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Abstract Social learning requires inferring social informa-
tion about another person, as well as evaluating outcomes.
Previous research shows that prior social information biases
decision making and reduces reliance on striatal activity dur-
ing learning (Delgado, Frank, & Phelps, Nature Neuroscience
8 (11): 1611-1618, 2005). A rich literature in social psychol-
ogy on person perception demonstrates that people spontane-
ously infer social information when viewing another person
(Fiske & Taylor, 2013) and engage a network of brain regions,
including the medial prefrontal cortex, temporal parietal junc-
tion, superior temporal sulcus, and precuneus (Amodio &
Frith, Nature Reviews Neuroscience, 7(4), 268-277, 2006;
Haxby, Gobbini, & Montgomery, 2004; van Overwalle
Human Brain Mapping, 30, 829–858, 2009). We investigate
the role of these brain regions during social learning about
well-established dimensions of person perception—trait
warmth and trait competence. We test the hypothesis that
activity in person perception brain regions interacts with
learning structures during social learning. Participants play
an investment game where they must choose an agent to
invest on their behalf. This choice is guided by cues signaling
trait warmth or trait competence based on framing of mone-
tary returns. Trait warmth information impairs learning about
human but not computer agents, while trait competence infor-
mation produces similar learning rates for human and com-
puter agents. We see increased activation to warmth informa-
tion about human agents in person perception brain regions.

Interestingly, activity in person perception brain regions dur-
ing the decision phase negatively predicts activity in the
striatum during feedback for trait competence inferences
about humans. These results suggest that social learning may
engage additional processing within person perception brain
regions that hampers learning in economic contexts.

Keywords Social learning . Person perception . Social
cognition . Trait warmth/competence

Learning from the physical world and learning from the social
world involve different levels of complex processing. Suppose
that a person inserts one dollar into a slot machine that operates
on probabilistic outcomes. There are two possible outcomes of
this action—a positive gain of three dollars or a negative loss of
the dollar. In this economic scenario, determining whether the
action takenwas a good decision depends singly on learning the
probabilities of the slot machine, a process that will be guided
by the person’s goal to maximize profit. Now imagine a social
interaction that depends on the same economic principles.
Instead of a slot machine, a person gives another person (the
receiver) one dollar. The possible economic outcomes are the
same; the receiver can either return three dollars to the person or
return nothing and the person loses the dollar. Although the
premise of these two economic scenarios is the same, in the
social scenario, the inferred traits of both parties in the exchange
can influence the interpretation of the outcome (gain of three
dollars or loss of one), making social learningmore complex, or
multiply determined.

Learning whether the investment was a good decision in
the social scenario relies not only on the economic outcome of
the exchange, but also on social factors relevant to the receiv-
er, including his or her identity, goals, and inferred traits.
Suppose the receiver is homeless versus one’s friend; sudden-
ly gaining three dollars may appear more or less positive, and
losing one dollar may appear more or less negative, depending
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on the inferred traits of the receiver (e.g., a friend may be
perceived as more trustworthy than a homeless person).
Inferred traits provide a decision-maker with a concise schema
for predicting another person’s behavior and have the ability
to change the interpretation of the outcome from singular to
polymorphic (Uleman, Newman, & Moskowitz, 1996). Thus,
the complexity of social learning arises because multiple
sources of information must be considered. How, then, can
people learn to make decisions in such complex social inter-
actions, incorporating both economic outcomes and social
factors into their decision-making processes? It may be that
the brain relies on additional processing within the person
perception brain network that interacts with traditional learn-
ing structures during social learning.

The idea that social and nonsocial learning may differ is
supported by other dual-systems approaches to learning. In
recent years, researchers have found support for models of
“hot” automatic versus “cool” controlled decision making
(Bernheim & Rangel, 2004), model-free versus model-based
learning (Gläscher, Daw, Dayan, & O’Doherty, 2010), and
associative versus prediction error learning signals (Li,
Schiller, Schoenbaum, Phelps, & Daw, 2011). Here, we pro-
pose that a dual-systems approach may allow us to better
understand how social learning differs from nonsocial learn-
ing. While nonsocial learning may rely on decision-making
structures including the striatum and medial prefrontal cortex
(MPFC), social learning may engage additional brain process-
ing within the person perception network.

As a caveat, we are suggesting not that two separate sys-
tems exist but, rather, that an additional network of brain
regions is engaged when one thinks about the intentions of
the other person and changes the mode of processing from
nonsocial to social. Numerous studies have shown that the
striatum and MPFC are engaged during social decision mak-
ing (see below). Why, then, would we suspect that additional
brain processing is necessary for social decisions? Social
decisions often contradict economic models that attempt to
predict social behavior, suggesting that simple reinforcement
learning models by themselves are not sufficient to explain
this complex social behavior (Lee, McGreevy, & Barraclough,
2005). Studies have repeatedly shown that other important
social factors, including one’s reputation and perceived moral
character (i.e., inferred traits), also influence decision making
(Delgado, Frank, & Phelps, 2005; King-Casas et al., 2005;
Phan, Sripada, Angstadt, & McCabe, 2010). The social neu-
roscience literature on person perception has largely investi-
gated how people infer traits and form impressions of others
and has identified a network of brain regions engaged in these
processes. However, until recently, few studies have looked at
how person perception brain regions respond during social
learning (see below). Evidence from these previous studies
suggests that these social brain regions may influence reward
processing and valuation.

Social decision making engages decision-making
and person perception brain regions

A growing body of research has explored how decision-
making brain regions respond to social stimuli. Social re-
wards, including being labeled trustworthy by another person
(Izuma, Saito, & Sadato, 2008), gaining social approval by
donating money to charity in the presence of others (Izuma,
Saito, & Sadato, 2010), and viewing pictures of smiling
people (Lin, Adolphs, & Rangel, 2012), reliably activate
regions of the striatum that are also active to monetary re-
wards. From this and other studies, it has been suggested that
social learning may be similar to basic reinforcement learning
(Jones et al., 2011). The striatum’s role in reward prediction
error is well established in the literature and has become a
clear measure of learning in reward paradigms (McClure,
Berns, & Montague, 2003; Schultz, Dayan, & Montague,
1997; Schultz & Dickinson, 2000). This learning signal is also
exhibited in economic games requiring cooperation and trust
(see Sanfey, 2007, for a review) and when a person’s behavior
violates social expectations (Harris & Fiske, 2010), further
supporting the notion that social learning relies on decision-
making processes.

The argument for a common valuation scale (Montague &
Berns, 2002) also supports the idea that some of the same
brain structures are engaged during social and nonsocial learn-
ing. When decisions include different types of future rewards,
whether they are of a social nature or not, the brain must
convert value signals into a “common currency” that will
guide future behavior. The ventral MPFC (VMPFC) has been
implicated in creating such subjective value signals for both
social and monetary rewards (Lin et al., 2012; Smith et al.,
2010). Furthermore, activity in this region correlates with the
subjective value of making voluntary charitable donations
(Hare, Camerer, Knoepfle, O’Doherty, & Rangel, 2010), a
paradigm that is often considered social in nature.

