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Abstract We investigated the basis of change detection in a
short-term priming task. In two experiments, participants
were asked to indicate whether or not a target word was the
same as a previously presented cue. Data from an
experiment measuring magnetoencephalography failed to
find different patterns for “same” and “different” responses,
consistent with the claim that both arise from a common
neural source, with response magnitude defining the
difference between immediate novelty versus familiarity.
In a behavioral experiment, we tested and confirmed the
predictions of a habituation account of these judgments by
comparing conditions in which the target, the cue, or
neither was primed by its presentation in the previous trial.
As predicted, cue-primed trials had faster response times,
and target-primed trials had slower response times relative
to the neither-primed baseline. These results were obtained

irrespective of response repetition and stimulus–response
contingencies. The behavioral and brain activity data
support the view that detection of change drives perfor-
mance in these tasks and that the underlying mechanism is
neuronal habituation.
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A question of fundamental interest in the study of
perception, memory, and other cognitive processes is
whether the processes of the brain are generally tuned
toward the detection of familiar items and events, or
whether the brain detects that which is new in the
environment. The study of episodic memory has focused
on the process of familiarity, demonstrating that behavioral
responses are sensitive to relative degrees of memory
strength (e.g., Hintzman & Curran, 1995). Furthermore,
the timing and cortical location of these familiarity
responses have been evidenced with neural recordings
(Curran, 2000; Henson, Cansino, Herron, Robb, & Rugg,
2003). For long-term memory, it is sensible to focus on the
detection of old rather than new items. More specifically,
there is evidence that familiarity captures long-term
statistical regularities that are useful for a wide variety of
tasks and judgments (e.g., Hertwig, Herzog, Schooler, &
Reimer, 2008). Whereas it is nearly uniformly accepted that
long-term memory is based on familiarity detection rather
than novelty detection, this distinction is less well studied
for shorter time scales, such as in perceptual tasks or in
short-term working memory tasks. To investigate the roles
of familiarity detection and novelty detection (i.e., change
detection) in perceptual tasks, we examined situations that
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involved the detection of change with respect to stimuli that
were presented close to each other in time and space.

Closely related paradigms have demonstrated that even
with full attention and awareness, participants may be
unable to detect change. For example, in studies of “change
blindness,” participants are shown alternations of photos or
abstract objects (e.g., Rensink, O’Regan, & Clark, 1997;
Simons, 1996), and they experience difficulty identifying
the change across alternations. In other work, changes
across scenes are frequently missed, irrespective of whether
these changes are abrupt or gradual (Rensink et al., 1997;
Simons, Franconeri, & Reimer, 2000). Although these
change detection paradigms suffice for investigating the
limits of the cognitive system, they are not ideal for
studying the mechanisms by which change detection
occurs. This is because these detection paradigms involve
visual displays with a high density of objects. Research has
shown that an increase in perceptual load narrows the
attentional focus (e.g., Williams, 1989), which draws
attention away from the feature dimension along which a
change might occur, thus producing inattentional blindness
(Most, Scholl, Clifford, & Simons, 2005; Simons, 2000).
Therefore, in tasks with a high density of objects, change
blindness is attributable to load-induced narrowing of
spatial attention, because attention is more likely to be
allocated to an area where no change occurs. This
sensitivity to the focus of attention renders these paradigms
unsuitable for investigating the mechanisms underlying
change detection.

To isolate the mechanisms of change detection, we used
a paradigm with low attentional load. In this paradigm, a
first stimulus, S1, is followed by a second stimulus, S2, to
which a response is required indicating how it compares to
S1. Such tasks featured in a debate on the architecture
underlying same/different judgments (see Farell, 1985, for a
review). This debate contrasted single- versus dual-process
models (a dual-process model involves the separate
processes of sameness detection and change detection),
with the evidence favoring single-process models. Single-
process models assume that a match value is obtained by
contrasting S2 with S1, and that this value, which is along a
match/nonmatch dimension, is compared to a criterion in
order to determine the appropriate response (Ratcliff, 1985;
Van Zandt, Colonius, & Proctor, 2000). However, these
models do not specify whether the criterion is placed on the
magnitude of a match signal (i.e., making a decision based
on familiarity) or on the magnitude of a mismatch signal (i.
e., making a decision based on novelty). In this article, we
advocate a single-process model of change detection, and
we test the claim that the nature of this process is to
calculate the degree of mismatch (novelty).

Building on a theory of short-term priming (Huber &
O’Reilly, 2003; see also Huber, 2008b), we favor the view

that the perceptual system primarily employs mechanisms
for detecting differences between stimuli rather than
similarities. This theory explained a series of experiments
(Huber, Shiffrin, Lyle & Quach, 2002a; Huber, Shiffrin,
Lyle, & Ruys, 2001; Huber, Shiffrin, Quach, & Lyle, 2002)
that used a two-alternative forced choice (2AFC) paradigm
in which a briefly flashed (and masked) target stimulus
needed to be identified. On each trial, prime stimuli
presented prior to the target matched either the target or
the incorrect choice alternative in the 2AFC (i.e., the foil).
When comparing target-primed trials to foil-primed trials,
the results were equal and opposite, suggesting that priming
primarily induced a preference effect. Furthermore, with
short prime durations (50 ms), there was a preference to
choose the primed stimulus, but with longer prime
durations (2,000 ms), there was a preference against
choosing the primed stimulus (Huber, 2008b). In other
words, if the target choice was primed for a long duration,
participants tended to choose the foil instead of the target,
reducing accuracy. Thus, following a sufficiently long
exposure to a preceding stimulus, performance was better
when the target represented a change.

As reviewed in Huber (2008b), this pattern of results is
readily explained by proposing that the perceptual system
habituates to any stimulus attended (e.g., a prime) and that
the amount of habituation becomes greater with longer
prime durations (Huber, 2008b; Huber & O’Reilly, 2003).
According to this theory, when a prime is very salient, the
primed choice word (target or foil) is still in a habituated
state when the choice words appear, slowing down
perceptual processing for that choice. Assuming that the
decision is guided by a sense of perceptual fluency, the
participant then chooses the alternative that is less habitu-
ated, or conversely, more novel. This theory was first
instantiated as a formal model called “Responding Opti-
mally with Unknown Sources of Evidence” (ROUSE;
Huber et al., 2001). We focus on the neurocomputational
version of ROUSE (nROUSE; Huber & O’Reilly, 2003),
which is a neural model for novelty detection. This neural
model produces habituation through “synaptic depression,”
as we explain next.

In most neurocomputational models of cognitive pro-
cesses, the activation of internal representations increases
with increasing stimulus duration (but see Gotts & Plaut,
2002, and Huber & O’Reilly, 2003). However, these models
are at odds with the common observation that neuronal
firing rates change nonmonotonically with changes in the
duration of relevant stimuli (Tsodyks & Markram, 1997).
When excitatory pyramidal cells receive constant input,
their firing rates typically increase sharply and reach a peak
within 150 ms, after which they decrease toward a lower
level that is above the baseline firing rate. This neural
fatigue has been termed “synaptic depression,” because a
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variety of cellular mechanisms serve to produce a tempo-
rary reduction in the efficacy of the synapses, with a
recovery period needed before synaptic resources are
replenished. One such mechanism is the amount of
neurotransmitter available within a spiking neuron. If a
neuron has been inactive, it will have sufficient neurotrans-
mitter available to effectively transmit its activation to other
neurons. However, if that neuron has been active recently,
its neurotransmitter supplies may be temporarily depleted,
in which case the firing of the neuron is ineffective in terms
of transmitting activation to other neurons. To illustrate the
patterns of synaptic depression, consider Fig. 1, in which
the output activation of a simulated neuron is shown as a
function of stimulus duration (see Huber & O’Reilly, 2003,
for details). As shown in the top panel, without synaptic
depression, output activation increases monotonically with
stimulus duration, and this pattern of response is identical
when the cell is driven by a second input after a short delay.
However, as shown in the bottom panel, which includes
synaptic depression, the output activation is nonmonotoni-
cally related to stimulus duration. Furthermore, repeating
the stimulus after a short delay leads to a decreased
neuronal response as compared to the first presentation (e.
g., compare the heights of the two peaks).

