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Abstract Why are we scared by nonperceptual entities such as
the bogeyman, and why does the bogeyman only visit us during
the night? Why does hearing a window squeaking in the night
suggest to us the unlikely idea of a thief or a killer? And why is
this more likely to happen after watching a horror movie? To
answer these and similar questions, we need to put mind and
body together again and consider the embodied nature of per-
ceptual and cognitive inference. Predictive coding provides a
general framework for perceptual inference; I propose to extend
it by including interoceptive and bodily information. The
resulting embodied predictive coding inference permits one to
compare alternative hypotheses (e.g., is the sound I hear gener-
ated by a thief or thewind?) using the same inferential scheme as
in predictive coding, but using both sensory and interoceptive
information as evidence, rather than just considering sensory
events. If you hear a window squeaking in the night after
watching a horror movie, you may consider plausible a very
unlikely hypothesis (e.g., a thief, or even the bogeyman) because
it explains both what you sense (e.g., the window squeaking in
the night) and how you feel (e.g., your high heart rate). The good
news is that the inference that I propose is fully rational and
gives minds and bodies equal dignity. The bad news is that it
also gives an embodiment to the bogeyman, and a reason to fear
it.

Keywords Embodied predictive coding . Perceptual
inference . Decision-making . Interoception

“There is more wisdom in your body than in your
deepest philosophy.”
–Friedrich Nietzsche

It is a windy night. You go to sleep a bit shocked because,
say, you had a small car accident or just watched a shark attack
horror movie. During the night, you hear a window squeaking.

In normal conditions, you would attribute this noise to the
windy night. But this night, the idea that a thief or even a killer
is entering your house jumps into your mind. Normally you
would have immediately dismissed this hypothesis, but now it
seems quite believable, despite the fact that there have been no
thefts in your town in the last few years; suddenly, you find
yourself expecting a thief to come out of the shadows. How is
this possible?

According to the predictive coding theory (Clark, 2013;
Friston, 2005; Rao & Ballard, 1999), the perceptual system is
a hierarchical generative model that performs a Bayesian form
of inference from the available sensory data (say, the sound of
a window squeaking) to perceptual and cognitive hypotheses
that represent the most likely causes of the data (say, the wind
or a thief).

At higher levels, the competing perceptual hypotheses
correspond to possible explanations of the sensory stimuli.
Let’s assume, for simplicity, only two mutually exclusive
hypotheses: “It is the wind” and “It is a thief.” Because they
are mutually exclusive, the probability of the two hypotheses
sums to 1 [e.g., if P(wind) = .8, then P (thief) = .2].

These hypotheses compete on the basis of how well they
explain the sensory evidence, which in our example is the
sound of the window squeaking. We can consider the three-
level predictive coding hierarchy shown in Fig. 1. The arrows
indicate that wind and thief can be considered likely causes of
the window squeaking, which in turn can be considered the
cause of the heard sound. Intuitively, this corresponds to one
of my two hypotheses (wind vs. thief) causing the window to
squeak, which in turn causes the sound I hear.

Let’s assume, once again for simplicity, that I can unequiv-
ocally attribute the sound that I hear to a window squeaking,
so we can simplify the problem with the two-level hierarchy
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shown in Fig. 2. Essentially, the predictive coding
framework implements the idea of Helmhol tz
(1866/1962) that perception is an unconscious inference
of the causes of sensation. In this framework, the ar-
rows indicate causality; inference is done in the reverse
direction, because its objective is inferring the most
likely cause (wind vs. thief) by treating its sensed
consequences (the sound of the window squeaking) as

evidence. Mechanistically, the higher-level hypotheses
generate sensory predictions (say, one predicts the sen-
sory Event A, and another predicts the sensory Event
B); these predictions are propagated in a top-down way
and compared against the sensory measurements (e.g.,
the sound of a window squeaking). A sensory prediction
error is thus generated and propagated in a bottom-up
way that helps revise the initial hypotheses. The hypoth-
esis that generates less prediction error is strengthened,
and its probability increases. This process is typically
iterated until it settles to stable values; the iterations
permit a valid inference, despite the noise in the process
(e.g., the initial sensory measurements could be wrong).

If we disregard the step-by-step dynamics, predictive-
coding inference selects the hypothesis (wind or thief) that
better explains the sensory data (sound of window squeaking)
by using Bayes’s rule:
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The first element of Bayes’s rule is P (wind | evidence). It
reads “the probability of the wind hypothesis given the sen-
sory evidence,” and is the probability that we want to calcu-
late; note that, because wind and thief are mutually exclusive,
the probability of the thief hypothesis is simply one minus the
probability of the wind hypothesis.

