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Abstract Previous studies have demonstrated that autonomic
arousal is increased following correct task performance on a
difficult, relative to an easy, task. Here, we hypothesized that
this arousal response reflects the (relative) surprise of correct
performance following a difficult versus an easy task. Follow-
ing this line of reasoning, we would expect to find a reversed
pattern following erroneous responses, because errors are less
expected during an easy than during a difficult task. To test
this, participants performed a flanker task while pupil size was
measured online. As predicted, the results demonstrated that
pupil size was larger following difficult (incongruent) correct
trials than following easy (congruent) correct trials, but small-
er following difficult than following easy incorrect trials.
Moreover, participants with larger congruency effects, and
hence a larger difference in outcome expectancies between
the two trial types, showed larger differences in pupil size after
both correct and incorrect responses, further corroborating the
idea that pupil size increased as a measure of performance
prediction errors.
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In order to achieve our goals more efficiently, cognitive con-
trol processes continuously monitor our environment and ad-
just information processing. Central to this remarkable feature
of human behavior is our ability to constantly make predic-
tions about the environment and our own actions. In light of
this idea, recent computational models have suggested that we
monitor and act upon these so-called prediction errors
(Alexander & Brown, 2011; Holroyd & Coles, 2002; Silvetti,
Alexander, Verguts, & Brown, 2014; Silvetti, Seurinck, &
Verguts, 2011). For example, when you are handed a small
gift-wrapped box, you probably expect to find a small present.
In this situation, a prediction error will occur when you find
either an expensive watch (positive prediction error) or a small
candy (negative prediction error). The abovementioned
models suggest that we generate predictions and monitor pre-
diction errors not only for our environment, but also for our
own behavior. For example, failing at walking down the stairs
(unexpected failure in a simple task) or hitting the bull’s eye in
darts (unexpected success in a hard task) can also result in
prediction errors (i.e., performance prediction errors). In the
present study, we tested this hypothesis by investigating the
interaction between task difficulty and task performance on
pupil dilation—as a measure of cognitive surprise (e.g.,
Nassar et al., 2012; Preuschoff, ‘t Hart, & Einhäuser, 2011;
Raisig, Welke, Hagendorf, & van der Meer, 2010; Silvetti,
Seurinck, van Bochove, & Verguts, 2013).

The role of prediction errors and their influence on behav-
ior is inherited from the reinforcement learning literature
(Montague, Hyman, & Cohen, 2004; Sutton & Barto, 1998).
The reward prediction error can be conceptualized as the dif-
ference between the expected and actually received reward.
However, although such errors have been convincingly dem-
onstrated in reward-learning studies (Schultz, 2002, 2004),
these reward prediction errors may also be central to how we
monitor our task performance in the absence of reward. Along
these lines, Holroyd and Coles (2002) stated that the anterior
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cingulate cortex (ACC) uses reward and error signals to im-
prove task performance. According to their model, the ACC
learns which response is best for a specific task through rein-
forcement learning signals (i.e., prediction errors). Inspired by
the model of Holroyd and Coles, Silvetti and colleagues
(2011) further suggested that ACC activity could be summa-
rized by one function—namely, value estimation. In this way,
Silvetti and colleagues (2011) used their model to explain
reward processing, conflict monitoring, error processing, and
volatility estimation. What is especially interesting for the
present purpose is that both models implicitly assume that
people keep track of their performance, and do so for different
task conditions or task contexts separately. For example, when
presented with difficult and easy tasks, people quickly learn
the separate outcome expectancies (i.e., mean accuracy) for
both tasks, which will result in different prediction errors dur-
ing task performance. Consequently, when making an error on
an easy task, one would experience a larger (negative) predic-
tion error than during an error on a difficult task. Conversely,
being correct on a difficult task would result in a larger
(positive) prediction error than would being correct on
an easy task.