Using a model of habituation through synaptic depression,
Huber and O’Reilly (2003) showed that for the short-term
priming paradigm, the time needed to achieve peak activation
for each choice (i.e., perceptual fluency) captured both

positive priming following short prime durations and negative
priming following long prime durations. Similar to the
interactive-activation model of McClelland and Rumelhart
(1981), this was done with a three-layer (visual, orthographic,
and lexical–semantic) network, although the representations
at each layer were localist, and synaptic depression was used
for all simulated neurons. Thus, habituation was imposed at
all levels of processing. For longer prime durations, the peak
of the primed response was lower and later. Beyond modeling
behavioral results, the same model was used to make
detailed predictions regarding the time course of neural
responses, which were confirmed in a combined
electroencephalogram (EEG)/magnetoencephalogram
(MEG) study (Huber, Tian, Curran, O’Reilly, & Woroch,
2008). Using parameters previously constrained by be-
havioral results, this model produced an accurate account
of the ERP waveforms, which provided additional support
to the claim that representations beyond the low-level
visual stage are subject to habituation. Similar to this
approach, in the present study we used MEG to address
the earliest signal that reflects novelty detection.

If neural habituation is the mechanism behind behavioral
negative priming with immediate repetitions, this may also
explain the ubiquitous finding that neural responses
experience a “repetition suppression,” which is used as an
important marker in neuroimaging studies (Grill-Spector &
Malach, 2001). Indeed, the mechanism of synaptic depres-
sion has been demonstrated to capture repetition-induced
suppression in neural responses (Miller & Desimone,
1994). The neurophysiological mechanisms underlying
repetition-induced suppression are under intense investiga-
tion (Fuhrmann, Cowan, Segev, Tsodyks, & Stricker, 2004),
as is the precise mapping of habituation at the neural level,
as compared to the repetition suppression seen in neuro-
imaging studies (Chouinard, Morrissey, Kohler, & Goodale,
2008; Guo, Lawson, & Jiang, 2007; Henson, Mouchlianitis,
Matthews, & Kouider, 2008; Horner & Henson, 2008;
James & Gauthier, 2006; Sawamura, Orban, & Vogels,
2006; for a review, see Grill-Spector, Henson, & Martin,
2006). The relation between neural repetition suppression
and behavioral priming is still poorly understood, and
dissociations have been observed between these phenome-
na (Dobbins, Schnyer, Verfaellie, & Schacter, 2004; Ganel
et al., 2006; Sayres & Grill-Spector, 2006).

It is important to note that a close relation exists between
neural habituation and information processing models, in
which a prediction is made about what to expect on the
basis of the recent past. For instance, Chance, Nelson, and
Abbott (1998) implemented synaptic depression in a model
of V1 cells, demonstrating increased sensitivity to transient
changes. In other words, by resetting baseline activation by
adapting to the current stimulus, perception is sensitive to
change relative to the current stimulus. Using a hidden

Fig. 1 Illustration of the effect of synaptic depression on the output
activation of units in a neural network and of the relation with
repetition-induced suppression. In both simulations, the stimulus is
presented in the interval from 100 to 1,000 ms, and then re-presented
from time = 2,000 ms. The top panel shows the typical monotonic
activation profile, without synaptic depression or repetition-induced
suppression. The bottom panel shows the nonmonotonic activation
profile due to synaptic depression and the presence of repetition-
induced suppression
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Markov model (HMM), Huber (2008a) formalized this
relation between perceptual predictions and synaptic de-
pression: A cascaded HMM was found to produce the same
dynamics as synaptic depression. The HMM model
produced less of a response to the repetition of an input
because recent events provided a strong prediction for the
perceptual evidence of the repeated item. Thus, repeated
items were discounted such that any new perceptual
evidence that might suggest a second occurrence of an
item was instead attributed to this prediction based on the
recent past. From this perspective, the reason for repetition
suppression is to provide perceptual prediction, whereas
synaptic depression is the mechanism by which repetition
suppression is neurally implemented.

In applying this priming model to the present study, we
do not claim that any particular level of processing is more
important in terms of neural habituation. Because the
present study contrasted repetitions (which are the same at
all levels) with unrelated words (which are different at all
levels), we cannot specify whether the observed effects
were due to orthographic/phonological or lexical–semantic
habituation (or some other higher-level representation).
Furthermore, we do not claim that synaptic depression is
the precise mechanism underlying these effects, considering
that other neural mechanisms can produce similar habitu-
ation dynamics. Instead, our claim is that the dynamics of
habituation, as they exist at some or all levels of processing,
enable change detection between what just occurred and
what appears subsequently.

By testing a habituation account both with behavioral
priming and with MEG, we approached this issue with a
single comprehensive model that is based on neural
dynamics. There are two components to our account: (1)
that same/different judgments for an immediate comparison
between cue and target words are based on a novelty signal
rather than a familiarity signal or different signals for same
and different trials, and (2)that habituation is the mecha-
nism that underlies this novelty signal. We tested the first
component in Experiment 1 by comparing the topographic
similarity and response magnitudes of neural responses for
same versus different trials. This was done with words that
never repeated across trials, so as to eliminate any priming/
habituation effects from previous trials. We tested the
second component in Experiment 2 by examining repetition
priming between one trial and the next; if habituation
underlies novelty detection and if habituation can linger
from recent presentations of a word, this account predicts
that last-trial priming of a cue word (i.e., even greater
habituation to the cue) should facilitate different trials,
whereas last-trial priming of a target word should produce
the opposite effect (i.e., target habituation, as if the target
was just seen as the cue, rather than during the last trial).
Critically, this was done with a small number of words that

were reused many times across trials, so as to equate any
effects of long-term repetition priming. In this manner, we
isolated the short-term habituation effect from the last trial.
Furthermore, we contrasted this account with an account of
repetition-induced suppression that is based on associative
learning between a repeated stimulus and its behavioral
response (e.g., Logan, 1990). In Experiment 2, we
differentiated between these accounts using a paradigm in
which the same repeated target word from one trial to the
next might involve different behavioral responses on
different trials (e.g., a response of “same” on trial n–1, but
a response of “different” on trial n).

Experiment 1

We propose that change detection when a cue word is
immediately followed by a target word is based on
habituation and that the detection of sameness between
cue and target is the absence of change detection. In other
words, the brain does not employ a separate mechanism for
detection of immediate repetitions for visually presented
words. On this account, habituation to the cue word serves
to produce a large response when the target is different from
rather than repeats the cue (because the neural representa-
tion for a repeated target is already habituated). We do not
claim that sameness is the absence of any signal (cf.
Johnson, Spencer, Luck & Schöner, 2009). Instead, we
suggest that a sameness signal is created by a competitive
comparison between a single source of novelty and a
referent (or bias). Such a view is compatible with the
literature showing that some populations of cells respond
more strongly for repeated stimuli, while others respond
less strongly (Miller & Desimone, 1994).

In this same/different judgment paradigm, the obvious
alternative account of performance is that the mechanism
that triggers change detection may be the absence of
familiarity rather than the presence of novelty. For this
alternative to explain performance, it needs to be assumed
that presentation of an item temporarily boosts the
familiarity response for that item. This boost serves as the
signal behind accurate performance, because a target that is
the same as the cue is potentiated by its presentation as the
cue, which ensures that the familiarity response to that
target is above the familiarity detection criterion and thus no
change is detected. These accounts are not mutually exclusive,
and it is possible that both potentiation of familiarity and
depression of novelty play a hand in change detection.

To differentiate between these accounts, Experiment 1 used
MEG to determine whether the neural response pattern differs
between same and different trials. MEG is a noninvasive
measure of neural activity that has the same millisecond
temporal resolution as EEG, but better spatial resolution. This
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increased spatial resolution makes MEG ideally suited to
measure the pattern of neural activity in response to the target
word. Additionally, we investigated whether the magnitude of
the neural signal differs between same and different targets. A
relative increase for same trials would suggest that repetitions
produce potentiation, whereas a decrease would support the
habituation account. A number of MEG studies have shown
that habituation occurs in the time window of 100–350 ms
after onset, with nonlexical and lexical habituation effects
appearing in the early versus late parts of this window,
respectively (see Monahan, Fiorentino, & Poeppel, 2008, for
a review). Although these studies evidenced neural habitua-
tion with word stimuli, their focus was mainly on repetition
priming effects instead of on determining mechanisms of
change detection. To investigate this mechanism in Experi-
ment 1, we used a multivariate sensor analysis to determine
whether different brain networks are used for change
detection versus detection of sameness. For each individual,
we compared the patterns across all 157 sensors for same and
different trials to ascertain whether patterns differed for the
two types of trials, which would suggest the involvement of
different processes. However, if the pattern remained the
same but varied in response magnitude, this would suggest a
single underlying process.