The second element of Bayes’s rule is P(wind). It is called
the “prior probability” of the wind hypothesis. Indeed, even
before perceiving the sensory data, the initial hypotheses (wind
vs. thief) can be assigned a priori probabilities (i.e., acquired
independently of the current sensory evidence). Some examples
are prior knowledge of how likely a theft is in this town, how
windy the night was when I went to sleep, and so forth.

The third element of Bayes’s rule is P(evidence | wind). It
reads “the probability of the sensory evidence given the wind
hypothesis,” and is called the likelihood of the hypothesis.
Let’s think of the likelihood as a form of counterfactual
reasoning that tells how likely the heard sound would be if
we were to assume the wind (or the thief). In other words, the
likelihood is the support that some evidence (e.g., the sound of
a window squeaking) gives to a hypothesis (e.g., wind). Note

that although I only mentioned the sound of the squeaking
window as evidence, several other sensory events count as
evidence and should be included in the likelihood calcula-
tions. For example, my dog is not barking, and I see nothing
moving in the shadows. We can now ask how likely is all of
this sensory evidence, given the competing hypotheses. If we
assume that a thief is in the house, a window squeaking is
somewhat likely, but perhaps my dog should have barked and
I should have seen a silhouette moving in the shadows or
heard the sound of steps. If we assume that the wind is strong,
a window squeaking is quite likely, and my dog not barking is
also quite plausible. So, overall, the wind hypothesis explains
quite well not only the sound of the window squeaking, but
also the other evidence that I have. The thief hypothesis
explains only some of them.

Overall, according to the predictive coding framework, we
have rich theories of wind and thieves as causes of multiple
sensory events. We know the prior probabilities of wind and
thieves; we know how the world would look in the case of
either the wind (e.g., a window squeaking) or a thief (e.g., a
window squeaking and my dog barking); and we can combine
this information in a statistical way to obtain a robust estima-
tion of which hypothesis (wind vs. thief) is correct.

The last element of Bayes’s rule is P (wind) P(evidence |
wind) + P (thief) P (evidence | thief). It is a normalization
factor that ensures that all of the probabilities sum to 1. This
normalization factor is known as the model evidence and

Fig. 1 A “predictive coding” hierarchy. See the main text for an
explanation

Fig. 2 Simplified predictive coding hierarchy
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reports the probability of data under a particular model. Here,
“models” pertain to the hypothesis space or the number of
alternative explanations being entertained. For example, the
model that I have been considering is that the hidden events in
the world are caused either by the wind or by a thief (another
model could consider three rather than two alternative hypoth-
eses—namely, the wind, the thief, and my cat returning from a
nocturnal adventure). One then adjudicates between the dif-
ferent models using model evidence in a hierarchical fashion;
this is known as Bayesian model comparison , and is some-
thing that I will return to later.

A concrete quantitative example can help understand
Bayes’s rule at work. Normally, given the prior knowledge
that the night is windy, the sound of a window squeaking
would have an easy explanation. Let’s assume that the prior
probability of wind is .8 (you know it is windy) and the prior
probability of a thief is .2 (very few thefts reported recently in
your town). Let’s also assume that the wind hypothesis ex-
plains the sensory events slightly better (your window
squeaking, no barking, etc.) than the thief hypothesis; accord-
ingly, we can set the likelihoods of the two hypotheses as
P(sensory evidence | wind) = .6 and P (sensory evidence |
thief) = .5. By applying Bayes’s rule, the probability of wind
(= .8276) is much higher than the probability of the thief (=
.1724). From a slightly different angle, one could say that we
should invoke Occam’s razor, so the fact that one hypothesis
(wind) explains the data so well reduces the need to invoke
alternative causes.

So, you should quite unequivocally attribute the sound of
window squeaking to the wind. You should stand up and close
the window before it breaks, and not freeze in your bed as you
are doing right now! What is wrong with this picture?

Intuitively, this has something to do with the fact that you
just watched a horror movie or had a small car accident,
although these events are apparently not causally related with
the inference. One possibility is that your inference suffers
from a cognitive bias from prior events; for example, if rather
than a shark movie you watched a zombie movie, the idea of a
thief or killer could have been somewhat “primed,” and given
an unlikely high prior probability. A similar priming effect
could be hypothesized if you just heard of a friend robbed or
of a murder in a nearby town on the TV. However, none of
these events happened, and the cognitive bias effect seems
unlikely. So, what is missing?

Embodied predictive coding: Using both sensory
and interoceptive flows as evidence

I argue that the predictive coding account that I have described
up to now misses a crucial ingredient: interoceptive informa-
tion. I only mentioned external sensory events, such as the
sound of a window or the sight of moving shadows. However,

the rich “theories” that we have about wind and thieves can
also include interoceptive information, such as the fact that my
heart rate would be higher if a thief was present but the wind
was not.

