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Abstract Hundreds of studies have shown that people prefer
attractive over unattractive faces. But what is an attractive
face, and why is it preferred? Averageness theory claims that
faces are perceived as being attractive when their facial con-
figuration approximates the mathematical average facial con-
figuration of the population. Conversely, faces that deviate
from this average configuration are perceived as being unat-
tractive. The theory predicts that both attractive and mathe-
matically averaged faces should be processed more fluently
than unattractive faces, whereas the averaged faces should be
processed marginally more fluently than the attractive faces.
We compared neurocognitive and behavioral responses to
attractive, unattractive, and averaged human faces to test these
predictions. We recorded event-related potentials (ERPs) and
reaction times (RTs) from 48 adults while they discriminated
between human and chimpanzee faces. The participants cate-
gorized averaged and high-attractive faces as being “human”
faster than low-attractive faces. The posterior N170
(150–225 ms) face-evoked ERP component was smaller in
response to high-attractive and averaged faces than to low-
attractive faces. Single-trial electroencephalographic analysis
indicated that this reduced ERP response arose from the en-
gagement of fewer neural resources, and not from a change in
the temporal consistency of how those resources were engaged.
These findings provide novel evidence that faces are perceived
as being attractive when they approximate a facial configuration

close to the population average, and they suggest that processing
fluency underlies preferences for attractive faces.

Keywords Facial attractiveness . Averaging . Event-related
potentials . Visual cortex

It is well established that human adults, children, and even
infants judge and behave toward others differently, depending
on facial attractiveness. Unattractive children and adults are
judged as being less well-adjusted, less socially appealing, and
less academically and interpersonally competent than attractive
children and adults (Langlois et al. 2000). Infants approach and
interact with attractive strangers, but withdraw from and avoid
unattractive strangers (Langlois, Roggman, and Rieser-Danner
1990). Mothers of attractive infants provide their infants with
more positive attention than do mothers of unattractive infants
(Langlois, Ritter, Casey, and Sawin 1995). Attractive adults earn
higher wages than do unattractive adults with the same level of
education (Hamermesh 2011; Judge, Hurst, and Simon 2009)
and are considered to be more intelligent and sociable (Griffin
and Langlois 2006). Thus, given the ubiquitous role that facial
attractiveness plays in social and affective interactions, it is
important to understand what makes faces attractive and why
attractive faces are preferred.

Theories of facial attractiveness

Two theoretical perspectives have emerged as explanations of
facial attractiveness: one based on evolutionary principles and
the other based on information processing and cognitive aver-
aging.Most evolutionary theories view preferences for attractive
faces as the result of an evolved, domain-specific module that
identifies—for mate selection purposes—good genes, health,
and reproductive fitness. Indicators of health and reproductive
fitness are different in men and women, but include square jaws
(men), high cheekbones (women), big eyes and lips (women),
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and symmetry (both), among other factors (Fink and Penton-
Voak 2002; Perrett et al. 1998; Rhodes 2006; Rhodes, Proffitt,
Grady, and Sumich 1998; Thornhill and Gangestad 1993, 1999;
but see Kalick, Zebrowitz, Langlois, and Johnson 1998). A
major argument against these particular evolutionary accounts
is that although health and reproductive fitness indicators may
enhance attractiveness, these characteristics are neither neces-
sary nor sufficient to produce it. Many perfectly symmetrical
faces are not attractive, many youthful faces are not attractive,
many faces with big lips are not attractive, and many highly
masculine faces are not attractive (Langlois, Roggman, and
Musselman 1994; Rubenstein, Langlois, and Roggman 2002).

In contrast, theoretical perspectives based on cognitive aver-
aging (collectively termed here as averageness theory) view
preferences for attractive faces as resulting from their similarity
to facial prototypes—the categorical central tendencies of a
population of faces (Langlois and Roggman 1990). In this
account, facial attractiveness is driven by a face’s averageness ,
or the degree to which its configuration approximates the math-
ematical average facial configuration of a population of male or
female faces. Multiple studies have shown that adult humans
perceive faces possessing high averageness as being highly
attractive, whereas faces with low averageness (i.e., faces that
deviate from the average facial configuration of a population) are
perceived as being unattractive (Bronstad, Langlois, and Russell
2008; Langlois and Roggman 1990; Langlois, Roggman, Casey,
and Ritter 1987; Langlois et al. 1994; Rhodes and Tremewan
1996; Rubenstein, Kalakanis, and Langlois 1999). This prefer-
ence for average faces is shared across cultures (Apicella, Little,
and Marlowe 2007). These studies suggest that the averageness
of a face is both necessary and sufficient for determining facial
attractiveness (Langlois et al. 1994; Rubenstein et al. 2002).
Preferences for faces near their prototype arise because, in gen-
eral, prototypical stimuli are processed more rapidly and effi-
ciently than other stimuli (Komatsu 1992; Posner and Keele
1970; Reed 1972; Rosch, Mervis, Gray, Johnson, and Boyes-
Braem 1976). Such fluent stimulus processing is associated with
positive affective responses that render prototypical stimuli more
visually “pleasing” than nonprototypical stimuli (Harmon-Jones
and Allen 2001; Principe and Langlois 2011, 2012; Winkielman
and Cacioppo 2001; Winkielman, Halberstadt, Fazendeiro, and
Catty 2006). This is presumably because fluent processing is
typically error-free and indicates successful recognition of a
stimulus (Winkielman et al. 2006).

The present study

The purpose of the present study was to examine the predictions
of averageness theory for the neural processing of facial attrac-
tiveness, since, to our knowledge, such an examination has not
yet been performed. Our objective was not to devise a single
experiment that could decide between averageness and

evolutionary theory, but instead to provide evidence to either
support or falsify the neural processing predictions of the former
theory. To accomplish this, we compared neurocognitive re-
sponses to averaged faces (prototypes) and to individual faces
varying in attractiveness. We recorded event-related potential
(ERP) measures of stimulus-evoked electroencephalographic
(EEG) activity at the scalp while adults categorized images of
faces as either human or chimpanzee, a task that engaged auto-
matic, stimulus-driven processing related to the attractiveness of
the human faces. Three kinds of human faces were presented:
high-attractive faces, low-attractive faces, and averaged faces
consisting of mathematical composites of 32 individual faces
varying along a wide range of attractiveness. The averaged faces
were used as estimates of the mean of the face population from
which they were sampled (see the Stimuli and Procedure section,
below) and are highly attractive, not average, in appearance (see
the Behavior section in the Results, below, and the supplemen-
tary materials).

We tested two predictions of averageness theory in this study.
First, attractive faces should be perceived as more typical and less
distinctive than unattractive faces, since the former are more
similar to the prototype, whereas the latter are more distinguish-
able from the prototype. This prediction had been supported by
studies that revealed attractiveness to be negatively correlated
with distinctiveness (Light, Hollander, and Kayra-Stuart 1981;
Peskin and Newell 2004; Rhodes and Tremewan 1996; Vokey
and Read 1992). Here we expected that both averaged and
attractive faces would be rated as less distinctive than low-
attractive faces. However, we also expected that averaged faces
would be rated as less distinctive than high-attractive faces,
because the former are closer to the face prototype than are the
latter. Second, attractive faces should be processed more fluently
than unattractive faces, because of their similarity to the facial
prototype. Consistent with this prediction, Hoss, Ramsey, Griffin,
and Langlois (2005) found in a reaction time (RT) study that
attractiveness facilitates the speed and accuracy of gender-based
face classification (but see Schacht, Werheid, and Sommer 2008).
In the present study, we hypothesized that participants would
categorize high-attractive and averaged faces as being “human”
faster than low-attractive faces, andwould categorize the averaged
faces marginally faster than the high-attractive faces.