Because we were interested in the mechanism underlying
change detection rather than the task-related decision process,
we focused our analyses on the earliest MEG component that
shows a difference for a target word that differs from a word
presented immediately prior to the target. Previous work with
repetition priming in a perceptual identification task revealed
that the M170 is affected by immediate repetitions of visually
presented words. Furthermore, this component is modulated
by prime duration (Huber et al., 2008), as would be expected
if this component were affected by habituation. Therefore,
we focused on the M170 as the critical signal in the present
experiment. The presentation sequence used in the present
experiment follows closely from the MEG experiment of
Huber et al. (2008). However, the task in that experiment
was identification of a briefly flashed and then masked target
word presented immediately after a prime word. In contrast,
we now call the first word a “cue” because the task in the
present experiment was a speeded same/different judgment
of a target word that remained visible until a response was
given. Similar to the prime durations used in the Huber et al.
experiment, the present experiment used cue durations of
150 versus 2,000 ms to induce different levels of habituation.

Method

Participants A group of 17 paid participants were recruited
from the University of Maryland for Experiment 1. All
participants were right-handed native English speakers with
no history of neurological disorder.

Materials We constructed a pool of 1,500 five-letter words.
These words had a minimum written language frequency of
2 per million (Kučera & Francis, 1967). All words were
displayed in uppercase Times New Roman font in yellow
font color against a black background, and subtended less
than 3° of visual angle. Stimulus materials were projected
on a screen inside the MEG chamber with presentation
times synchronized to the vertical refresh. The refresh rate
was 75 Hz, providing display increments of 13.3 ms.

Design Experiment 1 conformed to a 2 × 2 within-subjects
design, crossing the variables cue type (same as vs.
different from target) and cue duration (short vs. long:
150 vs. 2,000 ms).

Behavioral procedure Experimental sessions lasted for
about half an hour and included 48 blocks of eight
experimental trials. Participants were instructed to refrain
from blinking or moving during each block. Between each
block of trials, participants received feedback about the
total number of correct answers in the previous block.
There were two repetitions of each of the four unique
combinations of experimental conditions (short–same,
short–different, long–same, long–different), which were
randomly intermixed in each block. Word selection oc-
curred randomly without replacement, such that each word
was only seen on one trial. This was necessary to eliminate
any priming effects from previous trials. Participants were
fully informed as to the nature of the conditions and were
warned that there were equal numbers of same and different
trials. Two blocks of eight practice trials were presented
prior to the 48 blocks of experimental trials.

At the beginning of each trial, a fixation line consisting
of five short, dashed lines appeared for 1,000 ms in the
center of the screen, followed by two instances of a cue
word, one presented immediately above and one immedi-
ately below the fixation line. After 2,000 ms (long) or
150 ms (short), the cue words were followed by the target,
presented in the center of the screen. Participants were
asked to judge whether the target word was the same as or
different than the cue word by pressing the corresponding
button. They were encouraged to respond as quickly and
accurately as possible. The target word remained on the
screen until participants responded.

MEG procedure Magnetic signals were recorded using a 160-
channel (157 data channels and 3 reference channels), whole-
head axial gradiometer system (KIT, Kanazawa, Japan). In
order to check head position within the MEG scanner, five
electromagnetic coils were attached to the head of a
participant before the MEG recording. The locations of the
coils were determined with respect to anatomical landmarks
(nasion, left and right preauricular points) on the scalp using 3-

612 Cogn Affect Behav Neurosci (2011) 11:608–626



D digitizer software (Source Signal Imaging, Inc.) and
digitizing hardware (Polhemus, Inc.). The coils were localized
with respect to the MEG sensors, both at the beginning and at
the end of the experiment.

During the experiment, participants were supine inside a
magnetically shielded room. Before the visual word
experiment, they listened to 200 combined repetitions of
250-Hz and 1-kHz versions of a 50-ms sinusoidal tone (ISI
randomized between 750 and 1,550 ms), with 100
repetitions for each frequency. Auditory-evoked responses
to the onset of the pure tones were examined, and the
auditory M100 was identified. The auditory M100 is a
prominent and robust (across listeners and stimuli) deflec-
tion at 100 ms after onset and has been the most
investigated auditory MEG response (for a review, see
Roberts, Ferrari, Stufflebeam, & Poeppel, 2000). A dipole-
like pattern (i.e., a source–sink pair) in the magnetic
topographic map distributed over the temporal region of
each hemisphere was identified for each participant. These
responses were used to verify that the participant was
positioned properly in the MEG scanner.

The MEG data were acquired with a sampling rate of
500 Hz, filtered online between 1 Hz and 200 Hz, with a
notch at 60 Hz. Raw data were noise-reduced using CALM
(Adachi, Shimogawara, Higuchi, Haruta, & Ochiai, 2001).
A 1,000-ms time period that was time-locked to the long-
duration cue word was extracted and averaged over the 192
long-cue-duration trials. These were used as standard
responses of the M170 response to a singly presented word
(see the Analysis of MEG Data section below). There was
no baseline correction (i.e., subtraction of a prestimulus
interval) of the data, because statistical comparisons were
only between same and different trials rather than between
short- versus long-duration cues. In other words, the
prestimulus interval was functionally identical for the
conditions that were compared, so baseline correction
would only serve to reduce statistical power by introducing
an additional source of variance. A second 1,000-ms time
period that was time-locked to the target onset was
extracted and averaged over the 96 trials for each of four
conditions. Trials with amplitudes >3pT (~5%) were
considered artifacts and were discarded. The averages were
low-pass filtered with a cutoff frequency of 20 Hz.

Analysis of MEG data Unlike EEG, analysis of MEG is
typically done separately for each individual, because MEG
provides a much more spatially localized response, and
different individuals position their heads differently in relation
to the sensors with MEG. Therefore, the same sensor may
produce very different, or even opposite, responses (i.e.,
opposite sides of a local electromagnetic dipole) for different
individuals. To address this issue, Tian and Huber (2008)
developed multivariate measurement techniques that use the

pattern of responses across all sensors by normalizing these
patterns in relation to a “standard response,” which is the
pattern observed in some other condition for that individual.
We briefly describe these techniques here and point the
interested reader to the discussion by Tian, Poeppel, and
Huber (2011) that accompanies the release of the TopoTool-
box suite of MATLAB routines that implement these
techniques. These files, as well as a tutorial, can be
downloaded from Dr. Tian’s website (https://files.nyu.edu/
xt235/public/). In these techniques, rather than examining
separate sink (magnetic influx)/source (magnetic outflux)
patterns for the M170 of each individual, all 157 sensors are
used to ascertain whether a difference in the M170 between
conditions is due to a different pattern across the sensors or
whether the M170 in different conditions corresponds to the
same pattern, but with different response magnitudes of that
pattern. These measurements are achieved through a vector
dot product over sensors that is either normalized (similarity
between patterns) or not normalized (response magnitude).
This is the same mathematical distinction as the difference
between a correlation (which is normalized for variance)
versus a regression slope. However, in the present case, these
numbers can be geometrically interpreted in terms of the
157-dimensional sensor space. Thus, these measures are
interpreted as similarity or magnitude rather than correlation
or regression. The similarity measure produces the cosine of
the angle between patterns in sensor space (“angle test of
response similarity”), whereas the response magnitude
measure produces the projection of one pattern onto the
standard response (“projection test of response magnitude”).
The magnitude measure was obtained by determining the
peak latency using the root-mean square and taking the
average magnitude of the 40-ms time window around the
peak latency.

