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Abstract The concept of capacity has become increasingly
important in discussions of working memory (WM), in so far
as most models of WM conceptualize it as a limited-capacity
mechanism for maintaining information in an active state, and
as capacity estimates from at least one type of WM task—
complex span—are valid predictors of real-world cognitive
performance. However, the term capacity is also often used in
the context of a distinct set of WM tasks, change detection,
and may or may not refer to the same cognitive capability. We
here develop maximum-likelihood models of capacity from
each of these tasks—as well as from a third WM task that
places heavy demands on cognitive control, the self-ordered
WM task (SOT)—and show that the capacity estimates from
change detection and complex span tasks are not correlated
with each other, although capacity estimates from change
detection tasks do correlate with those from the SOT. Further-
more, exploratory factor analysis confirmed that performance
on the SOTand change detection load on the same factor, with

performance on our complex span task loading on its own
factor. These findings suggest that at least two distinct cogni-
tive capabilities underlie the concept of WM capacity as it
applies to each of these three tasks.
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Cognitive control

One of the hallmarks of Edward E. Smith’s approach to
scientific problems was an eagerness to use all available tools
to constrain hypotheses and distinguish between alternative
explanations of the data. In our many discussions of human
working memory (WM), he was always struck with the ele-
gance and utility of the simple mathematical model of WM
capacity used in the literature on change detection tasks
(Cowan, 2001; Pashler, 1988), and as we progressed in our
research intoWMdeficits in patients with schizophrenia at the
end of his career (Smith & Van Snellenberg, 2011; Van
Snellenberg, Girgis, et al., 2013; Van Snellenberg, Wager,
Abi-Dargham, Urban, & Smith, 2010), he was eager to devel-
op a similar capacity model for the task that we were using to
probe these deficits, the self-ordered working memory task
(SOT). A critical question was whether the ability to hold
items in memory during performance of the SOT, a high-
demand WM task requiring substantial cognitive control,
was related to the relatively pure measure of the number of
items that an individual can hold in visual short-term memory
that is provided by WM capacity estimates from change
detection tasks.

At the core of this question is a broader one about the
cognitive processes that underlie various WM tasks. For ex-
ample, abundant evidence points to a capacity limit in humans
of approximately four items that can be concurrently held in
WM, which is thought to be tapped relatively directly by
canonical change detection tasks (Cowan, 2001; Lin &
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Luck, 2012; Luck & Vogel, 1997; Vogel & Machizawa,
2004). It is natural to ask whether this capacity limit constrains
performance on WM tasks other than change detection tasks,
especially those that are more complex and impose additional
demands on cognitive control. One type of WM task that
requires substantial cognitive control, known as complex span
tasks, can also provide an estimate of WM capacity (or span),
but psychometric studies have indicated that capacity esti-
mates from these tasks are distinct from the estimates from
change detection tasks; they load on separate factors, and they
exhibit different patterns of predictive validity, particularly
with respect to measures of fluid intelligence (Conway,
Cowan, Bunting, Therriault, & Minkoff, 2002; Cowan et al.,
2005; Shipstead, Redick, Hicks, & Engle, 2012). Thus, the
existing literature on complex span and change detection tasks
suggests that at least two distinct sets of cognitive processes
are tapped by different classes of putative WM tasks, and it
remains an open question whether the types of high-demand
WM tasks used to tap cognitive control processes load on the
same underlying cognitive capabilities required for successful
performance of complex span tasks, as well as whether these
tasks are constrained by the WM capacity limits tapped by
change detection tasks.

Naturally, these two possibilities are not mutually exclu-
sive, so to examine the overall structure of relationships be-
tween WM tasks, we conducted a study in which a large
sample of participants performed both complex span and
change detection tasks, as well as an experimental WM task
with a memory demand exceeding human WM capacity, and
with a considerable demand on cognitive control; namely, the
SOT. We elected to use the SOT as the third task in this study
because our work on functional brain imaging with this task
has demonstrated that within a single task trial, multiple (i.e.,
two or three) distinct brain systems are deployed at different
points in the trial to subserve task performance (Van
Snellenberg, Slifstein, et al., 2013). Furthermore, one of these
brain systems includes regions that have been shown to be
active during the performance of complex span tasks—name-
ly, bilateral dorsolateral prefrontal cortex, presupplementary
motor areas (often called anterior cingulate cortex), and pos-
terior parietal cortex (Chein, Moore, & Conway, 2011; Osaka
et al., 2004; Smith et al., 2001)—as well as intraparietal sulcus
and lateral occipital regions that have been shown to be active
during change detection tasks, and whose activation is corre-
lated with capacity estimates from these tasks (Todd &
Marois, 2004, 2005; Xu & Chun, 2006). Given the overlap
in brain regions between the SOT and both complex span and
change detection tasks, the SOT seemed an ideal choice for
probing whether an experimental WM task with high de-
mands on cognitive control relies on the same core cognitive
abilities as complex span and/or change detection tasks.