Embodied predictive coding extends the standard predictive
coding scheme by incorporating interoceptive information and
the perception of the physiological condition of the body.
Specifically, higher-level hypotheses would predict both sensory
evidence provided by brain sensory pathways and interoceptive
information linked to the autonomic system and the sympathetic
and parasympathetic brain pathways; see Fig. 3.

After a horror movie or a small car accident, your body state
can be altered, and interoceptive signals may report a high heart
rate or sweating. If you also consider this interoceptive informa-
tion in the aforementioned predictive coding scheme, then the
calculations become quite different, because now the “thief”
hypothesis explains more evidence (sensory plus interoceptive)
than the “wind” hypothesis: It also explainswhy your hearth rate
is high and why you are sweating; see Fig. 4.

The reader may have noted that this picture is slightly odd,
because the interoceptive states (high heart rate and sweat)
were caused by the horror movie or the car accident, not by the
(putative) thief. Let’s skip this point for the moment (see
below) and consider that in the ongoing competition between
“thief” and “wind,” all of the available interoceptive informa-
tion is considered as evidence to be explained.

So, let’s redo the calculations. The prior information has
not changed, but the likelihood of the events to be explained
(sensory plus interoceptive) has changed drastically, because
now the thief can account much better for the available evi-
dence. Let’s rename the full available evidence (sensory plus
interoceptive) as E , which intuitively corresponds to “all I
sense and all I feel.”We can now assign P(E | wind) = .3 and
P(E | thief) = .8. Your (posterior) belief in the thief hypothesis
now rises to .4 (so the belief in the wind hypothesis is .6). Still,
this is not sufficient to explain why the thief hypothesis sounds
so convincing to you.

Let’s introduce another element of the predictive coding
picture that I have skipped up to now: the uncertainty of the
data. Not all data are treated equally in the inference, because
some are more uncertain than others. For example, you can be
a bit uncertain of the fact that you really heard the sound of a
window squeaking; maybe you had a bad dream or simply
heard your neighbors’ TV. So, overall, what you heard is a bit
uncertain and not totally reliable. Visual evidence is even less
certain, since there is no light, so the fact that you see nothing

Fig. 3 Embodied predictive coding considers both sensory and intero-
ceptive evidence

904 Cogn Affect Behav Neurosci (2014) 14:902–911



moving in the shadow should have minor influence on the
inference. On the contrary, in most cases interoceptive infor-
mation is quite certain, so it has a greater influence on the
inference. We will see later that this influence is, technically,
proportional to the precision of the evidence at hand.

One way to formulate this idea is by using Bayesian
multisensory integration (Ernst & Bülthoff, 2004). In this
framework, perception is multisensory. The sources of evi-
dence (e.g., vision or touch) can be unreliable, so to provide a
robust estimate of the multisensory evidence E , all of the
available information has to be integrated and weighted by
the relative uncertainty of the sources. For example, visual and
auditory streams can both provide information on the location
of an object that is simultaneously seen and heard, but in most
cases the visual information has to be weighted more, because
(at least for location judgments) it is more reliable. The mul-
timodal integration can proceed, for example, by using the
following maximum likelihood estimation (MLE) equation:

bE ¼
X
i

wibEi:

In the equation, the estimation performed using MLE is
called Ê (rather than E , as before) to emphasize that it is more
than just a sensory measurement: It is a weighted sum (with
weights wi) of the individual estimates Êi. All of the weights
sum to 1, as is specified in the following equation:
X
i

wi ¼ 1:

The weights have to be proportional to the reliability of the
information sources. One way to model this in a probabilistic
framework is by making the weight proportional to the preci-
sion or inverse variance of the individual estimates.
Intuitively, the more uncertain the information source (e.g.,
visual or auditory), the less its weight, as expressed by the
following equation (where σ i

2 is the variance):
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Using the same logic in the wind-versus-thief example, we
assume that the estimate Ê of the evidence integrates and
weights multiple information sources (in our case,

multisensory and interoceptive) using the aforementioned
equations. In principle, it is also possible to include a prior
probability to the MLE in order to make the integration more
robust (Ernst & Bülthoff, 2004). However, a quantitative
specification of Ê is not important here; what is important is
that Ê is a multimodal state that emphasizes (and assigns more
weight to) interoceptive information, rather than auditory and
visual information.