It is important to note that the angle test seeks the same
measurement goal as the vector normalization technique of
McCarthy and Wood (1985), although the two techniques are
mathematically different. The angle test first takes the dot
product of the two sensor vectors and then normalizes against
vector length, whereas the technique of McCarthy and Wood
first normalizes against vector length and then uses ANOVA
to compare the two normalized vectors. This distinction is
important, and unlike McCarthy and Wood’s technique,
which can produce an apparent topographic difference as an
artifact of using vectors of sensor values that are not zero-
centered (Urbach & Kutas, 2002), the angle test is similar to a
correlation analysis and does not suffer from this problem.

Results

Behavioral results Collection of behavioral responses from
individuals in the MEG chamber was constrained by the
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recording setup. More specifically, although participants
were told to respond quickly and accurately, they were also
strongly urged not to move (particularly their head and
shoulders) and not to blink, as this would cause artifacts.
They responded by pressing a mouse button, which was out
of sight down by their side (they were lying supine). As a
result, responses times were slow and variable. However,
accuracy was nearly perfect, indicating that they were
indeed performing the requested task. Given these limi-
tations, not much can be gained from their behavioral
responses. Nevertheless, we report them for completeness.
Accuracy and mean response times are shown in Table 1.
Participants responded more accurately with long cue
durations than with short cue durations [F(1, 16) = 6.31,
MSE = 0.001, p < .05]. We found no significant effects for
the response times. Given the relatively long response times
( > 600 ms), it was unlikely that the MEG response of
interest, the M170, was contaminated by motor processes.

Angle test of response similarity We first compared the
target M170 responses in the four conditions (same/
different targets following short/long cue durations) using
the angle test to determine whether reliable differences
existed between these conditions in the topographic pattern
across the 157 sensors. Split-half reliability was determined
by comparing trials from the first half of the experiment with
trials from the second half (first/second). This comparison was
done separately for first- versus second-half topographic
patterns from the same condition as well as first- versus
second-half patterns from different conditions. Thus, the
within-condition comparisons provided a measure of the null
hypothesis variance between the first versus second halves of
the experiment, against which differences between conditions
were compared for hypothesis testing.

These between/within condition comparisons were calcu-
lated for each subject. The twowithin-condition angles (same-
first vs. same-second as well as different-first vs. different-
second) were averaged for each participant to yield an
overall within-condition value (for short duration,M = 0.527,
SD = 0.254; for long duration, M = 0.476, SD = 0.199). The
two between-condition angles (same-first vs. different-
second as well as different-first vs. same-second) were also

averaged for each participant, to yield an overall between-
condition value (for short duration, M = 0.535, SD = 0.222;
for long duration, M = 0.477, SD = 0.201). In a dependent-
samples test across the 17 participants, there was no
significant difference in the similarity (angle test) of the
between-condition comparisons versus the within-condition
comparisons for both cue durations [short duration, t(16) =
0.193, p = .849; long duration, t(16) = 0.017, p = .987].
Thus, the topographic patterns across the target responses
were not found to be different. This suggests that the same
distribution of cortical responses was involved in the same
and different conditions. Therefore, any magnitude differ-
ences were taken to indicate change in the magnitude of the
underlying cortical responses rather than differential recruit-
ment of cortical areas in some conditions as compared to
others.

Projection test of response magnitude Because there did not
appear to be differences in the M170 response patterns between
same versus different targets, we next testedwhether there was a
difference in the M170 response magnitude. This was achieved
through the geometric projection of the target word response
onto a “standard response” pattern that is specific to each
individual. The standard response should be a situation that
involves the same kind of presentation and attentional state as
the experimental condition. Therefore, for the present experi-
ment, we used the M170 response to the cue in the long-
duration conditions. Because half of all trials used a long-
duration cue, this provided a fairly reliable M170 response
pattern for each individual that was evoked by the onset of a
single word in this same/different paradigm. The M170
response to the target for each of the four experimental
conditions was then projected onto this standard response to
yield fourM170 responsemagnitude values for each individual.

Figure 2 highlights the need for a measure of response
magnitude that disentangles the neural response to the
target word from the neural response to the cue word. This
figure shows global field power at each millisecond from
the onset of the target word. Global field power is the
square root of the average squared value across the 157
sensors (root-mean square). For comparison, this figure also
shows the response to the cue word in the long conditions,
which gives an indication of the response profile to a word
presented in isolation (i.e., the response to a word in
isolation without a prior cue word). As can be seen in the
figure, the grand average waveforms for the two short-
duration conditions overlap with the MEG response to the
short-duration cue, whereas the response to the long cue is
similar to the response to a target following a long cue (i.e.,
a relative lack of overlap for long conditions). The
projection test estimates the magnitude of the M170 signal
that is present within this overlapping signal, which should
help isolate the component of the short conditions that is

Table 1 Results of Experiment 1, showing means of behavioral
(accuracy, correct response time) measures (with standard deviations)

Accuracy Response Time (ms)

Cue Duration

Trial Type 150 ms 2,000 ms 150 ms 2,000 ms

Same .95 (.05) .96 (.05) 615 (176) 623 (175)

Different .96 (.03) .98 (.02) 613 (183) 639 (216)
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due to the presentation of the target. Furthermore, because
the level of overlap is equal between same and different
trials that test the same cue duration, same and different trial
response magnitudes can be meaningfully compared.

Table 2 presents the M170 response magnitudes across
trial types and cue durations. The magnitude of the MEG
signal was higher following a long-duration cue [F(1, 16) =
6.11, MSE = 0.45, p < .05], but this was qualified by an
interaction between trial type and cue duration [F(1, 16) =
3.12, MSE = 0.01, p < .1] due to an effect of trial type in the
long-cue-duration condition [t(16) = 2.463, p < .05], but not
in the short-cue-duration condition (t < 1). No significant
effects were obtained for peak latency (all ps > .3).
Response times did not correlate (within each condition)
with MEG magnitude (ps > .5) or peak latency (ps > .6).

Discussion

In Experiment 1, we tested the hypothesis that there is a
single change detection process underlying same/different

judgments to target words presented immediately after cue
words. We found that in the temporal window around the
M170 in response to the target word, the response patterns
across the 157 sensors were similar, regardless of whether the
target was the same as or different than the cue word, which
suggests that the same identification processes were involved
for both trial types. Critically, as predicted, there was a main
effect such that the magnitude of response was larger for
different trials (novelty detection) than for same trials (lack of
novelty detection). Additionally, there was an interaction
with cue duration such that the effect of trial type was larger
following a long-duration cue, which demonstrates that the
signal underlying change detection with words is sensitive to
the timing of the comparison word. This difference in the
magnitudes of the target words’ M170s as a function of cue
duration replicates previous findings with a perceptual
identification task (Huber et al., 2008), except that the
present experiment used target words that were clearly
visible. Furthermore, this result was predicted by a model
of change detection based on habituation. Specifically,
because habituation is greater following a long-duration
cue, a target that differs from the cue was expected to
produce a larger boost of additional activation (i.e., novelty).
This result favors an account based on habituation and
novelty detection rather than familiarity.

The habituation model supposes that a novelty response
in the different condition is the signal that underlies
accurate performance. Therefore, the model predicts that
there should be a magnitude difference between the same
and different trials for both the short- and long-cue-duration
conditions, considering that even though accuracy was
lower in the short cue duration, it was still very good. Thus,
even though the novelty response was predicted to be
weaker in the short-cue condition, it should still be present.
However, the MEG projection test failed to find a reliable
difference in the short-cue condition (although the trend
was in the expected direction). Nevertheless, the failure to
detect such a difference depends on statistical power. More
specifically, even if a small but highly reliable novelty
response underlies performance, MEG measurements may
fail to detect this response with sufficient reliability.1

From our proposal, one might expect that the amplitude
or latency of the M170 would predict response time. In
other words, a stronger or a quicker novelty response
should serve to promote faster accurate behavioral

Table 2 Results of Experiment 1, showing means of MEG (magni-
tude, latency) measures (with standard deviations)

Projected Magnitude Peak Latency (ms)

Cue Duration

Trial Type 150 ms 2,000 ms 150 ms 2,000 ms

Same .098 (.26) .239 (.15) 176 (13) 177 (16)

Different .111 (.28) .297 (.16) 176 (13) 178 (16)

−100 0 100 200 300
10

30

50

Cue Long
Target SameLong
Target DiffLong
Target SameShort
Target DiffShort

M
ag

n
et

ic
 f

ie
ld

 (
fT

)

Time (ms)

Fig. 2 Grand average root-mean-square waveforms (of all 157
channels across 17 participants) in response to the cue in the long-
cue-duration condition (black) and to the target in the short- (green)
and long- (red) cue-duration conditions in Experiment 1. The different
trials are the dashed lines, and the same trials are the solid lines. The
high level of activity in the responses to the target in the short
conditions was caused by overlap with ongoing responses to the
preceding cue. This overlap does not influence the comparison within
the short-duration conditions

1 In other words, the neural signal that drives the decision is of high
reliability (even though it is small), whereas the signal picked up at the
MEG sensors is hugely variable due to electronic noise, noise from
other brain regions, inadequate spatial sampling, and so on. On top of
all that, the signal underlying MEG requires that neurons be spatially
aligned (if they are not aligned, their signals cancel out). Thus, for
many reasons, there could be too much noise with MEG to pick up on
a predictably small signal.