Our primary goals for this study were twofold, and largely
exploratory. First, we hoped to develop estimates of WM

capacity, which are notably different from simple accuracy
measures, for the SOT and complex span tasks, in a manner
similar to the estimates obtained from change detection tasks
(Cowan, 2001; Pashler, 1988; Rouder et al., 2008). Critically,
whereas canonical change detection tasks reflect a relatively
puremeasure of the number of items that can be simultaneous-
ly represented by an individual, abundant evidence indicates
that performance on complex span tasks reflects a broader
range of cognitive processes associated with encoding, main-
tenance, and retrieval, as well as reflecting selective attention
and interference control (e.g., Cowan et al., 2005; Shipstead
et al., 2012). The goal here was to evaluate whether a simple
capacity measure for complex span tasks, as well as the SOT,
would, at least in part, reflect the same core WM capacity
estimated from change detection tasks; if so, capacity mea-
sures from these tasks should exhibit at least a modest positive
correlation with those from a change detection task. Second,
we sought to examine the pattern of correlations between, and
the factor structure of, the three tasks discussed above, in order
to better understand how and whether multiple core cognitive
capabilities (the putative latent variables subserving task per-
formance) drive performance on different types of WM
tasks—namely, change detection, complex span, and SOT
tasks—and/or are related to an indicator of fluid intelligence,
SAT scores.

Method

Participants

All procedures were approved by the Columbia University
Morningside Institutional Review Board. Informed consent to
participate in the study was obtained from 121 undergraduates
at Columbia University, who received either remuneration or
course credit for their participation. This sample size was
selected a priori to achieve 90 % power to detect pairwise
correlations of .3, a value based on a previously reported
correlation between reading span and a change detection task
(Cowan et al., 2005). The mean (± SD) age of participants was
21.2 years (± 3.82), with a range of 18–35 years, and 67 of the
participants (55.3 %) were female. The data from three par-
ticipants were excluded because of technical issues, falling
asleep during testing, and “taking notes” during the reading
span task, respectively. The reading span data from an addi-
tional 11 participants were excluded due to technical issues in
one case, having English as a second language in two cases,
and failing to achieve 85 % correct on the secondary task in
eight cases (a standard procedure for complex span tasks; see
Conway et al., 2005). Change detection data from an addi-
tional four participants were excluded due to technical issues.
SAT scores were self-reported by 67 of the participants; the
remainder of the participants had not taken the SAT, could not
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remember their scores, or refused to provide them. In summa-
ry, SOT data were available for 118 participants, change
detection data for 114 participants, and complex span data
for 107 participants. This resulted in complete data on all three
WM tasks for 101 participants, and data on all threeWM tasks
plus SAT scores for 58 participants.

Behavioral testing procedures

Participants were tested on all of the behavioral tasks in
a lit, sound-attenuated booth on a PC desktop computer
with a 17-in. LCD monitor. Participants were observed
by a research assistant from outside of the booth through
a glass door while they completed the tasks. The partic-
ipants completed several practice trials of all tasks, to
ensure comprehension of the task instructions and elim-
inate early practice effects. The tasks were presented in a
counterbalanced order, and following completion of all
three tasks, participants were asked to type their SAT
score (and the year that the score was obtained) into a
MATLAB dialog box associated only with their sequen-
tially assigned participant number. SAT scores from tests
taken prior to 2006 were multiplied by 1.5 in order to
adjust for the change in the maximum score of the test in
that year.

Change detection task Participants completed three blocks of
48 trials each of the change detection task, whichwasmodeled
after that in Luck and Vogel’s (1997) classic study. On each
trial, participants were shown a display of either four or eight
colored squares—a pseudorandom combination of red (RGB
color 255, 0, 0), green (0, 255, 0), blue (0, 0, 255), yellow
(255, 255, 0), white (255, 255, 255), and black (0, 0, 0)—on a
gray background (half of the trials in each block contained
four items, whereas the other half contained eight, presented
in pseudorandomized order) for 500 ms, followed by a fixa-
tion cross for 1,000 ms (the fixation was visible throughout
each trial, but not during the intertrial interval [ITI]). Follow-
ing this, a single square was presented in the same location as
one of the stimuli from the target display, either in the same
color as in the original presentation or a different color (on
50 % of the trials, again in pseudorandomized order). Partic-
ipants then had up to 5 s to respond with a buttonpress on a
computer keyboard to indicate whether the probe matched or
did not match the color of the corresponding item in the target
display. After a response was made, a 1-s ITI was presented
before the start of the next trial.

The stimuli subtended approximately 1.43º of visual
angle and could appear anywhere within an area in the
middle of the screen covering 23.38º of visual angle in
width and 17.47º of visual angle in height (two thirds of
the total screen size), with the exception of a 1.43º band
at the center of both the x - and y -axes that was defined

by the fixation cross (i.e., no stimulus could appear at
the horizontal or vertical center of the display). This area
was divided into quadrants; for four-item arrays, one
stimulus was placed at a random location in each quad-
rant, whereas for the eight-item arrays, two stimuli were
placed at a random location in each quadrant, with at
least 2.15º between the centers of the stimuli in both the
horizontal and vertical directions.