We also measured processing fluency via the well-known
ERP index of face processing, the N170 component.1 TheN170

1 We also measured the early (~100 ms) P1 and the intermediate stage
(~200–300 ms) P2 ERP components as part of our N170 quantification
methodology (see the ERP Quantification section in the Method and the
N170 Latency Jitter Correction Analysis section in the Results, below).
Despite a previous finding that the P1 component is sensitive to facial
attractiveness (Halit, de Haan, and Johnson 2000), we do not present a
detailed analysis of the P1 component in this article, because preliminary
analyses revealed no P1 differences among the human faces. In the
supplemental materials, we report an analysis of the P2, since this com-
ponent reflected attractiveness-related affective factors that were not
directly relevant to processing fluency, the main focus of this article.
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is a negative-polarity ERP component observed over bilateral
occipital temporal scalp regions approximately 170 ms post-
stimulus-onset. The N170 response is larger for faces than for
nonface objects (Bentin, Allison, Puce, Perez, and McCarthy
1996; Rossion and Jacques 2011), although in general this
component is sensitive to entry-level object categorization, of
which face perception is a privileged case (Rossion, Curran, and
Gauthier 2002). The N170 has a magnetoencephalographic
counterpart, the M170, which has a similar time course and
response properties (Deffke et al. 2007; Halgren, Raji,
Marinkovic, Jousmäki, and Hari 2000; Linkenkaer-Hansen
et al. 1998). Although the N170/M170 complex arises from
activity in multiple cortical regions (including occipitemporal
sulcus, posterior superior temporal sulcus, posterior lingual
gyrus, and the fusiform gyrus), it appears that the dominant
sources are in the lateral posterior fusiform gyrus and anterior/
middle fusiform gyrus (for a full review, see Rossion and
Jacques 2011). The latter regions respectively correspond to
the occipital and fusiform face areas, as identified by functional
magnetic resonance imaging (fMRI) studies (Haxby, Hoffman,
and Gobbini 2000; Kanwisher, McDermott, and Chun 1997).

Importantly, the N170 is increased and often delayed in
response to inverted versus upright photorealistic faces
(Bentin et al. 1996; Itier and Taylor 2002, 2004a, 2004b;
Jacques and Rossion 2007; Rossion et al. 1999; Rossion and
Jacques 2011; Rossion, Joyce, Cottrell, and Tarr 2003; Vizioli,
Foreman, Rousselet, and Caldara 2010). These N170 face
inversion effects have been attributed to the disruption of
configural face processing (Rossion et al. 1999; Rossion and
Gauthier 2002) because face recognition is disproportionately
affected by inversion, as compared to other objects (Yin
1969). Thus the N170 ERP response provides a sensitive
metric to investigate fluent versus nonfluent face processing.
With respect to attractiveness, Halit, de Haan, and Johnson
(2000) observed that atypical unattractive faces elicit a larger
N170 ERP response than do typical attractive faces (when
typicality varies across, but not within, facial identities). Halit
et al. suggested that their N170 effects “may reflect processing
related to perceiving an individual in relation to a general face
prototype” (p. 1874), consistent with the interpretation that the
N170 responses observed in their study arose from the more
fluent processing of the attractive than of the unattractive
faces. Nonetheless, their finding cannot be taken as a confir-
mation of cognitive averaging theory because they did not
include averaged faces in their stimulus set or obtain behav-
ioral measures that could index fluency of processing—hence,
one motivation for the present study. On the basis of the
predictions of averageness theory and previous observations
of the N170, we hypothesized that low-attractive faces would
elicit larger N170 amplitudes and/or more delayed latencies
than high-attractive and averaged faces, whereas high-
attractive faces would elicit larger N170 amplitudes and/or
more delayed latencies than averaged faces.

The above-reviewed N170 findings are consistent with other
evidence that fluent stimulus processing is associated with a
reduction of neural activity in the brain. For example, face-
selective neurons inmonkey inferotemporal cortex exhibit mono-
tonic decreases in firing rates as face stimuli transition from
nonprototypical individual faces toward the average of the faces
(Leopold, Bondar, and Giese 2006). Hemodynamic activity in
human fusiform gyrus and occipital cortex is smaller for proto-
typical than for nonprototypical faces and visual dot patterns,
respectively (Loffler, Yourganov, Wilkinson, & Wilson, 2005;
Reber, Stark, and Squire 1998). Nonetheless, it is not yet clear
why prototypical stimuli are processed fluently. Prototypical stim-
uli may require fewer neural resources to process, and thus recruit
a lesser number of neurons and/or activate neurons to a lesser
degree, than do nonprototypical stimuli. Then again, prototypical
stimuli may engage neural resources with a rapid and consistent
time course, whereas other stimuli engage the same neural re-
sponses more slowly and/or with a more variable time course. A
third possibility is that processing fluency may affect both the
degree and timing of neural response. Hence, distinguishing
among these alternatives was an additional goal of the present
study. We utilized a simple single-trial peak detection procedure
(Spencer 2005; Spencer, Abad, and Donchin 2000) that allowed
for separatemeasurement of amplitude and timing changes across
conditions (see the ERP Quantification section below).

Method

Participants

A group of 55 undergraduates participated for course credit or
payment. We excluded seven participants due to excessive
EEG artifacts or technical recording problems (see the EEG
acquisition, preprocessing, and data reduction section below).
Thus, the final sample consisted of 48 undergraduates (30
female, 18 male; 18.60 ± 0.17 years of age, 44 right-handed);
this number of participants was chosen a priori in order to
provide balanced assignment of stimuli to each condition, as
was necessitated by our experimental design (see the Stimuli
and Procedure section below). All participants were fully in-
formed of the experimental methods and proceedings before
consent. The Institutional Review Board for Human Studies at
the University of Texas at Austin approved this study.

Stimuli and procedure

Participants viewed color images of high-attractive, low-
attractive, and averaged young adult Caucasian female faces
in the context of a species categorization task, described
below. (We included only female faces in this study because
adult observers of both sexes more consistently agree on the
attractiveness of female faces than on the attractiveness of
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male faces; see, e.g., Hoss et al. 2005; Rennels, Bronstad, and
Langlois 2008.) We constructed the averaged faces by mathe-
matically averaging 32 individual faces (Langlois and
Roggman 1990; Langlois et al. 1994). A constant-size oval
occluding window, applied to each photograph, excluded the
background and hair. All faces were presented against a uni-
form white background. Importantly, the low- and high-level
visual properties that might differentially affect behavioral and/
or ERP responses were equated across human face categories
(see the supplementary materials for a description). Another
group of participants (N = 55; see the supplementary materials
for the ratings procedure) determined the a priori attractiveness
of each face. Participants rated the faces along a 7-point attrac-
tiveness scale, with high-attractive and averaged faces being
rated near the high end of the scale (mean ratings of 5.15 ± 0.15
and 5.60 ± 0.12, respectively) and the low-attractive faces being
rated near the low end of the scale (mean rating = 2.06 ± 0.09).

