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Abstract Functional magnetic reasonance imaging (fMRI)
plays an important role in pre-surgical planning for patients
with resectable brain lesions such as tumors. With appropri-
ately designed tasks, the results of fMRI studies can guide
resection, thereby preserving vital brain tissue. The mass
univariate approach to fMRI data analysis consists of
performing a statistical test in each voxel, which is used to
classify voxels as either active or inactive—that is, related, or
not, to the task of interest. In cognitive neuroscience, the
focus is on controlling the rate of false positives while
accounting for the severe multiple testing problem of
searching the brain for activations. However, stringent con-
trol of false positives is accompanied by a risk of false
negatives, which can be detrimental, particularly in clinical
settings where false negatives may lead to surgical resection
of vital brain tissue. Consequently, for clinical applications,
we argue for a testing procedure with a stronger focus on
preventing false negatives. We present a thresholding proce-
dure that incorporates information on false positives and
false negatives. We combine two measures of significance
for each voxel: a classical p-value, which reflects evidence
against the null hypothesis of no activation, and an alterna-
tive p-value, which reflects evidence against activation of a
prespecified size. This results in a layered statistical map for

the brain. One layer marks voxels exhibiting strong evidence
against the traditional null hypothesis, while a second layer
marks voxels where activation cannot be confidently exclud-
ed. The third layer marks voxels where the presence of
activation can be rejected.

Keywords fMRI . Power . False negative errors . Multiple
testing . Pre-surgical fMRI

Introduction

A common treatment for patients suffering from a brain
tumor is surgical resection of the tumor. In order to minimize
the risk of resecting brain tissue involved in essential brain
functions, such as speech or language comprehension, these
patients often undergo presurgical functional magnetic reso-
nance imaging (fMRI). This is a technique that shows
subject-specific neural activity changes in the brain. The
resulting fMRI data can assist the surgeon in performing
the tumor resection while preserving the brain tissue in-
volved in important cognitive and sensorimotor functions
(Bartsch, Homola, Biller, Solymosi, & Bendszus, 2006)
and can even be used to predict the outcome of postoperative
cognitive functioning (Richardson et al., 2004).

To analyze fMRI data, a huge number of statistical tests are
performed simultaneously. In cognitive neuroscience, this tech-
nique is used to link neurological and neuropsychological
functions with their respective location in the brain, supporting
different theories of brain function. To be confident that a brain
area is associated with a task, it is essential to account for the
multiple testing problem. This can be done using corrections
for either the familywise error rate (Friston, Frith, Liddle, &
Frackowiak, 1991; Worsley et al., 1996) or the false discovery
rate (Genovese, Lazar, & Nichols, 2002). These multiple test-
ing corrections result in a more stringent control of the null
hypothesis of no activation, and consequently, the probability
of a false negative increases (Lieberman&Cunningham, 2009;
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Logan & Rowe, 2004). In cognitive neuroscience, a false
positive means fallacious support for a given cognitive theory.
While false positives can often be discovered by unsuccessfully
trying to replicate the study, much time, effort, and money can
be expended. As a result, the scientific discipline generally
deems stringent control of false positives necessary, accepting
the concomitant sacrifices in sensitivity.

In a clinical setting such as presurgical fMRI, however, a loss
in power means that true activation is not discovered, and this
might result in the resection of vital brain tissue (Haller&Bartsch,
2009). Inversely, false positives have a less negative impact on the
surgical result (Gorgolewski, Storkey, Bastin, & Pernet, 2012).
The goal of classical hypothesis testing is to prevent the null
hypothesis from being rejected by considering voxels as being
active only when enough evidence against the null of no activa-
tion is found. This asymmetrical way of penalizing errors in
statistical inference is undesirable in this context (Johnson, Liu,
Bartsch, & Nichols, 2012), and instead, the focus should be on
protecting the alternative hypothesis: one wants to exclude acti-
vation only when enough evidence against activation is found.
We therefore present a new hypothesis thresholding procedure
that incorporates information on both false positives and false
negatives and, thus, is ideally suited for presurgical fMRI.

In classical hypothesis testing, the evidence against null
hypothesis is measured with the p-value, the null hypothesis
probability of data as or more extreme than that observed.
Thresholding a p-value at α produces a statistical test that
controls the false positive rate at α. To allow direct control of
false negative risk, we present a symmetrical measure that
quantifies evidence against the alternative hypothesis
(Moerkerke, Goetghebeur, De Riek, & Roldan-Ruiz, 2006).
Correspondingly, thresholding this probability measure at β
ensures control of the false negative rate at β.