Let’s redo the calculations again and consider how well the
competing hypotheses (wind vs. thief) explain your new esti-
mate of the evidence Ê . Now the picture is different from
before, because not only does the thief hypothesis explain
more evidence, it also explains better the evidence coming
from the most reliable source (interoception), which is em-
phasized in Ê . On the contrary, the wind hypothesis explains
only the less reliable evidence (auditory and visual). For the
sake of simplicity, I assume that this maps onto a decrease of
the likelihood of the wind hypothesis and an increase of the
likelihood of the thief hypothesis, and I assign P (Ê | wind) =
.15 and P(Ê | thief) = .9. If we again apply Bayes’s rule, your
belief in the thief hypothesis now rises to .6, and yes, you
should start worrying about the thief!

The takeaway from this simple example is that we should
put mind and body together again in predictive coding models
of perception and cognition. If we consider interoceptive
information as a source of evidence in the same way that we
consider sensory events, it naturally emerges that it can influ-
ence perceptual inference, belief formation, and choice.
Importantly, in some cases, such as during the night, intero-
ceptive information can be more reliable than sensory (e.g.,
visual) stimuli. Because predictive coding weights informa-
tion sources according to their reliability and precision, the
prediction errors associated with interoceptive states will en-
joy great functional efficacy. Perhaps this is why the bogey-
man only visits us in the dark.

Note that this example is not explained well by cognitive
bias (e.g., a priming of the thief hypothesis after watching a
zombie movie, which can be modeled as a change in the prior
probability). Rather, the way that the horror movie or the small
car accident influences the current (wind vs. thief) inference is
through the body state. The mechanism that I propose is an
embodied predictive coding that gives sensory and interocep-
tive information equal dignity.

Predictive coding hierarchies

I mentioned that predictive coding hierarchies can include
heterogeneous sources of evidence, say sensory and intero-
ceptive. But in addition, predictive coding hierarchies can go
well beyond two or three levels and can combine heteroge-
neous elements at the different levels. At the lowest levels,
perceptual hypotheses that are close to the sensory and

Fig. 4 An embodied predictive coding view of the wind-versus-thief
inference
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interoceptive events are considered; at the highest levels more
profound regularities can be represented, and the hierarchy
can include, at least in principle, long-term beliefs that are
increasingly more removed from sensorimotor events and that
are mainly acquired through cultural learning (but that still
remain grounded through the linkage with lower-level
events).

Scaling up the predictive coding inference to multiple
levels requires replicating the prediction-error minimization
process for each pair of consecutive levels. The winning
hypothesis is the one producing the least total error in the
whole hierarchy. This hierarchical inference can be described
as a free energy minimization , which is discussed in detail by
Friston (2005, 2010).

The fact that hierarchical predictive coding can use multi-
farious information leads us again to the problem of how to
select the right evidence for a given inference. For example,
why use your high heart rate as evidence for the wind-versus-
thief competition, given that it is due to the car accident or the
horror movie? Although this specific example might seem
straightforward, even in this simple case, establishing the right
causal structure of a given problem is hard. One reason is that
the interoceptive flow can have a long duration, and body
states tend to change more slowly than sensory events.
Evidence has indicated that subjective emotional responses
tend to persist longer than the emotional stimulation periods
(Garrett & Maddock, 2001). Similarly, a horror movie can
generate an arousal state that persists after the end of the
movie, and this makes more complex the attribution of a body
state that you sense now to an event (the horror movie) that
ended hours before. In general, estimating the right causal
relations between hypotheses and sources of evidence is far
from trivial; it can be considered a central problem of cogni-
tive development and cognitive processing (Tenenbaum,
Kemp, Griffiths, & Goodman, 2011).

Here I will cast the problem as one of Bayesian model
selection (Koller & Friedman, 2009); see Fig. 5. In this view,
two models compete, not only two hypotheses. In Model 1,
the same hypothesis (the thief) explains both your sensory
state (the sound of the window squeaking) and your intero-
ceptive state (your heart rate). In Model 2, one hypothesis (the
wind) explains your sensory state but not your interoceptive
state, and another hypothesis (the horror movie) explains your

interoceptive state but not your sensory state; so, to make
sense of what is happening, you need to jointly maintain two
hypotheses.

It is at this point that we can see the relevance of the model
evidence in adjudicating between different models. Model
evidence can be expressed as “accuracy”minus “complexity.”
This means that the model with the greatest evidence is not
necessarily the most accurate one; it also has to have the
minimum complexity (i.e., Occam’s razor). Above, we have
seen that although Model 2 may provide a more accurate
explanation for the sensations, it has more degrees of freedom,
and is therefore more complex. It is entirely possible that you
might have entertained both models when accounting for the
squeaking window and still have preferred Model 1, even if it
did not explain the sensory (exteroceptive and interoceptive)
input as fully as Model 2. This leads to the interesting notion
that our brains may do Bayesianmodel comparison andmodel
selection in order to choose categorical hypotheses about
states of the world.