One notable feature of averaged faces is that different
averaged faces constructed from different face sets are highly
perceptually similar (see Fig. 1). This poses a problem when
presenting averaged faces in the context of experimental de-
signs that present exemplars of each face/stimulus category:
Perceptually similar averaged faces are likely to be perceived
as multiple instances of the same averaged face, which there-
fore could induce differential repetition effects between aver-
aged faces and other face categories, even though all faces
were presented equally often. To avoid this confound, we
implemented a design that ensured that all individual human
faces and general human face categories (attractive vs. unat-
tractive) would be repeated, and perceived to be repeated,
equally often. We created three groups of faces on the basis
of the a priori attractiveness ratings—one group of high-
attractive individual faces (two faces), one group of low-

attractive individual faces (four faces), and one group of
averaged faces (two faces). These faces were rated as the
most highly attractive or unattractive in their category.
Each participant repeatedly viewed one face each from
the high-attractive and averaged face groups, and two
faces from the low-attractive face group (four faces total).
The selection of faces from the face category groups was
balanced across participants and categories; each partici-
pant received 1 of 48 possible unique across-category
combinations of faces. Block analyses showed that poten-
tial differential habituation effects due to the numerous
repetitions of each face were negligible (see the ERP
Quantification section in the Method and the Behavior
section in the Results, below).

Participants also viewed a set of ten color images of
chimpanzee faces that were the same size as, and with
the external background, hair, and head features exclud-
ed in the same manner as in, the human faces (Fig. 1).
Participants individually categorized each face as human
or chimpanzee as quickly and accurately as possible.
This cover task served two purposes: First, it ensured
that participants attended to the faces; second, it encour-
aged participants to appraise the human faces in a
manner that did not directly involve facial attractive-
ness. An important aspect of our design was that ERP
responses to the three categories of human faces would
be assessed under conditions in which they received the
same classification response, thus ensuring that any
observed ERP differences were not due to differences
in conscious stimulus categorization. Hence, the com-
parisons of primary interest in this article involved
comparisons among the human faces. Nonetheless, we
also report behavioral and ERP responses to the chim-
panzee faces for comparison with the responses to the
human faces, as well as to ascertain that participants
performed the species categorization task satisfactorily
(see the Behavior section in the Results, below).

Participants viewed the randomly intermixed human and
chimpanzee faces over 12 trial blocks, with 50 face pre-
sentations per block (10 high-attractive, 10 averaged, 20
low-attractive, 10 chimpanzee); see Fig. 1. We presented
the faces for 250 ms, centered on a 17-in. computer LCD
screen. All of the faces were displayed against a white
background and subtended ~7.52º (w) × 11.31º (h) of
visual angle at a viewing distance of 75 cm; a small cross
was presented at central fixation during all of the inter-
stimulus intervals (ISIs). For each face, the participants
indicated a human-versus-chimpanzee categorization by
using their dominant hand to press one of two buttons
on a response box placed in front of them on a table (left
button = human, right button = chimpanzee). The ISIs
ranged from 2,250 to 3,250 ms; participants had
1,500 ms to respond on each trial.

Fig. 1 Basic task design. On all trials, participants viewed a central fixation
cross before a face was presented for 250 ms. The interstimulus intervals
ranged from 2,250 to 3,250 ms, with the central fixation cross being
displayed throughout. Participants categorized the faces, via a buttonpress,
as being either human or chimpanzee. The figure shows the two averaged
face exemplars used in this study; note the high perceptual similarity
between the two averaged faces (see the Stimuli and Procedure section)
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After the categorization task, participants rated the human
faces for facial attractiveness and distinctiveness (see the
supplementary materials for a description of the rating
methods). Facial distinctiveness was defined as the ease of
spotting a face in a crowd (Wickham and Morris 2003).

Behavioral data reduction and analysis

On the basis of the known limits of human visual processing
speed and recommended methods for dealing with RToutliers
(Fabre-Thorpe, Delorme, Marlot, and Thorpe 2001; Ratcliff
1993), we restricted the categorization task analysis to correct
trials with RTs >200 ms and <2.5 standard deviations of the
grand mean across conditions. In order to remove false starts
and extreme outliers, 2.48 % ± 0.12 % of all trials were
rejected due to RTs outside the specified limits. Next, the 12
experimental blocks of behavioral data were separated into
four groups of three blocks for each condition (i.e., Block
Group 1 = Trial Blocks 1–3, Block Group 2 = Trial Blocks 4–
6, etc.). We computed the mean categorization task RTs and
accuracy–hit rates (defined as the percentages of correct trials
within the total number of trials, after removal of timeout
trials) for each block group, face category, and participant.
Separation of the data into block groups was performed to
reduce data variability and simplify the data interpretation and
analysis. Because twice as many low-attractive trials were
presented as high-attractive and averaged trials, we computed
each individual’s behavioral measures for the low-attractive
condition from a random sampling (without replacement) of
their low-attractive trials. This sampling was constrained such
that (1) the number of sampled trials for a given block group
was equivalent to the average number of correct high-attractive
and averaged face trials for that group, and (2) the sampled
trials contained approximately equal contributions from the
two sets of low-attractive face exemplar trials. In addition, we
computed mean attractiveness and distinctiveness ratings from
the human face rating data (low-attractive face ratings were
averaged across all of the faces in this category).

We used the SPSS statistical software package (IBMCorp.,
Armonk, NY, USA) to compare among responses to the
human and chimpanzee faces via two-way repeated measures
analyses of variance (ANOVAs) with the factors Block Group
and Face Type (high-attractive, averaged, low-attractive, or
chimpanzee). We also analyzed the mean attractiveness and
distinctiveness ratings of the human faces via one-way repeat-
ed measures ANOVAs. To account for sphericity violations
when the factors involved more than two levels, the p values
of all ANOVAs were adjusted using the Greenhouse–Geisser
correction (Greenhouse and Geisser 1959). For ease of inter-
pretation, the reports below of all significant F tests subject to
Greenhouse–Geisser correction include uncorrected degrees of
freedom, corrected p values, and the Greenhouse–Geisser epsi-
lon value ε. In addition, the p values for all reported post-hoc

comparisons and auxiliary ANOVAs used to decompose signif-
icant interactions were corrected for multiple comparisons using
the Holm–Bonferroni procedure (Holm 1979), which controls
the family-wise error rate at level α (here, α = .05). Effect sizes
were estimated via the partial eta-squared (η2p) measure.

We also examined the predictive relationship between the
distinctiveness and attractiveness ratings of the human faces
via generalized estimating equations using SPSS (Gardiner,
Luo, and Roman 2009; Ghisletta and Spini 2004; normal
distribution with identity link, robust covariance estimate,
exchangeable working correlation matrix, and maximum-
likelihood-estimate scale parameter), a generalized regression
procedure that accounts for correlations across repeated
measures.

EEG acquisition, preprocessing, and data reduction

Participants wore a 32-channel Geodesics Sensor Net
(Electrical Geodesics Inc. [EGI], Eugene, OR, USA), which
included channels placed at the inferior orbits and outer canthi
of each eye. The impedances were adjusted to below 50 kΩ,
following standard recommendations for the EGI system. We
recorded continuous EEG (250-Hz sampling rate) via the
NetStation 4.4 software (Electrical Geodesics Inc.) with respect
to a CZ reference. We extracted 2,000-ms EEG data epochs,
from –750 to 1,250 ms with respect to the onset of the human
face stimuli, that were imported into the MATLAB computing
environment (The MathWorks, Natick, MA, USA).