Cogn Affect Behav Neurosci (2011) 11:608–626 615



responses. For example, Noguchi, Inui, and Kakigi (2004)
used a repetition priming paradigm with letters while
recording MEG, and they found that the peak latency, but
not the peak amplitude, correlated with RT. In our
experiment, we found no such correlation (indeed, response
times were relatively uniform across conditions). However,
Noguchi et al. examined a completely different neural
signal, which occurred at 252 ms, almost 100 ms later than
the M170 we focused on. A recent study has shown that
event-related components that occur with longer delays
after stimulus onset are more strongly associated with task
difficulty and task-relevant perceptual processes, whereas
earlier components are more associated with low-level
perceptual categorization processes (Philiastides, Ratcliff,
& Sajda, 2006; Philiastides & Sajda, 2006; Ratcliff,
Philiastides, & Sajda, 2009). Our results suggest that the
M170 is an early neural signal that discriminates between
same and different trials. Furthermore, the consistency
between the present results and the results of Huber et al.
(2008) with a different task demonstrates that the M170 to
words is not closely involved in decision processes.

Outline of experiment 2

Experiment 1 revealed that the first neural response to a target
word that distinguished same and different trials was (a)
similar in its topographic distribution between the two trial
types, thus implicating the same neural signal for both, and
(b)larger in magnitude for different trials, suggesting that the
signal driving performance is detection of novelty rather than
familiarity. These results fit well with the neurocomputa-
tional model of short-term priming (Huber & O’Reilly,
2003), for which the dynamics are shown in Fig. 1. We now
turn to a counterintuitive, but necessary, prediction from this
model, and test this prediction by examining response times
in a same/different judgment task.

We used the proposal that habituation underlies change
detection to make testable predictions for performance
across subsequent pairs of cue/target trials (see Fig. 3). The
task was the same as in Experiment 1, but now with a
structure to the trials so that we could examine the effect of
repetitions from one trial to the next, and thereby the effect
of habituation on change detection. Because we were
interested in change detection, we focused on trials in
which the cue and target differed, and looked at the effects
of priming the cue versus priming the target, with priming
provided by the preceding cue–target trial. As a result of
this focus, Experiment 2A used a go/no-go task, with go
responses when the target differed from the cue, so for this
experiment the only data available were for different trials.
Next, we considered the predictions of a habituation
account in this paradigm for cue and target priming.

We used the following four-letter notation to indicate cue
and target identity for a pair of trials in the critical conditions.
Each letter symbolizes a word, and the order of the letters
reflects the order of the presentation of the corresponding
words (i.e., cue and target for the previous trial and cue and
target for the present trial, in that order). Repeated letters
indicate words that repeated within or across the two trials (the
case of the letters reflects the case in which the words were
presented: lower for cues vs. upper for targets). For trials that
were preceded by a same or a different trial, the first two
letters were aA or aB, respectively. To refer to the neither-
primed conditions, the first two letters would differ from the
last two letters (i.e., aAbC or aBcD). For cue-primed
conditions, the second and third letters are the same (i.e.,
aAaB or aBbC). For target-primed conditions, the second
and fourth letters are identical (i.e., aAbA and aBcB).

Figure 3 provides an illustration of the predictions of the
habituation account, showing neural output activation

Fig. 3 Predictions from a neural network model with synaptic
depression, showing activation levels as a function of time. For each
panel, the activation profiles are for the cue and target of the previous
trial (n – 1) and then the cue and target for the current trial (n), in that
order. Lowercase letters indicate the cue word, which was presented in
lowercase, whereas uppercase letters indicate the target word, which
was presented in uppercase. Thus, the sequence of letters for each
panel indicates different conditions in accord with repetitions (i.e.,
priming) from the target of the previous trial to the next trial. Shown
are conditions in which both the previous trial and the subsequent trial
involve cues that are different from the targets. For Experiment 2A,
this would involve go responses on both trials, whereas in
Experiment 2B, this would involve “different” responses on both
trials. The panels represent scenarios in which the previous target does
not prime either the cue or the target (top), primes the cue (middle), or
primes the target (bottom) of the current trial. The critical comparison
between the three conditions is the difference between the height of
the final peak and the height of the activation profile at the onset of the
target stimulus. This is highlighted by the brackets. As compared to
the neither-primed condition, this difference is larger for the cue-
primed and smaller for the target-primed condition. See the text for
details
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levels as a function of time during the sequential presen-
tation of a cue–target pair on trial n – 1 followed by trial n.
On each trial, a cue is presented for 1 s, followed by a target
for 1 s, and then a break of 2.5 s between trials. On
presentation of any stimulus, the neural activation in the
model follows a nonmonotonic function due to habituation.
When neither the cue nor the target of trial n is primed
(upper panel of Fig. 3), the neural responses are similar for
both cue and target. However, if the cue appeared on the
preceding trial (middle panel), the neural response for the
cue word is habituated on trial n. Based on the results from
Experiment 1, we assume that the novelty response is
calculated by monitoring the degree of additional activation
with the onset of the target word. Thus, performance is
related to the difference between the degree of activation at
the offset of the cue and the peak activation value in
response to the target, as shown by the brackets on each
panel. For any given trial, this difference is affected by
priming from the previous trial, because habituation tends
to linger for seconds or tens of seconds. In the case of cue
priming (middle panel of Fig. 3), habituation increases the
difference between cue and target as compared to the
neither-primed condition (top panel). However, in the case
of target priming (bottom panel), this difference is smaller,
because the habituated target representation does not
achieve as high a peak value. If this difference in activation
is the signal supporting change detection, the increased
signal in the cue-primed condition should lead to better
performance (i.e., faster responses) relative to the neither-
primed condition. Likewise, the decreased signal in the
target-primed condition should reduce performance (i.e.,
slower responses). Thus, an account based on change
detection and habituation predicts a pattern of costs and
benefits, with last-trial priming depending on which word is
primed.

Although Fig. 3 shows specific predictions, these
predictions reflect the neural response rather than behavior.
Therefore, our predictions regarding response time behavior
are qualitative and only address the ordinal pattern in the
data. The amount of novelty is assumed to feed into a
decision process, which is needed to make quantitative
predictions about accuracy and response time. Therefore,
our account is focused on the process that takes place
before the actual decision stage. In order to contrast this
account with several other alternative explanations that
have appealed to mechanisms within the decision stage, we
refer to this model as a nondecision model (e.g., something
prior to the decision stage, such as the speed or the quality
of the perceptual response).