It is worth noting that the inference that I have described is
not instantaneous, but takes time to complete and has rich
internal dynamics; for example, mental states can oscillate and
can include partially conflicting hypotheses that are reconciled
at some later point in time (Kiebel, Daunizeau, & Friston,
2008; see also Spivey, 2007). Consider the case in which one
hypothesis is highly plausible (i.e., generates low prediction
error) at certain levels of the hierarchy, but not at other levels.
In our example, at some (higher) level of the hierarchy, the
thief hypothesis might sound very unlikely, but at other
(lower) levels, it might sound so plausible that you freeze in
your bed or get up and turn the light on. An iterative
hypothesis-testing process guarantees that at some point the
prediction error will be minimized at all levels, but the conflict
between levels might require time to settle and give rise to
instabilities; see Hohwy, Roepstorff, and Friston (2008) for an
illustration of instability in the perceptual dynamics of predictive
coding, and Kiebel et al. (2008) for a proof of principle using
dynamical instabilities to model the recognition of sensory
sequences.

Furthermore, the inference can produce “changes of mind”
(say, fromModel 1 one to Model 2 of Fig. 5), especially when
not all of the evidence is available from the beginning, or more
generally when the process is nonstationary (i.e., different
intervals show stronger and weaker evidence for each of the
competing hypotheses). In our example, interoceptive infor-
mationmight be available immediately that points toModel 1;
subsequently, additional evidence might be gathered that
points to Model 2 (e.g., after a while, you remember that the
last time you watched a horror movie you had similar bad
dreams). As a result, you might initially consider Model 1 to
be more parsimonious, and thus more likely. Successively,
when additional information becomes available and “perco-
lates” through the predictive coding hierarchy, you mightFig. 5 Model selection. See the main text for explanations
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change your mind and prefer Model 2. This idea suggests that
changes of mind can arise within a single inference process in
which different kinds of evidence (say, sensory vs. conceptu-
al) are available at different time intervals; this is something
that I will return to in the discussion of dual-process theories
in the Conclusions section.

Overall, nothing during the predicting-coding inference
can be considered as a fact carved in stone. Every piece of
evidence is evaluated and weighted by its uncertainty. Even
the strongest hypotheses continuously compete and can be
revised in the light of new evidence, although, of course,
knowledge at the higher levels (e.g., one’s own core beliefs )
are very hard to change.

Interoceptive information and motivation

Interoceptive information can come in different varieties. Up
to now I have focused on body states such as heart rate. But
also, visceral and autonomic states such as hunger or thirst are
monitored by sympathetic and parasympathetic flows. This
implies that perceptual processing can be modulated by the
motivational conditions (e.g., neutral, hungry, thirst). Along
these lines, Montague and King-Casas (2007) argued that

A sated and comfortable lioness looking at two ante-
lopes sees two unthreatening creatures against the nor-
mal backdrop of the temperate savannah. . . . The same
lioness, when hungry, sees only one thing—the most
immediate prey. . . . In another circumstance, in which
the lioness may be inordinately hot, the distant, shaded
tree becomes the prominent visual object in the field of
view. (p. 519)

Montague and King-Casas went even beyond this, and
proposed that motivational states modulate perceptual
saliency:

[T]he mismatch between the internal need (to stay at
comfortable temperature) and the external signals (it is
hot outside) changes the importance of the visual sig-
nals. (p. 519)

This implies that the weight of evidence should be modu-
lated by its behavioral significance or salience, and not only
by the uncertainty of its information source. In keeping with
this idea, evidence exists that the coding strategies of sensory
neurons are influenced by the saliency of the stimuli, and the
behaviorally relevant events are emphasized (Machens,
Gollisch, Kolesnikova, & Herz, 2005). In generalized
predictive coding schemes, behaviorally relevant or salient
events are emphasized by virtue of having more precision.
The top-down control of precision has been considered in
terms of attention (Feldman & Friston, 2010) and highlights

the fact that not only do hypotheses have to be optimized, but
the confidence in these hypotheses has to evaluated. Future
research will be needed to elucidate whether visceral and
autonomic states can influence perceptual and cognitive infer-
ence by modulating the precision of the motivationally rele-
vant stimuli, and whether this influence can be described in
terms of attention.

Interoceptive information, feeling, and emotion

I have proposed that in embodied predictive coding, intero-
ceptive states modulate inferences. However, the converse is
also true: Inference dynamics can modify or produce new
interoceptive states. Consider that predictive coding architec-
tures are generative , and during the inference they almost
literally “synthesize” the predicted sensory states via top-
down links (as is summarized by a nice article title: “To
recognize shapes, first learn to generate images”; Hinton,
2007b). This mechanism is useful because the “synthesized”
sensory expectations can be directly compared to the sensory
reality so as to assess the plausibility of a hypothesis. As a
consequence, during the inference, the idea of a thief seems so
vivid that you can almost see a silhouette moving in the
shadows. Similarly, during inference, interoceptive states can
be “synthesized” by the generative dynamics of embodied
predictive coding, and this modifies your body and interocep-
tive state, as well as what you feel.