Using pupil dilation as a marker of cognitive surprise, we
set out to investigate this hypothesis in an Eriksen flanker task
(Eriksen & Eriksen, 1974). When doing a flanker task, partic-
ipants have to respond to a centrally presented target, flanked
by a number of distractors. These distractors (i.e., flankers)
can be either the same as the central symbol (i.e., the target),
resulting in a congruent trial (e.g., HHHHH), or different from
the target, resulting in an incongruent trial (e.g., HHSHH).
Typically, people tend to react faster and make fewer errors
on congruent than on incongruent trials. Therefore, on the
basis of the abovementioned models, we can make the follow-
ing three predictions. First, since errors are less frequent than
correct trials, there should be a larger pupil size following
erroneous responses than following correct performance. Sec-
ond, correct performance is less expected on incongruent than
on congruent trials, whereas errors are less expected on con-
gruent than on incongruent trials. Therefore, pupil size should
be larger following correct incongruent trials than following
correct congruent trials, but this congruency effect should re-
verse when errors are being made, resulting in an inter-
action between congruency and accuracy on pupil dila-
tion. Finally, if this interaction is really driven by per-
formance prediction errors, we would expect this pattern
to depend on how individuals experience the difference
in outcome expectancies between the two congruency
conditions. Therefore, individual differences in the con-
gruency effect (i.e., a larger congruency effect would
mean a larger difference in outcome expectancies be-
tween congruency conditions) should result in a more
pronounced interaction between congruency and accura-
cy in pupil size.

Method

Participants

Twenty-nine persons participated in this experiment in ex-
change for either course credits or €15. All participants signed
an informed consent disclosure. For optimal online pupil size
measures, participants were not allowed to wear glasses or
hard lenses. One participant did not make a sufficient number
of errors on congruent trials for analyses (only 11; the remain-
ing participants made more than 20 errors). Seven other par-
ticipants made too many errors, resulting in chance-level per-
formance, probably due to the lack of online feedback during
task performance and to difficult task conditions (i.e., short
stimulus presentation times and stimulus masks; see below).
The absence of online feedback was used to promote self-
monitoring of performance, and the difficult task was used
to induce sufficient error data on both incongruent and con-
gruent trials for pupil dilation analyses. One extra participant
was excluded due to excessive blinking behavior and insuffi-
cient pupil data. The remaining 20 participants (16 female,
four male) were 21.3 years old (SD = 4.74, range = 18–32)
and were all right-handed.

Material and procedure

The four-choice flanker task consisted of nine little squares in
a 3 × 3 matrix. Four different types of squares were formed by
removing one of the four sides, resulting in differently orient-
ed U-shapes. The target stimulus was the central stimulus,
which was always surrounded by eight distractor stimuli.
The stimuli were presented in dark gray on a light gray back-
ground. The target stimulus could be either the same as the
eight distractor stimuli (a congruent trial) or different (an in-
congruent trial). Importantly, all of the stimuli were
equiluminant, ensuring that changes in pupil size could not
be attributed to light reflexes or luminance effects. The four
middle keys on a keyboard—“F,” “G,” “H,” and “J”—were
assigned to the four stimulus types, and the participant’s task
was to respond quickly and accurately to the target stimulus
with its corresponding response button.

After a practice block of 24 trials, participants performed
five blocks of 120 trials. Equal numbers of congruent and
incongruent trials were randomly presented. On each trial, a
stimulus was presented for 100 ms, followed by a mask (##)
for 150 ms (see Fig. 1 for an example of an incongruent trial).
Participants could react until 550 ms after mask offset (a total
of 800 ms of response time). We used a short stimulus dura-
tion and strict response deadline to increase the task difficulty
and promote speeded and erroneous responses. In this way, we
could study pupil size following correct and erroneous task
performance for each congruency condition separately. Dur-
ing the practice block, participants received feedback about
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their performance: presentation of the word JUIST (“correct”)
followed correct responses, FOUT (“wrong”) followed erro-
neous responses, and TE TRAAG (“too slow”) followed the
response deadline when no response was registered. During
the experimental blocks, participants only received feedback
whenever they were too slow. The intertrial interval (ITI) was
jittered between 2,000 and 2,500 ms.

An EyeLink 1000 eyetracking device was used to measure
the spontaneous eye blink rate (EBR) and pupil diameter.
Before the experiment, the spontaneous eye blink rate was
measured for each participant. Participants had to look at a
light gray screen with a central fixation cross for 3 min. They
were asked not to gaze, but just to look casually at the fixation
cross. The EBR is believed to be a measurement of tonic
dopamine (Taylor et al., 1999). During the experiment, partic-
ipants were requested to blink less than usual, but not to re-
frain from blinking (they were encouraged to blink during
breaks). Calibration and validation of gaze position were car-
ried out with a 9-point grid. Viewing was binocular through-
out the experiment, but pupil dilation was recorded for the
right eye only. A chinrest and a brace at forehead height were
used to restrict head movements. Participants had to look at
the computer screen through a pane that reflected their eyes
into the camera, and they were not allowed to move
their head during the entire experiment. The flanker task
was presented using Tscope software (Stevens,
Lammertyn, Verbruggen, & Vandierendonck, 2006) on
a Pentium PC. After the experiment, participants com-
pleted the BIS/BAS questionnaire (Carver & White,
1994), measuring their reward and punishment sensitiv-
ity. However, none of the correlation analyses with BIS/
BAS measures or spontaneous EBR reached significance

after controlling for multiple comparisons, and therefore
are not discussed further.