However, social learning may not simply be another type
of reinforcement learning. Studies have shown that reward
and value signals involved in learning are influenced by the
social context. For example, prior social information about an
investment partner reduces reliance on feedback mechanisms
in the striatum (Delgado et al., 2005). Similarly, when one
shares rewards, striatal activity is modulated by the identity of
the other person and ratings of social closeness (Fareri,
Niznikiewicz, Lee, & Delgado, 2012). Interestingly, in a study
of vicarious reward, connectivity between the anterior cingu-
late (ACC) and ventral striatum was positively correlated with
similarity ratings with another person (Mobbs et al., 2009),
suggesting that the experience of rewardmay bemodulated by
connections from other brain regions to the striatum.
Furthermore, functional connectivity analyses show that value
signals in the VMPFC may integrate information from brain
regions implicated in person perception, such as the anterior
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insula and posterior superior temporal cortex (Hare et al.,
2010). Together, these studies provide growing support for
the involvement of person perception brain regions in social
decision making and social learning.

But what exactly are these person perception brain regions
representing, and how do these representations affect learning
signals? A rich literature on person perception suggests that
there are different types of social information that may be
extracted when viewing another person. These mental state
inferences rely on a network of brain regions including the
MPFC, superior temporal sulcus (STS), temporal parietal
junction (TPJ) and precuneus, as well as the regions investi-
gated in the above-mentioned studies. By examining how
these brain regions respond during a social-learning task, we
may gain insight into how they affect decision making in a
social context.

Linking person perception to social learning

A multitude of psychological processes occur when another
person is encountered. Decades of social psychological re-
search on person perception suggest that there are important
social factors that should be taken into account when human
beings are used as stimuli in psychological experiments (Fiske
& Taylor, 2013; Ponkanen, Alhoniemi, Leppanen, &
Hietanen, 2011). People extract social category information
such as age, race, and gender (Fiske, 1998; Ito, Thompson, &
Cacioppo, 2004; Ito & Urland, 2003), as well as assessments
of a person’s trustworthiness (Willis & Todorov, 2006) and
other spontaneous trait inferences (Ambady & Rosenthal,
1992; Todorov & Uleman, 2003) with minimal exposure to
other people. This information facilitates an impression of the
person—a social-learning process that allows one to make
predictions about behavior in future social interactions.

This social learning is supported by mental state infer-
ences—a form of social cognition—and a network of brain
regions involved in person perception including, but not lim-
ited to, the MPFC, STS, TPJ, and precuneus (Frith & Frith,
2003; Gallagher & Frith, 2003; Haxby, Gobbini, &
Montgomery, 2004; van Overwalle, 2009; Young & Saxe,
2009). Although these brain regions work together as a net-
work in social cognition tasks, previous research has
highlighted the differential roles each of these regions may
play in social cognition. For instance, the MPFC may be
engaged when inferring enduring dispositions of others and
the self, as well as more temporal states (van Overwalle,
2009). The TPJ has recently been implicated in creating a
social context relevant for future behaviors (Carter, Bowling,
Reeck, & Huettel, 2012; Carter & Huettel, 2013). The STS is
implicated in the perception of socially relevant information
(Allison, Puce, & McCarthy, 2000; Zilbovicius et al., 2013).
And the precuneus is implicated in self-processing, along with

other mental tasks (Cavanna & Trimble, 2006). Given that
impressions are used to generate predictions, it may be that
brain regions implicated in person perception interact with brain
regions that support learning during social decision making.

Evolutionary pressures have prepared people with the abil-
ity to predict the nature of an impending social interaction in
order to differentiate friend from foe (Brown & Brüne, 2012)
and navigate our complex social world (Fiske & Taylor,
2013). Accordingly, we have developed a keen ability to
assess different types of social information that allow for these
predictions. The primary dimensions of person perception—
trait warmth and trait competence (Asch, 1946; Fiske, Cuddy,
& Glick, 2007; Rosenberg, Nelson, & Vivekananthan,
1968)—satisfy this evolutionary motive. While trait warmth
describes a person’s intentions—whether they are good or
ill—trait competence describes a person’s ability to carry out
those good or ill intentions (Fiske, Cuddy, Glick, &Xu, 2002).

Research suggests that these two types of inferred traits are
often assessed together but are not treated equally. Warmth
information is judged before competence information and
carries more weight when impressions of others are formed
(Asch, 1946; Fiske et al., 2007; Wojciszke, Bazinska, &
Jaworski, 1998). Evolutionarily, this makes sense: A perceiver
must know whether another person intends harm before de-
ciding whether that person is capable of carrying out that
harm. Furthermore, asymmetries in the diagnosticity of
warmth and competence information may place different
weight on positive and negative information in these domains
(Reeder, 1993; Reeder & Brewer, 1979; Skowronski, 2002).
Negative warmth information (e.g., stealing a wallet) is more
informative about a person’s traits than is positive warmth
information (e.g., returning a lost wallet), because people low
in trait warmth can manipulate warmth information in order to
be seen positively (immoral people can act morally in a
socially desirable context) but only people low in trait warmth
will behave negatively in the warmth domain (moral people
tend not to act immorally; Reeder & Spores, 1983). On the
other hand, positive competence information (e.g., hitting a
home run) is more informative than negative competence
information (e.g., striking out at the plate), because people
high in trait competence show a wide range of behaviors
(competent baseball players sometimes strike out), while peo-
ple low in trait competence rarely show such range in behavior
(incompetent baseball players do not hit home runs; Reeder,
1979). Therefore, the number of behavioral incidences needed
to change an impression of a person may differ in the warmth
and competence domains (Tausch, Kenworthy, & Hewstone,
2007). However, despite the primacy of trait person percep-
tion dimensions, few studies (Baron, Gobbini, Engell, &
Todorov, 2011; Schiller, Freeman, Mitchell, Uleman, &
Phelps, 2009) have investigated how person perception and
the associated brain regions are modulated during social
learning.

1422 Cogn Affect Behav Neurosci (2014) 14:1420–1437



The hypothesis that these learning processes will be influ-
enced by the social context is not unjustified. Previous research
documents a variety of heuristics often used in situations of
uncertainty that bias decision making (Tversky & Kahneman,
1974, 1986). Likewise, when a person is encountered for the
first time—a situation bound with uncertainty—assessments of
social information such as trait warmth and competence may
also function as a heuristic that influences social learning. For
instance, a person perceived as high in trait warmth may be
predicted to be amicable in a social interaction. This prediction
is based on a heuristic (stereotype or schema) about warm
people. If that heuristic leads to an incorrect prediction and
the interaction is not amicable, prediction error signals update
this information and incorporate it into future decision making
(Harris & Fiske, 2010). However, evidence suggests that
this learning process may be impaired for social contexts;
previous work has shown that trait warmth information
affects feedback processing in the striatum, resulting in
biased decision making (Delgado et al., 2005). An interesting
question yet to be explored is when a person uses heuristics
about the warmth and competence of a social target, how do
person perception brain regions respond in this social learning
context.

The present study

Here, we build on the social-learning literature, examining
whether brain regions underlying person perception are mod-
ulated during social learning. We investigated this research
question, looking specifically at how inferences of trait
warmth and competence about a financial partner affect these
brain regions within a social-learning context. In a novel
investment task, participants selected both human and com-
puter agents to invest in a stock market on their behalf. We
framed returned profit (i.e., feedback) in either the trait
warmth or trait competence domain for each agent, thus
requiring participants to incorporate the social information
about the agent into their decision making. We tested how
the use of this social information affects participants’ ability to
learn an underlying rule of the game: unbiased agent selection.
Importantly, feedbackwas programmed so that all agents were
equally likely to return a large profit. Therefore, in a rational
economic sense, profit-maximizing participants should learn
to be unbiased in their agent selection, not relying on infer-
ences of trait warmth or competence to guide agent selection.
However, given that the brain evolved in a social context, we
hypothesized that social information (trait inferences) would
serve as heuristics that biased learning and decision making in
this social economic task. Furthermore, given the primacy of
warmth information in impression formation, there might be
differential effects of warmth, not competence inferences
about human actors, on learning. These effects might not

apply to the computer conditions, because unlike people,
computers do not have minds, making mental state inferences
unnecessary (although computers may be anthropomorphized
at times).

Method

Participants

Behavioral data were collected for 50 individuals (34 female,
16 male; age:M = 26.56, SD = 8.38). Of those 50 participants,
fMRI data were collected for 30 right-handed individuals
(23 female, 7 male; age: M = 27.07, SD = 8.89) recruited to
participate in this study through Duke University’s Brain
Imaging Analysis Center participant pool. Five were removed
from the sample due to an excessive number (over 25 %) of
missed trials. The remaining 45 behavioral participants
(25 fMRI participants) were included in data analysis. All
participants gave informed consent. Brain-imaging partici-
pants received $30 for their participation, plus any additional
winnings, while behavioral participants received $10 plus any
additional winnings.

Procedure and experimental design

Participants were told to imagine that they were interested in
investing in the stock market and decided to go to an invest-
ment firm where they could select an agent to invest in the
stock market on their behalf. The present task allowed them to
view all agents in the firm before making their final invest-
ment decision. In order to manipulate trait person perception
dimensions (warmth and competence), we created two types
of investments firms. For warmth firms, feedback represented
the agents’ generositywhen dividing the profit between them-
selves and the participants. All agents in these firms were
considered high in the competence domain because they all
made an equally large amount of profit, which was to be
divided at the agents’ discretion. In the competence firms,
feedback represented the agents’ ability to make good invest-
ments in the market. All agents in this firm were considered
high in the warmth domain because all profit was returned to
the participants.

Both types of firms had human and computer agents.
Computer agents were described as computer programs used
for reading the stock market and were represented by geomet-
ric symbols (e.g., circle, square, triangle, etc.). In the compe-
tence condition, the computer programs used algorithms that
were used to read the market. A “competent” computer pro-
gram would be one that read the market well and returned a
large profit. In the warmth condition, the computer programs
used algorithms that divided the profit, returning some portion
of the profit to the participant. A “warm” computer program
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would therefore be one that returned a large profit to the
participants. In other words, in the warmth condition, the
computer programs could be thought to use algorithms that
relied on different distributions, and a warm computer would
one that used a negatively skewed distribution, returning a
higher profit more often than a lower profit. In reality, all the
computer programs were programmed to return an average
profit, suggestive of a normally distributed distribution.

Within each condition, participants saw the same three
agents on each trial, allowing them to tie previous outcomes
(feedback) to the agents. Twelve agents were presented in total
(three in the human warmth, three in the human competence,
three in the computer warmth, and three in the computer
competence conditions). We used a miniblock design to pres-
ent all four conditions (human warmth, human competence,
computer warmth, computer competence) within each run,
with a total of seven runs in the study (see Fig. 1). An
instruction screen at the beginning of each miniblock indicat-
ed which condition participants would be playing. Within the
miniblock, each trial began with a 4-s decision screen asking
participants to select one of three agents to invest on their
behalf by pressing the corresponding button. After a jittered
anticipation period (2–8 s; see Ollinger, Corbetta, & Shulman,
Ollinger et al. 2001a; Ollinger, Shulman, & Corbetta, 2001b),
a feedback screen appeared showing the earnings on that
round of investment with the agent selected, along with fictive
error information about how much they could have earned if
they had selected a different agent (Lohrenz, McCabe,
Camerer, & Montague, 2007). Finally, a jittered intertrial
interval (2–8 s) preceded the next trial.

The feedback screen always presented a high, medium, and
low reward. Importantly, this feedback was programmed so
that all agents were equally likely to return each reward on the
first trial and each agent returned each reward twice through-
out a miniblock. Hence, participants should learn that there is
no “warm” or “competent” agent on the basis of feedback,
suggesting that agent selection should be unbiased. All four
conditions were identical (including feedback), with the ex-
ception of the identity of the agents, which were unique to
each condition. Therefore, any differences in behavior can be
attributed to our manipulation of the perception of the social
context that originates the reward (i.e., warmth or compe-
tence) and the type of agent (i.e., human or computer).

In order to minimize the number of missed trials in the
scanner, participants completed a mock version of the task
(eight trials) for practice before entering the scanner. The
agents used in this mock version were not included in the
scanner task, in order to ensure that there would be no
preexisting beliefs about the agents seen in the scanner (e.g.,
that one agent was better than the others). We simply used this
mock task to familiarize participants with the task structure.
To assess individual differences in preferences for warmth or
competence information and human or computer agents, par-
ticipants completed a questionnaire before and after the scan-
ning session where they reported their preferences for agent
type and trait information. They also rated each of the respective
agents on either warmth or competence (on a scale of 1 to 7)
after the scanning session. They were then thanked for their
participation and paid from one trial selected at random, in
addition to the hourly rate.

Fig. 1 Experimental design. Two (human warmth and computer compe-
tence) of four conditions are shown for display purposes. All four conditions
are presented in miniblocks within each run. Each miniblock begins with an

instruction screen indicating the condition, followed by trials consisting of a
decision phase where an agent is selected, followed by a jittered anticipation
period and by a feedback phasewith a jittered intertrial interval to end the trial
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Behavioral analysis

We used two different approaches to assess participants’
learning—each measuring the extent to which participants
did or did not learn the equated feedback structure of the
game. The first approach uses two behavioral measures (bias
index and fictive error index) that are inversely related to
learning, measuring the extent to which participants used
suboptimal strategies when deciding with which agent to
invest, suggesting that they did not learn. These two behav-
ioral measures depend on inferences about the mental states of
the agents and can be considered more social models. The
second approach uses two behavioral measures (last-trial
accuracy and running average) that are directly related to
learning, measuring the extent to which participants’ decisions
were consistent with the behavior of a person who learned the
feedback structure of the game. Importantly, these two ap-
proaches test statistical and economic models of learning,
respectively, not social models. Together, these measures pro-
vide converging evidence that trait warmth information about
people hinders learning.

Bias index

We first assessed learning by looking at the extent to which
participants were biased in their agent selection. This analysis
relies on the fact that returned profit was equated across the
three agents. If participants learned that all agents were equal-
ly likely to return a large profit (hence, there is no “warm” or
“competent” agent), their agent selection should be random,
and they should be less likely to predominantly choose one
agent over the other two. In other words, they should choose
equally among the three different agents within a condition.
Our bias index measures the extent to which participants did
not follow this strategy, suggesting that they did not learn the
contingencies of the game, instead relying on trait inferences.
Within a condition (e.g., human warmth), we calculated the
frequency with which the participant selected agent A, agent
B, and agent C. The standard deviation of these three frequen-
cies represents how biased participants were when selecting
an agent and serves as our bias index. For example, if a
participant learned that feedback was equated and was
completely unbiased when selecting an agent, he or she would
select each agent 14 times in that condition, resulting in a
standard deviation of 0. However, if a participant did not learn
and was biased toward selecting one agent over the other two
(e.g., selecting agent A 17 times, agent B 14 times, and agent
C 11 times), the resulting standard deviation would be higher
(e.g., 3). This analysis ignores whether participants were
choosing the agent that returned the highest or lowest profit
and simply measures the extent to which the same agent was
selected throughout the game.

One could argue that selecting the same agent throughout
the experiment is just as optimal as selecting at random; the
expected value of each strategy is equal, because we pro-
grammed feedback to be equal across all three agents. While
this is true, selecting the same agent throughout the experi-
ment would suggest that participants completely ignored feed-
back on every trial and blindly chose the agent that they first
selected (regardless of whether the agent returned a high,
medium, or low reward on this first trial), suggesting that they
did not learn the contingencies of the game. None of our
participants used the latter strategy throughout the entire
experiment.

Fictive error index

Another method we used to measure social learning relies on
fictive error information—information about howmuch could
have been earned if a different agent was chosen (Lohrenz
et al., 2007). The feedback screen of each trial always pre-
sented the profit returned by the agent selected, as well as
feedback from the two agents not selected. Therefore, partic-
ipants always saw the agent who returned the high, medium,
and low profit for that trial. For this learning analysis, we
looked at whether fictive error information influenced deci-
sions on the following trial. Specifically, we examined wheth-
er participants chose the agent that returned the highest profit
on the previous trial. This strategy is less than optimal because
each agent was programmed to return the highest profit only
twice within the six trials of a miniblock. Therefore, if agent A
returned the highest profit on trial 1, the probability of agent A
returning the highest profit on the next trial was lower than the
two agents that had yet to return a high profit. The only time
this strategy would be optimal is when an agent returned a
high profit on two consecutive trials. However, because we
randomized the trial order, the occurrence of such an event
would have been by chance. Therefore, adopting a strategy
where the participant chose the agent that previously returned
the highest profit would suggest that he or she did not learn the
structure of the feedback, relying instead on a trait inference
relevant to the previous trial.

Last-trial accuracy

We next turned to an analysis that measures the extent to
which participants learned the structure of the feedback in
the game. Within a miniblock, we programmed each of the
three agents to return the highest profit twice within the six
trials. Therefore, by the last trial of the miniblock, two agents
had already returned the highest profit twice, and one agent
had yet to return the highest profit twice. If participants
learned that feedback was equated, they should be able to
predict which agent had yet to return the highest profit a
second time and choose that agent. We measured the extent
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to which participants were accurate on the last trial of each
miniblock. Higher last-trial accuracy suggests that participants
learned the feedback structure of our game and chose the
agent that had yet to return the highest profit. This tests a
statistical model of learning based on probabilities.

Running average

Alternatively, participants may have strictly relied on feed-
back (returned profit from the agents) in a purely economic
sense, completely ignoring trait inferences that may have
resulted from the returned profit. This analysis measures the
extent to which participants ignored trait inferences and relied
on feedback to calculate a running average of the returned
profit from each agent and chose the agent with the highest
average. This strategy would suggest that participants took a
purely economic approach to playing the game, relying only
on returned profit to make their decisions.

fMRI acquisition and data analysis

A 3.0 Tesla GE Signa Excite whole-body scanner was used to
collect structural images (T1-weighted MPRAGE: 256 × 256
matrix; FOV = 256 mm; 116 one-mm sagittal slices) followed
by functional images (EPI sequence: TR = 2,000 ms; TE =
25 ms; FOV = 192 cm; flip angle = 75°; echo spacing =
0.29 ms; 39 slices; voxel size: 3 × 3 × 3 mm3). A computer
presented the stimuli projected to a screen mounted at the rear
of the scanner bore. Stimuli were reflected through a filter and
a mirror, which participants viewed while supine.

BOLD data preprocessing

Both image preprocessing and statistical analysis used Brain
Voyager QX (http://www.brainvoyager.de). Before statistical
analysis, image preprocessing consisted of (1) slice acquisi-
tion order correction, (2) 3-D rigid-body motion correction,
(3) voxelwise linear detrending across time, (4) temporal
band-pass filtering to remove low- and high-frequency (scan-
ner and physiology related) noise. Distortions of EPI images
were corrected with a simple affine transformation. Functional
images were registered to the structural images and interpo-
lated to cubic voxels. After coregistering participants’ struc-
tural images to a standard image using a 12-parameter spatial
transformation, their functional data were similarly trans-
formed, along with a standard moderate degree of spatial
smoothing (Gaussian 8-mm FWHM).

BOLD data analysis

Data analysis used the general linear model available on the
Brain Voyager QX software package. The time course was
normalized using z-transformation, controlling for differences

in signal-to-noise ratio across different brain regions. We
conducted a random-effects GLM analysis on BOLD sig-
nal during the learning paradigm with separate stick-
function predictors during the decision, anticipation, and
feedback phases for each of the four trial types: human
warmth, human competence, computer warmth, and com-
puter competence. We also added predictors for motion
correction to the model. The predictors were convolved
with a standard canonical hemodynamic response function.
We transformed structural and functional data of each
participant to standard Talairach stereotaxic space
(Talairach & Tournoux, 1988).

Main effect contrasts

We performed whole-brain contrasts for each of the main
effects (agent: human > computer; trait: warmth > compe-
tence) during the decision, anticipation, and feedback phases.
To correct for multiple comparisons, we used the cluster-level
statistical threshold estimator plug-in in the BrainVoyager QX
software (see Forman et al., 1995). This plug-in is designed to
perform a Monte Carlo simulation to determine the number of
contiguous voxels needed in order to correct for multiple
comparisons. We set our initial statistical parametric maps
(SPMs) to p < .01 and cluster corrected at a false positive rate
of p < .05, using the recommended 1,000 iterations. The
determined cluster sizes and significant regions are reported
in Table 1.

Anatomically defined regions of interest

To examine responses in individual person perception brain
regions and help us to understand the brain mechanisms of the
processes of interest, we anatomically defined regions of
interest (ROIs)—specifically, the anterior and posterior rostral
MPFC (as defined in Amodio & Frith, 2006), bilateral STS,
bilateral TPJ, and bilateral precuneus. The STS, TPJ, and
precuneus were anatomically defined on both the right and
left sides of the brain. Patterns of activation for right and left
are reported separately in the article. We also anatomically
defined the left and right striatum. This is a conservative
approach to our analyses; anatomically defining large regions
such as the MPFC increases the number of voxels examined,
adding noise to the data from nonactive voxels. Therefore, any
significant results obtained from these regions are agnostic to
“sweet-spots” within the brain region.

Regressions

Using linear regression, we tested whether activity in person
perception brain regions during the decision phase predicts
activity in the striatum during feedback. We entered beta
values from the person perception brain regions into a linear
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regression as the predictor and used the bilateral striatal activ-
ity during feedback as the outcome measure. To avoid
multicollinearity between our predictors, we performed sepa-
rate regressions for each person perception brain region and
condition and corrected for multiple comparisons using a
Bonferroni correction.

We also tested for brain–behavior relationships—specifi-
cally, whether the learning models correlated with brain ac-
tivity during feedback. Using parametric analysis, we created
additional GLMs, following the procedure described above.
We regressed each participant’s bias index, fictive error index,
last-trial choice, and running average onto brain activity.
Resulting maps were thresholded at p < .005 and cluster
corrected using the Monte Carlo simulation described above.

Three versus one contrasts

We conducted planned 3 versus 1 contrasts for both our
behavioral and imaging data. This analysis compares the data
for a focal cell within the design with those for the other three
cells. We hypothesized that the human warmth condition
would produce less learning (higher bias and fictive error
use; lower last-trial accuracy and running average) and greater
activity in person perception brain regions than would the
other three conditions. To test this, we performed a t-test on
this focal cell and the average of the three remaining cells. We
also tested the orthogonal contrasts, testing each condition as a
focal cell to determine whether the human warmth condition
was the only deviant cell. Significant results are reported in the
article.

As a final descriptive analysis, we examined the effect sizes
associated with the three versus one contrasts in the person
perception brain regions. Using a data-driven approach, we
specifically looked in the brain regions showing significant
interaction ormain effects in the ANOVA. These brain regions
include the left STS, right TPJ, and posterior rostral medial

prefrontal cortex (PRMFC). We rank ordered the effect sizes
for each of the conditions within a brain region to discern
whether agent, trait, or the combination of the two has the
biggest effect in the brain region.

Manipulation check

We collected an independent sample of participants (N = 400;
44 % female; age: 41 %, 18–29 years old; 31 %, 30–39 years
old; 11 %, 40–49 years old; 10 %, 50–59 years old; 7 %, over
60 years old) using Amazon’s Mechanical Turk (MTurk) to
test how participants may have interpreted the manipulations
present in our 2 × 2 design (i.e., the meanings of the manip-
ulations of warmth and competence as applied to human and
computer agents). The study was advertised as a 5-min psy-
chology survey that paid $0.50 for completion.

We assigned participants to one of the eight conditions in our
2 (agent: human, computer) × 2 (trait: warmth, competence) × 2
(returned profit: high, low) between-subjects design. After pro-
viding informed consent, participants read a description of the
manipulations used in the study regarding the type of agent and
firm (trait manipulation). Participants then read a sentence
telling them how much returned profit they received from the
agent (manipulated to be a high or low amount). We then asked
participants to make an attribution (answer whether the agent,
stock market, circumstance, or a combination of the above had
the most influence on the returned profit), to state whether they
would reinvest with the agent, and to rate on a scale of 1 to 5
(very unlikely to very likely) whether they would expect to
receive the same amount of profit if the agent was in a variety
of situations (using the trait-situation rating form; Church,
Katigbak, & del Prado, 2010).

We performed chi square tests on the attribution and rein-
vest questions, assuming equal frequencies, to test whether the
different manipulations resulted in different attributions and
behavior (see Table 2). We found that participants made more

Table 1 Main effect contrasts: Peak coordinates for two main effect contrasts at three different phases of the task (decision, anticipation, and feedback)

Contrast Phase Determined Cluster
Threshold

Region BA Talairach Coordinates
(x, y, z)

Voxels t- Value p-Value Effect Size

Human > Computer Decision 45 Interior Frontal Gyrus 9 55, 21, 26 1,404 3.85 .0008 .38

Anticipation 60 Anterior Cingulate 24 1, 24, −1 2,690 4.52 .0001 .46

Interior Frontal Gyrus 46 −47, 39, 11 8,171 5.13 .00003 .52

Feedback 52 Does not survive

Decision 49 Superior Frontal Gyrus 8 −14, 45, 44 1,741 −4.04 .0005 .40Warmth > Competence

Anticipation 46 Middle Temporal Gyrus 39 −35, −72, 29 2,874 3.72 .001 .37

Feedback 52 Posterior Cingulate 31 16, −51, 20 1,605 −5.10 .00003 .52

Precentral Gyrus 6 −14. −9, 35 2,347 −3.97 .0006 .40

Note. We acquired these regions using a cluster level statistical threshold estimator based on 1,000 iterations in a Monte Carlo simulation. Uncorrected
SPMs were set at p < .01 and cluster corrected at a false positive rate of p < .05. We report regions surviving correction
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attributions to the agent than to the stock market, circum-
stance, or a combination of information during the warmth
descriptions, regardless of the type of agent. Conversely, they
made more attributions to a combination of the agent, the
circumstance, and the stock market in the competence condi-
tions. Participants also made fewer attributions to the circum-
stance across all conditions (see Fig. 2a). Participants were
also more likely to reinvest in all of the conditions (see
Table 3), except for the two low-warmth conditions, where
they were not more likely to invest (see Fig. 2b).

We took an average of each of the situations in the trait–
situation rating form to test the extent to which participants
interpreted the manipulations as stable traits. Higher averages
represent a higher dispositional (trait) attribution. The averages
were entered into a 2 × 2 × 2 between-subjects ANOVA. We
observed a main effect of trait, F(1, 392) = 7.87, p = .005,
partial η2 = .02,Ω2 = .80, such that participants showed greater
trait attributions to competence (M = 3.42, SD = 0.30) than to
warmth (M = 3.24, SD = 0.35) information. There was no main
effect difference for agent, and no interaction between agent
and trait, p > .05. This suggests that regardless of the type of
agents, participants’ trait attributions were influenced by the
traits themselves. Specifically, participants perceived compe-
tence as a more enduring trait, stable across situations, and less
variable across situations than warmth.

Results

Learning behavior

We ran a 2 (agent) × 2 (trait) ANOVA to examine whether our
experimental conditions led to participants earning different
amounts of money. There were no significant main effects or
interactions (all ps > .05), suggesting that participants did not
earn more money in any of the conditions. Therefore, differ-
ences in strategy per condition discussed below are not due to
participants earning more money during a particular condi-
tion. Stated differently, participants did not gain an advantage
(they were equally competent) at earning money playing in
any one of our experimental conditions.

Bias index

We examined participants’ agent selection to see whether the
four conditions differentially hindered learning. Our bias in-
dex measures whether participants were more likely to select
one agent over the other two, which is inversely related to
participants’ learning. We calculated this bias index for each
of the four conditions and conducted a planned 3 versus 1
contrast to determine whether the human warmth cell deviated
from the other three cells. We find that participants showed
significantly more bias in the human warmth1 condition, as
compared with the other three cells, t(44) = 2.33, p = .024,
partial η2 = .11.

We also entered our bias index into a 2 (agent: human,
computer) × 2 (trait: warmth, competence) repeated measures
ANOVA. We found a significant agent × trait interaction,
F(1, 44) = 6.60, p = .014, partial η2 = .13, Ω2 = .71. To
further probe the interaction, we performed follow-up post hoc
simple effect tests. We found that warmth information specif-
ically about humans (M= 1.35, SD = 0.66), but not computers
(M= 1.08, SD = 0.49), leads to increased biased agent selec-
tion, t(44) = 2.67, p = .011, partial η2 = .14 (see Fig. 3a).2

Fictive error

We next tested whether participants used fictive error infor-
mation to guide their decisions. This measure is again inverse-
ly related to learning, since participants should learn that
choosing the agent that was previously the highest lowered
their chances of receiving the high reward on the current trial
(see the Method section). We find similar results with the 3
versus 1 contrast; participants used fictive error information
more often in the humanwarmth3 condition, as comparedwith
the average of the other three conditions, t(44) = 2.25, p = .03,
partial η2 = .10.

We also entered the fictive error measure into a 2 (agent) ×
2 (trait) repeated measures ANOVA, which revealed a signif-
icant main effect of agent where participants were more likely
to use fictive error for human (M= 0.25, SD = 0.13) than for
computer (M= 0.23, SD = 0.13) agents, F(1, 44) = 4.43,

Table 2 Chi square values obtained for attribution question assuming
equal frequencies in each condition. All values are significant using
α =.005, df = 3, corrected for multiple comparisons

Computer
High

Computer
Low

Human
High

Human
Low

Attribution χ2 values

Warmth 45.68 38.48 30.96 64.08

Competence 41.36 39.76 70.8 38.64

1 The computer warmth condition also deviates from the average of the
other three conditions, resulting in less bias than in the other three
conditions, t(44) = 2.62, p = .012, partial η2 = .14.
2 Participants were marginally more biased for the human agent when
using warmth (M = 1.35, SD = 0.66), as compared with competence (M =
1.25, SD = 0.62), information, t(44) = 1.79, p = .080, partial η2 = .07, but
showed the opposite pattern for computer agents, with a greater bias for
competence (M = 1.19, SD = 0.48) than for warmth (M = 1.08, SD = 0.49)
information, t(44) = −1.81, p = .077, partial η2 = .07.
3 The computer warmth condition also deviates from the average of the
other three, resulting in less fictive error use than in the other three
conditions, t(44) = 2.21, p = .032, partial η2 = .10.

1428 Cogn Affect Behav Neurosci (2014) 14:1420–1437



p = .041, partial η2 = .09,Ω2 = .54. To probe our hypotheses
further, we tested the simple effects using post hoc t-tests. We
again find that participants were more likely to use fictive
error information for human (M= 0.26, SD = 0.14) than for
computer (M= 0.22, SD = 0.13) agents within the warmth
domain, t(44) = 2.68, p = .01, partial η2 = .14 (see Fig. 3b).4

Last-trial accuracy

We turned next to looking at whether there was evidence that
participants did learn the feedback structure of the game.
Given that the last trial of each miniblock was deterministic,
we examined whether participants were accurate on this last
trial, choosing the agent that had yet to return the highest profit
(see the Method section for details). Our 3 versus 1 contrast

did not reveal any deviant cells for this behavioral measure, all
ps > .05.

We also entered participants’ last-trial accuracy into a 2
(agent) × 2 (trait) repeated measures ANOVA.We did not find
any significant results.5

Running average

We also tested whether participants ignored trait inferences
and interpreted feedback from the agents in a purely economic
sense. We measured the extent to which participants calculat-
ed a running average of the amount of profit returned by each
agent and chose the agent that had the highest average. Our 3

Fig. 2 Attributions for behavior. a Percentages of participants who attributed responsibility for investment behavior to the agent, the stock market,
circumstance, or a combination of these three. b Percentages of participants who reported that they would or would not reinvest with the agent

4 The ANOVA also revealed a marginally significant agent × trait inter-
action, F(1, 44) = 3.23, p = .079, partial η2 = .07, Ω2 = .42.

5 We did observe a marginally significant main effect of trait, with
participants showing greater accuracy for the competence (M= 0.39,
SD = 0.14) than for the warmth (M= 0.34, SD = 0.12) information,
F(1, 44) =3.71, p = .061, partial η2 = .078, Ω2 = .469. These results
suggest that participants may have learned the feedback structure better
for competence than for warmth information.
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versus 1 contrast did not reveal any deviant cells for this
behavioral measure, all ps > .05.6

We entered participants’ highest average agent accuracy
scores into a 2 (agent) × 2 (trait) repeated measures ANOVA.
We did not observe any significant results (all ps > .05),
suggesting that participants were not using this strategy dif-
ferentially for the different conditions.

Experimental questionnaires

We tested whether participants had any clear preference for
trait and agent conditions before and after participating in the
study. Frequencies are reported in Table 4. We performed a
one-way χ2 goodness-of-fit test (assuming equal frequencies)
on pre- and postexperimental preferences separately. Our re-
sults indicate that participants’ trait preferences were not equal-
ly distributed before participating, χ2(2) = 13.33, p = .001, or
after participating, χ2(2) = 8.40, p = .015. Before participating,
56 % of participants preferred the trait competence condition,
33 % preferred the trait warmth comdition, and 11 % were
undecided. After participating, 47 % preferred competence,
40 % preferred warmth, and 13 % were undecided. Similarly,
agent preferences were not equally distributed before partici-
pating, χ2(2) = 19.60, p < .001, or after participating, χ2(2) =
15.60, p < .001. Before participating, 62 % of participants
preferred human agents, 29 % preferred computer agents,
and 9 % were undecided. After participating, 60 % preferred
human agents, 27% preferred computer agents, and 13%were
undecided.

We performed a McNemar–Bowker test of symmetry
(Bowker, 1948; McNemar, 1947) to test whether participants
switched preferences after participating. We find that prefer-
ences stayed the same for the type of trait, χ2(3) = 2.00, p > .05,
as well as type of agent, χ2(3) = 2.80, p > .05, suggesting that
agent behavior did not affect participants’ preferences for type
of agent or type of firm.

Imaging analysis

Because wewere interested in how brain regions implicated in
person perception are modulated during social learning, we
examined activation in anatomically defined person percep-
tion brain regions. Below, we describe the pattern of activation
within each of these regions. All reported patterns of activa-
tion in the person perception brain regions are for the decision
phase of the task. Additionally, we examined activation in the
striatum during the feedback phase to compare our results
with established findings in the neuroscience of decision
making literature.

3 versus 1 contrasts

To test our hypothesis that the humanwarmth condition would
increase activation in person perception brain regions, as
compared with the average of the other three conditions, we
performed 3 versus 1 contrasts for each of the ROIs. We find
that within the left STS, the human warmth7 condition in-
creased activation, as compared with the other three condi-
tions, t(24) = 2.17, p = .040, partial η2 = .16; however, we did
not find significant effects of human warmth information in
the other brain regions.8

ANOVAs

We also performed omnibus ANOVAs and simple effect tests
for the individual brain regions. Significant results are report-
ed below.

Superior temporal sulcus

We examined activation in the left and right STS independently.
In the left STS, we observed a significant main effect of trait,
F(1, 24) = 4.32, p = .048, partial η2 = .15, Ω2 = .51, such that
warmth (M = 0.02, SD = 0.06) engaged this region more than
did competence (M = −0.001, SD = 0.02). This main effect is
qualified by a significant agent × trait interaction, F(1, 24) =
5.00, p = .035, partial η2 = .17, Ω2 = .57. Probing this

6 However, we observed a marginally significant 3 versus 1 contrast in
which participants showed higher reliance on the running average in the
computer competence condition than in the other three conditions, t(44) =
1.81, p = .076, partial η2 = .07.

7 The human competence condition was also deviant from the other cells,
showing less activity for the human competence condition than for the
other three conditions, t(24) = 2.29, p = .031, partial η2 = .18.
8 We find similar but marginal results for the human warmth condition in
the right TPJ, t(24) = 1.95, p = .063, partial η2 = .14, and in the PRMFC,
t(24) = 2.04, p = .052, partial η2 = .15, both showing increased activation
to the human warmth condition, as compared with the other three cells. In
the right TPJ, the human competence cell showed significantly less
activation than the other three cells, t(24) = 2.57, p = .017, partial
η2 = .22, and the computer warmth condition was marginally
significant, again showing less activation than the other three cells,
t(24) = 1.75, p = .092, partial η2 = .11.

Table 3 Chi square values obtained for reinvest question assuming equal
frequencies in each condition. All values are significant using α =.005,
df = 1, corrected for multiple comparisons

Computer
High

Computer
Low

Human
High

Human
Low

Reinvest χ2 values

Warmth 8.0 9.68 28.88 38.72

Competence 25.92 20.48 35.28 20.48
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interaction, we found that the human warmth condition
(M = 0.04, SD = 0.10) engaged the left STS more than did
the human competence condition (M = −0.002, SD = 0.03),
t(24) = 2.31, p = .030, partial η2 = .18, or the computer warmth
condition (M = −0.002, SD = 0.03), t(24) =2.11, p = .045,
partial η2 = .16 (see Fig. 4).

We found a similar pattern of activity in the right STS,
although the main effects and interaction were not statistically
significant (all ps > .05).

Temporal parietal junction

Similarly, we examined activation in the left and right TPJ. In
the right TPJ, we observed a significant agent × trait interac-
tion, F(1, 24) = 6.30, p = .019, partial η2 = .21, Ω2 = .67, in
which the human warmth condition (M= 0.03, SD = 0.10)

again increases right TPJ activity, as compared with the hu-
man competence condition (M = −0.01, SD = 0.03),
t(24) = 2.23, p = .035, partial η2 = .17 (see Fig. 4).9

We observed a similar pattern of activity in the left TPJ,
although the main effects and interaction were not statistically
significant (all ps > .05).10

Fig. 3 Behavioral measures. aBias index calculated from agent selection
using standard deviation of participant choices. Higher bias index (scores
on the y-axis) represents reduced learning. Error bars represent the

standard error of the mean. b Fictive error use. Higher percentages on
the y-axis represent reduced learning. Error bars represent the standard
error of the mean

9 The human warmth condition is marginally different, as compared with
the computer warmth condition (M = −0.01, SD = 0.04), t(24) = 1.99,
p = .058, partial η2 = .14
10 In the left TPJ, the interaction was marginally significant, F(1, 24) =
3.16, p = .088, partial η2 = .12, Ω2 = .40. The simple effects of interest are
also marginal, with the human warmth condition (M = 0.03, SD = 0.11)
more active than the human competence condition (M = −0.004, SD =
0.03), t(24) = 1.67, p = .108, partial η2 = .10, or computer warmth condition
(M = −0.01, SD = 0.03), t(24) = 1.76, p = .092, partial η2 = .11.
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Medial prefrontal cortex

Using the functional divisions created by Amodio and Frith
(2006), we examined activation in two regions of the MPFC,
as well as the combination of these two regions. While the
posterior rostral MPFC is implicated in cognitive tasks, the
anterior rostral MPFC is implicated in emotional tasks. In the
posterior rostral MPFC, we observed a significant main effect
of agent, F(1, 24) = 4.44, p = .046, partial η2 = .16, Ω2 = .53,
with greater activation to human (M = 0.02, SD = 0.06) than to
computer (M = −0.01, SD = 0.02) agents (see Fig. 4).11

The human warmth condition (M = 0.04, SD = 0.10)
increased activity in the prMPFC, as compared with the
computer warmth condition (M = −0.01, SD = 0.04),
t(24) = 2.22, p = .036, partial η2 = .17.

In the anterior rostral MPFC, we observed a similar pattern
of activation, although the ANOVA results were not signifi-
cant (all ps > .05).

Precuneus

Although a pattern of activation similar to that in the other
regions described above was displayed, we only observed
trending main effects and interactions in the precuneus.

Striatum

We examined activation in the left and right striatum
during feedback. ANOVA results and the 3 versus 1
contrasts were not significant for the left or right signal
from the striatum (all ps > .05).

Effect sizes

As an exploratory analysis, we examined the effect sizes
associated with each of the 3 versus 1 contrasts in the brain
regions showing significant differences in the ANOVAs above
(i.e., left STS, right TPJ, and PRMFC). Within each brain
region, we rank ordered the conditions according to effect size
to determine whether the specific brain region responds most
to agent, trait, or a combination of the information. We take a
descriptive approach to describing the results. In the left STS,
the greatest effect sizes were for the human competence and
human warmth conditions, suggestive of a main effect of
agent (larger effect for human agents). The PRMFC shows a
similar pattern, with greater effect sizes for humanwarmth and
computer warmth, again suggestive of a main effect of trait
information (larger effect sizes for warmth information). In the
right TPJ, we observed the greatest effect size for the human
competence condition, suggesting that the right TPJ combines
both agent and trait information (see Fig. 5).

Regressions

We tested whether activation in person perception brain regions
listed above (left STS, right TPJ, and PRMFC) during the
decision phase would predict activity in the striatum during the
feedback phase. To avoid multicollinearity between our predic-
tors, we entered beta values from the each of the person percep-
tion brain regions into separate linear regression as the predictor
and used the bilateral striatal activity during feedback as the
outcome measure. We also applied a Bonferroni correction for
multiple comparisons.We find that activity in the left STS during
the decision phase negatively predicts activity in the striatum
during feedback for the human competence condition,β =−0.66,
F(1, 23) = 10.73, p = .003, adj. R2 = .29. Participants who
engaged this person perception to a lesser extent at decision
showed greater striatal activity during feedback for this condi-
tion. Interestingly, these results suggest that in a context where
the mental state of the agent is not as relevant (i.e., competence
inferences about people), person perception brain regions are less
engaged and predict the extent to which the striatum is more

11 The agent × trait interaction was marginally significant,F(1,24) = 4.15,
p = .053, partial η2 = .15, Ω2 = .50. The simple effect test for the human
warmth (M = 0.04, SD = 0.10), as compared with the human competence
(M = 0.002, SD = 0.03), condition was marginally significant, t(24) =
1.88, p = .072, partial η2 = .13.

Table 4 Preference switching: number of participants (out of 45) who
changed their reported preferences on pre- and post questionnaires

Note. The rows represent participants’ preferences in the prequestionnaire
before interacting with the agents. The columns represent participants’
preference after interacting with the agents. Each cell represents the
number of participants who switched from one preference (in the
prequestionnaire) to another (in the postquestionnaire). Along the diago-
nals (shaded gray) are the number of participants who did not change their
preferences from pre- to postquestionnaire. The bottom row represents
postquestionnaire totals for each condition. The last column on the right
represents prequestionnaire totals for each condition
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active. We observed similar results in the right TPJ, although it
does not survive correction, and did not observe significant
results for the PRMFC.

Brain–behavior correlations

We tested whether our bias index and fictive error measures
correlate with activity in any brain regions during feedback.

Significant regions are reported in Table 5. In particular, we
find that during feedback, the bias index for human and
computer agents is negatively correlated with activity in the
striatum—specifically, the caudate [human, x, y, z = −26, −42,
11, t(24) = −4.19, p = .0003; computer, x, y, z = 13, 27, 11,
t(24) = −4.8, p = .00007, and x, y, z = −20, 15, 20,
t(24) = −5.11, p = .00003]. Similarly, the fictive error measure
in the warmth domain is negatively correlated with activity in

Fig. 4 Activation in person perception brain regions during the decision phase. Beta values extracted from regions of interest show a significant agent ×
trait interaction, with increased activation for the human warmth condition. Error bars represent the standard error of the mean

Fig. 5 Exploratory effect size analysis. Effect sizes associated with each
of the 3 versus 1 contrasts in brain regions showing significant differences
in the ANOVAs. The left STS responds to agent information, the PRMFC

responds to trait information, and the right TPJ responds to a combination
of trait and agent information
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the caudate [x, y, z = 13, 12, 20; t(24) = −4.77, p = .00008]. These
results are consistent with the idea that our behavioral measures
are assessing the extent to which learning is hindered.

Discussion

The present study investigated the role of the person percep-
tion brain network during social learning—specifically, the
STS, TPJ, MPFC, and precuneus. Using a novel investment
task, we showed that trait warmth information specifically
about people, but not computers or competence information
about either agent, impairs learning. Using two different be-
havioral measures, we showed that participants were more
likely to be biased in their agent selection and were more
likely to use fictive error information in the human warmth
condition, suggesting that they did not learn the contingencies
of the game. These results are consistent with previous work
showing that warmth information impairs social decision
making in a trust game (Delgado et al., 2005). It appears that
participants were not simply relying on feedback to guide their
decisions in the human warmth condition. Instead, perhaps
they used trait inferences about people’s warmth as a heuristic
to guide their decisions. The brain data show that activity in
person perception brain regions increases when decisions
about human agents are made in the warmth domain, but not
in the competence domain and not for computers.

Interestingly, the extent to which a participant engages
person perception brain regions during the decision phase
negatively predicts the extent to which the striatum is active

during feedback for conditions in which the mental states of
the agent may be less relevant (human competence infer-
ences). Therefore, it may be that in a more nonsocial context
when person perception processes are less engaged, partici-
pants are more reliant on feedback processing in the striatum,
and participants make better choices suggestive of learning.
However, in a more social context such as the human warmth
condition, participants may become more reliant on trait in-
ferences about the agents to guide their decisions. This idea is
consistent with previous research suggesting that activity in
person perception brain regions hampers basic economic pro-
cessing in social contexts (Harris, Lee, Capestany, & Cohen,
2014). This makes a case for a dual-systems approach in
which social decision making within the warmth domain
may rely on additional brain processing outside of the tradi-
tional decision-making network to guide decisions. When
decisions are made in a social context, it would be important
to engage processes associated with person perception to
predict whether the agent has good or bad intentions. And
given that the brain evolved in a social, not monetary, context,
it follows that these processes have been given precedence
when put in a social context.

Our exploratory effect size analysis highlights that different
parts of the person perception network may be engaged for
different types of social information. Consistent with previous
literatures, the STS seems to be mainly concerned with iden-
tifying human agents (Allison et al., 2000; Zilbovicius et al.,
2013). Similarly, the MPFC seems to be mainly concerned
with warmth information, consistent with the idea that this
region is involved in inferring mental states of others when in

Table 5 Brain–behavior correlations

Main effect (FB) Region Range (mm) x y z t p

Brain regions correlated with bias index during feedback

Human Caudate 3 −26 −42 11 −4.19 .00033

Precuneus 5 −26 −69 26 −4.30 .00024

Computer Caudate 5 13 27 11 −4.80 .00007

Thalamus 4 −2 −6 20 −4.70 .00009

Caudate 3 −20 15 20 −5.11 .00003

Warmth Posterior cingulate 5 −29 −60 11 −5.36 .00002

Precentral gyrus 2 −23 −18 53 −5.87 .00001

Competence Precentral gyrus 0 61 6 32 −5.01 .00004

Brain regions correlated with fictive error during feedback

Human Middle temporal gyrus 6 −26 −57 26 −4.64 .00010

Computer Cingulate gyrus 2 −5 −15 26 −5.30 .00002

Warmth Caudate 3 13 12 20 −4.77 .00008

Cingulate gyrus 4 1 −12 23 −4.65 .00010

Competence Doesn’t survive

Note. Peak coordinates for brain regions correlated with bias index and fictive error during feedback. Uncorrected statistical parametric maps were
set at p < .005 and cluster corrected at a false positive rate of p < .05, using a Monte Carlo stimulation with 1,000 iterations. We report
regions surviving correction
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a social interaction (vanOverwalle, 2009). The right TPJ is the
only region that appears to integrate both agent and trait
information, with the largest effect size for the human com-
petence condition. This is consistent with previous literature
showing that the TPJ provides unique social information for
agents who are both social and relevant for future behavior
(Carter et al., 2012).

Social psychological theory suggests that human and com-
puter agents differ in fundamental ways (Fiske & Taylor,
2013). An interested reader may therefore ask whether
warmth information is relevant for computer agents. Our
manipulation check suggests that despite the learning differ-
ences we observed in our study, there is no conscious report of
computer warmth being very different from human warmth;
participants made attributions to the agent at similar rates in
the warmth conditions, regardless of type of agent. We ob-
served similar results for competence information, with attri-
butions to a combination of the agent, stock market, and
circumstance. Furthermore, the trait-situation rating form sug-
gests that the participants made trait inferences dependent not
on the type of agent but, rather, on the type of social informa-
tion (warmth or competence).

These results also suggest there is an important distinction
to make when studying social decision making. We showed
that specific types of social information affect learning and
brain regions differently, consistent with previous works
highlighting warmth and competence differences (Asch,
1946; Fiske et al., 2007; Wojciszke et al., 1998). While trait
competence information produced similar learning rates for
humans and computers, trait warmth information about
humans impaired learning. Additionally, our results show that
this effect is not due to the effect of trait warmth information in
general but is limited to the perception of human agents.
Interestingly, it is the combination of human–warmth that
produces increased activation in person perception brain re-
gions despite the fact that the human competence condition
also presented human faces, suggesting that this network may
be engaged only when the social context warrants it. This
should serve as a cautionary tale to researchers interested in
social decision making; all social contexts are not the same.

This study suggests that person perception brain re-
gions may supply the additional computational process-
ing necessary to make decisions in complex social en-
vironments—specifically, within the warmth domain.
Although these processes may lead to less than optimal
decisions in an economic context, they are generally
useful in other social contexts, such as when meeting
a person for the first time. Therefore, it is reasonable
that these processes are recruited when forming impres-
sions of the agents in this study. These impressions may
serve as predictions or heuristics for future social inter-
actions but may not be updated in the same way using
feedback mechanisms.
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