We performed all subsequent analyses in MATLAB via in-
house scripts that utilized functions from the EEGLAB tool-
box (Delorme andMakeig 2004). First, the epoched EEG data
were transformed to an average reference.2 Next, we excluded
incorrect trials and trials with RTs <200 ms, or >2.5 standard
deviations from the grand mean across conditions, from further
analysis; on average, 3.20 % ± 0.19 % and 2.03 % ± 0.28 % of
the human face category and chimpanzee face category EEG
trials, respectively, were rejected for these reasons. We also
removed trials contaminated with muscle and EEG signal arti-
facts via visual inspection. Bad EEG channels were replaced
using an EEGLAB-based spherical spline interpolation algo-
rithm (Perrin, Perrier, Bertrand, Giard, and Echallier 1987;
mean number of interpolated channels = 0.48 ± 0.12). We
removed electrooculargraphic (EOG) artifacts due to blinks
and saccades via a two-stage procedure (Trujillo, Kornguth,

2 We utilized an average reference because Joyce and Rossion (2005)
showed that it optimally indexes categorical differences for the N170
ERP component. Although the size of the electrode montage used in the
present study (32 channels) was lower than is typically recommended
when using an average reference (>64 electrodes; Junghöfer, Elbert,
Tucker, and Braun 1999), we believe that these ERP findings are not
dependent on our choice of EEG reference. An additional analysis (data
not shown) utilizing a CZ reference and an estimation of a neutral
reference “at infinity” (Yao 2001) revealed ERP effects similar to those
found using the average reference.
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and Schnyer 2009) that simultaneously minimizes data loss
and the physical and neural impacts of ocular activity on
the EEG signals. In the first stage, we rejected trials
contaminated with EOG activity in the –200- to 300-ms
interval with respect to face onset, on the basis of the
activity present in two bipolar montage channels computed
offline (vertical EOG: FP2–[right inferior orbit]; horizontal
EOG: F9–F10; rejection criteria: ±40 μV). In the second
stage, we corrected the scalp EEG signals for residual EOG
activity outside the rejection interval by application of an
adaptive-filter regression-based ocular correction algorithm
(He, Wilson, and Russell 2004) to the entirety of each
EEG epoch using the Automatic Artifact Removal
(Version 1.3) add-on for the EEGLAB toolbox. Because
ocular artifact correction algorithms occasionally fail to
remove all EOG artifacts on some trials, a second round
of manual artifact scoring was performed, after band-pass
filtering the EEG data between 0.1 and 48 Hz (166-point
zero-phase-shift FIR filter with 0.03- and 7-Hz transition
bands, respectively). On average, 15.11 % ± 1.15 % and
25.66 % ± 1.64 % of the human face category and
chimpanzee face category EEG trials, respectively, were
rejected due to muscle, signal, and/or ocular artifacts.

After artifact removal, the band-pass-filtered EEG trials
were truncated to the –200- to 400-ms interval, to remove
artifactual filter-related edge effects. The EEG trials were then
baseline-corrected to the –200- to 0-ms prestimulus interval
and divided into the three human face categories (high-attrac-
tive, averaged, and low-attractive); the average number of
trials per human face category was 98.02 ± 0.87 (after col-
lapsing across all experimental blocks; see below).

ERP quantification

We visually estimated the general time window and scalp
location of the N170 (150–225 ms) ERP components from
the across-participant grand-average ERPs. We quantified the
N170 component amplitudes at the six temporal–occipital scalp
sites (P7, P8, PO9, PO10, M1, andM2) where N170 effects are
typically maximal (Bentin et al. 1996; Rossion et al. 1999), as
was the case in the present grand-average ERPs (see Fig. 2 in
the Results). To simplify the data interpretation, the ERP wave-
forms at left- and right-hemisphere locations were averaged
together separately to form two regional waveforms. The
N170 latency was defined as the latency of the most-negative
peak within the general N170 time window. The N170 ampli-
tude was quantified as the mean activity within the time win-
dow defined by those points in the immediate leading and
lagging edges of the N170 peak where the ERP amplitude
was 75 % of the peak amplitude (Picton et al. 2000). We
analyzed the ERP component amplitudes and latencies via
two-way repeated measures univariate ANOVAs with the fac-
tors Face Type and Hemisphere, after collapsing across

experimental blocks.3 All p values were adjusted using the
Greenhouse–Geisser correction for nonsphericity; post-hoc
comparisons and auxiliary ANOVAs were corrected for mul-
tiple comparisons via the Holm–Bonferroni procedure; and
effect sizes were estimated via the η2p measure (see the
Behavioral Data Reduction and Analysis section, above).

For graphical display, we generated grand-average ERP
waveforms by averaging the ERPs at a given electrode across
participants separately for each condition. We visualized the
scalp distributions of ERP component differences by comput-
ing the between-condition amplitude differences for a compo-
nent at each electrode, which were displayed as interpolated
topographical scalp maps using algorithms from the EEGLAB
MATLAB toolbox.

N170 latency jitter correction analysis

To determine the contributions of amplitude and/or timing
changes to the attractiveness-related N170 effects across the
human face conditions, we identified the N170 latency on each
trial and corrected the ERPs for any latency jitter that was
present. By comparing N170 amplitudes after latency jitter
correction, as well as the standard deviations of the single-
trial peak latencies for each condition, we could ascertain
whether our effects involved changes in ERP amplitude,
timing, or both. To this end, we adapted a peak-picking latency
jitter correction technique previously utilized to estimate P300
latencies (Spencer et al. 2000). This computationally simple
technique matches the performance of more sophisticated la-
tency estimation measures when signal-to-noise ratios are high
and/or the width of the true ERP component is relatively
narrow (Gratton, Kramer, Coles, and Donchin 1989;
Jáskowski and Verleger 2000; Smulders, Kenemans, and Kok
1994). This method was well suited to our data, given the
relatively clean ERP baselines therein (see the Event-Related
Potentials section in the Results) and the high numbers of trials
entering into each ERP. A limitation of our procedure is that it
cannot distinguish between changes in the across-trial variabil-
ity of ERP peak latencies versus changes in the rate at which
ongoing prestimulus EEG oscillations are realigned following
stimulation onset, a process known as phase-resetting (Gruber,
Klimesch, Sauseng, and Doppelmayr 2005; Klimesch et al.
2004; Makeig et al. 2002; Trujillo and Allen 2007). However,
this limitation did not impede our present goal of ascertaining
whether EEG timing changes contribute to N170 effects of
facial attractiveness by either timing mechanism.

3 Additional ANOVAs on the non-latency-jitter-corrected ERP data,
which included Block as a factor, revealed no significant differences
among the different human face types as a function of block for the
N170 amplitudes or latencies (ps < .341). Thus, we report the results of
the N170 component derived from averages across all trials within each
condition in order to increase the signal-to-noise ratio of the ERPs, and
hence the statistical power.
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For each individual participant and condition, we first iden-
tified the latency of the positive-polarity P1 and P2 ERP com-
ponents that, respectively, preceded and followed the N170 in
their averaged left- and right-hemisphere regional ERP wave-
forms (see the ERPQuantification section above); the P1 and P2
latencies were defined as the time points of the most positive
values of the noncorrected waveform in the 75- to 150-ms and
175- to 275-ms time windows, respectively. We next searched
for the largest negative peak between the P1 and P2 latencies for
each trial at these sites, with the latency of this negative peak
being taken as the N170 latency for a given trial. On average,
the LJC procedure produced mean latency shifts of 21 ± 17 ms
per condition per electrode, with the latency shifts ranging from
0 to ±76 ms. To determine that this peak-picking technique was
detecting true single-trial N170 responses rather than noise, we

applied a chi-square test for goodness of fit, testing the observed
single-trial latency distribution against the null hypothesis of a
uniform distribution (Spencer et al. 2000). If the peak-picking
technique detected random noise, then we would expect that the
distribution of single-trial negative peak latencies would be
uniformly distributed across the P1-to-P2-component interval.
However, if the peak-picking technique reliably detected true
single-trial N170 responses, then the latencies of these responses
should be clustered around a mean latency and their distribution
should deviate from uniformity. The chi-square tests were sig-
nificant for each participant, condition, and electrode of interest
(all ps < .05, after correction for multiple comparisons across
electrodes via the Holm–Bonferroni procedure). Hence, we
concluded that the peak-picking technique was successfully
detecting single-trial N170 responses and not noise.