By combining thresholds on the classical and alternative
p-values, we use information on the probability of false
positives and false negatives. We show that thresholding
both error measurements results in a layered statistical map
for the brain, each layer marking voxels with evidence (or
lack thereof) against the null and/or alternative hypothesis.
One layer consists of voxels exhibiting strong evidence
against the null of no activation, while a second layer is
formed by voxels for which activation cannot be confidently
excluded. The third level then consists of voxels for which
the presence of activation can be rejected.

fMRI data can be analyzed in different ways. The most
popular method is a confirmatory mass-univariate general lin-
ear model (GLM) analysis, where the measured time series in
each voxel is regressed onto the design of the experiment,
resulting in an estimate of the effect, for which a T-statistic with
a corresponding classical p-value can be computed for each
voxel. This method has been shown to be very effective and
robust, but its downside is the mass-univariate character. While
many attempts have been made to take into account the spatial

character of the data with data smoothing and peak- and cluster-
thresholding, the GLM fails to recognize patterns of activation
or noise. In this light, statistical techniques for multivariate data
have been successfully applied to fMRI data. Independent
component analysis (ICA; Beckmann & Smith, 2004) is an
exploratory method used to find hidden source signals, model-
ing the observed data as a (unobserved) linear mixture of
(unobserved) sources. ICA therefore allows one to discover
spatially and temporally structured noise. Given the popularity
of the GLM and the upcoming interest for ICA, especially in a
clinical context, we will introduce the thresholding procedure
for both techniques. We show how the ideas can be translated
to different statistical techniques.

In the Method section, we introduce and combine quanti-
ties to measure significance when testing for activation. To
this end, we start with a simple setting in which test statistics
are assumed to be Gaussian distributed and take the general
form of the ratio of an observed effect and its standard error.
These settings directly translate to the case of univariate
linear modeling that makes use of T-distributions. We further
demonstrate how to use the principle for ICA. In the Results
section, we present the results of the procedure applied to
presurgical fMRI data.

Method

Measures of evidence against the null and alternative

At each voxel i, i = 1,…, I, we assume that a linear model is

fit and produces bΔi , an unbiased estimate of the BOLD
effect of interestΔi, and an estimate of the standard deviation

of bΔi , its “standard error” SEðbΔiÞ . We henceforth suppress
the voxel subscript unless needed for clarity. We assume that

the degrees of freedom are sufficiently large so that SEðbΔÞ
has negligible variability, as is the case for fMRI time series.
We further assume that the data, model, and contrast have

been scaled appropriately so that bΔ has units of percent
BOLD change (or at least approximately, as when global
brain intensity is scaled to 1001).

The null and the alternative hypotheses

The null hypothesis H0:Δ = 0 states that the true effect
magnitude is zero and an underlying difference between con-
ditionsΔ is equal to 0. Classical statistical inference involves
computing a test statistic, converted to a p-value, that mea-
sures the evidence against this null hypothesis. The decision
procedure to rejectH0 is calibrated to maintain the type I error

1 Note that, as of SPM8, the global brain intensity after intensity
normalization is scaled to 200 or greater.
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at α. However, failing to reject H0 does not allow one to
conclude that H0 is true. The reason is that the probability
calculation of the p-value is based on the assumption that the
null hypothesis is true. It is a logical fallacy, “affirming the
consequent” or “reasoning to a forgone conclusion,” to begin
by assuming something and then, eventually, conclude that
the initial thing is true. More concretely, when we fail to reject
H0, it could simply be because there are only subtle deviations
from H0 that are not detected or because the precision on the
observed effect is too small to reach statistical significance.
Scientists frequently make this mistake, and there have been
various guidelines for reporting study results (see, e.g., Meehl,
1978; Schmidt & Hunter, 2002), all of which stress the im-
portance of complementing p-values with effect sizes.

Our procedure considers an “alternative hypothesis”
p-value, p1, that measures the evidence against Ha:Δ = Δ1,
the nonzero effect magnitude expected under activation.
Often, fMRI studies are preceded by power analyses for
sample size calculations, which also require the specification
ofΔ1. In literature, different approaches to choosing a mean-
ingful Δ1 have been presented (Desmond & Glover, 2002;
Hayasaka, Pfeiffer, Hugenschmidt, & Laurienti, 2007;
Mumford & Nichols, 2008; Zarahn & Slifstein, 2001).
Alternatively, in presurgical fMRI, one can estimate Δ1 on
the basis of data in previous patients.

Measures of significance

At a given voxel, we have a test statistic T with observed
value

t ¼
bΔ

SEðbΔÞ
: ð1Þ

We assume that T has a known distribution underH0 (e.g.,
Student’s t with given degrees of freedom or Gaussian), so
that we can compute the classical p-value:

p0 ¼ P T ≥ t H0jð Þ: ð2Þ

That is, p0 quantifies the evidence against the null hypoth-
esis H0 of no task-related activation.

In a symmetrical fashion, the alternative p-value is de-
fined as in Moerkerke et al., 2006):

p1 ¼ P T ≤ t Hajð Þ: ð3Þ

Correspondingly, p1 measures the evidence against Ha

and corresponds to the classical p-value for testing a “null”
H1 versus an “alternative” H0. In general, as the evidence in
favor of H1 grows, p0 becomes smaller and p1 becomes
larger.

In order to compute p1, we need the distribution of T under
Ha, which requires specification of Δ1. However, we expect

not a single magnitude of true activation, but a distribution of
different true values (Desmond & Glover, 2002). Therefore,
in a Bayesian spirit, we specify a distribution of likely values
of Δ1 instead of a fixed value:

Δ1∼N μ; t2
� �

; ð4Þ

whereμ is the expectedmagnitude of effect under true activation
while acknowledging variation among voxels—specifically,
Gaussian variation with standard deviation τ.

Assuming that T also follows a Gaussian distribution, it
has the following distribution under Ha at voxel i:

Ti∼N μ

SEðbΔiÞ
;
SEðbΔiÞ2 þ t2

SEðbΔiÞ2

 !
; ð5Þ

where voxel subscripts are used to emphasize that the values
of μ and t are fixed for the entire brain and based on prior

knowledge or other experiments, while SEðbΔiÞ is from each
individual voxel. With this distribution, we can compute p1 at
each voxel. An illustration of both measures of significance
can be seen in Fig. 1. Since the alternative distribution de-
pends on the voxel-specific standard error, the distance be-
tween the null and alternative distributions will be voxel
specific. In particular, a large standard error results in a large
overlap between H0 and Ha, while small standard errors lead
to a large distance and little overlap between H0 and Ha.

Combining measures of significance

In classical null hypothesis significance testing, a threshold α
on p0 can be translated into a threshold tα for the test statistic in
Eq. 1. In parallel, a threshold β on p1 can be translated into a
test statistic threshold tβ. While tα is determined by α (and
degrees of freedom, if not using a Gaussian), tβ further de-

pends on β, μ, τ, and SEðbΔiÞ . Thus, tβ varies over the brain
depending on the (estimated) standard error.

Figure 2 shows the possible results of this testing proce-
dure, with α and β relatively small. In what is expected to be
the typical scenario, with a standard error that is large relative
to the true effect magnitude, tβ < tα and three possible out-
comes can be distinguished.

One outcome is when voxels exhibit evidence against H0

and, at the same time, are consistent with Ha (p0 < α and p1 >
β; red in Fig. 2). This is the most compelling case for the
presence of true activation (Δ > 0). The opposite outcome is a
large p0 and a small p1 (p0 > α and p1 < β; gray in Fig. 2).
Here, the data are consistent with the null, and there is evi-
dence to reject the alternative; this is the most compelling case
for true absence of activation (Δ = 0). The third outcome is
when the data are compatible with both the null and the
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alternative and neither can be excluded (p0 > α and p1 > β;
yellow in Fig. 2).

A less frequent, albeit possible scenario appears when the
standard error is small relative to the true effect magnitude, tα <
tβ, and H0 and Ha can be clearly distinguished. Voxels with no
effect or strong effects will be identified as before (p0 > α and
p1 < β, no activation; p0 < α and p1 > β, activation). However,
for certain data, there is evidence against both H0 and Ha (p0 <
α and p1 < β; orange in Fig. 2). It indicates a case where the
effect is so small as to lack practical significance.

For presurgical fMRI, this procedure provides infor-
mation on which areas are confidently safe to be resected
(gray areas), which areas should absolutely be avoided
when resecting brain tissue (red areas), and in which
areas the surgeon should take care because neither hy-
potheses can be rejected (yellow areas). When the fourth
type of voxel is found, meaning both hypotheses can be
rejected (orange areas), an abundance of caution suggests that
again care be taken, since rejection of H0 does suggest some
association with the task, just at a possibly very small
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Fig. 2 When thresholding p0 and p1 at significance levels α and β, two possibilities arise: tβ < tα (upper panel) or tα < tβ (lower panel)
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wider distribution than H0 due to the uncertainty on Δ1
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magnitude. The specific application to real data is shown in the
Results section.

Alternative thresholding of independent component analysis

Above, we described the classical and alternative p-value for
a traditional setting, where a test statistic is the ratio of an
observed effect and its standard error, as is the case for T-
statistics when the GLM is used. Here, we demonstrate that
the technique is also applicable in more general settings—in
particular, with maps from independent component analysis.
Exact implementation details of ICA methods differ; our
development here follows the FSL2 software’s implementa-
tion, MELODIC (Beckmann & Smith, 2004), but should be
readily applicable to other ICA software.

ICA is a technique for multivariate data-driven analysis of
fMRI data. It does not require the specification of the exper-
imental design and produces spatiotemporal patterns that
explain the variability in the data. ICA transforms the four-
dimensional fMRI data into K pairs of spatial and temporal
modes. Each spatial mode, or independent component (IC)
image, is associated with one IC time series. The variation
explained by each component is the IC time series scaled by
the weights at each voxel in the IC image; equivalently, it is
the spatial pattern in an IC image scaled by each value of the
IC time series. Stated simply, the weights represent the
association between the temporal activation pattern observed
in the voxel and the temporal pattern in the K different
components.

Let Y represent the J × I data matrix, where J is the number
of time points and I is the number of voxels. We assume that
the data at each voxel have been mean-centered; that is, the
column means of Y are zero. ICA decomposes the data as per

Y≈M S1 C S2S0; ð6Þ

where M is a J × K matrix with one temporal mode in each
column and C is a K × I matrix with one spatial mode in each
row; S1 (K ×K) is a diagonal scalingmatrix that ensures that the
temporal modes have unit variance, and S0 and S2 (both I × I)
are diagonal scaling matrices that ensure that background noise
in the spatial modes have unit variance (see Appendix 1 for
detailed definitions of these scaling factors).

In the presentation and interpretation of ICA results, each
of the K spatial modes in C are visualized and explored.
Since they have been noise-normalized, they are often treat-
ed as z-score images and thresholded to control a nominal
false positive rate. The end result is an inference that quan-
tifies the relation between the corresponding temporal mode
in M and Y. We seek to apply our alternative hypothesis
thresholding procedure to these maps, but first we need to

define a meaningful effect size in percentage of BOLD
change and transform this to the scale of C.

Meaningful BOLD effect sizes with ICA

Consider a particular IC of interest, k ∊ {1, …, K}, and a
particular voxel i ∊ {1, …, I} of interest in the spatial mode.
Specifically, consider the contribution of the kth IC to the
time series at voxel i:

mk s1;k cki s2;i s0;i; ð7Þ
wheremk is the kth column ofM, cki = (C)ki, and s1,k, s2,i, and
s0,i are the indicated diagonal elements of the scaling
matrices.

As was previously mentioned, the rows of C are normal-
ized to have noise variance of 1, so cki has z-score (and not
BOLD data) units. We need to compute a meaningful per-
centage of BOLD change effect. We will first compute this
for a fixed Δ1, in the units of cki, and will later impose a
distribution on the effect size. Equation 7 shows that the
temporal variation from IC k is determined not only by cki
and the scaling factors, but also by mk. But mk is scaled to
unit variance and will not induce a unit BOLD change in the
data. We propose scaling mk so that it (roughly) expresses a
unit BOLD effect and, as a result, preserves the units of the
other terms. Specifically, we introduce hk:

mk hkh
−1
k s1;k cki s2;i s0;i:; ð8Þ

so that mkhk expresses a unit BOLD effect in the data. One
way to set the factor hk is so that mkhk has a baseline-to-peak
range of 1. Another way is to regressmk on a covariate d that
expresses the anticipated (unit) experimental effect; setting
hk to the inverse of the regression coefficient will ensure that
mkhk corresponds to an approximate unit BOLD effect.

Finally, we correct for the attenuation of the hypothesized
effect based on the mismatch betweenmk and d. That is, even
if we choose hk well, mkhk may only be weakly correlated
with d. As a result, we scale the expected BOLD effect of IC
k at voxel i by ρmkd , the correlation between mk and d (see

Appendix 2 for details).
Nowwe can relate the expected (attenuated) percentage of

BOLD change, ρmkdΔ1 , to the units of IC temporal mode.

Let Δ1
* be the expected alternative mean effect in the z-score

statistic cki; then,

ρmkd Δ1≈h−1k s1;k Δ�
1 s2;i s0;i; ð9Þ

and thus we can translate BOLD units into cik units with
Δ1
*≈sik* Δ1, where

s�ki ¼ ρmkd hk s−11;k s−12;i s−10;i: ð10Þ2 http://www.fmrib.ox.ac.uk/fsl.
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Finally, this implies that our distribution of alternative
effects in cki units is

Δ�
1∼N s�ki μ; s�2ki t2

� � ð11Þ

(cf Eq. 4).

Significance procedure

Since cki has unit noise variance, with an assumption of
Gaussianity, the null distribution is given by

cki H0∼N 0; 1ð Þj : ð12Þ
Under the alternative, we consider the addition of effect

Δ1
* to cki yielding the alternative distribution

cki Ha∼Nj s�ki μ; 1þ s�2ki t2
� �

: ð13Þ

Data

We consider data from a patient suffering from a left pre-
frontal brain tumor. The study design was a boxcar design,
where the patient was asked to alternate between recitation of
tongue-twisters and quiescence. Figure 3 shows a sagittal
slice of the T2 image, with the tumor visible in the inferior
prefrontal frontal cortex. For the application to mass univar-
iate linear modeling, the data were analyzed with FEAT in
FSL 4.1 (Smith et al., 2004). The application to independent

component analysis was performed using MELODIC in FSL
4.1 (Beckmann & Smith, 2004).

Results

Univariate linear modeling

We applied these techniques to the data described in the Data
section. We derived the expected effect magnitude forΔ1 and
the variability of that effect τ from 5 patients who underwent
the same fMRI paradigm. We threshold the image of each
individual using an FDR control at 0.05 and look at the
average percent BOLD change units in each individual. The
results are shown in Table 1. Therefore, we specify the
expected effect magnitude for Δ1 of μ = 0.73 percent BOLD

change units and variability of that effect as τ ¼
ffiffiffiffiffibτ 2p

¼ 0:21

percent BOLD change. These results are consistent with
others in the literature (see, e.g., Desmond & Glover, 2002,
Fig. 7A).

Results are shown in Fig. 4 with thresholds α = 0.001 and
β = 0.20. In other words, we specified a p0 threshold for
declaring an activation when there is none at 1-in-1,000; and
we set the p1 threshold for declaring the absence of activation
when, in fact, the specified activation magnitude is present at
1-in-5. The red and the (scant) orange voxels show where H0

can be confidently rejected, and, if presurgical planning was
done only on the basis of classical null hypothesis testing, all
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Fig. 3 Anatomical scan of the patient. The tumor can be clearly seen in the prefrontal cortex
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other tissue would be regarded as “safe.” Considering infor-
mation on the alternative, we have the red voxels where,
specifically, H0 can be rejected and Ha cannot be rejected;
that is, the red voxels are incompatible with the null and

compatible with the alternative and, thus, are strong evidence
for the effect. The yellow areas are areas where neither H0

nor Ha can be rejected; here, the data are compatible with
both the null and alternative and suggest a lack of confidence
in ruling out activation. Finally, for voxels with no colora-
tion, the H0 cannot be rejected, but Ha can; the data are
compatible with the null and incompatible with the alterna-
tive and, thus, have good evidence for a lack of activation
and suggest that these brain regions can be safely resected.
This shows the key strength of the procedure: Among voxels
traditionally classified as “nonactive”—that is, those with
insufficiently small p0s, it distinguishes between voxels
where there is compelling evidence for nonactivation (not
colored) and those voxels where we cannot rule out the
possibility of activation (yellow).

The orange voxels represent voxels for which the ob-
served effect size is between the null hypothesis of no

Table 1 Average effect sizes in 5 previously tested patients in percent
BOLD change units

Average bμ Average bt2
Patient 1 0.59 0.20

Patient 2 0.55 0.26

Patient 3 0.68 0.35

Patient 4 0.75 0.46

Patient 5 1.08 0.84

Average 0.73 0.43

Alternative thresholding approach applied to classical univariate testing

10

20
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40

50

60

10 20 30 40 50 60

β >= 0.20
α <= 0.001
β >= 0.20 & α <=  0.001

Fig. 4 Sagittal slice of “layered” activation inference overlaying gray-
scale T2* reference image, threshold values of α = 0.001 and β = 0.20.
Red areas show areas of high confidence of activation (H0 rejected, Ha

not rejected), while yellow areas show areas where activation cannot be

ruled out (neither H0 nor Ha rejected); uncolored areas have high
confidence of no activation (H0 not rejected, Ha rejected), while the
few orange voxels indicate voxels with significant but surprisingly
small BOLD response magnitude (H0 and Ha rejected)
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activation and the expected effect size. In these voxels, both
the null and the alternative hypotheses are rejected, which
corresponds to very low residual noise in the GLM.

Independent components analysis results

We applied these techniques to the data described in the Data
section. We used the same effect size and uncertainty as in the
Univariate linear modeling section—that is, μ = 0.73 and t =
0.18 percent BOLD change units.

MELODIC’s automated dimensionality estimation method
in MELODIC found 52 components. We chose one IC whose
time series corresponded to the design matrix, shown in Fig. 5.
Regressing this temporal mode on the design gives a coefficient
of bβ ¼ 1:48 , and thus h ¼ bβ−1 ¼ 0:677 is the scaling factor
used to have the temporal mode express a unit-BOLD effect
(see Eq. 8). The pointwise correlation between the design and
the chosen component is ρmd = 0.63, which is used to attenuate
the expected effect magnitude (see Eq. 9).

The layered thresholding procedure for this IC is shown in
Fig. 6, for α = 0.001 and β = 0.20. There is a set of voxels with
strong evidence (red, H0 rejected; Ha, accepted) but also addi-
tional voxels where both hypotheses are rejected (orange). As
was mentioned above, in the setting of presurgical planning,
these orange regions are best regarded as regions of possible
activation and, thus, excluded from resection.

This result is quite different from the GLM results and is a
reflection of the dramatically lower voxel-wise variance in
the IC spatial mode relative to the GLM statistic image. The
explanation is that the GLM result accounts for all noise
variance, while the IC spatial map reflects only the noise in
the subspace corresponding to the IC temporal mode
(Beckmann & Smith, 2004).

Crucially, we stress that our thresholding procedure seeks
only to improve the interpretability of the ICA result and
does not produce confirmatory inferences; IC selection is
intrincally post hoc and subsequent inferences circular, and

all we attempt to do here is improve the thresholding of a
selected IC spatial map.

Discussion

Statistical thresholding in the context of multiple tests is gen-
erally driven by the need to limit false positives. These stringent
testing procedures in fMRI research lead to an abundance of
false negatives (Lieberman & Cunningham, 2009) and are,
therefore, less useful in the context of presurgical fMRI, where
a false negative can have dire consequences. While many
attempts have been made to propose more liberal testing
criteria—for example, by controlling the FDR instead of the
FWER (Genovese et al., 2002)—the focus is still on protecting
the type I error rate. The unilateral focus on preventing false
positives leads to a bias toward large obvious effects and
against complex cognitive and affective effects (Lieberman &
Cunningham, 2009). We therefore propose a measure that
quantifies the evidence against the alternative hypothesis as
introduced in Moerkerke et al. (2006). We use this quantity
p1 in addition to the classical p0 value in a procedure that results
in a thresholding procedure with multiple layers of signifi-
cance. One layer consists of voxels exhibiting strong evidence
of activation (red in Figs. 4 and 6), while another layer shows
voxels with ambiguous evidence (yellow and orange), and a
final layer then consists of voxels for which the presence of
activation can be confidently rejected (an absence of overlaid
statistic values). Thereby, we offer a more symmetrical interest
toward both false positives and false negatives.

We have chosen to focus on voxel-wise inference instead
of other topological features, such as peaks (Chumbley,
Worsley, Flandin, & Friston, 2010) or clusters (Chumbley
& Friston, 2009). These topological inference methods have
reduced spatial specificity relative to voxel-wise inference
and are, therefore, less suitable for presurgical fMRI, where
maximal spatial precision is needed.
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Fig. 5 The time series of a selected IC, with a least squares fit of
regressing the series on the design shown in gray. The estimated
response height is used to normalize the component to have unit BOLD

effect, and the pointwise correlation between the design and the selected
IC is used to attenuate the expected BOLD response magnitude
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To use the procedure described in this article, an expected
effect size and its variance need to be defined on a BOLD scale.
This is an arbitrary choice, however many possibilities are
available. Desmond and Glover (2002) showed, for a specific
experimental paradigm, the distribution of percentage of signal
change with its distribution. They showed, on average, a BOLD
effect size of 0.48 percent BOLD change. Another possibility for
estimating the expected effect size can be based on previous
research. Since, in presurgical fMRI, the same experiment is
repeated over most patients, the effect size can be derived from
patients who already underwent the experiment and surgery. The
degree to which brain activation in patients is representative for
the particular setting for which estimates are needed highly
depends on the context and should be carefully judged. It can
be expected that different methods will affect the estimates for μ
and τ; however, we found that the estimates we obtained by
averaging over voxels is close to the effect sizes that can be
found in literature.

The two different analytical approaches we used, the GLM
and ICA, showed somewhat different results. While both GLM
and ICA analyses found similar sets of voxels that were confi-
dently activated (H0 rejected, Ha not), in the GLM analysis
many voxels were found that did not show evidence against the
null or against the alternative (yellow in Fig. 4). The explana-
tion for this outcome is the high level of noise present in the
data and, thus, confusion about the veracity of either H0 or Ha.
In contrast, in the ICA analysis, almost no voxels have this
ambiguity, and instead, we find voxels that have evidence
against both the null and the alternative. Since ICA is a good
tool for identifying structured noise in a data-driven manner, it
can be expected that the residual voxel-wise variance will be
smaller. Low variances result in a large distance between the
null and the alternative distribution functions. Whereas the
difference between ICA and the GLM seem contradictory at
first, we argue that the differences in our approach reflect real
differences between the two analysis tools.

Alternative hypothesis thresholding ICA

10

20

30

40

50

60

10 20 30 40 50 60

β >= 0.20
α <= 0.001
β >= 0.20 & α <=  0.001

Fig. 6 Results of the alternative thresholding procedure when using
ICA. Sagittal slice of “layered” activation inference overlaying gray-
scale T2* reference image, threshold values of α = 0.001 and β = 0.20.
Red areas show areas of high confidence of activation (H0 rejected, Ha

not rejected), orange areas show voxels with significant but surprisingly
small BOLD response magnitude (H0 and Ha rejected); uncolored areas
have high confidence of no activation (H0 not rejected, Ha rejected)
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The quantity p1 shows a relationship with the voxel-based
statistical power defined by Van Horn, Ellmore, Esposito,
and Berman (1998). The voxel-wise power in Van Horn et al.
translates to the complement of the alternative p-value, p1, in
our study. However, the use of the quantity is fundamentally
different. Whereas Van Horn et al. used the voxel-wise
power to visualize and interpret the results of a certain study,
we explicitly threshold the quantity. Moreover, the interpre-
tation of both quantities is not so straightforward. When a
high power is encountered in a certain voxel, with the meth-
od of Van Horn et al., it is interpreted as follows: “If the
observed effect in the voxel is used as a cutoff when testing
from H0, we have a high probability of rejecting H0 when H0

is indeed false.” However, a large voxel-wise power
translates to a small p1 and is, in our study, interpreted
as follows: “When the alternative hypothesis is true, there is
a small probability of observing this effect,” and we will
interpret this effect as evidence against the alternative hypoth-
esis. This interpretation is much more straightforward and
usable.

This procedure has been developed in light of presurgical
fMRI, since false negatives can have harmful consequences
for the patient. However, the lack of power is omnipresent in
fMRI analyses (Lieberman & Cunningham, 2009), and there-
fore, this procedure is also very useful in all branches of
cognitive neuroscience. For example, negative results (i.e.,
voxels that are not significantly related to the task) are some-
times regarded as evidence against activation. However, these
conclusions are not provided by null hypothesis significance
testing. The presented procedure, on the other hand, quantifies
the evidence for no activation at each voxel and is, therefore,
perfectly suited to interpreting negative results.

We would like to stress that this procedure does not
abandon null hypothesis significance testing. The classical
significance testing framework is still included in the proce-
dure, represented by one layer of significance. The meth-
od is merely an extension of the thresholded statistical
parametric map, thereby providing a new layer with
information on type II error rate control. Mixture modeling
is similar in spirit to this method, in that null and the alterna-
tive distribution are used; however, mixture model applica-
tions usually focus on only controlling type I errors. With a
fitted mixture model, you could also apply our method and
find p0 and p1 values; however, we take pains to estimate
alternative effect magnitudes a priori, from separate data, to
remove any circularity.

In this procedure, control of false positives remains pos-
sible, but our procedure also takes into account information
on the false negative rate. We do not assert that our method
alleviates all concerns with multiplicity, and one possible
direction of future work is a multiplicity correction that
adjusts both null and alternative hypothesis inferences for
the number of tests.

Appendix 1. Scaling steps in ICA

Let Y be the J × I data matrix for time points j = 1,…, J and
voxels i = 1,…, I. Then the normalized data matrix Y* can be
expressed as

Y � ¼ YS−1
0 ; ð14Þ

where S0 the I × I diagonal matrix with voxel-wise robust
variance estimates on the diagonal. Then the independent
component analysis results in the following decomposition

Y �≈MC�; ð15Þ
where M represents the J × K mixing matrix, where K is the
number of components. When K < J, Eq. 15 is only an
approximation. C* is the K × Imatrix with the original image
component loadings.

In the probabilistic ICA framework (Beckmann & Smith,
2004), C* is Gaussian distributed and can, therefore, be used
as a test statistic. To normalize C* to a standard Gaussian
distribution,

C ¼ S−1
1 C�S−1

2 ; ð16Þ
where the diagonal matrix S1 scales the components (over
voxels) and the diagonal matrix S2 scales the voxels (over
components):

S2
1 ¼ diag M−1 M−1� �0� � ð17Þ

S2 ¼ diag SD Y �−MC�ð Þf g
ffiffiffiffiffiffiffiffiffi
I−K

p ffiffiffiffiffiffiffiffi
I−1

p ; ð18Þ

where SD(Y*−MC*) is the column-wise standard deviation
of the residuals of the ICA approximation. Consequently, we
can approximate Y as MS1CS2S0 in Eq. 6.

Appendix 2. Attenuation of anticipated BOLD effect
for a given IC

A basic result in psychometrics (Spearman, 1904) holds that
the correlation between unreliable measures is attenuated by
the test–retest reliability of each measure. For example, if
measure A imperfectly measures variable A* and B imper-
fectly measures B*, then the correlation of A and B is atten-
uated relative to the uncorrupted measures:

Corr A;Bð Þ ¼ Corr A�;B�ð Þ ffiffiffiffiffiffiffi
ρAA

p ffiffiffiffiffiffiffi
ρBB

p
; ð19Þ

where ρAA and ρBB are the test–retest correlations of A and B.
In our setting, let A be the BOLD response and B be the IC

time course m. The reproducibility of BOLD (ρAA) is re-
spectable, with Vul, Harris, Winkielman, and Pashler (2009)
reporting reliabilities between .66 and .94; however, most
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procedures for fMRI data analysis do not take this into
account, and hence we only consider ρAA = 1.

We are interested in the “reproducibility” of an IC time
course relative to the experimental design d. Of course,
obtaining two replicates of an IC time course that both
equally reflect d is not feasible, but we can indirectly esti-
mate ρBB as follows.

Consider a general test–retest setting, where measurement
B1 is made at one time and, later, a “retest” gives measurement
B2. Assuming additive error, we can relate the “corrupted”
measures to the “uncorrupted” measures as

B1 ¼ B� þ ε1 ð20Þ

B2 ¼ B� þ ε2; ð21Þ
where εj, j = 1, 2 are the measurement-specific errors, and we
assume Var(B*) = σ2 is the variance of the perfectly repro-
ducible measure and Var(εj), is the variance of the corrupting
noise. The test–retest correlation is then

ρBB ¼ Corr B1;B2ð Þ ¼ σ2

σ2 þ t2
: ð22Þ

If, instead, one corrupted measure is correlated with the
uncorrupted “true” measure, you find

Corr B1;B
�ð Þ ¼ σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 þ t2
p ¼ ffiffiffiffiffiffiffi

ρBB
p

: ð23Þ

Or, equivalently, ρBB = Corr(B1, B
*)2. In short, these re-

sults show that we can estimate the “reproducibility” of mk

as a noisy sample of the true d as ρ2mkd .

Finally, from Eq. 19, taking ρAA = 1 and ρBB ¼ ρ2mkd , we
see that the attenuation factor needed to account for the
mismatch between mk and d is just ρmkd .
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