And there are further consequences. Up until now, we have
considered predictive coding from a purely perceptual per-
spective. In other words, we have regarded perception as
minimizing prediction errors in the exteroceptive and intero-
ceptive domains, to arrive at the best explanation or hypoth-
esis for multimodal sensations. A generalization of predictive
coding known as active inference (Friston, Daunizeau, &
Kiebel, 2009) considers that proprioceptive prediction errors
can be minimized through action, which reduces to engaging
reflex arcs. If we now extend the same argument to interocep-
tive signals, we have a mechanism for autonomic control by
engaging autonomic reflexes. This introduces a circular cau-
sality, in which sympathetic arousal (for example) can be both
a cause and consequence of emotional or salient perceptual
states. Previously, we had considered that an elevated heart
rate was the residual consequence of some prior experience. In
the more general setting of active inference, it is possible that
the belief that a thief has entered the home produces predic-
tions about elevated heart rates that are fulfilled automatically,
through sympathetic reflexes. These, then, may reinforce the
embodied predictive coding of uncertain auditory cues and
produce cascading effects that ultimately reinforce the bogey-
man belief.

To sum up, the dynamics of generative processes and active
inference suggest a bidirectional link between perceptual and
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cognitive inference, on the one hand, and feelings and emo-
tions, on the other hand, which deserves empirical
investigation.

A further link between our framework and emotion is
provided by the interoceptive predictive coding account of
conscious presence and its disturbances. Seth, Suzuki, and
Critchley (2012) defended a view of feelings that can be traced
back at least to James (1890) and that has been recently
revitalized by Damasio (2000). In this framework, feelings
and emotions depend on the perception of changes in the
body. According to the James–Lange model (James, 1890),
aspects of felt emotion involve the perception of our own
bodily (visceral, interoceptive) states, and changes in the body
(e.g., visceral events) should be considered the causes of
feelings, and not their consequences. In other words, I feel
fear because I can sense my viscera “moving,” rather than vice
versa (as some might assume). The predictive coding account
is well suited to explain this cause–effect relation. Seth &
Critchley (2012) established this link to argue that “subjective
feeling states are constituted by continually updated predictions
of the causes of interoceptive input” (p. 228).

The interoceptive predictive coding idea can explain how
perceptual and cognitive inference produce new feelings and
emotions. Interoceptive states that are “synthesized” as part of
perceptual and cognitive inference enter the interoceptive
predictive coding scheme, and as a consequence modify or
generate new subjective feeling states.

The theory that I propose and the idea of interoceptive
predictive coding target different phenomena, but they can
be seen as complementary. I propose that we need to incorpo-
rate interoceptive information in the standard predictive-
coding models of perceptual and cognitive inference. The
interoceptive predictive coding view is a specific account of
emotional feelings and conscious presence that only considers
interoceptive inputs. The two mechanisms can interact bidi-
rectionally, so that subjective feeling states and emotions
influence perceptual and cognitive inference, which in turn
produce new subjective feeling states and emotions.
Understanding these dynamics in depth might shed light on
self-regulatory brain mechanisms and the mind–body problem
(see also Carhart-Harris & Friston, 2010).

What’s in a bogeyman: The stuff dreams are made of

Up to now, I have focused on how sensory and interoceptive
states constrain inference. However, my proposal entails an
embodied view of concepts and representations, too. I argue
that interoceptive information is part and parcel of the repre-
sentation of entities , such as “wind,” “thief,” and many others.
These concepts are formed and maintained in the brain
through predictive coding hierarchies or more general gener-
ative architectures (Dayan, Hinton, Neal, & Zemel, 1995;

Hinton, 2007a) that link low-level inputs to higher-level
representations.

In this view, concepts are grounded in embodied states and
link to a multifarious set of sensory and interceptive elements,
all of which are considered in the embodied predictive coding
inference. For example, your concept of a thief could include
an affective (in this case, negative, frightening) component
that derives from, say, a past theft experience. The concept
thus links to interoceptive predictions that the embodied
predictive coding inference must consider in the same way
as all of the other available (e.g., sensory, conceptual) infor-
mation. This idea can provide a computational basis for an
embodied cognitive accounts of concepts, including
nonperceptual and emotional concepts (Barsalou, 2008;
Wilson-Mendenhall, Barrett, Simmons, & Barsalou, 2011).

Interoceptive information can include descending pre-
dictions or corollary discharges of motor control sig-
nals, too. In this way, the representation of objects and
events can also include information about the
affordances and the likely actions that we perform on
them, which can be used as evidence in the inferential
scheme in the same way that sensory stimuli are.
Action-based approaches to cognition argue that objects
can be recognized in terms of the expected sensory
consequences of possible actions produced by forward
models; for example, a sponge can be understood in
terms of the (anticipated) softness when squeezing it
or imagining squeezing it (Grush, 2004; Pezzulo,
2008, 2011; Roy, 2005). Here the perspective is slightly
different, in that corollary discharges of actions, rather
than only sensory predictions, are used as evidence; in
other terms, the inference looks like, “because I am
squeezing it, it should be a sponge.” In this setting,
an affordance is the attribute of a hidden cause in the
environment that induces (through predictive coding)
predictions in the exteroceptive and proprioceptive do-
mains. In other words, one cannot divorce the percep-
tual attributes from how one would physically interact
with the inferred object in an embodied context.

The arguments that I have made in this article leave open
the possibility that some objects or events may be understood
and experienced purely (or primarily) using interoceptive
information. The bogeyman seems to be such an entity.
According to Wikipedia (http://en.wikipedia.org/wiki/
Bogeyman, retrieved on July 1st, 2013):

A bogeyman (also spelled bogieman , or boogeyman ) is
an amorphous imaginary being used by adults to fright-
en children into compliant behaviour. The monster has
no specific appearance, and conceptions about it can
vary drastically from household to household within
the same community; in many cases, he has no set
appearance in the mind of an adult or child, but is simply

908 Cogn Affect Behav Neurosci (2014) 14:902–911

http://en.wikipedia.org/wiki/Bogeyman
http://en.wikipedia.org/wiki/Bogeyman


a non-specific embodiment of terror. Parents may tell
their children that if they misbehave, the bogeyman will
get them.

To the best of my knowledge, nobody has ever seen a
bogeyman, so this entity could be understood mostly in terms
of visceral and interoceptive signals that its putative presence
(should) generate. In other words, you quite literally recognize
a bogeyman with your body, and with your fear in particular.
As a consequence, the bogeyman idea is a form of self-
fulfilling prophecy, because a terrified child can take his or
her terror as evidence that the bogeyman exists (and is prob-
ably close), and the terror itself can increase due to the circular
causality mentioned earlier. This idea resonates well with
recent proposals in embodied cognitive theories arguing that
some abstract concepts (including, e.g., emotional concepts)
could be grounded primarily on interoceptive information
(Barsalou, 2008).

Note, however, that even in the bogeyman case,
interoception is not the only available information. Part
of the grounding and the understanding of nonperceptual
concepts such as the bogeyman are in terms of “tales”
heard from parents or friends; this explains why the
attributed appearance of the bogeyman varies between
communities (see Halloy, 2012 for a related discussion
in the context of spirit possession phenomena). In prin-
ciple, the predictive coding scheme can integrate diverse
kinds of information, from sensory and interoceptive to
tales and narratives, plausibly considering them at differ-
ent hierarchical levels and weighting them depending on
the reliability of the source (including social sources
such as parents and friends). However, up to now the
predictive coding framework has been used mostly to
understand perceptual events that have clear sensory
components. Understanding how different and heteroge-
neous elements combine in predictive coding architec-
tures, and their relative importances, can shed light on
the architecture of conceptual knowledge (Barsalou,
2008; Pezzulo, 2012; Pezzulo and Castelfranchi, 2009;
Pezzulo et al., 2011, 2013).

Conclusions

I have proposed an embodied predictive coding model of
perceptual and cognitive inference in which interoceptive
dynamics are treated as evidence, similar to sensory dynamics.
The inference is embodied, in that it is deeply influenced by
the body and its motivational and emotional dynamics; in turn,
the body and the motivational and emotional states also
change in response to the inference. A prediction of this model
is that interoceptive signals linked to body states (e.g., heart
rate) and visceral and autonomic states (e.g., hunger or thirst)

should affect, and in turn be affected by, perceptual and
cognitive inferences. Affective influences on perception have
been reported (see, e.g., Anderson & Phelps, 2001), but fur-
ther evidence will be necessary to assess the bidirectional
interactions between mind and body proposed here.

The hypotheses discussed here can be tested using methods
that track the temporal dynamics of inferences in both the
brain and the body. Predictive coding schemes formulated in
continuous time suggest that we can understand evoked neu-
ronal responses in terms of suppression of prediction error that
takes a finite amount of time. For example, the oddball event-
related potential (ERP) peaks and oddball-dependent differ-
ences in ERPs (such as the mismatch negativity) have been
described in terms of predictive coding by several authors
(Wacongne, Changeux, & Dehaene, 2012). In principle, this
logic can be extended to embodied predictive coding by
considering jointly brain and body dynamics—for example,
by simultaneously measuring event-related potentials, electro-
myographic, and autonomic signals during inference (while
also manipulating and interfering with the brain and body
states). By simultaneously recording time-course data in both
the brain and the body, this method could help shed light on
their bidirectional links and unveil the embodied aspects of
perceptual and cognitive inference.

Malfunctioning of the embodied predictive coding mecha-
nism can have dramatic effects. For example, patients affected
by Capgras syndrome are unable to recognize their friends or
family members and believe that impostors or aliens have
replaced them. This syndrome is usually associated with im-
paired autonomic response and with the failure to sense nor-
mal affective states (e.g., pleasure or joy) associated with a
friend’s or a parent’s face. It has been proposed that the
syndrome depends on broken neuronal associations between
the temporal cortices, where faces are recognized, and the
limbic system, where the associated emotions are processed
(Hirstein & Ramachandran, 1997). This idea can be easily cast
within a predictive coding scheme. To infer who is the person
in front of me, sensory predictions of the perceptual appear-
ance (e.g., of the mother) and interoceptive predictions of
affective states (e.g., pleasure and joy) are treated on the same
grounds. The precision, and thus the weight, of interoceptive
signals is so strong that it is hard to verbally convince a patient
of the abnormality of his inference.

Indeed, people imagining a thief (or the bogeyman) in the
night, or even Capgras patients, are not performing any irra-
tional inference. Rather, their inference maximizes the proba-
bility of the correct hypothesis, given the evidence and the
relative weights of the information sources. Because the em-
bodied inference that I propose includes interoceptive infor-
mation, rationality depends on an inextricable link between
mind and body. Thus, the bad news is that the experience of
“fear in the night” is not irrational; rather, you have valid
reasons to fear thieves, killers, and even the bogeyman.
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This view is at odds with dual-process theories that posit
an emotional fast route (called “System 1”) and a slower
reasoning route (called “System 2”), with only the latter being
rational (Kahneman, 2003; Stanovich & West, 2000). In the
framework that I have proposed, sensory and interoceptive
evidence can be considered simultaneously or one before the
other, depending on how quickly the information sources
contribute to the predictive coding inference. Still, sensory
or interoceptive dynamics are not two separate systems: They
are both expressions of a single process that is fully rational in
how it considers the statistics of both the sensorium and
interoceptive information. Understanding the interactions be-
tween sensory and interoceptive dynamics could be highly
relevant for the emerging field of computational psychiatry
(Montague, Dolan, Friston, & Dayan, 2012).

For the sake of simplicity, I skipped many of the complex
details of predictive coding and generative inference, but the
framework is rich enough to offer several interesting direc-
tions for future research on the mind–body problem. For
example, sophisticated ways exist to incorporate the precision
of information in a predictive coding inference (Friston,
Adams, Perrinet, & Breakspear, 2012); precision-based opti-
mization schemes could generate useful hypotheses as to how
interoceptive information is integrated in perceptual inference.
Furthermore, a more detailed inference should consider the
utility of the hypotheses, rather than only their probability—
for example, the expected gains or losses, if the inference is
incorrect (e.g., the risk that I am not recognizing a thief or
bogeyman). Risk-sensitive inference (Grau-Moya, Hez,
Pezzulo, & Braun, 2013; Grau-Moya, Ortega, & Braun,
2012) formalizes these ideas and could help explain how
subjects with different personality traits (e.g., risk-seeking or
risk-avoidant) consider best or worst cases in the inference
rather than an unbiased estimate.

Recent work in the predictive coding framework has em-
phasized that attention dynamics and active perception mod-
ulate perceptual inference by permitting us to probe the world
actively and by running “experiments” to disambiguate the
current hypotheses (Friston et al., 2012). An interesting direc-
tion for future research would be to study whether and how the
active probing can be extended from sensory to interoceptive
domains.

Finally, as we discussed, the active-inference theory ex-
tends predictive coding from perceptual to action domains
(Friston et al., 2009). In this framework, action can be used
to suppress sensory prediction errors, and goal achievement
corresponds to fulfilling the predictions encoded in the high-
level prior beliefs (e.g., states that are highly valued for an
organism). An interesting direction for future research would
be to look at homeostatic regulation within the active-
inference framework. This framework permits studying the
causation of proprioceptive and interoceptive responses
through (motor and autonomic) reflexes and how action can

be used to suppress the interoceptive signals linked to unde-
sired states such as fear. At minimum, this would provide
some relief from the bogeyman, showing that simply turning
the light on will dismiss it.

Author note I thank Karl Friston and Andy Clark for their stimulating
comments and suggestions.
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