Fig. 2 (a) N170 peak and (b) N170 difference wave scalp topographies
for all four face conditions. Different colors indicate positive or negative
values; times indicate peak latencies or differencewave averaging intervals.
Head maps are individually scaled to clearly show individual between-
condition differences. (c ) Representative non-latency-jitter-corrected
grand-average event-related potentials (ERPs) in response to high-attrac-
tive (solid black lines), averaged (dashed black lines), and low-attractive
(red lines) human faces, and chimpanzee faces (dashed red lines). The

representative ERP waveforms are collapsed across posterior left lateral
(left column) and right lateral (right column) extended 10–20 scalp EEG
recording locations, indicated by black dots on the peak and difference
wave scalp maps (see the EEG acquisition, preprocessing, and data reduc-
tion section; recording sites shown outside the radius of the head represent
locations that are below the equatorial FPZ–T7–T8–OZ plane of the
assumed spherical head model). Negative polarity is oriented upward
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After identifying the single-trial N170 latencies, we com-
puted latency-jitter-corrected (LJC) waveforms at electrode
sites of interest by shifting the N170 peak on each trial in time
so that epochs were aligned to the mean single-trial N170
latency. We then quantified the mean amplitudes of the LJC
N170 responses in the same manner as the amplitudes of the
non-LJC ERPs. In addition, we used the standard deviation of
the single-trial N170 latencies as a measure of latency jitter for
each participant, condition, and electrode of interest. We ana-
lyzed the mean LJC N170 amplitudes, single-trial latencies,
and latency standard deviations via univariate ANOVAs, with
all tests corrected for nonsphericity and for multiple
comparisons.

RT/N170/face rating regression analysis

We examined the general within-condition predictive relation-
ship between processing fluency and the N170 response by
regressing RTs against N170 amplitude across participants
after collapsing across human face conditions; a separate
analysis of the chimpanzee responses was also performed.
We also examined the across-condition predictive relationship
between the N170s and RTs by first arranging the data ac-
cording to the theoretically predicted monotonic N170 ampli-
tude increase and RT decrease over the averaged, to high-
attractive, to low-attractive face conditions, and then comput-
ing the slopes of the across-condition changes for each vari-
able separately for each participant. We used linear regression
to predict the slopes of the across-condition changes for the
N170 from the corresponding slopes for the RTs. Finally, we
examined the relative within- and across-condition contribu-
tions of processing fluency, attractiveness, and distinctiveness
to the N170 response by multiply regressing N170 amplitudes
against RTs and the attractiveness/distinctiveness ratings of
the human faces viewed during the categorization task.

These analyses were carried out via reweighted least-
trimmed-squares linear regression (Rousseeuw and
Leroy 2003), a robust statistical procedure that is not
unduly affected by outliers and violations of model
assumptions. Least-trimmed-squares regression finds the
subset k of n data points with the minimal sum of
squared residuals. Here, k was determined a priori ac-
cording to a 95 %-confidence-interval global exclusion
threshold for outliers. On average, 6.6 % ± 0.4 % of the
data points were excluded from the final across- and
within-participant tests relating RT to N170 amplitude,
whereas 7.3 % ± 0.4 % of the data points were exclud-
ed from the tests relating N170 amplitude to the
attractiveness/distinctiveness ratings and RTs. We imple-
mented the regressions via the Forward Search Data
Analysis toolbox for MATLAB (Riani, Perrotta, and
Torti 2012) and applied them to the mean RTs and
mean latency-jitter-corrected and -noncorrected N170

amplitudes computed from the correct trials entering
into the ERP averages after artifact rejection. The left-
and right-hemisphere N170 responses were analyzed
separately, with the p values of all regressions being
corrected for multiple comparisons. We report standard-
ized regression coefficients (β) to facilitate comparisons
among the predictive conditions.

Results

Behavior

Accuracy A two-way ANOVA of the human-versus-
chimpanzee categorization hit rates yielded a main effect of
block group, F(3, 141) = 8.32, p < .001, ε = .77, η2p = .15, a
main effect of face type, F(3, 141) = 58.96, p < .001, ε = .35,
η2p = .56, and a Block Group × Face Type interaction, F (9,
423) = 6.96, p < .001, ε = .40, η2p = .13. Overall, participants
classified the human faces more accurately than the chimpan-
zee faces (high-attractive, 99.2 % ± 0.2 %; low-attractive,
99.3 % ± 0.1 %; averaged, 99.2 % ± 0.2 %; chimpanzee,
88.9 % ± 1.4 %); no accuracy difference emerged among the
human faces, ps > .984. However, accuracy in classifying the
chimpanzee faces decreased across block groups [Block Group
1, 91.4% ± 1.3%; BlockGroup 4, 86.3% ± 1.9%;F(3, 141) =
8.95, p < .001, ε = .78, η2p = .16, post-hoc p < .006], while
remaining constant for the human faces, ps > .296.

Reaction time A two-way ANOVA of the human-versus-
chimpanzee categorization RTs yielded a main effect of block
group, F (3, 141) = 15.52, p < .001, ε = .72, η2p = .25, a main
effect of face type, F (3, 141) = 213.18, p < .001, ε = .41, η2p =
.82, and a Block Group × Face Type interaction, F (9, 423) =
3.71, p < .001, ε = .86, η2p = .07. Overall, participants were
faster in classifying human than chimpanzee faces (high-at-
tractive, 383 ± 9 ms; low-attractive, 388 ± 9 ms; averaged,
384 ± 9 ms; chimpanzee, 450 ± 9 ms). Importantly, partici-
pants categorized the high-attractive and averaged faces more
rapidly than the low-attractive faces, post-hoc ps < .009.
Furthermore, the RTs to categorize human faces significantly
decreased over block groups (Block Group 1, 401 ± 10 ms;
Block Group 4, 370 ± 9 ms; RT values collapsed across
human face categories), F (3, 141) = 19.45, p < .001,
ε = .71, η2p = .29, post-hoc p < .006; a decrease in RTs to
classify the chimpanzee faces only approached significance,
F(3, 141) = 2.83, p < .053, ε = .81, η2p = .06.

Attractiveness and distinctiveness ratings

Attractiveness A one-way ANOVA of the human face attrac-
tiveness ratings gathered after the species categorization task
revealed a significant main effect of face type, F(2, 94) =
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336.42, p < .001, ε = .98, η2p = .88. Participants rated the high-
attractive faces (5.17 ± 0.12) and averaged faces (5.70 ± 0.15) as
being more attractive than the low-attractive faces (2.02 ± 0.09,
post-hoc ps < .003). In addition, the averaged faces were rated as
being more attractive than the high-attractive faces (post-hoc
p < .003). These findings replicate previous observations
that averaged faces are judged to be highly attractive
(Bronstad et al. 2008; Langlois and Roggman 1990).

Distinctiveness A one-way ANOVA of the distinctiveness
ratings revealed a significant main effect of distinctiveness,
F(2, 94) = 16.27, p < .001, ε = .95, η2p = .26. The averaged
faces (3.52 ± 0.16) were rated as being less distinctive than
either the high-attractive (4.27 ± 0.17) or the low-attractive
(4.84 ± 0.18) faces (post-hoc ps < .009). The high-attractive
faces were rated as being less distinctive than the low-
attractive faces, post-hoc p < .025.

Predictive relationship between attractiveness and distinctive-
ness ratings The generalized estimating equation-based regres-
sion showed that the attractiveness ratings were significantly
associated with the distinctiveness ratings, B = –0.23, Wald χ2

(1, N = 48) = 16.01, p < .001: In general, the more attractive
the faces were rated, the less distinctive they were rated.

