditions. Here,
another distractor condition was included—that is, distractor non
relevant, with green distractors. Again, participants switched between
Bblue is relevant^ and Bred is relevant.^ The green distractors, therefore,
were distractors in a color that was never relevant, and therefore that
should be ignored more easily than distractors in a color that had been
relevant in previous trials and could become relevant in following trials. b

CDA waves for the four conditions. The amplitude increased with the
number of to-be-stored items (see the amplitude difference between set
size 2 and set size 4), but also when distractors were present. Most im-
portant, however, is the amplitude difference between the distractor con-
ditions, with a larger amplitude for distractors in a color that was only
currently irrelevant (i.e., distractor irrelevant) than for distractors in a
color that was never relevant (i.e., distractor non relevant)

Fig. 2 Individual differences. CDAs are shown separately for individuals
with high and low capacity. As in previous studies, in pure blocks the
amplitude increase from set size 2 to set size 4 is larger for high- than for
low-capacity individuals. Also filtering efficiency is better in high-
capacity individuals; that is, the amplitude of the distractor condition is
between those for set sizes 2 and 4, whereas for low-capacity individuals,

the amplitude of the distractor condition is almost as large as in the four-
target condition, which indicates inefficient filtering. Most importantly,
however, both groups do suffer from switching between filter settings and
show inefficient filtering in the mixed blocks. Thus, filter switching does
not affect low-capacity individuals more than high-capacity individuals
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1.74, p = .049, one-tailed. The difference between the
distractor non relevant and set size 2 conditions was not sig-
nificant, t(20) = 0.22, p = .827.

WM performance in the change-detection task Table 2 il-
lustrates performance differences across the conditions. An
ANOVA including the four conditions revealed a significant
main effect, F(3, 60) = 105.79, p < .0001, ε = .886. As in
Experiment 1, performance significantly decreased with set
size, t(20) = 15.28, p < .0001, but also when distractors were
present: Both distractor conditions differed significantly from
the set size 2 condition: t(20) = 2.24, p = .037, and t(20) =
3.29, p = .004, for the distractor non relevant and distractor-
irrelevant conditions, respectively. Importantly, we also found
a small difference between the two distractor types. This ef-
fect, however, was not significant here,4 t(20) = 0.85, p =
.4017.

Taken together, the findings of Experiment 2 replicat-
ed the findings of a switching-induced filtering deficit:
Distractors in a color that was currently irrelevant were
stored to some extent. In addition, the results of
Experiment 2 also indicated that filtering was much
more efficient for distractors in a color that was never
relevant throughout the experiment than for distractors
in a color that was potentially relevant. This finding
suggests that the filtering inefficiency in mixed blocks
resulted for the most part from previous filter settings
that were still potent sources of interference, allowing
material that matched these criteria to become stored.
We also analyzed whether the difference between the
distractor conditions was related to WM capacity.
However, we did not find any reliable correlation in
either the CDA or the behavioral data.

Discussion

The present results shed light on the question of how atten-
tional processes support control over the contents of WM.
Specifically, we were interested in situations in which filter
settings had to be flexibly adjusted. Our results indeed suggest
that flexible filtering demands reduce filtering efficiency,

which in turn leads to less efficient utilization of the
capacity-limited workspace.