Self-ordered WM task The participants completed 24 trials
of the SOT, with each trial containing eight steps on which a
response was required. At the start of each trial, eight
simple line drawings of three-dimensional objects were
presented in a 3 × 3 grid, with the central position of the
grid being empty. The stimuli were the same as those used
by Curtis, Zald, and Pardo (2000); unique stimuli were used
on each of the first 12 trials, and stimuli were repeated
exactly once during the latter 12 trials. On each step, par-
ticipants had 7 s to move a mouse cursor to select any object
that had not been selected on a previous trial (thus, all
responses were correct on the first step). Once a selection
was made, a white outline was displayed around the select-
ed object until 9 s had elapsed from the start of the step. At
this point, the objects in the display were pseudorandomly
rearranged in the grid, with the blank space appearing in the
same location as the most recently selected item (to prevent
participants from using a spatial strategy or simply
responding in the same location on each trial). If no re-
sponse was made in 7 s, a white outline was displayed for
2 s around a randomly selected object that would have been
a correct response; participants were instructed to remem-
ber this object as if they had selected it themselves. If an
incorrect selection was made, a red box was displayed over
the object until 7 s had elapsed from the start of the step,
after which the same procedure was followed as in the case
when a participant made no response. The ITI was 9 s.
The stimuli measured up to 7.15º of visual angle hori-
zontally and vertically, but most of the objects were
slightly smaller than that in one direction. The grid was
arranged such that 0.36º of visual angle separated the
outermost edges of the stimuli.

Complex span task The complex span task used was the
automated reading span task available at http:/ /
psychologygatech.edu/renglelab/Eprime1.html (see
Unsworth, Heitz, Schrock, & Engle, 2005). Participants com-
pleted 15 trials of the task, including three trials each of all set
sizes from three to seven items. For each item in a trial,
participants were presented with a grammatical sentence that
either made sense (e.g., “John left to go to the store”) or did
not make sense (e.g., “John left to go to the toothbrush”).
Participants clicked once with the mouse to indicate that they
had read the sentence, then made a judgment as to whether or
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not the sentence made sense, and finally were presented with a
letter that they were required to remember. After all items
within a trial had been presented, participants were given
unlimited time to select all of the presented items in the correct
order from a grid of 12 letters. Participants could also select a
“blank” item if they did not remember the item in a particular
position. The time that participants were given to read the
sentences was determined by the mean time that each individ-
ual participant took to read the sentences during the practice
session, plus 2.5 SD s (see Unsworth et al., 2005, for a
justification of the equivalent procedure for the operation
span task).

Estimation of WM capacity

Change detection task A large body of work has employed a
simple model of WM to estimate capacity from change detec-
tion tasks, based upon the assumption that participants have a
fixed WM capacity that is fully utilized on every trial. That is,
on a trial in which a change occurs, the probability of the
participant detecting the change is presumed to be k /N , where
k is the WM capacity and N is the number of items in the
display, and k ≤ N . Thus, the change is not detected by the
participant with probability (N – k )/N , but in these cases, the
participant may still correctly guess that a change occurred
with probability g , even though he or she was unable to make
a correct determination frommemory. Thus, the probability of
the participant making a hit (in signal detection terms) is H =
k /N + g (N – k )/N . Conversely, the probability of a correct
rejection on trials in which no change occurs isCR = k /N + (1
– g )(N – k )/N . By combining these two formulae and solving
for k , one obtains k = N(H + CR – 1), and so k can be
estimated from the number of hits and correct rejections (note
that the unknown parameter g drops out of the formula for k ;
see Cowan, 2001, for the original specification of this formula,
and see Pashler, 1988, for an equivalent formula for tasks
using a whole-display probe rather than a single-item probe,
as was used in the present study).

This simple form of the model, however, has two important
problems. First, the model predicts perfect performance when-
ever N ≤ k , which becomes especially problematic with
smaller set sizes, as it does not account for cases in which
participants make an error due to reasons unrelated to WM
capacity—for example, errors in executing the correct motor
response, or lapses in attention. Second, the model provides
different estimates of WM capacity for a given participant at
each investigated set size, which is inappropriate for a quantity
that is presumed to be fixed. Rouder et al. (2008) dealt with
the first issue by expanding the model to include an attention
parameter. That is, they assumed that on some trials partici-
pants would fail to attend to the target stimuli, and as a result,
no items would be encoded into WM. Thus, given the atten-
tion parameter a and the probability d = min(k/N , 1) that the

probed item is in WM, the probabilities of a hit or correct
rejection in this model are