Event-related potentials

Figure 2 shows the grand-average ERP scalp topographies
(panel A), difference topographies (panel B), and representative
waveforms for each condition over the left and right hemispheres
(panel C). The N170 showed the typical lateral occipitotemporal
distribution of this component, as well as a positive counterfield
over the scalp vertex called the vertex positive potential (Jeffreys
1989, 1996), which reflects volume conduction of electric sig-
nals emanating from the same neural generators as the N170
(Joyce and Rossion 2005). The N170 differences were mostly
restricted to the lateral scalp areas, except for the contrasts
between the chimpanzee and human faces, which also showed
vertex positive potential differences over the medial central
posterior scalp (these differences were not assessed).

Non-LJC analysis ANOVAs of the noncorrected N170 am-
plitudes yielded a significant main effect of face type, F (3,
141) = 37.88, p < .001, ε = .74, η2p = .45. The main effect of
hemisphere was marginally significant, F (1, 47) = 3.96,
p < .052, ε = 1.00, η2p = .08, but the Face Type ×
Hemisphere interaction was not significant, F (3, 141) =
1.33, p < .269, ε = .70, η2p = .03. Follow-up analyses of the
face type main effect showed that the N170 was significantly
larger for the low-attractive human faces (–3.29 ± 0.25 μV)
than for the high-attractive (–3.07 ± 0.25 μV) and averaged
(–3.08 ± 0.24 μV) human faces, post-hoc ps < .048, but the
latter two face categories did not differ from one another, post-

hoc ps < .909. In addition, the N170 response to chimpanzee
faces (–4.18 ± 0.28 μV) was significantly larger than those to
all the human faces, post-hoc ps < .006.

Analysis of the N170 latencies yielded a significant main
effect of face type, F(3, 141) = 44.75, p < .001, ε = .80, η2p =
.49, which indicated that N170 responses were delayed for
chimpanzee faces (179 ± 1 ms) relative to the human faces
(high-attractive, 170 ± 1 ms; averaged, 171 ± 2 ms; low-
attractive, 171 ± 2 ms; post-hoc ps < .006). We found no
N170 latency differences among the human faces, post-hoc
p s > .406. In addition, a main effect of hemisphere,
F(1, 47) = 4.91, p < .032, ε = 1.00, η2p = .10, indicated that
the overall N170 responses were delayed over the left (174 ±
2 ms) versus the right (171 ± 1 ms) hemisphere.

LJC analysis The analysis of the N170 amplitudes after latency
jitter correction yielded effects similar to those in the
noncorrected analysis. The main effect of face type was signif-
icant, F(3, 141) = 49.24, p < .001, ε = .55, η2p = .51, but the
main effect of hemisphere, F(1, 47) = 2.23, p < .142, ε = 1.00,
η2p = .05, and the Face Type × Electrode Location interaction,
F(3, 141) = .24, p < .802, ε = .71, η2p = .01, were not. Follow-
up analyses of the face type main effect showed that the LJC
N170was significantly larger for the low-attractive human faces
(–8.05 ± 0.29μV) than for the high-attractive (–7.70 ± 0.27μV)
and averaged (–7.84 ± 0.27 μV) human faces, post-hoc
ps < .015, but the latter two face categories did not differ from
one another, post-hoc ps < .114. In addition, the LJC N170
response to chimpanzee faces (–9.18 ± 0.34 μV) was signifi-
cantly larger than those to all of the human faces, post-hoc
ps < .006.

The ANOVA of single-trial latency jitter yielded a main
effect of face type, F(3, 141) = 6.39, p < .001, ε = .85, η2p =
.12, which indicated that LJC N170 latencies were more vari-
able for chimpanzee (28 ± 1 ms) than for the human faces
(high-attractive, 24 ± 1ms; averaged, 25 ± 1ms; low-attractive,
25 ± 1 ms; post-hoc ps < .048). We found no latency jitter
differences among the human faces, post-hoc ps > .802.

RT/N170 regression analysis In general, larger N170 responses
were associated with slower RTs within conditions. This was
the case for the noncorrected N170 over the left scalp hemi-
sphere within the collapsed human face condition [βleft = –.34
± .14, t (45) = –2.39, p < .042] and over both hemispheres
within the chimpanzee face condition [βleft = –.20 ± .07,
t (42) = –2.83, p < .014; βright = –.14 ± .06 ms/μV, t (44) = –
2.11, p < .041]. After N170 latency jitter correction, these
within-condition N170/RT relationships were only significant
at left hemisphere sites within both conditions [human faces,
βleft = –.40 ± .14, t(45) = –2.86, p < .013; chimpanzee faces,
βleft = –.33 ± .14, t(45) = –2.36, p < .046]. Furthermore,
increases in N170 amplitudes (negative slopes) across the
human face conditions (from averaged, to high-attractive, to
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low-attractive) were significantly associatedwith RT increases
(positive slopes) across these conditions. This was the case for
both the noncorrected and corrected N170s at both left- and
right-hemisphere scalp locations [noncorrected: βleft = –.49 ±
.13, t (44) = –3.73, p < .001; βright = –.33 ± .15, t (44) = –2.24,
p < .03; corrected: βleft = –.44 ± .14, t (44) = –3.17, p < .006;
βright = –.34 ± .15, t (43) = –2.29, p < .027].

N170/RT/human face ratings multiple regression
analysis Across experimental conditions, RTs were significantly
associated with left-hemisphere N170 amplitudes within the
context of the additional predictors of the attractiveness and
distinctiveness ratings of the human faces; this was the case both
before and after latency jitter correction of the N170s
[noncorrected, βleft = –.52 ± .13, t(42) = –3.97, p < .002;
corrected, βleft = –.42 ± .12, t (43) = –3.39, p < .01].
Furthermore, decreases in ratings of attractiveness across the
human face conditions (negative slopes) were significantly asso-
ciated with left-hemisphere N170 amplitude increases (negative
slopes), but only after N170 latency jitter correction [βleft = .45 ±
.13, t(43) = 3.54, p < .006]. In contrast, the distinctiveness ratings
were not significantly associated with N170 amplitudes across
conditions, either before or after latency jitter correction (ps = 1).
We ascertained whether the attractiveness ratings and/or the RTs
were associated with the N170 responses across conditions
beyond the contribution of the other variable (plus distinctiveness
held constant). We achieved this via use of the standard R2

change statistic, applied to the regression outcome for the left-
hemisphere LJC N170 amplitudes. We found that attractiveness
ratings and RTs were both associated with N170 amplitude,
beyond the contribution of the other variable, to roughly equal
degrees [attractiveness, R2

change = .25, F (1, 41) = 16.98,
p < .001; RT, R2

change = .20, F(1, 41) = 13.52, p < .001].
Finally, none of the three variables were significantly associat-
ed with N170 amplitudes within conditions (ps < .32).

Discussion

The present study has provided a test of the averageness
theory of facial attractiveness by comparing behavioral and
ERP responses to high-attractive, averaged, and low-attractive
faces presented in the context of a simple species face catego-
rization task. To our knowledge, this is the first study to
directly compare neurobehavioral responses among facial
prototypes and individual faces varying in attractiveness.