In Experiment 1, we contrasted the standard condi-
tion, in which the filtering criterion remained invariant
across trials, with a filter-switching condition. The in-
creased demands on filtering in the mixed blocks led to
decreased filtering efficiency, such that distractors were
stored and occupied storage space. This resembles the
pattern that can be observed when high- and low-WM-
capacity individuals are compared (see Jost et al., 2011,
and Vogel et al., 2005, as well as the individual differ-
ence approach in the present study), suggesting that not
only is the individual ability to filter out irrelevant in-
formation important for the efficient utilization of the
limited workspace, but also how well filter settings
can be adjusted to changing requirements. In fact, in
terms of overall performance, the reduction in filtering
efficiency in the mixed condition was equivalent to a
drop in 0.43 WM slots, suggesting a substantial loss
of available storage space. Importantly, switching be-
tween filter settings, in particular, affected filtering in
those individuals with high capacity and good filtering
performance (note that the filtering efficiency of low-
capacity individuals was already weak without switching
demands). A post-hoc analysis of the behavioral data in
the most difficult condition (i.e., four targets plus two
distractors) in mixed blocks revealed that with only
70 % correct responses (which is, in terms of capacity
K, equivalent to 1.65 stored targets), high-capacity indi-
viduals performed as poorly as low-capacity individuals
in situations without filtering demands (i.e., four targets
only). Thus, switching between filter settings reduced
the WM performance of high-capacity individuals to
the level of low-capacity individuals.

There were two possible reasons for the filtering inefficien-
cy in the mixed condition. First, filter switching may demand
general attentional resources, which renders the actual filter-
ing less efficient. Second, recently used filter settings may
continue to bias processing. To explore the mechanisms be-
hind the filter deficit, we compared two different distractor
types in Experiment 2: distractors that were associated with
the competing filter setting (as in Exp. 1), and distractors in a

Table 2 Experiment 2: Performance in the change-detection task

Condition

Set Size 2 Distractor Nonrelevant Distractor Irrelevant Set Size 4

M SD M SD M SD M SD

82.54 6.60 80.52 7.35 79.87 6.90 67.63 7.57

The data show percentages of correct responses in distractor and
no-distractor trials

4 Although the effect was not significant here, we found significant dif-
ferences between the two distractor conditions in three independent ex-
periments (unpublished data). In these experiments, we measured only
behavioral data. This had the advantage that we did not need the relatively
complex procedure of presenting targets and distractors in both
hemifields, but only a central presentation. In each of the experiments
we observed small, but reliable, differences. Note that the difference
between the distractor conditions had about the same size as the differ-
ence between the distractor-irrelevant and set size 2 conditions. Thus, on
the behavioral level the lingering effects of the selection history do lead to
another drop of the same size that adds to the general filter deficit when
distractors are present.
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color that was never relevant throughout the experimental
session. The CDA amplitude difference (and the behavioral
data, as a trend) showed that objects in the currently irrelevant
color were more likely to end up in WM than were distractors
in a never-relevant color. In other words, sustained inter-
ference from previously relevant, but currently irrele-
vant, filter settings, and not the switching demands per
se, is responsible for the filtering deficit. Moreover, the
data suggest that this occurs independent of the individ-
ual WM capacity.

This pattern of results parallels the costs that usually occur
in task-switching situations. Switching between two or more
simple tasks leads to RT and error costs. With time to prepare
for the upcoming task, these switch costs are usually reduced,
which has been taken as evidence that some kind of active
reconfiguration of the cognitive system takes place in order to
perform the new task. However, even with ample time to
prepare, switch costs are not eliminated completely, suggest-
ing episodic-memory contributions to the costs (for recent
reviews, see Kiesel et al., 2010; Vandierendonck, Liefooghe,
& Verbruggen, 2010). In their seminal article, Allport, Styles,
and Hsieh (1994) proposed that these costs are due to
persisting activation of the previously activated task sets,
and they coined the term task-set inertia to refer to this kind
of proactive interference. Importantly, there is evidence from a
number of studies that persisting activation from previous task
sets interferes with responding to the actual stimulus, particu-
larly when the stimulus has been processed before in the con-
text of the other task (e.g., Waszak et al., 2003; Wylie &
Allport, 2000). Interestingly, such costs are not restricted to
switch trials, but often occur even on no-switch trials in the
context of task-switch blocks (e.g., Mayr, Kuhns, & Hubbard,
2014; Rubin &Meiran, 2005). The present findings constitute
an important extension of this pattern of results, because they
indicate that in switching situations, interference from previ-
ous control settings affects not just the speed of responding to
a given stimulus, but also the fidelity with which this stimulus
is coded in WM.