Results

Behavioral results

Trials with no registered responses (within the 800-ms dead-
line) were excluded from all analyses, which did not differ
between congruent (5.2 %) and incongruent (5.4 %) trials,
t(19) < 1. On the remaining trials, we found a mean accuracy
of 72.7 % (note that chance level was 25 %). As expected, an
overall congruency effect emerged for both error rates
(Fig. 2b), t(19) = 3.1, p < .01, and reaction times, t(19) =
9.4, p < .01. Participants made more errors and were slower
on incongruent (36.8 % and 640 ms, respectively) than on
congruent (18.0 % and 604 ms) trials.

Pupil measures

Pupil size was measured at 1000 Hz. Blinks and missing data
points due to recording failure were corrected for by means of
a linear interpolation procedure, which allowed us to use all
relevant trials for the analyses. However, removing trials with
blinks from the analyses rendered similar results. Next, the
mean pupil size during a 200-ms timewindow before stimulus
onset was subtracted from the maximum pupil size within a 2,
000-ms time window following stimulus onset, ensuring a
baseline-corrected measure of pupil size for each trial sepa-
rately.1 Using these measures, the mean (maximum) pupil size
was calculated for each congruency and accuracy condition.
Finally, pupil size was analyzed using a 2 × 2 ANOVA with
Congruency (congruent or incongruent) and Accuracy (cor-
rect or error) as within-subjects factors.

The main effect of accuracy was significant, F(1, 19) = 9.6,
p < .01, indicating enhanced pupil dilation following errors
(235a.u.), as opposed to following correct (198a.u.), trials.
The main effect of congruency was not significant, F(1, 19)
< 1, p = .810. However, most importantly, the two-way inter-
action between accuracy and congruency was significant, F(1,
19) = 11.4, p < .01 (see Fig. 2a and c). Post-hoc t tests between
the two congruency conditions for each accuracy condition

## ## ##
## ## ##
## ## ##

150 ms

100 ms

550 ms (response deadline)

2000 – 2500 ms ITI

Fig. 1 General paradigm and trial procedure. Participants had to identify
the direction of the central figure (target) while ignoring the surrounding
shapes, and to respond as quickly as possible. The stimuli were presented
in dark gray on a light gray background. No feedback was provided
during the experimental trials

1 Because the stimulus-locked analysis and graph offers the earliest un-
biased onset and most comprehensive visualization of our data, and be-
cause the peak-based analysis is most commonly used, we report this
analysis. However, there are few standardized guidelines for analyzing
pupil dilation data. Therefore, we also did similar analyses that were
response-locked. Furthermore, for both the stimulus-locked and
response-locked data, peak-based (maximum) as well as mean pupil size
analyses were performed. Importantly, all of these analyses resulted in
similar significant results.
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separately indicated significantly larger pupil dilation on in-
congruent (208a.u.) than on congruent (184a.u.) trials follow-
ing correct responses, t(19) = 2.9, p < .01, and larger pupil
dilation on congruent (249a.u.) than on incongruent (222a.u.)
trials following erroneous responses, t(19) = 2.8, p = .011.

Pupil–behavior correlations

The number of errors attributable to incongruent trials (i.e., a
relative measure of the congruency effect on error rates that
controls for individual differences in overall accuracy) was
calculated for each participant separately with the following
formula: [P(Error | Incongruent) – P(Error | Congruent)] / [P-
(Error | Incongruent) + P(Error | Congruent)]. Next, this nor-
malized congruency effect was correlated with the two-way
interaction observed in the pupil data [computed by
subtracting the congruency effect for erroneous responses
from the congruency effect for correct responses: (incongruent
correct – congruent correct) – (incongruent incorrect – con-
gruent incorrect)]. As predicted, the congruency effect corre-
lated positively with the two-way interaction between congru-
ency and accuracy in the pupil dilation data (see Fig. 3a), as
was indicated by both Pearson’s r, r = .684, p < .01, and the
rank-ordered Spearman’s rho, ρ = .621, p < .01.

This relation between response event probability (per Con-
gruency × Accuracy condition) and pupil size is also illustrat-
ed by Fig. 2a and b. To further demonstrate that event proba-
bility and pupil dilation were proportionally, and not just
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qualitatively, related, we tested the correlation coefficients for
each of the event log probabilities and its corresponding mean
pupil size (normalized per participant). Specifically, the
Pearson’s r correlation coefficients were r = –.696, p < .01,
for congruent correct, r = –.589, p < .01, for incongruent cor-
rect, r = –.275, p > .1, for congruent incorrect, and r = –.788, p
< .001, for incongruent incorrect trials. Three of the four corre-
lations demonstrate a significant negative correlation between
event probability and pupil dilation, in line with our hypothesis
that the pupil dilates as a function of the unexpectedness of
response outcomes. The nonsignificant correlation for congru-
ent incorrect trials was numerically in the same direction (and
possibly nonsignificant because this least frequent condition,
naturally, had the least number of data points—i.e., half the
number, as compared to incongruent incorrect trials).

Discussion

In this study, we investigated the interaction between congru-
ency and accuracy on pupil dilation. The results indicate that
pupil size is increased on incongruent, relative to congruent,
trials during correct task performance. Crucially, this pattern
reversed during error responses, resulting in larger pupil size
on congruent, relative to incongruent, trials. Furthermore, this
two-way interaction between congruency and accuracy in pu-
pil size correlated strongly with individual differences in the
congruency effect on error rates.

Whereas these differences in pupil size between correct and
incorrect performance (Critchley, Tang, Glaser, Butterworth,
& Dolan, 2005;Wessel, Danielmeier, & Ullsperger, 2011) and
between correct congruent and correct incongruent trials
(Brown et al., 1999; Laeng, Ørbo, Holmlund, & Miozzo,
2011; Siegle, Steinhauer, & Thase, 2004; van Bochove, Van
der Haegen, Notebaert, & Verguts, 2013; van Steenbergen &
Band, 2013) have been well documented before, we are not
aware of empirical studies that have investigated the interac-
tion between accuracy and congruency. We believe that there
are two important reasons for this. First, earlier experiments
did not obtain a sufficient number of errors on congruent trials
to investigate this. Here, we used a strict response deadline
and short stimulus presentation time to ensure sufficient num-
bers of errors in both congruency conditions. This allowed us
to study pupil size following correct and erroneous task per-
formance for each congruency condition separately.

A second reason is more theoretical: Earlier studies did not
investigate this prediction because their measurement of pupil
dilation was used for other reasons. Specifically, it was origi-
nally proposed that pupil size could be used as a measure of
cognitive effort, since it is often found to increase with in-
creasing task demands (Hess & Polt, 1964; Kahneman &
Beatty, 1966). Similarly, in contrast to the recent models of

Silvetti and colleagues (2011) and Alexander and Brown
(2011), earlier models of conflict-related neural activity had
focused on its effortful processing demands (Botvinick, Brav-
er, Barch, Carter, & Cohen, 2001), promoting hypotheses in
terms of cognitive effort, rather than cognitive surprise. Im-
portantly, our study did not intend to dissociate the different
interpretations of this univariate psychophysiological mea-
sure. The interpretation of pupil dilation in terms of cognitive
effort could perhaps account for our present results as well,
although we believe such an explanation might be less
straightforward. For instance, it is not evident whether and
how making an error could be understood as being more ef-
fortful, and why erroneous responses are more cognitively
demanding on congruent than on incongruent trials. Instead,
we would argue that the role of prediction errors in task per-
formance processing offers a more promising avenue for fu-
ture studies of conflict and/or error processing and their related
neural signatures. In this study, analyzing prediction errors led
to the straightforward prediction that the earlier observed dif-
ference between incongruent and congruent correct trials
(Brown et al., 1999; Laeng et al., 2011; Siegle et al., 2004;
van Bochove et al., 2013; van Steenbergen & Band, 2013)
should reverse when making an error. This suggests that this
earlier found difference can be reinterpreted in terms of
(positive) cognitive surprise following correct performance
on incongruent, relative to congruent, trials.

Corroborating evidence for this idea can be found in a
recent study by Schouppe and colleagues (in press). There,
participants had to perform a flanker task (Exp. 2a) followed
by an affective judgment task with positive and negative
words. Interestingly, the authors demonstrated that correct per-
formance on incongruent, relative to congruent, trials led to a
significant benefit in reaction times for the evaluation of pos-
itive, relative to negative, words. Similarly, the authors pre-
dicted and interpreted this finding by suggesting that people
find it more positively surprising to solve a difficult than an
easy task (for a similar reasoning, see Alessandri, Darcheville,
Delevoye-Turrell, & Zentall, 2008; Braem, Verguts,
Roggeman, & Notebaert, 2012; Satterthwaite et al., 2012).

More broadly, our results demonstrate that pupil dilation
can act as a marker of cognitive surprise—not only about
external events outside a participant’s control (e.g., Preuschoff
et al., 2011), but also about his or her own performance. In-
terestingly, similar observations have been made in the elec-
troencephalography (EEG) and functional magnetic reso-
nance imaging (fMRI) literatures. For example, studying the
feedback-related negativity, a presumedmarker of ACC activ-
ity following performance errors, Oliveira, McDonald, and
Goodman (2007) demonstrated that this component was not
exclusive to error performance, but could be elicited by unex-
pected positive feedback, as well (for similar results, see
Ferdinand, Mecklinger, Kray, & Gehring, 2012; Jessup,
Busemeyer, & Brown, 2010; Silvetti, Nuñez Castellar, Roger,
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& Verguts, 2014). In a similar vein, Wessel, Danielmeier,
Morton, and Ullsperger (2012) took a different approach, by
demonstrating that the neural correlates of error processing
also show remarkable similarities to those of novelty process-
ing, as evidenced by both EEG and fMRI data (see also
Desmet, Deschrijver, & Brass, 2014). Together, these and
our results suggest that neural indices of performance moni-
toring can be best understood in terms of more general pro-
cesses that signal the violation of expectancies (prediction
errors), in line with recent models of performance monitoring
(Alexander & Brown, 2011; Silvetti, Alexander et al., 2014;
Silvetti et al., 2011).

These similarities between ACC activity during perfor-
mance monitoring and the present pupil dilation results seem
to suggest that our data tap into ACC–locus coeruleus inter-
actions (Aston-Jones & Cohen, 2005). The locus coeruleus is
mainly known for its role in norepinephrine release and the
orienting response, thought to be marked by the widening of
pupils and an event-related electrophysiological component
called the P3 (De Taeye et al., 2014; Geva, Zivan, Warsha,
& Olchik, 2013; Murphy, Robertson, Balsters, & O’Connell,
2011; Nieuwenhuis, Aston-Jones, & Cohen, 2005;
Nieuwenhuis, De Geus, & Aston-Jones, 2011). This orienting
response is typically elicited by infrequent and motivationally
significant stimuli and serves to facilitate further behavioral
adaptations (Lynn, 1966). Performance prediction errors, we
believe, are infrequent and motivationally significant in and of
themselves. Therefore, the present results might not just re-
flect prediction errors, but rather the orienting response that
follows these prediction errors, in order to facilitate further
task performance or learning strategies.

Indeed, other theories of pupil dilation that similarly stress
the role of surprise and the locus coeruleus–norepinephrine
system on pupil size (Aston-Jones & Cohen, 2005; Gilzenrat,
Nieuwenhuis, Jepma, & Cohen, 2010; Jepma & Nieuwenhuis,
2011) go one step further, by emphasizing its importance in task
engagement and cognitive adaptation. Specifically, these stud-
ies have looked at tonic changes in pupil size (where our study
focused on stimulus-evoked phasic changes) and suggested that
pupil size decreases as task engagement increases. Conversely,
increases in pupil size would be associated with task disengage-
ment or decreases in task utility. In this regard, it remains an
important research endeavor to identify what roles prediction
errors, pupil dilation, and autonomic arousal might have in
driving cognitive adaptations and strategies that serve perfor-
mance optimization (Aston-Jones & Cohen, 2005; Brown, Van
Steenbergen, Kedar, & Nieuwenhuis, 2014; Nassar et al., 2012;
Silvetti et al., 2013; Verguts & Notebaert, 2009).

Author note S.B., E.C., and W.N. were supported by FWO-
Vlaanderen G.0098.09N. We thank Joshua Brown and an anonymous
reviewer for interesting suggestions to improve both the analyses and
discussion of our results.
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