We can contrast these predictions to those formulated
based on simple response repetition (i.e., a bias in favor of
the response given on the last trial). Unlike the habituation
model, response repetition predicts no difference between

priming the cue versus priming the target, each as compared
to the baseline neither-primed condition (see Table 3). Next,
consider predictions from theories that explain priming
effects through associative learning of stimulus–response
contingencies (e.g., Hommel, 2004; Logan, 1988, 1990;
Rothermund, Wentura, & De Houwer, 2005). These theories
predict that if a word is repeated as a target on two
consecutive trials and the same response is required (either
“same” or “different”) on both trials, then performance
should be better than in the neither-primed baseline and
better than when different responses are required on the two
trials (see Table 3). Note that this is exactly the opposite
prediction from the habituation account (cf. Fig. 3). In
addition, the habituation account predicts that “different”
responses to primed targets will be slowed, regardless of the
response given on the previous trial to that same target
word. Whereas the habituation model is focused on
processes that occur before the decision stage, the response
repetition account and the stimulus–response account are
examples of decision-stage models. As such, these types of
models compete directly with the theoretical accounts of
same/different judgments reviewed in the introduction. A
third decision-stage model, an interference model, is one in
which the target might be mistakenly compared with the
preceding cue and the target of the previous trial. When
these comparisons are congruent, the corresponding re-
sponse time is faster than when the comparison is
incongruent. As can be seen in Table 3, this alternative
model makes the same prediction as the habituation model
when the targets on successive trials repeat, but not when
the cue was a target in the previous trial.2 More specifically,
the interference account does not predict an effect for the
cue-primed condition, because in both the cue-primed and
neither-primed conditions the target was not seen on the
previous trial, and thus mistakenly comparing the target to
the words of the previous trial will suggest the correct
response of “different” for both conditions. This same logic
explains why the stimulus–response theory also predicts no
effect in the cue-primed condition—because the target was
not seen on the previous trial for both the cue-primed and
neither-primed conditions, it has no associated response.

We tested the predictions of the habituation account in an
experiment in two parts that involved priming from
previous trials by repeating the target word across trials.
In Experiment 2A, we investigated change detection by
asking participants to make a response whenever a change
occurred. This was achieved through a go/no-go task in
which a response was required when the target word was
different than the preceding cue word. To directly contrast
the habituation account with the stimulus–response learning

2 We thank an anonymous reviewer for suggesting this type of
decision-stage account.
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account, we conducted Experiment 2B, which was identical
to Experiment 2A in terms of the actual sequence of
presentations, but which measured change detection with
same/different rather than go/no-go responses. Note that
both of these tasks concern change detection within a trial
rather than between trials. Thus, stimuli presented in the
previous trial provided no information about the required
response on the current trial.

Beyond priming of the cue versus priming of the target,
which contrasts the predictions of the habituation account
with the three decision-stage accounts, we also tested the
specific predictions of the habituation model regarding the
duration and timing of events. Specifically, we investigated
the role of cue duration. On trials in which the cue duration
is brief, the activation in response to the cue will be high at
the onset of the target, so a target that is different from the
cue will not provide much additional activation (i.e.,
change detection will be difficult). However, if the cue
duration is long, the response to the cue will be strongly
habituated, and it will be easy to detect a target that is
different. Therefore, we manipulated the duration of the cue
word (200 vs. 1,000 ms). This was done in a blocked
design to allow anticipation of the target onset, which
would otherwise provide a source of noise in the response
times. Provided that last-trial priming was equivalent in all
conditions, the habituation model predicted that longer cue
durations should make it easier to detect changes, regard-
less of whether the cue or target was primed. Thus, the
difference between the cue-primed and target-primed con-
ditions should diminish with increasing cue duration.
However, because the experiment was run with cue
duration in a blocked fashion (i.e., if the cue duration on
trial n was long, the cue duration on trial n – 1 was also
long), and because a previous same trial introduces greater
priming than a previous different trial, this introduced some
complexities into the predictions that are considered in
greater detail in the Discussion section.

The durations differed somewhat from those used in
Experiment 1. Experiment 1 needed to include a very long

cue duration to eliminate overlap in the neural response
between cue and target, so 2,000 ms was used for the long-
cue condition. In contrast, in Experiment 2 we used only
1,000 ms for the long-cue condition to reduce the total time
of the experiment. A more important difference between
Experiment 1 versus Experiment 2 was how often words
repeated across trials. In Experiment 1, words never
appeared on more than one trial. However, in Experiment 2,
the same words not only repeated across contiguous trials,
but also on many other trials throughout the experiment.
This was a crucial element of the design. As discussed in
the introduction, habituation is a short-term effect that
biases against attended stimuli, leading to slow responses.
In addition to the deleterious effect of habituation, there are
also positive long-term priming effects (e.g., Hertwig et al.,
2008). Thus, each word on trial n – 1 would produce a
beneficial long-term priming effect together with a short-
lived habituation effect, both of which might affect
performance on trial n. In order to separate these two
opposing forces, we used a small pool of words and drew
with replacement from this pool in order to equate the
words in terms of the beneficial long-term priming effect. In
other words, regardless of last-trial priming, all of the
words on every trial (after practice) were subject to the
benefits of long-term priming. This allowed us to isolate the
short-term habituation effect by comparing cue- or target-
primed trials against the baseline neither-primed trials.

Experiment 2

Method

Participants Groups of 56 and 53 college-aged students
from Indiana University participated in exchange for course
credit in Experiments 2A and 2B, respectively.

Design Both Experiments 2A and 2B conformed to a 3 ×
2 × 2 within-subjects factorial design, crossing the factors

Table 3 Predictions of three decision-based models and the habituation model for the change in response times between a primed trial (cue,
target, or both) versus the corresponding neither-primed trial in Experiment 2

Neither-Primed Condition Primed Trial Decision-Stage Models Non-Decision-Stage Model

Response Repetition Stimulus–Response Interference Habituation

aAbC aAaB Slower No difference No difference Faster

aAbA Slower Slower Slower Slower

aBcD aBbC Faster No difference No difference Faster

aBcB Faster Faster Slower Slower

aBcC aBbB Slower Slower Faster Faster

Observed results are shown in boldface
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prime type (neither-primed, cue-primed, target-primed),
previous response (Exp.2A, no go vs. go; Exp.2B, same
vs. different), and cue duration (200 vs. 1,000 ms).

Materials The materials used in both experiments consisted
of the following 12 four-letter words: back, give, most, turn,
hold, main, such, type, blue, kind, stop, farm, best, down,
late, and size. All words could appear as either cues or
targets, with cue words presented in lowercase and target
words in uppercase black letters on a white background in
font size 18 (see Fig. 4). Each unique condition was
repeated 12 times, which were defined by the relation
between the target of trial n – 1 and the cue and target of
trial n. Thus, a cue-primed trial was a trial on which the
target of the previous trial was the same word as the cue of
the current trial (e.g., Trial 3 in Fig. 4). A target-primed trial
was a trial on which the target of the previous trial was the
same as the target of the current trial (e.g., Trial 4 in Fig. 4).
A particular cue–target pair on a given trial could provide a
measurement of priming from the previous trial, or it might
serve as the prime for the subsequent trial. There were
equal numbers of same and different trials included in the
analyses. The full list of trials presented to the participant
used more different than same trials, because unanalyzed
filler trials (e.g., Trial 1 in Fig. 4) were used at the
beginning of each subblock of seven trials. A subblock of
seven trials was a sequence of trials that started with a
different trial, followed by six experimental trials. Several
seven-trial sequences were created that together covered all
combinations with 12 observations per condition. This was
necessary to balance the design and to make sure that
participants were engaging in the task at the beginning of
each subblock (as measured by a keypress). Overall, there
were 192 different trials and 144 same trials.

Procedure Participants were seated in front of a computer
screen. Each trial started with a black fixation stimulus, “+
+,” for 1,000 ms, followed by a cue word in lowercase that

was presented for either 200 or 1,000 ms. Immediately after
the cue word, the target word appeared and remained on the
screen for 2,000 ms or until the participant pressed the
space bar. In Experiment 2A, the task of the participants
was to press the space bar as quickly as possible only when
the target word was different from the cue word. No
response was to be given when the two words were the
same. Figure 4 shows an example of a sequence. In
Experiment 2B, participants responded with the “z” key
or the “/” key to indicate whether the target word was the
same as or different than the cue word. The mapping of the
keys to the “same” and “different” responses was counter-
balanced across participants. To train participants on this
key–response mapping, we split the 56 practice trials into
two blocks of 28 trials. In the first practice block, the labels
“same” and “different” appeared in the left and right lower
corners of the screen, in correspondence to the key mapping
for that participant. In the second practice block, these
labels were absent. If no response was made within
2,000 ms, “Too slow” was presented in red font color.