The switching-induced filtering deficit is also similar to
findings from visual search experiments showing that atten-
tional selection is affected by the search history (e.g.,
Dombrowe, Donk, & Olivers, 2011; Maljkovic &
Nakayama, 1994; Olivers & Humphreys, 2003; Wolfe,
Butcher, Lee, & Hyle, 2003). For instance, in the study by
Wolfe et al. (2003), search times were prolonged when the
target-defining feature varied from trial to trial. Similar find-
ings were reported by Dombrowe et al., using a task in which
participants were asked to saccade toward a target in a
prespecified color. Saccades were slower and less accurate
when the target color switched. Moreover, an initial prefer-
ence for distractors in a color that matched the previous target
color indicated that it takes a while to fully switch the atten-
tional set. ERP data (N2pc) suggest that the repetition of either

the target dimension or the feature allows a faster and more
efficient allocation of attention (Eimer, Kiss, & Cheung, 2010;
Töllner, Gramann, Müller, Kiss, & Eimer, 2008). In the con-
text of the guided search model (Wolfe, Cave, & Franzel,
1989) or of other theories of attention such as dimensional
weighting (Found & Müller, 1996), top-down filter settings
are counteracted by lingering effects of previous selections
that reduce filtering for those items that match the previous
filter settings.

Recent evidence suggests that when control settings are
established after longer periods of learning, long-term memo-
ry takes over, such that attentional selection is then guided by
templates stored in long-term memory (Carlisle, Arita, Pardo,
& Woodman, 2011; Woodman, Carlisle, & Reinhart, 2013).
Thus, it is conceivable that for our pure blocks, long-term
memory was responsible for holding the templates.
However, in mixed blocks when switching between filter set-
tings was required, a no-longer-relevant template needed to be
replaced by a different one, which presumably takes place in
WM.

The fact that in general, filtering inefficiency in mixed filter
conditions reflects episodic priming from previous control
settings is relevant when considering another important—
and at least at first sight curious—result from Experiment 1:
The reduction in filtering efficiency in the mixed condition
was observed for both high- and low-capacity individuals.
This is important, because both in past work (e.g., Vogel
et al., 2005) and in our Experiment 1, filtering efficiency (as
reflected in the CDA) has been found to be highly related to
individual differences in an independently assessed measure
of WM capacity. In fact, individual differences in filtering
efficiency have been suggested to be a critical factor behind
memory capacity (e.g., Vogel et al., 2005). It is then notewor-
thy that an experimental manipulation that strongly affects
filtering efficiency (i.e., pure vs. mixed filtering) shows no
tendency to interact with WM capacity. However, this pattern
is consistent with the idea that two distinct factors determine
overall filtering efficiency. The first is the top-down, goal-
related implementation of an attentional filter—an ability that
is related to WM capacity. The second is the fact that, due to
implicit, episodic priming effects (cf. Awh, Belopolsky, &
Theeuwes, 2012;Wolfe et al., 2003), past filter settings remain
active and penetrate even efficient filter settings.

Conclusion

In two experiments, we provided evidence that the require-
ment to frequently adjust the filter settings that are responsible
for preventing irrelevant material from being processed re-
duces the efficient utilization of capacity-limited WM.
Because WM plays an important role in many cognitive tasks,
any further limitation of this system, such as the limitation
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found here, can have important, real-life consequences. We
also specified the observed switching-induced filtering deficit
by showing that it is due to lingering effects of previous filter
settings that allow irrelevant material that matches these set-
tings access to WM. In this sense, implicit guidance of atten-
tion counteracts goal-directed selection, and thus constitutes
an important limitation of our attention system that holds even
for high-WM individuals. In showing that different selection
influences determine how efficiently the limited workspace
can be used, the present study contributes to our understand-
ing of the interrelation between selective attention and WM.

Author note This work was funded by the German Research Founda-
tion (Grant No. JO 861/2-1 to K.J.). We thank Lena Eberspächer and Tina
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comments.
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