H ¼ a d þ g 1–dð Þ½ � þ 1–að Þ g ; and
CR ¼ a d þ 1–gð Þ 1–dð Þ½ � þ 1–að Þ 1–gð Þ:

This expanded model can no longer be solved directly for
k , because there are two additional unknown parameters a and
g , which do not drop out of the formula as g does in the
simpler model. Rouder et al. dealt with this issue in a way that
also addresses the second criticism of the simpler model
outlined above: by using maximum likelihood estimation
(MLE) to fit all three unknown parameters k , a , and g simul-
taneously, thereby obtaining only a single estimate of k ,
irrespective of the number of set sizes used in the study.1

Self-ordered WM task An approach similar to that described
for the change detection task can be applied to the SOT in
order to obtain capacity estimates; however, a substantially
different model must be considered because of the different
structure of the SOT. Under the same assumption of a fixed
WM capacity that is fully utilized, provided that the partici-
pant is attending to the task, a participant making a response
on step S of an SOTwith a display of N items will have m =
min(S – 1, k ) itemsmaintained inWM (and consequently,N –
m items not maintained in WM). If Ci = 1 when the i th item
has been previously selected and Ci = 0 when it has not, the
probability that the participant will select the i th item is

P selectið Þ ¼ Ci

1−
m

S−1
N−m

þ 1−Cið Þ 1

N−m
:

Because an error can only occur if the participant selects an
item that was previously selected, we need only be concerned
with the first ratio, and theCi term drops out, since it is always
equal to 1 in this case. Thus, the probability of an error is
simply the sum of the probabilities of selecting each of the
previously selected stimuli, and because these probabilities
are equal to each other and S – 1 stimuli have previously been
selected at any step of the task, the probability of an error
becomes

E ¼
X

i¼2

S 1−
m

S−1
N−m

¼ S−1ð Þ
1−

m

S−1
N−m

¼ S−1−m
N−m

:

It is critical to note that when S – 1 ≤ k , m = S – 1, so the
probability of an error becomes 0. Thus, as in the change
detection task, if a participant makes an error at an early step

1 Although Rouder et al. (2008) did not spell out the MLE procedure
used, the approach taken here was to treat each trial as a Bernoulli trial
with a probability determined by the formulae above and to use a brute-
force search of possible values for all three parameters.
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because of a lapse of attention or a motor error, the model is
forced to presume that their capacity is very low. For this
reason, it is necessary to include an attention parameter in
the model, as with the change detection task. However, where-
as it is straightforward to specify how participants behave
during an attention lapse in the two-alternative forced choice
structure of the change detection task, it is less clear what
occurs in the SOT. That is, it seems unlikely that in the event
of a lapse of attention during a trial, participants would guess
randomly amongst all available stimuli and then resume nor-
mal responding on subsequent steps. Consequently, we treated
the lapse parameter as a simple probability of an error for
reasons unrelated to a participant’sWMcapacity. Consequent-
ly, the probability of an error becomes simply

E ¼ a
S−1−m
N−m

þ 1−að Þ:

With this model, MLE can be used as with the change
detection task to estimate individuals’ WM capacity, with k
and a as free parameters to be fit by the model.

Complex span task The model needed to obtain MLE esti-
mates of WM capacity from complex span tasks is somewhat
more complex than those for change detection and SOT tasks,
given the complex nature of the task and how behavioral
responses are made on each trial. First, assuming that the
participant is fully attending to the trial, the probability that
any given item on a trial will be maintained inWM in a fixed-
capacity model is the same as for change detection; that is, d =
min(k/N , 1). However, in the case in which an item is not
maintained in WM, the participant may either guess with
(unknown) probability b from one of the 12 items in the
display, or the participant may elect to make no response
(i.e., by responding with a “blank”) with probability 1 – b .
Assuming that the participant attempts to guess, he or she has
probability ga = 1/(12 – c ) of guessing correctly, where c is
the number of items that can be eliminated from the full range
of possibilities on the basis of either items that are remem-
bered or the number of items that have already been selected
by guessing. At a minimum, cmin = max[R , min(k ,N )], where
R is the number of letters that have already been selected in
the course of responding to the trial. At the maximum, c is
somewhat more complex, since the participant may be hold-
ing the final k items inmemory and guessing on the firstN – k
items, in which case cmax = min(k , N) + min(R , N – k – 1).
Note that when R = 0, cmin = cmax = min(k , N). Although c
itself is unknown on any given trial, under the assumption that
the items that a participant is able to hold inWM are randomly
distributed amongst all of the N items, the expected value of c
is simply the average of cmin and cmax—that is, E (c ) = (cmin +
cmax)/2. Consequently, we used this expected value to esti-
mate c for each response of each trial. In this model, then, the

probability of a participant being correct on any particular
item on a given trial is

I correct ¼ d þ b 1−dð Þga:

As with the change detection and SOT tasks, however, this
model cannot accommodate errors due to reasons unrelated to
WM capacity, such as inattention. Consequently, we must
introduce the parameter a , as with the previous tasks, such
that participants attend to an item with (unknown) probability
a and fail to attend with probability 1 – a . In the latter case,
they may again guess amongst the remaining items with
probability b (for simplicity, we assume that this is the same
probability with which they will attempt to guess when they
attend to an item but are unable to maintain it in WM, due to
capacity constraints), or they may simply elect to make no
response with probability 1 – b . Assuming that they guess,
they have probability g = 1/(12 – R) of guessing correctly,
under the assumption that the contents of WM are momentar-
ily not available to them, so they can only eliminate previously
selected items from the full set of items from which they can
make a response. In this larger model, then, the probability of
a participant being correct on any particular item on a given
trial is

I correct ¼ a d þ b 1−dð Þgað Þ þ g 1−að Þb:

In addition, the probability of the participant making no
response on any given item is

INR ¼ a 1−dð Þ 1−bð Þ þ 1−að Þ 1−bð Þ:

With these formulae, the probabilities of a correct response,
incorrect response, and no response can be used to fit the
model parameters k , a , and b to the model using MLE.

Assessment of capacity model fits and reliabilities

In order to evaluate the fit of the capacity models for each of
the threeWM tasks, we followed the approach of Rouder et al.
(2008) in formally testing the null hypothesis that a perfectly
specified model (what might be called an omniscient model—
i.e., one in which performance at each set size is fit with its
own free parameter, so that the predicted probability of a
correct response is the observed proportion of correct re-
sponses) would provide no additional information over the
capacity model, using a log-likelihood goodness-of-fit test on
each individual participant’s data.

Furthermore, to test whether the capacity models provide
reliable estimates of capacity, we calculated capacity estimates
on the two halves of each participant’s data (split-half
reliability), and adjusted the resulting correlation with the
Spearman–Brown prediction formula to obtain an estimate
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of the reliability of capacity models from each task. Because
reliability may be heavily dependent on precisely which trials
end up in each half, we randomly selected half of the trials in
each task 100 times and report the median reliability for each
of these 100 split-half reliability estimates (more than 100
analyses were not conducted because the model-fitting proce-
dures are very computationally intensive, and need to be
carried out twice per participant for each reliability estimate).

Correlation analyses

Initial examination of the data revealed that scores from the
SOT task were decidedly nonnormal (SOT: skew = −2.41,
kurtosis = 7.53; complex span: skew = −0.33, kurtosis =
−0.33; change detection: skew = 0.18, kurtosis = −0.47). As
a result, we opted to use a nonparametric bootstrapping meth-
od to obtain confidence intervals (CIs) and p values for all
statistical tests of interest. The bootstrapping method
employed was the bias-corrected and accelerated bootstrap
(BCa; Efron & Tibshirani, 1993),2 using 10,000 bootstrap
iterations for each analysis.

Given that this is the first study to attempt to develop
capacity estimates for either the SOT or complex span tasks,
one potential concern with using only capacity estimates to
evaluate whether these tasks share at least some underlying
cognitive processes is that a lack of correlation between ca-
pacity estimates from the SOT and complex span tasks may
simply indicate that a capacity model is inappropriate for these
tasks. Thus, in order to ensure that the pattern of correlations
observed between the capacity estimates for each of the tasks
was not simply due to an inappropriate capacity model for one
or more of the tasks, we also computed pairwise correlations
of accuracy (as percentages correct) for eachWM load in each
of the three tasks—a total of 59 pairwise correlations.

Exploratory factor analysis

In order to evaluate whether underlying latent variables might
drive performance on some of the WM tasks and SAT scores,
we also carried out an exploratory factor analysis (EFA) with
promax rotation. In order to determine the number of factors
to retain in the model, we first carried out a principal compo-
nents analysis and used Horn’s parallel analysis (PA; see, e.g.,
Hayton, Allen, & Scarpello, 2004) to determine the number of
factors to retain. However, when this was carried out on the

capacity estimates from each task, no factors at all were
retained by this method. We presumed that this was due to
the very small number of observed variables in this analysis
(four in total), and so opted to carry out the analysis on the raw
accuracy data from each set size of each task, as well as on
SAT scores. This resulted in 15 observed variables (seven for
Steps 2–8 of the SOT, two for the change detection task, five
for the complex span task, and SAT). Furthermore, because
several of the accuracy values were again nonnormal (i.e.,
considerable ceiling effects at lower set sizes in all tasks), we
used the BCa bootstrap to determine p values for the factor
loadings of each variable. Again, 10,000 bootstrap iterations
were carried out, and to ensure that the factor ordering
remained constant on each iteration, we compared the
resulting factor loadings to the observed factor loadings and
reordered the factors so that the bootstrapped loadings were
always associated with the observed factor to which they were
most similar.