Feedback was given after every trial for 1,500 ms. A
correct go trial was followed by the response time in blue
font color, and a correct no-go trial was followed by
“0.000 s” in blue font color. All incorrect trials were
followed by “XXXX” in red font color. Before the
experimental trials, there were 56 practice trials, in the
following order: 7 long–7 short–7 long–7 short–14 long–14
short. After the practice block, participants received
feedback about their accuracy in percentage correct. The
main experiment had four blocks of 84 trials. Each block
consisted of 12 subblocks, which were grouped into sets of
3 that used the same cue duration. These groupings were
such that participants experienced trials of different cue
durations in the following order: 21 long–21 short–21
long–21 short. After each block, participants received
feedback about their percentage correct (across all correct
trials). All stimuli (fixation, cue, target, and feedback) were
presented in the center of the computer screen.
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SUCH

++

most

SUCH

time

trial 1

trial 2

trial 3

trial 4

(aBcD)

(aBbC)

(aBcB)

FIXATION: 1,000ms

CUE: 200/1,000ms

TARGET: until response or 2,000ms

Fig. 4 Example sequence with
the three conditions used in
Experiment 2. Although the se-
quence has four different trials,
the first is considered a filler
trial. Trials 2, 3, and 4 are a
neither-primed, a cue-primed,
and a target-primed trial,
respectively
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Results

We analyzed the data with experiment (2A vs. 2B) as a
between-subjects factor. The detailed results and summaries of
the data of each experiment are presented in Online
supplemental materials. Figures 5 and 6 show the results of
Experiments 2A and 2B, respectively. Only RT data from
trials for which the preceding and current trials were correct
were included in the analyses. Table 4 presents results from
the omnibus 3 × 2 × 2 × 2 (prime type, cue duration, previous
response, experiment) mixed factorial ANOVA conducted on
response times and accuracy for the conditions in which the
current trial involved a cue and target that were different.

Accuracy There were main effects of cue duration (p < .01),
prime type (p < .01), and experiment (p < .001). The
experiments differed in the effects of the previous trial and the
effect of prime type, as indicated by significant interactions
between experiment and previous trial type (p < .05) and
between experiment and prime type (p < .001). These
differences are fully unpacked in the Supplemental materials.

Response times For response times to different trials, the
ANOVA revealed a main effect of prime type (p < .001),
reflecting slower RTs for target-primed trials and faster RTs
for cue-primed trials. There was also a main effect of
experiment (p < .001), reflecting a general slowing with
two versus one response alternative.

Of the two-way interactions that did not involve the
experiment factor, all were significant (ps < .05). The only
two-way interaction with the experiment factor that was
significant was previous response (p < .001), which again
reflected the difference in number of response alternatives
between the two experiments.

Notably, the analysis revealed that none of the three-way
interactions involving the experiment factor were signifi-
cant, demonstrating that the predicted interaction between
cue duration and prime type existed for both experiments.
This interaction was due to a reduced prime type effect for

long-duration-cue trials. As predicted, the advantage for
priming the cue and the disadvantage for priming the target
were reduced as cue duration increased.

The three-way interaction between cue duration, previ-
ous response, and prime type was significant (p < .001),
which was due to a smaller effect of prime type with a long
cue duration only after different trials (see Figs. 5 and 6).
This three-way interaction was stronger in Experiment 2B
than in Experiment 2A (see Figs. 5 and 6), as indicated by
the four-way interaction. A closer look at the raw data of
Experiment 2A revealed that the four-way interaction was
driven by unusually fast RTs for the baseline neither-primed
condition, aBcD, only for the short-cue-duration go trials of
Experiment 2A. This eliminated the cue-priming effect only
for this condition.

Discussion

In Experiments 2A and 2B, we tested the hypothesis that
the mechanism of change detection is habituation, which
diminishes the response to repeated stimuli. Using a neural
model of synaptic depression, we made several specific
predictions regarding the pattern of RTs for different
priming conditions. Synaptic depression produces a stron-
ger response to a target when it is preceded by a different
cue stimulus as compared to a repetition. By manipulating
the amount of depression of the cue or target stimulus
through priming from the previous trial, we tested the
predictions that RTs in the cue-primed condition should be
faster than those in the neither-primed condition and that
RTs in the target-primed condition should be slower than
those in the neither-primed condition. This pattern of results
was confirmed in Experiment 2 and constitutes the main
test of the habituation account.

Two results from these experiments are inconsistent with
an account based on stimulus–response learning (see
Table 3). First, both versions of the experiment revealed
slower responses in the target-primed (aBcB) conditions

Fig. 5 Results of
Experiment 2A for go trials
only: priming effects (RT in
baseline minus RT in priming
condition) of correct response
times as a function of prime
type, previous trial type, and cue
duration. The error bars repre-
sent standard errors of the means
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than in the baseline neither-primed conditions (aBcD),
whereas stimulus–response theories (as well as the interfer-
ence account) predicted the opposite. Second, for the same/
different task of Experiment 2B, for which stimulus–
response theories predict slower RTs for both-primed
(aBbB) than for neither-primed conditions (due to incon-
sistent stimulus–response mappings), we observed the
opposite pattern. These results suggest that processes other
than stimulus–response learning have a profound influence
on the response time.

We predicted that longer cue durations would make it
easier to detect changes, which should tend to dilute the
effect of priming the cue or target. Although the duration×
prime type interaction did not reach significance in either
experiment, this was apparently due to a lack of power,
because pooling the data revealed this interaction, which
was not further modulated by the experiment factor. The
lack of this two-way interaction was in part due to its being

masked by a three-way interaction, which included the type
of response on the preceding trial. In particular, the
expected two-way interaction was only found for trials that
followed a different trial. The habituation model predicts
that increasing the cue duration should diminish the
priming difference between the cue-primed and target-
primed conditions, but this would only be true if priming
from the last trial were equivalent regardless of cue
duration. However, the experimental design manipulated
cue duration in a blocked fashion, and this introduced an
unanticipated confounding factor—as cue duration in-
creased, this increased the amount of priming when the
last trial was a same trial (i.e., aA) but not when the last
trial was a different trial (i.e., aB). Thus, when the last trial
was a same trial, increasing the cue duration produced two
counteracting effects: (1)An increased cue duration on the
current trial served to enhance novelty detection, and thus
reduce priming effects, and (2)an increased cue duration on

Fig. 6 Results of
Experiment 2B for different tri-
als only: priming effects (RT in
baseline minus RT in priming
condition) of correct response
times as a function of prime
type, previous trial type, and cue
duration. The error bars repre-
sent standard errors of the means

Table 4 Results of an analysis
of variance on mean correct
response times and accuracy for
go trials and different trials
across Experiments 2A and 2B

*p < .05, **p ≤ .01, ***p ≤ .001

Effect df Accuracy Response Time

MSE F MSE F

Duration (Dur) 1,106 0.002 8.331** 4,528.403 0.057

Previous (Prev) 1,106 0.002 0.330 2,314.273 0.670

Prime Type (Prime) 2,212 0.002 5.899** 1,246.080 103.842***

Experiment (Exp) 1,106 0.007 21.058*** 58,631.012 16.219***

Dur×Prev 1,106 0.002 0.007 1,712.231 9.300**

Dur×Prime 2,212 0.001 1.441 1,102.257 4.020*

Prev×Prime 2,106 0.002 0.822 1,261.257 4.650*

Dur×Exp 1,106 0.002 0.211 4,528.403 0.007

Prev×Exp 1,106 0.002 4.808* 2,314.273 69.182***

Prime×Exp 2,212 0.002 8.560*** 1,246.080 1.377

Dur×Prev×Prime 2,212 0.001 0.449 1,308.523 9.168***

Dur×Prev×Exp 1,106 0.002 0.012 1,712.231 1.420

Dur×Prime×Exp 2,212 0.001 1.527 1,102.257 0.267

Prev×Prime×Exp 2,212 0.002 1.428 1,261.257 1.206

Dur×Prev×Prime×Exp 2,212 0.001 0.126 1,308.523 5.655**
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the previous trial served to enhance the degree of
habituation for the primed word, and thus increase priming
effects. As reported in the Online supplementary materials,
we modeled the exact sequence of events across the two
trials with different parameter values and found that the
observed three-way interaction between response type of
the last trial, prime type, and cue duration was predicted by
the model, depending on the balance between the rate of
habituation and the rate of recovery from habituation.