Attractive and averaged faces are more prototypical
than unattractive faces

Our first finding demonstrated an inverse relationship between
the attractiveness and distinctiveness of our face stimuli.
Averageness theory predicts that attractive faces similar to the

prototype should be perceived as being more typical and less
distinctive than unattractive faces that differ from the prototype.
Consistent with this prediction, participants rated high-attractive
and averaged faces as being more attractive and less distinctive
than the low-attractive faces. In addition, they rated the averaged
faces as being more attractive and less distinctive than the high-
attractive faces, consistent with the expectation that averaged
faces should be evenmore prototypical than high-attractive faces.
Furthermore, regression analysis showed that attractiveness was
negatively associated with distinctiveness—the more attractive a
face was, the less distinctive was its rating. These findings
replicate previous observations of an inverse relationship be-
tween facial attractiveness and facial distinctiveness (Light
et al. 1981; Peskin and Newell 2004; Rhodes and Tremewan
1996;Vokey andRead 1992) and support the claim that attractive
and averaged faces are more prototypical than unattractive faces.

In closing this section, we should note that faces with
atypical features are sometimes rated as being highly attractive,
or even more attractive than averaged faces (Alley and
Cunningham 1991; Cunningham, Barbee, and Pike 1990;
Mende-Siedlecki, Said, and Todorov 2013; Perrett, May, and
Yoshikawa 1994; Wickham and Morris 2003). However, com-
parison of these findings with the predictions of averageness
theory (or any other theory, for that matter) is impeded by the
fact that measurement of the relationship between attractiveness
and distance from the prototype varies across studies. For
example, some studies measure facial typicality (the degree of
deviation from an averaged face), whereas other studies mea-
sure facial distinctiveness (the degree to which a face stands out
in a crowd). Wickham and Morris directly compared these two
measures and found a strong linear inverse relationship be-
tween attractiveness and typicality, but a curvilinear relation-
ship between attractiveness and distinctiveness. They explained
their findings by suggesting that some high-attractive faces
might be similar to an averaged face overall, yet also distinctive
due to certain unique factors, such as the presence of an unusual
facial feature or the similarity of a face to famous people or
one’s friends and relatives.4 Thus, the findings ofWickham and
Morris support the basic claim of averageness theory by sug-
gesting that proximity to the facial prototype is necessary for a
face to be considered attractive, although such attractiveness
may be modulated by other known factors, such as individual

4 We also suggest that attractiveness and distinctiveness ratings could be
distorted by using stimulus sets that are unbalanced in terms of the
numbers of attractive and unattractive faces, as was done in some of
these studies (Mende-Siedlecki et al. 2013; Perrett et al. 1994). For
example, a small number of attractive faces embedded in a larger set of
less attractive faces could appear to be highly distinctive due to their low
frequency, whereas the attractiveness ratings of a set of extremely attrac-
tive faces could be driven by distinctiveness factors, since participants
would search for any criteria to distinguish among the faces. In the present
study, our stimulus set was balanced among attractive and unattractive
faces, so we measured the distinctiveness of the faces due to the greater
generality of this property.
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rater preferences, facial sexual dimorphism, symmetry, famil-
iarity, and hormone-dependent facial features (Fink, Neave,
Manning, and Grammer 2006; Hönekopp 2006; Hoss et al.
2005; Penton-Voak et al. 2001; Perrett et al. 1998; Peskin and
Newell 2004; Rennels et al. 2008; Rhodes et al. 1998; Rhodes
and Tremewan 1996; Rubenstein et al. 2002; Thornhill and
Gangestad 1999).

Attractive and averaged faces engage fluent neurocognitive
processing

Our second finding showed that participants categorized high-
attractive and averaged faces as “human” faster than low-
attractive faces. These RT differences, though small
(~4–5 ms), were highly reliable and are consistent with a
previous observation that attractiveness facilitates the speed
and accuracy of gender-based face classification (Hoss et al.
2005). Importantly, the present RT findings demonstrate for the
first time that, like high-attractive faces, prototypical (averaged)
faces are processedmore fluently than unattractive faces. Given
that our participants also rated the averaged faces as being
highly attractive, these findings support the premise of aver-
ageness theory—that high-attractive faces are attractive and
unattractive faces are unattractive by virtue of their respective
similarity and dissimilarity to the averaged face, and by virtue
of the effects that this has on the ease of face processing.

Our third finding demonstrated that the more-fluent pro-
cessing of averaged and high-attractive faces was accompa-
nied by a reduced N170 ERP component relative to the N170
elicited by the less fluently processed low-attractive faces. We
observed these findings both before and after latency jitter
correction of the N170 (see the next section). These findings
replicate a previously observed N170 reduction in response to
attractive versus unattractive faces (Halit et al. 2000), while
extending this observation to the case of averaged faces. Our
study also extends Halit et al.’s by examining these
attractiveness-related N170 changes in the context of similar
changes in RTs (the earlier study used a simple passive-
viewing paradigm). This allowed us to draw conclusions
about the fluency of the neurocognitive processes indexed
by the N170. Regression analyses showed that larger N170
amplitudes were associated with longer RTs both within and
across the human face conditions, both before and after N170
latency jitter correction. In addition, RTs were associated with
the noncorrected and corrected N170 amplitudes across con-
ditions in the context of additional predictors of attractiveness
and distinctiveness ratings. Our findings are also consistent
with the well-known N170 face inversion effect (i.e., an
enhanced N170 for inverted vs. upright photorealistic faces;
Itier and Taylor 2002, 2004a, 2004b; Rossion et al. 1999;
Rossion et al. 2003; Vizioli et al. 2010) that is thought to arise
from the disruption of configural processing of inverted faces,
which is preserved for upright faces (Rossion and Gauthier

2002). Here, we conjecture that the different levels of fluent
processing do not arise from a disruption of configural pro-
cessing per se, but instead are due to the configural similarity
of the high-attractive and averaged faces to facial prototypes
developed through life-long experience with faces.

A further observation of interest is that the regression
analyses indicated that decreases in attractiveness ratings
across the averaged to high- to low-attractive conditions pre-
dicted corresponding increases in LJC N170 amplitudes.
However, analysis of the R2 change statistic showed that both
attractiveness and RT were associated with the LJC N170
amplitudes in roughly equal manners. That is, both behavioral
indices were each uniquely related to the N170 response, and
thus do not reflect exactly the same cognitive processes. We
speculate that the attractiveness ratings index the effect of
distance from the prototype on processing fluency during the
early perceptual stage indexed by the N170, whereas RTs may
reflect the effects that such fluent processing has on the later
cognitive processes directly responsible for the production of
an overt motor response.

We also observed poorer categorization accuracy, slower
RTs, and a larger N170 for chimpanzee than for human faces,
a finding consistent with the interpretation that the former
were processed less fluently than the latter. However, this
interpretation is confounded by the fact that the chimpanzee
stimuli were not matched with the human faces in terms of
physical stimulus properties or stimulus probability; infre-
quent stimuli, such as the chimpanzee faces, are especially
well-known to produce increased RTs and ERP amplitudes, all
other factors being equal (Blackman 1972; Squires, Donchin,
Herning, and McCarthy 1977). Nevertheless, interpretation of
the regression analysis relating the N170 to RTs within the
chimpanzee face condition is not subject to these confounds,
because between-condition differences in stimulus properties
and frequencies were not relevant. Here, the regression analysis
showed that larger latency-jitter-corrected and -noncorrected
N170 amplitudes were associated with longer RTs within the
chimpanzee face condition. This finding provides further evi-
dence that the N170 reflected the processing fluency of the faces.

We note that averageness theory also predicts that, to the
degree that the averaged faces were closer to the prototype
than were the high-attractive individual faces, the former
should be more fluently processed than the latter. This fluent
processing should manifest as differences in RTs and N170
responses. However, we found no mean RT/N170 differences
between the high-attractive individual and averaged faces,
suggesting that both kinds of faces were processed with
roughly equal fluency. We speculate that these null findings
between the high-attractive and averaged faces indicate that
the early stages of the visual system treat different faces as
being highly similar when they are within a certain degree of
proximity to the prototype. The averaged faces that we utilized
were arguably closer to the prototype than the high-attractive
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faces because the former were composites of 32 individual
exemplars; this conclusion is also supported by the lower
distinctiveness ratings for the averaged than for the high-
attractive faces. However, we did not explicitly quantify
how much closer the averaged faces were to the prototype
than were the high-attractive faces; it may be that the distance
between the two face types was small enough that only
perceptual differences (i.e., attractiveness or distinctiveness),
and not fluency differences, emerged between the two face
categories. Nevertheless, it is likely that if we were to use
slightly less attractive faces for the high-attractive face condi-
tion and/or to use a better estimate of the facial prototype (e.g.,
by using air brushing or mixed-race faces during the construc-
tion of the average faces), fluency differences between the
averaged and individual high-attractive faces would emerge.
This raises an interesting question for future research: Namely,
what is the criterion distance at which different faces will be
treated as being similar to one another by the brain? This
question could be answered by a future study employing a
finer parametric variation of attractiveness and distance from
the prototype among individual and averaged faces.

Could it be the case that, rather than fluency, our N170
effects merely reflected increased salience of the high-
attractive and averaged faces relative to the low-attractive
faces? This is unlikely, because previous studies linking stim-
ulus salience to the N170 have observed a larger response for
this component for salient than for nonsalient stimuli (Batty
and Taylor 2003; Blau, Maurer, Tottenham, and McCandliss
2007), a pattern opposite to the one observed here. It is also
unlikely that our N170 effects were due to the low-attractive
faces being more salient because of their high distinctiveness;
salient stimuli should be more easily detectable and/or dis-
criminable, and thus should have led to faster categorization
RTs for this condition, which is again a pattern opposite to the
one observed here. Furthermore, regression analysis showed
that ratings of facial distinctiveness were not associated with
N170 amplitudes in the present data set. Finally, these N170
effects cannot be due to the low-attractive faces possessing
salient low-level stimulus properties, since these were matched
across face categories (see the supplementary materials).

We close this section by noting that these N170 fluency
effects are most likely not specific to faces, because this ERP
component is also larger for subordinate- versus basic-level
nonface object categorization (Tanaka, Luu, Weisbrod, and
Kiefer 1999), as well as for nonface objects of expertise versus
objects of nonexpertise (Busey and Vanderkolk 2005; Rossion,
Collins, Goffaux, and Curran 2007; Tanaka and Curran 2001).
This suggests a more general N170 sensitivity to entry-level
object categorization (Rossion et al. 2002). Indeed, the N170
evidence implies that expert object categorization performance
recruits experience-dependent early-stage neural resources that
are similar to those used for faces (Busey and Vanderkolk 2005;
Rossion et al. 2007; Tanaka and Curran 2001), although the

exact mechanism of how this is accomplished is still unknown
(Rossion and Jacques 2011). Nonetheless, it is important to
distinguish these general N170 expertise effects from the
N170 fluency effects reported here. General expertise effects
are defined via across-category comparisons (e.g., cars vs. birds,
faces vs. nonfaces), and thus reflect a preference for objects of
expertise over other objects. In contrast, the present N170
effects are defined via a comparison within a single object
category (e.g., human faces), and thus reflect a preference for
a particular configuration of the same object. Hence, like the
N170 face inversion effect, our findings suggest that when
category structure is held constant, a prototypical object will
elicit a smaller N170 response than will a nonprototypical
object. However, if both stimuli are also objects of expertise,
they will produce a larger N170 response than do objects of
nonexpertise (absent the presence of other confounding factors,
such as the low stimulus frequency of the chimpanzee faces
relative to the human faces in the present study). This suggestion
is supported by the N170 face inversion effect, as well as by an
N170 inversion effect for nonface objects of expertise (Rossion
et al. 2002) and the impairment of expert nonface object cate-
gorization performance with inversion (Diamond and Carey
1986; Rossion and Curran 2010).

N170 fluency effects reflect the engagement of fewer neural
resources

Our fourth finding suggests that the overall reduction in N170
differences for high-attractive and averaged faces versus low-
attractive faces resulted from differences in the degrees to which
these stimuli engaged neural resources, and not from a differ-
ence in the temporal consistency of that resource engagement.
Our single-trial EEG latency jitter correction technique pro-
duced jitter-free measures of ERP amplitudes to index the
relative contributions of amplitude and timing changes to the
between-category differences that were evident in the
noncorrected ERPs. Corrected N170 amplitudes were smaller
for high-attractive and averaged faces than for low-attractive
faces, and were significantly associated with longer RTs within
and across face conditions. Nevertheless, no single-trial EEG
latency jitter difference accompanied these N170 amplitude
differences. This indicates that the N170 differences were due
to differences in the amplitudes of the neural activity underlying
the N170. Additional support for this conclusion is that we did
not observe any N170 latency delays for one condition relative
to another, in either the conventional ERP analysis or the LJC
analysis. Such delays (~10–20 ms) are often observed for
inverted versus upright faces (Bentin et al. 1996; Rossion
et al. 1999; Rossion et al. 2000) or when facial configuration
information is removed or degraded (as happens with inver-
sion). These latency delays arise from either a lag in the onset of
face processing or a slower rate at which face information is
accumulated by the neurons representing the faces (Rossion and
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Jacques 2011). Such latency delays should not be expected in
the present data, since all of our stimuli portrayed complete
facial configurations in upright orientations. The fact that we
observed no suchN170 delays provides additional evidence that
timing differences were not a factor in the present data.

Our finding of an overall reduction in latency jitter corrected
N170 amplitude to high-attractive and averaged faces versus
low-attractive faces is consistent with previous observations of
decreased hemodynamic activity in human visual cortex for
prototypical versus nonprototypical faces and visual dot patterns
(Loffler et al. 2005; Reber et al. 1998) andwith larger firing rates
of face-selective neurons in the inferotemporal cortex of nonhu-
man primates for nonprototypical individual faces versus the
average of the faces (Leopold et al. 2006). Our findings are also
consistent with the conclusion of Rousselet, Husk, Bennett, and
Sekuler (2007) that differences in the timing of single-trial EEG
responses do not contribute to the large N170 face effect (i.e.,
larger N170s for faces than for objects). Rousselet et al. showed
that the N170 face effect arises from between-condition EEG
amplitude differences in the 5- to 15-Hz range, via wavelet-
based time-frequency analysis, which can decompose an EEG
signal into the component signals of individual frequencies in
order to separately quantify their amplitudes and phases.
However, this prior study was unable to reach a definite conclu-
sion regarding the contribution of single-trial EEG timing
changes to themuch smaller N170 face inversion effect, because
of the poor temporal resolution of wavelet analysis at low
frequencies. In contrast, the single-trial analysis used here does
not suffer from this problem, because it directly quantified
single-trial peak latencies on each trial with millisecond resolu-
tion. Thus, wewere able to reach a decisive conclusion about the
contributions of amplitude and timing changes to the even
smaller attractiveness-related N170 effects observed here. One
suggestion for future research is to apply our single-trial analysis
method to studies of the face inversion effect to confirm the
likelihood that this effect also depends purely on between-
condition changes in EEG amplitudes.

Conclusion

We have provided novel evidence that high-attractive and
mathematically averaged faces both engage fluent facial pro-
cessing at early stages of visual perception. The present find-
ings, together with previous observations (Bronstad et al.
2008; Langlois and Roggman 1990; Langlois et al. 1994;
Rhodes and Tremewan 1996; Rubenstein et al. 1999), support
the theory that faces are perceived as being attractive when
they approximate an average facial configuration.
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