Results

Capacity model fits and reliability

The model fits for estimates of WM capacity for each of the
three tasks were generally good, with the goodness-of-fit test
failing to reject the null hypothesis of no improvement in
model fit by an omniscient model in 76 % of the participants
in the SOT, 77 % of the participants in the change detection
task, and 89 % of the participants in the complex span task.
Reliability estimates, however, were poor for both the change
detection and complex span tasks, at .32 and .45, respectively,
whereas the SOT fared much better, at .77. Because the
maximum population correlation between two variables is
the square root of the product of their reliabilities, this implied
that the maximum correlations that could be observed be-
tween these tasks were quite modest (in the range from .38
to .59, depending on the task).

Another important metric of the appropriateness of model
fits is the value of the attention parameter (a ) included in each
of the capacity models; values of a that are very low would
indicate either that participants were not attending to the task
appropriately or that the model was treating most of the errors
by participants as being due to inattention rather than lowWM
capacity. The means (± SDs) of the values of a for each of the
three tasks were .955 (.035) for the SOT, .857 (.127) for the
change detection task, and .943 (.080) for the complex span
task. This value of a for the change detection task is unusually
low, since higher values are typically observed (e.g., Gibson,
Wasserman, & Luck, 2011). This is probably attributable to
the fact that we did not include trials with a very small number
of items (i.e., one or two), which have been used in other
studies and help to constrain the value of a by providing a set

2 Although Efron and Tibshirani (1993) did not provide a means of
directly calculating p values for BCa, this can be done by determining
α for the (1 – α)% CI that would have its upper or lower bound at exactly
the null-hypothesis value being tested. Thus, one simply observes the
proportion of the bootstrap distribution falling below the null-hypothesis
value of the statistic and applies the function inverse {i.e., given the
function f(x), the function inverse of f(x) is f–1(x), such that f–1[f(x)] =
x} of the BCa correction given for CIs to this proportion.
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of trials in which essentially all errors can be attributed to
attention lapses. In addition, the attention parameters were
correlated for model fits of the SOT and the change detection
task (r = .29, p = .012) and showed a trend-level correlation
for the change detection and complex span tasks (r = .18, p =
.074), but they were not correlated between the SOT and the
complex span task (r = .10, p = .298). These results indicate
that the capacity models were consistent with participants
attending to a large majority of trials, at least for the
SOT and complex span task. The values of the a param-
eter for the change detection task were somewhat lower,
however, with participants on average not attending to
over 14 % of trials.

Task performance

The performance data (as percentages correct) at each load are
displayed in Fig. 1 for all three tasks. The mean (± SD )
values of k were 6.20 (± 1.08) for the SOT task, 4.39 (±
1.09) for the change detection task, and 5.36 (± 1.14) for
the complex span task; the capacity estimates for all
three tasks were all significantly different from each
other (all p s < .001).

Correlation analyses

The correlation between the capacity estimates in the SOTand
the change detection task was .28 (p < .001), with a 95 % CI
of .11–.47. The correlation between the capacity estimates in
the SOTand the complex span task was –.15 (p = .086), with a
95 % CI of –.31 to .02. Finally, the correlation between the
capacity estimates in the change detection and complex span
tasks was –.05 (p = .600), with a 95 % CI of –.23 to .14.

The correlation between SOT and SATwas .08 (p = .464),
with a 95 % CI of –.16 to .30; that between change detection
and SATwas .01 (p = .954), with a 95%CI of –.28 to .25; and
that between complex span and SATwas .12 (p = .345), with a
95 % CI of –.15 to .35.

Amongst the 35 correlations between the seven loads of the
SOT and five loads of the complex span task, none achieved
statistical significance after a false discovery rate (FDR) cor-
rection for multiple comparisons (Benjamini & Hochberg,
1995), and only two achieved significance at an uncorrected
α level of p < .05. These were the correlation between
performance at Step 6 of the SOT and a three-item load in
the complex span task (r = .25) and the correlation between
performance on Step 8 of the SOT and a four-item load in the
complex span task (r = .18). Given that with 35 correlations
the expected number of Type I errors is 1.75, this strongly
suggests no relationship between performance on these two
tasks. The ten correlations between the loads of the change
detection and complex span tasks were similar, with no cor-
relations passing FDR correction, and only one correlation

being significant without correction: the correlation between
performance on eight-item sets in the change detection task
and three-item sets on the complex span task (r = .20). In
contrast, of the 14 correlations between performance at the
various loads of the SOTand the change detection task, ten of
them passed FDR correction (rs ranged from .25 to .50). The
four correlations not passing FDR correction (or an uncorrect-
ed α of .05) were the correlations between Steps 2–5 of the
SOT and the eight-item load of the change detection task.
Thus, the pattern of pairwise correlations between accu-
racy on each of the tasks broadly supports the results of
the analyses using capacity estimates as the sole out-
come measure for each task, demonstrating that the
pattern of results obtained from the capacity estimates
is not an artifact of poor or inappropriate modeling of
WM capacity for each of the three tasks.
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Fig. 1 Behavioral performance on the a self-ordering working memory
task, b change detection task, and c complex span task. Error bars reflect
±1 standard error
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Exploratory factor analysis

The PA factor retention decision resulted in two factors; the
factor loadings are shown in a biplot in Fig. 2. All of the SOT
accuracy measures and the accuracy on four-item displays of
the change detection task significantly loaded on Factor 1 (all
ps < .05), whereas the complex span accuracy measures for
five to seven items significantly loaded on Factor 2 (all ps <
.05), and the complex span accuracy measures for three and
four items showed a trend toward significant loadings on
Factor 2 (ps = .057 and .092, respectively). Factor loadings,
confidence intervals, and p values are presented for all of the
variables in Table 1. It is also noteworthy that eight-item
change detection task accuracy and SAT scores approached
marginal significance (p < .2) for Factors 1 and 2, respective-
ly; as we noted in the Method section, the inclusion of SAT
drastically reduced our available sample size, because only
approximately half of our sample was able to report SAT
scores. A follow-up EFA excluding SAT in order to retain
more of our sample (101 participants total) produced signifi-
cant loadings on Factor 1 for all of the SOT and change
detection measures, and a significant loading on Factor 2 for
all of the complex span measures (all ps < .01).

Discussion

The results of both the pairwise correlations between tasks and
the EFA strongly suggest that at least two distinct cognitive
abilities underlie capacity estimates and performance on the
three WM tasks studied here; on the basis of previous work, it

is likely that capacity on complex span tasks as well as
performance on the SAT is driven largely by cognitive abilities
closely linked to fluid intelligence (see Cowan et al., 2005)—
likely including active maintenance of information in WM in
the face of distraction from a secondary task and controlled
retrieval of information when active maintenance fails (see
Unsworth & Engle, 2007)—whereas capacity on the SOTand
change detection tasks is driven by a limit on the number of
items that individuals can hold in the focus of attention at the
same time (Cowan, 2001). Thus, WM and WM capacity are
not necessarily unified concepts as they have been used in the
literature, and depending on the task under discussion, they
may refer to one of at least two distinct cognitive abilities.

In addition, this study presents methods for obtaining ca-
pacity estimates from two tasks for which such procedures had
not previously been available—the SOT and complex span—
and provides a reliability estimate for capacity estimates from
the change detection task. In general, the models of WM
capacity presented here do a good job of explaining behavior-
al performance for most participants. However, reliability for
the change detection task was surprisingly poor, which is
likely due to the fact that we did not include any trials with a
very low set size, which would have given a more stable
estimate of the attention parameter in the capacity model,
and consequently more stable estimates of capacity. Indeed,
when these data were analyzedwithout an attention parameter,
using the capacity formula given in Cowan (2001), substan-
tially better reliability was achieved (Van Snellenberg, 2012),
and likely would have been even higher with the inclusion of
low-set-size trials. The results of Van Snellenberg’s analyses
without an attention parameter were also broadly consistent
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with those reported here, indicating that inclusion of this
parameter did not unduly impact the results of the present
study. Another consideration is that change localization tasks
(e.g., Gold et al., 2006)—which are essentially change detec-
tion tasks in which a change occurs on every trial, and partic-
ipants must instead indicate at which location in the array a
change has occurred—have been shown to have greater reli-
ability than change detection tasks (Johnson et al., 2013;
Kyllingsbæk & Bundesen, 2009), and so may be preferable
to change detection tasks in future work. Our reliability for the
complex span task was also quite poor, possibly due to the
inclusion of only 15 trials in the task—one implication of this
finding is that researchers wishing to use capacity estimates
for complex span tasks would benefit from employing more
trials; for example, the Spearman–Brown prediction formula
estimates that the reliability with 45 trials would be .71, much
stronger than the .45 that we observed with 15 trials.

It is also worth noting that the capacity estimates for the
SOT, although they were fitted reasonably well and were fairly
reliable, were much higher than would be expected for a true
estimate of the number of items that individuals can hold in the
focus of attention (i.e., 6.2 items, as compared to 4.4 for the
change detection task). Although this may to some extent be
due to our sample characteristics (predominantly Columbia
University undergraduates), it is almost certain that additional
cognitive strategies can be brought to bear to subserve perfor-
mance on this task; indeed, other work with the task has
strongly suggested that this is the case (Van Snellenberg,
Slifstein, et al., 2013). Nonetheless, the modest correlation that

we observed between SOT and change detection capacity
indicates that performance on the SOT is constrained at least
to some degree by “pure” WM capacity. However, it is worth
noting that whatever strategies individuals use to improve their
estimated capacity beyond the usual “four plus-or-minus one”
limit, the present data suggest that they do not depend on the
same cognitive abilities tapped by complex span tasks.