Whereas Experiments 2A and 2B confirmed our central
hypotheses, they produced different response priming
effects. In particular, in Experiment 2A, RTs were faster
after go trials than after no-go trials, whereas in
Experiment 2B, RTs were slower after different trials than
after same trials. This main effect of the previous trial in
Experiment 2A was expected when considering the litera-
ture examining response suppression. The slowdown in RTs
after successful stopping (Rieger & Gauggel, 1999;
Verbruggen, Logan, Liefooghe, & Vandierendonck, 2008)
has been explained as an increase in the response threshold
through online monitoring of decision conflict (Davelaar,
2009; Emeric et al., 2007; Verbruggen & Logan, 2008). It
has been hypothesized that this conflict is used to control
performance through a neural network that underlies
behavioral inhibition (Aron & Poldrack, 2006). The
influence of this network in the context of a go/no-go
paradigm is a transient increase in the effective response
threshold (cf. Frank, 2006), which is diminished, or absent,
when a same trial requires an overt response (such as in
Exp.2B). The increase in RTs after no-go trials can be
accounted for as the aftereffect of a transient increase in
response threshold.

A second difference between the two experiments was
the overall faster RTs in Experiment 2A as compared to
Experiment 2B, irrespective of cross-trial aftereffects. This
difference in RTs when comparing the number of response
alternatives has been documented and interpreted in a study
comparing a go/no-go task to two-choice lexical decision
(Gomez, Ratcliff, & Perea, 2007).

General discussion

We investigated a theoretical account of change detection
that posits a crucial role for novelty detection, as imple-
mented through synaptic depression (Huber, 2008b; Huber
& O’Reilly, 2003). In Experiment 1, we obtained support
for a critical assumption of the habituation account. Using
MEG methodology, we failed to find evidence of different
cortical sources for same and different trials, so the data
were consistent with the claim that both responses result
from the same novelty detection process. Crucially, the
magnitude of the neural response was larger for different

than for same trials, which makes an alternative interpre-
tation based on familiarity detection rather than change
detection less plausible. This result can be related to the
findings seen at the level of single cells in terms of
frequency of spiking (Tsodyks & Markram, 1997). Further-
more, even though we observed this result by examining
activity over all 157 sensors, it replicated previous MEG
studies that had found reduced signal for repeated stimuli
using a sensor-of-interest approach (Noguchi et al., 2004).

In Experiment 2, we confirmed the predictions from a
neural habituation account of change detection. Assuming
that presentation of a word on the previous trial produces
lingering habituation, this account explains the finding of
faster responding in the cue-primed conditions and slower
responding in the target-primed conditions. Habituation
predicted enhanced novelty detection for priming of the
cue, due to a bigger change in activation when a non-
habituated target followed a habituated cue. This account
predicted decreased novelty detection for priming of the
target, due to a smaller change in activation when a
habituated target followed a nonhabituated cue. Indeed,
both experiments revealed the predicted pattern, regardless
of the response compatibility between subsequent trials.
This suggests that there was little or no stimulus–response
learning, which was appropriate, considering that only 12
words were used, such that the same words appeared on
many trials, with an equal numbers of “same” and
“different” responses. By repeating words in this fashion,
we reduced the effects of stimulus–response learning and
equated the effects of long-term repetition priming, thus
isolating the short-lived habituation effect from the last
trial.

The predictions of the habituation account differ from
those of decision-stage theories, such as those based on
stimulus–response learning. In Experiment 2, we found that
nonmatch responses to a target stimulus were faster when
the cue stimulus had been presented on the preceding trial,
and that nonmatch responses to a target stimulus were
slower when the target stimulus had been presented on the
preceding trial. Importantly, this pattern occurred regardless
of response repetition and of the number of overt responses
(i.e., it occurred in both experiments). To highlight this
issue, consider the situation in which the same target word
appears on consecutive trials and the same response was
given on both trials (e.g., a response that the cue and target
were “different,” such as with aBcB). According to theories
of the repetition of specific stimulus–response mappings
(Logan, 1990), the time to respond should be faster on the
second trial as compared to a neutral condition, because the
repeated presentation of the target activates the associated
response. However, according to the habituation view,
repeated presentation of the target leads to less activation
of the target representation and thus to lower novelty,
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resulting in slower response times. Slower responses were
indeed observed. This result does not rule out the existence
of stimulus–response associations, but, at a minimum, it
suggests that the role of stimulus–response associations was
small relative to the effect of habituation.

The MEG data from Experiment 1 are consistent with
the view that same/different judgments are based on a
single signal (rather than separate “same” and “different”
signals). However, these data do not place strong con-
straints on the architecture of the decision process—which,
in the spirit of sequential sampling models, for example,
could involve separate accumulators for the different
responses that are driven by this signal. Such models have
featured in the debate regarding single- and dual-process
models of same/different judgments (Farell, 1985; Ratcliff,
1985; Van Zandt et al., 2000). The present work extends
those models by addressing whether the signal that is used
is one of sameness (i.e., match, familiarity) or of different-
ness (i.e., mismatch, novelty). We found evidence favoring
the view that the judgment is based on a single signal that
conveys the amount of novelty (instead of familiarity).

Habituation likely works on multiple levels, ranging
from low-level visual features to orthography, phonology,
and semantics (see Huber, 2008b). Our data do not allow us
to discriminate between the different contributions of
different types of representations. We note, however, that
cue-primed conditions always included a case change
between the prime and the cue (aAaB or aBbC), whereas
both prime and target were presented in uppercase for the
target-primed conditions (aAbA or aBcB). The fact that the
predictions of the habituation account were verified
independently of case changes suggests that habituation
occurs at representational levels beyond pure perceptual
levels. Taken together, these behavioral and neural results
add support to the cumulative body of evidence that
repetition-induced suppression is the result of neural
fatigue, and that this fatigue is present throughout a number
of neural processing levels, producing concomitant effects
on behavior.

Grill-Spector et al. (2006) reviewed a number of
explanations of repetition-induced suppression of neuronal
responses, all of which assumed that a repeated stimulus is
processed by the same neural substrate. A habituation
model posits that repetition-induced suppression is due to
reduced neural responses, whereas a sharpening model
posits that fewer neurons participate in the processing of a
repeated stimulus. A third alternative, the facilitation
model, posits that the same neurons are faster in processing
the repeated stimulus. These explanations can be contrasted
with associative learning accounts (e.g., Hommel, 2004;
Logan, 1988, 1990; Rothermund et al., 2005), which
explain repetition-induced suppression as a consequence
of simply bypassing the initial processing levels. Our

results strongly support the habituation model, because it
is the only account consistent with the behavioral and MEG
data presented here. This habituation account has been used
to explain negative repetition priming in a face identifica-
tion task (Rieth & Huber, 2010) and in a word identification
task, as evidenced behaviorally (e.g., Huber, 2008b) and by
means of ERP/MEG (Huber et al., 2008). The present work
extended this account to repetition priming of same/
different judgments with words. This suggests that the
model can be applied quite generally, although it remains to
be seen whether this account can explain the entirety of the
repetition suppression phenomena.

Unlike the present study of change detection, which
involves a comparison of two words, change detection has
been widely studied with more complex tasks in which
several objects are presented simultaneously (Awh, Barton,
& Vogel, 2007; Luck & Vogel, 1997; Rouder et al., 2008).
After a blank interval, equal numbers of objects are
presented at the same locations, and participants have to
indicate whether the second display contains an object
substitution. The results typically show high accuracy with
less than four objects, and set-size-dependent decreases in
accuracy with more than four objects. This has been
interpreted as reflecting the capacity limitation of visual
working memory (Cowan, 2001; Luck & Vogel, 1997; but
see Wilken & Ma, 2004, for an alternative view).

The view that neural habituation is the mechanism
underlying change detection is appealing in light of these
limitations of visual working memory capacity. In contrast
to accounts that involve comparisons of actively maintained
objects, change detection through habituation is computa-
tionally efficient, in that it subtracts from rather than adds to
the maintenance load. Although a number of models have
been proposed to account for performance in tasks of visual
working memory (Palmer, 1990; Pashler, 1988; Wilken &
Ma, 2004), these do not usually constitute a full process
model of the task used by Luck and Vogel (1997; but see
Johnson, