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Abstract Throughout our lives, we face the important task of
distinguishing rewarding actions from those that are best
avoided. Importantly, there are multiple means by which we
acquire this information. Through trial and error, we use ex-
periential feedback to evaluate our actions. We also learn
which actions are advantageous through explicit instruction
from others. Here, we examined whether the influence of the-
se two forms of learning on choice changes across develop-
ment by placing instruction and experience in competition in a
probabilistic-learning task. Whereas inaccurate instruction
markedly biased adults’ estimations of a stimulus’s value,
children and adolescents were better able to objectively esti-
mate stimulus values through experience. Instructional control
of learning is thought to recruit prefrontal–striatal brain cir-
cuitry, which continues to mature into adulthood. Our behav-
ioral data suggest that this protracted neurocognitive matura-
tion may cause the motivated actions of children and adoles-
cents to be less influenced by explicit instruction than are
those of adults. This absence of a confirmation bias in children
and adolescents represents a paradoxical developmental ad-
vantage of youth over adults in the unbiased evaluation of
actions through positive and negative experience.
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Learning to obtain rewards and avoid punishment is critical
for the survival of all organisms. An approach to this chal-
lenge that is employed across species is trial and error-based
learning. By aggregating positive and negative feedback stem-
ming from our previous actions, we are able to estimate how
beneficial a given action might be in the future. Although such
feedback-driven learning is effective, the need to learn about
the consequences of our actions through direct experience can
be inefficient at best, and dangerous when the potential out-
comes are extremely negative.

Recruiting a sophisticated capacity for symbolic communi-
cation, humans regularly circumvent these shortcomings of
experiential learning by conveying the value of an action
through rules, advice, or other forms of explicit instruction.
By selecting actions based on instruction, a learner is able to
benefit from the prior experience and knowledge of others.
The utility of transmitting information through instruction is
particularly evident in the context of development. Children
and adolescents receive a great deal of instructed information
from parents, teachers, and public policy campaigns that seek
to educate and protect them, as well as from their peers. An
assumption inherent in providing such guidance is that in-
struction can direct children and adolescents’ behavior as ef-
fectively as, or better than, their own experiential learning. To
date, few studies have directly examined whether the efficacy
of learning from instruction versus experience changes across
development. However, our understanding of the cognitive
processes and neural circuits implicated in such learning,
and their maturational trajectories, suggests that there may
be qualitative changes in the recruitment of instructed versus
experiential learning across development.

Previous research has demonstrated that providing adults
with instruction or advice induces a behavioral “confirmation
bias,” in which recommended actions are valued more highly
than those learned solely through experience, even when those
recommendations turn out to be inaccurate (Biele, Rieskamp,
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& Gonzalez, 2009; Biele, Rieskamp, Krugel, & Heekeren,
2011; Doll, Hutchison, & Frank, 2011; Doll, Jacobs, Sanfey,
& Frank, 2009). This instructional biasing of experiential
learning is thought to stem from the influence of the prefrontal
cortex, implicated in rule-guided behavior (Bunge & Zelazo,
2006; Miller & Cohen, 2001), on feedback-based evaluative
processes in the striatum (McClure, Berns, & Montague,
2003; O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003;
Pagnoni, Zink, Montague, & Berns, 2002). This process has
been modeled computationally as an instruction-consistent
distortion of error-driven reinforcement-learning signals (Doll
et al., 2009). Developmentally, the striatal signals implicated
in feedback-based reward learning appear to be relatively ma-
ture in children and adolescents (Cohen et al., 2010; Galvan
et al., 2006; van den Bos, Cohen, Kahnt, & Crone, 2012). In
contrast, connectivity between the prefrontal cortex and the
striatum exhibits marked structural changes from childhood
through adulthood (Imperati et al., 2011; Liston et al., 2006).
Consistent with the proposal that these connectivity changes
reflect fine-tuning of the information exchange between these
regions (Somerville & Casey, 2010), cognitive functions that
depend on the integrity of frontostriatal pathways typically
show continued maturation into adulthood (Liston et al.,
2006; Rubia et al., 2006; Somerville & Casey, 2010). This
neural model suggests that the biasing influence of explicit
instruction on value-based choices might be diminished in
children and adolescents, predisposing them to exhibit greater
reliance on experiential learning.

In the present behavioral study, we tested this hypothesis
by having children, adolescents, and adults complete a prob-
abilistic reward-learning task consisting of a learning phase
immediately followed by a test phase. In the learning phase,
three pairs of stimuli were presented, and participants could
learn experientially, through trial and error, which stimulus
within each pair was most likely to yield reward. Importantly,
participants were given an inaccurate instruction that a lower-
valued stimulus within one pair was likely to be rewarding.
Participants could discover that this information was inaccu-
rate through the subsequent positive or negative feedback fol-
lowing each choice. During the test phase, participants were
presented with all possible pairings of the six stimuli from the
learning phase, and they attempted to select the higher-valued
option, receiving no feedback. By comparing their perfor-
mance for instructed and uninstructed stimuli of equal value,
we could determine the extent to which the false instruction
biased their experiential learning of the true stimulus value,
providing a quantitative measure of the influence of instruc-
tion on experiential learning. Previous studies in adults have
demonstrated that inaccurate instruction strongly biases expe-
riential value learning (Doll et al., 2011, 2009; Staudinger &
Buchel, 2013). We hypothesized that children and adolescents
would be less susceptible to this bias, instead relying predom-
inantly upon their own experience to guide their choices.

Materials and methods

Participants

Participants were recruited through community-based events
(e.g., street fairs) and flyers posted within institutions in the
New York City metropolitan area. All participants (or parents
of minors) were screened by phone prior to participation to
ensure that the participant had no history of diagnosed neuro-
logical or psychiatric disorders, was not taking medication,
and was typically developing cognitively and behaviorally
(based on self- or parental report). We also ensured that all
participants were not colorblind. All participants provided
written consent to participate and were paid for their partici-
pation. They were debriefed following the experiment about
the misleading nature of the instructions.

A total of 87 (51 female, 36 male) paid volunteers complet-
ed the study and were included in the analyses: 30 children (18
female, 12 male; 6–12 years of age, M = 9.5, SD = 1.8), 31
adolescents (15 female, 16 male; 13–17 years of age, M =
14.8, SD = 1.5), and 26 adults (17 female, nine male; 18–
34 years of age, M = 23.0, SD = 4.3). Previous studies
(Biele et al., 2009; Doll et al., 2009) had reported large
instruction-bias effect sizes in adults (d = 0.9 and d = 1.0–
1.3, respectively). Because we considered the possibility that
children or adolescents might show a smaller effect, we
targeted a sample size of 25 participants per group, which
would enable us to detect a significant effect of at least 0.6
in each age group with 80 % power (alpha of .05, two-tailed).
Additional participants were recruited to ensure adequate
power in the event of subject attrition, particularly in the child
and adolescent groups.

Behavioral paradigm

Participants completed an instructed probabilistic selection
task (Doll et al., 2009) that was adapted for use across devel-
opment, which consisted of a learning phase followed imme-
diately by a test phase. Participants were told that their task
was to feed a hungry mouse by helping him find the cheese
hidden behind one of two mouseholes. During learning, par-
ticipants saw one of three stimulus pairs on each trial, referred
to here as AB, CD, and EF, which consisted of uniquely col-
ored mouseholes (Fig. 1). These stimuli were chosen to make
them easily distinguishable and to be as engaging as possible
for our younger participants.

Participants were given positive or negative feedback (a
happy mouse with cheese, or a sad mouse) after each choice
during the learning phase, indicating whether they had made a
“correct” or an “incorrect” choice. Although participants did
not receive monetary rewards, previous studies have sug-
gested that purely cognitive feedback in learning tasks recruits
underlying neurocircuitry similar to that in reward-based
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reinforcement learning (Daniel & Pollmann, 2010; Rodriguez,
Aron, & Poldrack, 2006; van den Bos et al., 2012). Though
both stimuli in each pair were occasionally correct or incor-
rect, each pair had an optimal choice. The stimuli were prob-
abilistically reinforced; for the AB pair, choosing “A” resulted
in positive feedback on 80 % of the trials, whereas “B” led to
positive feedback on 20 % of the trials. The other two pairs
(CD and EF) had reward contingencies of 70 % (C/E) and 30
% (D/F), but participants were given inaccurate instruction
about stimulus F (verbatim: “We’ll get you started with a
hint—this mousehole has a good chance of containing
cheese”). This instruction was provided in textual format on
the screen, accompanied by an image of the recommended
mousehole. Thus, the instruction did not have a clear social
source and was not directly associated with the experimenter,
or with any specific individual. Before starting, participants
completed a brief quiz on the task instructions, during which
they were prompted to recall the recommended stimulus and
were again visually reminded of this instruction. The partici-
pants saw each stimulus pair 60 times, pseudorandomized in
ten-trial blocks, with side of presentation counterbalanced for
each participant. Participants had 2.5 s to choose a stimulus
and received feedback for 1 s.

Before the test phase, participants were told that theywould
now be tested on what they had just learned. Participants were
presented with all 15 possible stimulus pairings (3 original, 12
novel), but were not given feedback after making a choice. For
each pair, they were asked to “choose the mousehole that feels
more correct based on what you’ve learned; if you’re not sure

which one to pick, go with your gut feeling.” Participants saw
each pair six times, randomly intermixed in the 90 test trials. A
blank screen was presented between trials (150 ms duration),
and participants had no time limit when making a choice.

Data analysis

Learning-phase choice behavior data were analyzed using a
generalized linear mixed-effects model using the lme4 package
for the R statistical language (Bates,Maechler, Bolker, &Walk-
er, 2014). Optimal choice (i.e., choosing the higher-probability
option) was modeled with independent predictors of age group
(factors: Children, Adolescents, Adults), pair (factors: AB, CD,
EF), trial (1–180, z-normalized), and all two- and three-way
interactions.We used amaximal random-effects structure (Barr,
Levy, Scheepers, & Tily, 2013), including a per-participant ad-
justment to the intercept (“random intercepts”), as well as per-
participant adjustments to the pair, trial, and pair-by-trial inter-
action terms (“random slopes”). In addition, we included all
possible random correlation terms among the random effects.
The p values and 95 % confidence intervals of the log-odds
were determined through bootstrapping with 400 simulations
using the bootMer function as implemented in the lme4 pack-
age, and p values for the analyses of variance were determined
using likelihood ratio tests as implemented in the mixed func-
tion of the afex package. The data are presented visually in
Fig. 2 below, using mean percent choices for each pair by age
group, in ten-trial blocks.

We assumed that any biasing influence of the instructions on
experiential learning would be revealed by a tendency to make
instruction-consistent choices in the test phase, an effect previ-
ously observed when participants were instructed either that a
suboptimal stimulus was good or an optimal stimulus was bad
(Doll et al., 2009). We examined participants’ test-phase
choices for pairs that included the equally valued but differen-
tially instructed 30 % stimuli (D and F) to determine the extent
to which the learned stimulus values were biased by instruction.
We first assessed whether participants chose in accordance with
the instruction for the equally valued pair of 30 % stimuli (DF
pair, 30:30 instructed; see Fig. 3A below). We then compared
performance for a set of pairs from the test phase, in order to
generate an instruction-bias score: AD (80:30), AF (80:30
instructed), DB (30:20), and FB (30 instructed:20); see
Fig. 3B. These comparisons were chosen because any differ-
ence in performance—measured as the proportion of choices of
the optimal, higher-probability option—between the two 80:30
pairs or 30:20 pairs was likely to be due to the instruction, since
the stimuli were otherwise identical. The bias score was the
mean of two difference scores: the difference between AD
and AF performance, and the difference between FB and DB
performance, each of which could vary between –1 and +1.
Positive numbers would indicate an instruction-consistent bias,
negative numbers an instruction-inconsistent bias (i.e.,

Fig. 1 Probabilistic-learning paradigm. The learning phase consisted of
180 choices between six probabilistically reinforced stimuli presented in
three pairs. Participants were falsely instructed that one stimulus had a
high likelihood of being rewarded, when in actuality it did not. Positive or
negative feedback was given following each trial. The test phase,
consisting of all 15 possible stimulus pairs with no feedback, enabled
assessment of the extent to which the learned stimulus values were
biased by the instruction
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participants chose against the instruction), and values close to
zero would indicate no instruction bias. The choice behavior
data for these pairs were analyzed similarly to the training-
phase analysis, except that the independent variables were age
group (Children, Adolescents, Adults), pair (factors: Easy
80:30, Hard 30:20), and instruction (factors: Instructed, Unin-
structed). Post-hoc testing was performed using t tests of the
instruction-bias score mentioned above. To establish that all age
groups exhibited above-chance experiential learning, we per-
formed an additional analysis testing performance on all

uninstructed pairs (A, B, C, and D combinations), with age
group as the independent variable.

Response time data from each phase of the task were ana-
lyzed separately using a linear mixed-effects model. Models
were constructed as before, with response time as the depen-
dent variable and choice and its interactions added as addi-
tional, independent variables. All p values were determined
using conditional F tests with Kenward–Roger correction of
the degrees of freedom, as implemented in the ANOVA func-
tion (with Type III F tests) from the car package.
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Fig. 2 Learning-phase performance. Adults (cyan squares) performed
better than children (red circles) and marginally better than adolescents
(blue triangles) for the two uninstructed pairs (AB, CD). All groups

initially adhered to the false instruction (F) and gradually learned through
experience to select the higher-valued alternative (E), with adolescents
showing the fastest improvement. Error bars represent SEMs

Fig. 3 Test-phase performance. (A) Percentages of F choices when see-
ing the DF pair (30:30 instructed). (B) The instruction bias was the aver-
age of two difference scores between stimulus pairs of equal probability
that were differentially instructed. (C) Adults showed a significantly

larger instruction bias than did both children and adolescents. (D) A
significant increase in instruction bias occurred with age (darker circles
indicate two data points). Error bars (panels A and C) are 95% confidence
intervals; shading (panel D) indicates SEMs
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We used reinforcement-learning models to attempt to char-
acterize how participants integrated the positive and negative
feedback received during the learning phase. We used partic-
ipants’ test-phase choices as indications of their learned stim-
ulus values (Doll et al., 2011, 2009; Frank, Moustafa, Haugh-
ey, Curran, & Hutchison, 2007; Frank & O’Reilly, 2006;
Frank, Seeberger, & O’Reilly, 2004) and fit two
reinforcement-learning models to these test-phase choices by
maximum a posteriori estimation (Daw, 2011; den Ouden
et al., 2013) using the MATLAB Optimization Toolbox (The
MathWorks, Inc., Natick, MA). For each model, we estimated
the parameters that best captured how learning-phase feed-
back could be integrated to yield the choices observed in the
test phase. The first model was a standard reinforcement-
learning model, in which prediction errors (δ) were used to
update the values (Q) associated with each stimulus. Feedback
that was better than expected would yield a positive prediction
error, and feedback worse than expected would yield a nega-
tive prediction error (δ). The learning rate parameter (α) de-
termined the extent to which these prediction errors were in-
corporated into the updated stimulus value. This learning al-
gorithm has been widely used to model an experiential trial-
and error-based learning process (Bayer & Glimcher, 2005;
Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006;Watkins
& Dayan, 1992). Specifically, we updated stimulus values (Q)
on each trial according to the following model:

Qs t þ 1ð Þ ¼ Qs tð Þ þ αδ tð Þ for all stimuliA; B; C; D; E; and Fð Þ;

where δ(t) = r(t) – Qs(t) is the difference between the outcome
at time t (1 = reward, 0 = no reward) and the current expected
stimulus value.

The second reinforcement-learning model included an ad-
ditional bias parameter (αI) that altered the integration of feed-
back following choices of the instructed stimulus, enabling
instruction-consistent feedback to be amplified (multiplying
positive prediction errors, δ+, which were set to zero on neg-
ative prediction error trials, by the bias parameter), and
instruction-inconsistent feedback to be diminished (dividing
negative prediction errors, δ–, which were set to zero on pos-
itive prediction error trials, by the bias parameter) (Doll et al.,
2011, 2009). For the instruction bias reinforcement-learning
model, stimulus values were updated as follows:

Qs t þ 1ð Þ ¼ Qs tð Þ þ αδ tð Þ for uninstructed stimuli A; B; C; D; and Eð Þ
Qs t þ 1ð Þ ¼ Qs tð Þ þ αIαδþ tð Þ þ αδ� tð Þ=αI for instructed stimulus Fð Þ:

For both models, the final stimulus values were then fit to
participants’ test-phase choices, with each trial modeled using
the softmax choice rule:

Ps1 tð Þ ¼ 1þ exp −β Q1−Q2ð Þ½ �f g−1;

where the inverse temperature parameter (β) describes
how deterministic an individual’s choices are, given the
difference in Q values. Parameter estimates were com-
pared at the group level using nonparametric tests. Mod-
el fits were compared to one another using the Akaike
information criterion (Akaike, 1974).

We took the Beta(1.1, 1.1) distribution as a prior for the
learning rate parameter (α), and the Gamma(1.2, 5) distribution
as a prior for both the bias (αI) and inverse temperature (β)
parameters. These priors were chosen to be uninformative over
the previously observed ranges of parameter estimates in sim-
ilar tasks and to ensure smooth parameter boundaries (Daw,
2011; Daw, Gershman, Seymour, Dayan, & Dolan, 2011).

Results

Learning phase

During the learning phase (Fig. 2), we found a significant
difference in performance by age group (χ2 = 6.96, df = 2, p
= .031): Children performed significantly worse than adults
[log-odds difference = –0.547, 95 % confidence interval (CI)
(–1.018, –0.161), p = .015], and showed a trend toward worse
performance than adolescents [log-odds difference = –0.357,
CI (–0.721, 0.082), p = .095], but adolescents did not differ
from adults [log-odds difference = –0.190, CI (–0.627, 0.198),
p = .40]. Performance also differed significantly depending on
the stimulus pair (χ2 = 29.7, df = 2, p < .0001). Performance
was significantly better for the easy uninstructed pair (AB 80/
20) than for the falsely instructed pair (EF 70/30) [log-odds
difference = 1.046, CI (0.721, 1.387), p < .005], and margin-
ally better than for the hard uninstructed pair (CD 70/30) [log-
odds difference = 0.183, CI (–0.001, 0.338), p = .055]. Per-
formance for the easy uninstructed pair (CD 70/30) was also
significantly better than that for the falsely instructed pair
(EF 70/30) [log-odds difference = 0.863, CI (0.573, 1.182),
p < .005]. We also observed a significant linear improvement
in performance across the learning phase (χ2 = 36.1, df = 1, p
< .0001) [log-odds estimate = 0.297, CI (0.202, 0.378)].

The linear improvement in performance across the learning
phase differed by age groups (χ2 = 7.45, df = 2, p = .024).
Children showed slower improvement in performance than
adults [log-odds difference = –0.283, CI (–0.502, –0.066), p
< .005], and marginally slower improvement than adolescents
[log-odds difference = –0.183, CI (–0.363, 0.037), p = .080],
and no difference was apparent between adolescents and
adults [log-odds difference = –0.100, CI (–0.309, 0.109), p =
.344]. The linear improvement in performance also differed by
stimulus pair (χ2 = 2.53, df = 2, p = .009). There was a slower
improvement in performance for both the easy uninstructed
pair (AB) [log-odds difference = –0.265, CI (–0.397, –0.135),
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p = .010] and the hard uninstructed pair (CD) [log-odds dif-
ference = –0.169, CI (–0.300, –0.034), p = .030] than for the
falsely instructed pair (EF), suggesting that performance
quickly reached asymptote in the uninstructed pairs. However,
there was no difference between the two uninstructed pairs
[log-odds difference = –0.096, CI (–0.208, 0.016), p = .110].
We found a marginally significant age-group-by-stimulus-pair
interaction effect (χ2 = 9.33, df = 4, p = .053): Whereas adults
performed better than children and adolescents on uninstruct-
ed pair choices (AB/CD), their performance decreased for the
instructed pair (EF), particularly when compared to adoles-
cents (Fig. 2). Finally, we found no evidence of a pair-by-
age-by-trial interaction (χ2 = 2.89, df = 4, p = .576).

Test phase

Replicating previous results (Doll et al., 2009), during the test
phase, adults showed a bias toward the instructed stimulus (F)
when it was part of the equally valued DF stimulus pair [30:30
instructed; t = 5.98, df = 25, p < .0001, mean = 81.4 %, CI
(70.6, 92.2)]. However, children only showed a marginal ef-
fect [t = 1.98, df = 29, p = .0573, mean = 60.8 %, CI (49.6,
71.9)], and adolescents showed no effect of instructions [t =
0.66, df = 30, p = .515, mean = 53.8 %, CI (42.1, 65.4)]
(Fig. 3A). Children [t = –2.64, df = 54.0, p = .011, percent
difference = –20.7, CI (–35.8, –5.5)] and adolescents [t = –
3.56, df = 55.0, p = .0008, percent difference = –27.6, CI (–
43.2, –12.1)] chose the instructed stimulus significantly less
than did adults, and no difference in preference emerged be-
tween children and adolescents [t = 0.92, df = 59.0, p = .36,
percent difference = 7.0 %, CI (–8.8, 22.8)]. This provided an
initial indication of a persistent instruction bias in adults that
was absent in children and adolescents.

The computed instruction bias score (Fig. 3B) assesses
choice preferences across a broader set of pairs that are equally
valued but differentially instructed. Again, we found that
adults were more biased than children [t = 2.24, df = 51.8, p
= .029; instruction bias difference = 0.179, CI (0.018, 0.340)]
and adolescents [t = 2.29, df = 51.0, p = .026; instruction bias
difference = 0.182, CI (0.026, 0.341)], and that children were
not differently biased from adolescents [t = 0.002, df = 58.7, p
= .998; instruction bias difference = 0.003, CI (–.284, .295);
Fig. 3C]. This pattern of age group differences was also pres-
ent for each individual subcomponent of the bias score (80/30
and 30/20). The effect of age group remained significant when
gender was included as a predictor of instruction bias, with
only adults showing a significant bias (p = .0005). There was
also a significant gender interaction for the adult group (p =
.0133), but not for children (p = .40) or adolescents (p = .25).
This effect was due to adult females having a larger instruction
bias than adult males did [t = 2.57, df = 24, p = .017; instruc-
tion bias difference = 0.298, CI (0.059, 0.537)].We also found

that the instruction bias increased linearly with age (r = .246, p
= .021; Fig. 3D).

We examined the choices for the pairs that measured the
instruction bias (Fig. 3B)—pairs AD 80/30, AF 80/30
instructed, DB 30/20, and FB 30/20 instructed—using a
mixed-effects regression with pair difficulty, instruction, age
group, and all interactions as independent variables. As ex-
pected, we found a significant pair-by-instruction interaction
effect (i.e., an instruction bias) on performance (χ2 = 23.19, df
= 1, p < .0001) [log-odds estimate = –0.510, CI (–0.729, –
0.302)], indicating that the false instruction impaired perfor-
mance for the otherwise easy pair (80/30) and improved per-
formance for the otherwise hard pair (30/20). Additionally,
this instruction bias effect differed across age groups (χ2 =
11.59, df = 2, p = .0031), mirroring the effects seen in the
instruction bias score. Children and adolescents were equally
unaffected by instructions [log-odds difference = 0.024, CI (–
0.428, 0.471), p = .945], whereas adults were significantly
more affected by instructions than were children [log-odds
difference = –0.793, CI (–1.311, –0.278), p < .002] and ado-
lescents [log-odds difference = –0.769, CI (–1.325, –0.267), p
= .008]. We found no other significant effects of pair or in-
struction (both ps > .6).

We observed an overall difference in age group optimal
choices for these pairs (χ2 = 16.58, df = 2, p = .0003), reflecting
age-related differences in overall probabilistic learning, inde-
pendent of instructions. Children [log-odds difference = –
1.310, CI (–1.963, –0.665), p < .002] and adolescents [log-odds
difference = –0.868, CI (–1.486, –0.275), p = .006] chose less
optimally than did adults, but not differently from one another
[log-odds difference = –0.443, CI (–1.024, 0.115), p = .108].

Performance on all uninstructed pairs (combinations of A,
B, C, and D stimuli) showed that all age groups performed
better than chance [children: log-odds estimate = 0.436, CI
(0.128, 0.744), p = .006; adolescents: log-odds estimate =
0.674, CI (0.367, 0.981), p < .0001; adults: log-odds estimate
= 1.28, CI (0.932, 1.621), p < .0001]. Children [log-odds
difference = –0.840, CI (–1.302, –0.378), p = .0004] and ad-
olescents [log-odds difference = –0.603, CI (–1.063, –0.143),
p = .010] performed less well than adults and were not signif-
icantly different from each other [log-odds difference = –
0.238, CI (–0.672, 0.197), p = .284], demonstrating age dif-
ferences in experiential learning similar to those evident in the
learning-phase uninstructed choices.

During both the learning and test phases, response times
were unrelated to choice, instruction, age group, or any of
their interactions. Response times decreased significantly over
the learning phase (response time effect = –51.4 ms, SEM =
7.75 ms, χ2 = 35.58, df = 1, p < .0001), with no difference by
age groups. During the test phase, response times were signif-
icantly longer for the hard (30:20) than for the easy (80:20)
pairs, regardless of instruction (response time difference =
244.8 ms, SEM = 38.5 ms) [F(1, 93.58) = 9.58, p = .0026].
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No other significant effects on test-phase response times were
apparent.

Reinforcement learning (RL)

To explore the process by which instructions might influence
the integration of feedback during the learning phase, we fit
participants’ test-phase choices using a standard and modified
instruction bias RLmodel. The standard RLmodel describes a
feedback-driven learning process that has been proposed to
underlie experiential reward learning (Bayer & Glimcher,
2005; Pessiglione et al., 2006; Watkins & Dayan, 1992).
The instruction bias RL model adds a bias parameter that
amplifies the influence of instruction-consistent outcomes
and diminishes instruction-inconsistent feedback, yielding an
instruction bias (Doll et al., 2009). The standard RL model is
equivalent to an instance of the instruction bias RL model in
which the bias parameter is set to 1 (i.e., no bias). Model
comparison based on the median AIC values for each age
group (see Table 1) indicated that the choices of children
and adolescents were fit better by the standard RL model,
whereas adults were fit better by the modified model that
included an instruction bias parameter. This result suggests
that children and adolescents recruited an undistorted
feedback-based integration process during the learning phase,
but adults biased the integration of feedback for the instructed
stimulus, altering the weighting of positive and negative out-
comes in an instruction-consistent manner.

In both the standard and instruction bias RL models, age
group differences in the estimated learning rate parameters (α)
suggested that children were more influenced by recent out-
comes than were adolescents or adults (Kruskal–Wallis stan-
dard:H = 12.87, p = .002; bias:H = 8.82, p = .013; see Table 1

for group comparisons). The softmax inverse temperature pa-
rameter (β), which reflects how deterministically a participant
used learned stimulus values to make test-phase choices, also
showed increases across age groups (standard:H = 16.26, p =
.0003; bias: H = 18.71, p < .0001; see Table 1 for group
comparisons). These age differences in choice consistency
paralleled the differences in test-phase performance observed
for the experientially learned stimuli in the regression results.
In the instruction bias RLmodel, bias parameter estimates (αI)
exhibited the same pattern of age group differences observed
for both the instruction bias score and the regression analysis
(H = 14.25, p = .0009). Adults’ bias parameter estimates were
significantly higher than both children’s (W = 156.5, p =
.0002) and adolescents’ (W = 237, p = .021), with no differ-
ence appearing between children and adolescents (W = 430.5,
p = .62).

Collectively, these modeling results suggest qualitative dif-
ferences as a function of age in the manner in which instruc-
tions influenced experiential feedback-based learning. Where-
as instructions biased the integration of feedback during learn-
ing for adults, both children and adolescents were less influ-
enced by instructions, integrating feedback in a relatively un-
biased manner.

Discussion

In this study, we examined whether the influence of instruc-
tions on experiential learning changes across development.
Despite age differences in performance, children, adolescents,
and adults were all able to recruit experiential feedback to
learn to preferentially select the higher-valued stimulus of

Table 1 Reinforcement learning model parameter fits

Model Median KW MWW

Parameter Child Adolescent Adult Chi-Square (df = 2) Child vs. Adolescent Child vs. Adult Adolescent vs. Adult

Standard RL α .429 .083 .036 H = 12.87
p = .002

W = 579
p = .10

W = 621
p = .0002

W = 504
p = .11

β 0.80 1.25 3.89 H = 16.26
p = .0003

W = 361
p = .14

W = 150
p < .0001

W = 238
p = .009

AIC 131.2 125.2 117.2

Modified bias RL α .289 .046 .054 H = 8.82
p = .013

W = 622
p = .023

W = 565
p = .004

W = 396
p = .92

β 1.32 2.89 4.55 H = 18.71
p < .0001

W = 316
p = .031

W = 127
p < .0001

W = 262
p = .024

αI 1.42 1.44 3.31 H = 14.25
p = .0009

W = 430.5
p = .62

W = 156.5
p = .0002

W = 237
p = .021

AIC 135.8 128.3 100.0

α, learning rate. β, softmax parameter, αI, bias parameter, AIC, Akaike information criterion. The nonparametric Kruskal–Wallis (KW) and Mann–
Whitney–Wilcoxon (MWW) tests were used to compare the group parameter estimates
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each uninstructed pair. In all age groups, choices for the
instructed pair were initially biased toward the inaccurately
recommended stimulus and gradually (rapidly in adolescents)
shifted toward the higher-valued alternative stimulus as par-
ticipants received continued negative feedback. However, per-
formance during the test phase suggested marked qualitative
differences across development in how instructions influenced
the processing of this experiential feedback. Consistent with
previous findings (Doll et al., 2009; Staudinger & Buchel,
2013), we found that adults showed a strong instruction-
consistent bias, suggesting that inaccurate instruction distorted
their feedback-based value learning. In contrast, both children
and adolescents showed a minimal influence of instruction on
test-phase performance, suggesting that they integrated posi-
tive and negative feedback more objectively during the learn-
ing phase in order to estimate the value of the instructed stim-
ulus. These data suggest that when explicit instruction or ad-
vice conflicts with experiential feedback about the value of an
action, children and adolescents weight their own experience
more heavily.

Our analyses of instruction bias focused on decisions made
during the test phase, in which participants’ novel choices
revealed the value estimated for each stimulus through the
integration of learning-phase feedback. In contrast, choices
during the learning phase can reflect potentially heteroge-
neous evaluation strategies adopted by participants (e.g., hy-
pothesis testing across multiple trials; Doll et al., 2011; Frank
et al., 2007), which may obscure current stimulus value esti-
mates. Past studies employing variants of this task suggested
that test-phase choices might provide the most reliable indica-
tion of learning and are selectively sensitive to various phar-
macological, genetic, psychological, and neurological factors
thought to alter the incremental experiential-learning process
(Doll et al., 2011, 2009; Frank et al., 2007; Frank & O’Reilly,
2006; Frank et al., 2004). In our study, age group differences
in the influence of instruction were not evident in choices
made during the learning phase. However, we saw robust
evidence of an instruction bias in the test-phase choices of
adults , but not of children and adolescents. Our
reinforcement-learning analyses establish a link between feed-
back received during the learning phase and test-phase deci-
sions, by formalizing the potential underlying processes for
learning stimulus values. Crucially, reinforcement-learning
parameters for the initial learning phase were fit to the test-
phase choices that reflected the final learned stimulus values.
These analyses suggested that whereas experienced outcomes
during the learning phase were objectively weighted in chil-
dren’s and adolescents’ value estimates, adults biased the
weighting of outcomes for the instructed stimulus to be more
consistent with the explicit instruction that they had received.

Experiential learning is thought to depend critically on do-
paminergic prediction errors, through which the striatum can
learn the value of an action (McClure et al., 2003; O’Doherty

et al., 2003; Pagnoni et al., 2002; Schultz, Dayan, & Monta-
gue, 1997). Explicit instruction is proposed to bias this striatal
learning process through the top-down influence of the pre-
frontal cortex (Biele et al., 2009, 2011; Doll et al., 2011, 2009,
2014; Li, Delgado, & Phelps, 2011; Staudinger & Buchel,
2013), which enables task-relevant rules and instructions to
influence goal-directed behavior (Miller & Cohen, 2001). A
theoretical model supported by our reinforcement-learning
analyses (Doll et al., 2009) posits that the prefrontal cortex
amplifies the effect of instruction-consistent outcomes and
diminishes the influence of instruction-inconsistent outcomes
on the striatal learned values. This produces a behavioral
“confirmation bias,” through which recommended actions
are more highly valued than those learned solely through ex-
perience, even when the recommendation is inaccurate. Pre-
vious studies examining the instructional control of experien-
tial value learning in adults have largely supported this model,
demonstrating both the hypothesized alteration of striatal
feedback-driven error signals (Biele et al., 2011) and a corre-
lation between instruction-guided choice outcomes and pre-
frontal cortex activation (Li et al., 2011). Collectively, this
evidence suggests that functional interaction between the pre-
frontal cortex and the striatummay have mediated the instruc-
tional biasing of learning that we observed in our adult
participants.

By extension, the relative absence of instructional influ-
ence on experiential learning in children and adolescents
may stem from the reduced functional efficacy of prefron-
tal–striatal pathways prior to adulthood. Functional imaging
studies have revealed intact striatal prediction error signals
from childhood onward (Galvan et al., 2006; van den Bos
et al., 2012), consistent with evidence of feedback-based ex-
periential reward learning across development (Cohen et al.,
2010; Peters, Braams, Raijmakers, Koolschijn, & Crone,
2014; van den Bos et al., 2012; van den Bos, Güroğlu, van
den Bulk, Rombouts, & Crone, 2009). In contrast, both struc-
tural and functional connectivity between the prefrontal cortex
and the striatum exhibit marked changes from childhood
through adulthood (Imperati et al., 2011; Liston et al., 2006).
Cognitive functions that depend on the integrity of this neural
pathway typically show continued maturation into adulthood
(Liston et al., 2006; Rubia et al., 2006; Somerville & Casey,
2010), suggesting that developmental changes in frontostriatal
connectivity may facilitate information exchange between
these regions. On the basis of the neuroscientific model of
instructional control of learning in adulthood, we hypothesize
that the prolonged maturation of prefrontal–striatal connectiv-
ity underlay the resistance of children and adolescence to the
biasing effects of inaccurate instruction in our task. Our pres-
ent study focused solely on behavior. However, we expect that
a functional imaging study of our task might show that adults
exhibit an instruction-consistent bias in striatal prediction er-
ror signals for choices of the instructed stimulus during the
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learning phase, with positive signals being amplified and neg-
ative signals diminished relative to those for the equally val-
ued uninstructed stimulus. We expect that this biased signal-
ing in adults would be accompanied by greater prefrontal–
striatal connectivity following instructed than following unin-
structed choice outcomes. In contrast, we expect that children
and adolescents would show no such differences in prediction
error signals for instructed versus uninstructed stimuli. These
specific hypotheses about the potential neural substrates of our
behavioral results could be tested directly in a subsequent
developmental neuroimaging study.

The maturational increase in instructional influence on
learning that we observed in this study concurs with a broader
literature suggesting a gradual developmental emergence of
cognitive control (Bunge & Zelazo, 2006; Diamond, 2006;
Munakata, Snyder, & Chatham, 2012). A primary challenge
of cognitive development is to acquire knowledge across a
variety of stimulus domains about the nature of the environ-
ment, which is accomplished in large part through inductive
statistical learning. Such experientially acquired knowledge
may be more flexibly applied and easily generalized than ex-
plicit rule-based learning, a principle that has long been rec-
ognized in pedagogical theory (Hayes, 1993; Kolb, 1984).
Implicit learning processes typically recruit evolutionarily
conserved subcortical regions including the basal ganglia
(Bischoff-Grethe, Goedert, Willingham, & Grafton, 2004;
Rauch et al., 1997). Such learning is evident early in develop-
ment (Amso & Davidow, 2012; Kirkham, Slemmer, &
Johnson, 2002; Saffran, Aslin, & Newport, 1996) and may
continue to improve into adulthood (Thomas et al., 2004).
Although reduced prefrontal control is often portrayed as a
developmental handicap, it may confer distinct advantages
by enabling implicit learning to occur unhindered (Thomp-
son-Schill, Ramscar, & Chrysikou, 2009). Providing instruc-
tion, whether false or veridical, has been shown to interfere
with multiple forms of implicit experiential learning, reducing
task performance relative to when no instruction is given
(Reber, 1989). Increased sensitivity to underlying patterns in
the reinforcement of actions may facilitate children’s and ad-
olescents’ acquisition of language, social conventions, and
other complex behaviors.

An important consideration not addressed in this study is
whether the social source of instruction might modulate its
influence. In the present study, the instruction provided to
participants was simply presented on the screen, lacking any
specific social origin. In contrast, real-world advice often
comes from peers (friends, classmates, and colleagues) or au-
thority figures (parents, teachers, and bosses), which may
yield different effects on behavior than a printed message
does. The source of advice may be a particularly important
factor during adolescence—a period of increasing indepen-
dence and heightened sensitivity to peers (Chein, Albert,
O’Brien, Uckert, & Steinberg, 2011; Galvan, 2014; Gardner

& Steinberg, 2005; Jones et al., 2014; Steinberg & Monahan,
2007). Moreover, the influence of instruction has been shown
to depend on the perceived expertise of the advisor (Meshi,
Biele, Korn, & Heekeren, 2012), and peers and authority fig-
ures may be viewed as experts in different behavioral domains
at different developmental stages. Thus, advice from different
social sources may vary in salience across both age groups and
decision contexts. Future work might explore whether manip-
ulating the social source of instruction would alter the devel-
opmental differences in instruction bias reported here.

Both parents and policymakers commonly rely on rules
and instruction to deter children and adolescents from actions
that carry potentially harmful consequences. In particular, in-
creased independence during adolescence often presents op-
portunities to experiment with behaviors (e.g., sex, drug ex-
perimentation, or reckless driving) that frequently yield posi-
tive social or hedonic outcomes, but that can have rare yet
serious negative effects. Positive experienced outcomes may
come to predominate in adolescents’ risk estimates (Reyna &
Farley, 2006). In our study, participants of all ages initially
adhered to the instruction, consistent with other evidence that
the actions and decisions of adolescents can be influenced by
advice (Engelmann,Moore, Capra, & Berns, 2012). However,
when the feedback they received provided evidence contra-
dictory to their prior instruction, both children and adoles-
cents, but not adults, showed greater reliance upon their own
experience. Public policy campaigns attempting to deter ado-
lescents from risky behavior through explicit guidance or in-
formation have had limited efficacy (Ennett, Tobler, Ringwalt,
& Flewelling, 1994; Trenholm et al., 2007). The present re-
sults suggest a cognitive mechanism underlying such resis-
tance to instruction. This finding highlights the importance
of research aimed at identifying effective ways for both
parents and public health campaigns to advise adoles-
cents as they navigate real-world risky behavioral do-
mains (Reyna & Farley, 2006).

In summary, by placing instruction and experience in com-
petition, we have shown here that the relative weighting of
these two sources of information shifts over the course of
development. Consistent with the protracted maturation of
the circuitry implicated in instructional control of learning,
children and adolescents showed less influence of instruction
on choice than did adults. Whereas instruction alters the pro-
cessing of experiential feedback in adults, our results suggest
that children and adolescents remain attuned to the true reward
contingencies in their environment, enabling experience to
prevail in directing their actions. Many aspects of cognition
(e.g., working memory; Crone, Wendelken, Donohue, van
Leijenhorst, & Bunge, 2006), attentional control (Rueda,
Posner, & Rothbart, 2005), and executive function
(Diamond, 2006) improve as individuals mature from child-
hood through adulthood, typically conferring advantages for
adults in learning and decision-making. Similarly, the

318 Cogn Affect Behav Neurosci (2015) 15:310–320



effective recruitment of instruction to guide one’s actions may
generally be advantageous, allowing an individual to benefit
from the knowledge and prior experience of others. However,
our results suggest that this ability may also come at the cost of
introducing pronounced bias in the processing of experiential
feedback. The absence of confirmation biases in the children
and adolescents observed in this study represents a paradoxi-
cal developmental advantage of youth over adults in the un-
biased evaluation of actions through positive and negative
experience.
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