Moreover, it seems that the number of items that individ-
uals can maintain in memory in the complex span task
employed here was entirely unrelated to the number of items
that individuals can maintain in the change detection task or
SOT. This implies that performance on complex span tasks is
not constrained simply by the number of items that can be held
in the so-called focus of attention , but may have more to do
with the amount of information that can be maintained in the
face of the distraction inherent in performing a secondary,
unrelated task (Unsworth & Engle, 2007), a feature of com-
plex span tasks that is believed to be critical to its validity in
predicting other measures of fluid intelligence (Conway et al.,
2005). What the present data make entirely clear is that this
cognitive ability is unrelated to the capacity limitations that
underlie the change detection task and the broadly construed
cognitive control required by at least the SOT, if not by other
complex experimental WM tasks.

Limitations

Several caveats are important to consider when interpreting
the results of the present study. First, our sample was primarily

Table 1 Exploratory factor analysis loadings

Factor 1 Factor 2

Variable Factor Loading 95 % CI p Factor Loading 95 % CI p

SOT Step 2 .39 .03 to .65 .040 –.05 –.65 to .35 .649

SOT Step 3 .58 .17 to .88 .007 –.16 –.64 to .23 .262

SOT Step 4 .73 .42 to .91 <.001 –.10 –.41 to .11 .217

SOT Step 5 .78 .41 to .94 <.001 –.11 –.46 to .21 .222

SOT Step 6 .88 .72 to .96 <.001 .02 –.18 to .26 .994

SOT Step 7 .91 .71 to 1.02 <.001 .03 –.25 to .29 .955

SOT Step 8 .85 .56 to .95 <.001 .03 –.20 to .47 .749

CD 4-Item .64 .06 to .87 .031 .10 –.33 to .84 .769

CD 8-Item .33 –.11 to .67 .136 .11 –.51 to .75 .762

CS 3-Item .12 –.14 to .56 .399 .49 –.02 to .99 .057

CS 4-Item .05 –.13 to .36 .641 .34 –.07 to .77 .092

CS 5-Item .08 –.16 to .40 .458 .54 .04 to 1.02 .038

CS 6-Item –.09 –.31 to .23 .416 .76 .24 to 1.13 .011

CS 7-Item –.02 –.26 to .19 .658 .62 .10 to 1.04 .034

SAT .08 –.26 to .39 .528 .25 –.17 to .57 .181

CI = confidence interval; SOT = self-ordered working memory task; CD = change detection; CS = complex span
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made up of undergraduates from an elite university, thereby
limiting the generalizability of our results to the general pop-
ulation. Indeed, the estimates of capacity in each of our tasks
were quite high (all >4). Consequently, it is entirely possible
that the strength of the correlations between tasks was limited
by restriction of the range in the general cognitive abilities of
our participants, or even that a relatively high-performing
sample such as ours might bring different cognitive capabili-
ties to bear on performing these tasks than would a lower-
performing sample. Second, we used only a single task for
each type of WM task under study, meaning that these results
may be specific to the tasks used rather than being a general
property of complex span tasks, change detection tasks, and
complexWM tasks with heavy demands on cognitive control.
Third, the conclusions drawn from our correlational results are
necessarily subject to all of the usual caveats related to corre-
lations, such as the existence of third variables. Although it is
unlikely that a variable such as fatigue or motivation could
produce the correlation between change detection and SOT,
given that these tasks were not also correlated with complex
span (which one would expect to be subject to effects of these
variables as well), it does remain possible that some other
cognitive capability besides WM capacity induced the ob-
served correlation between these tasks. Finally, the conclu-
sions that can be drawn from any of the analyses of SAT
scores must be strongly tempered, given that these scores
were self-reported (the Columbia University admissions
office refused to release scores to us, even with permis-
sion from our participants) and were available for only
approximately half of our sample.

Another major issue stems from the capacity model
used in this study for the complex span task. Because
complex span requires memory for the serial position of
items in addition to the items themselves, it is likely that
errors occur in this task for reasons other than simple
WM capacity constraints. Whereas for the purposes of
the present study we attempted to develop a measure of
capacity that was as analogous as possible to the models
used for change detection and the SOT, it would require
substantial further work to validate this model as an
appropriate outcome measure for the complex span tasks
in other studies—for example, by showing that the ca-
pacity estimates from this model correlate as well as
standard measures with estimates of fluid intelligence.
Although the pattern of results that we observed with
this model was corroborated by analyses using simple
accuracy measures, it remains entirely possible that it is
not a generally appropriate estimate of WM capacity.

Author note E.E.S. (deceased August 17, 2012) was heavily involved
throughout the preliminary and intermediate phases of the study reported
in this article. He saw early versions of the analyses presented here, but
passed away before the maximum likelihood models were fully

developed. However, he had seen and approved of earlier analyses that
broadly parallel those presented here. This work was supported by NIMH
Grant No. 5P50 MH086404. The authors thank Melanie Pincus for her
assistance in setting up the study protocol, and Debbie Fraser, Mona
Griffin, and Serena di Stefani for their assistance in running participants.
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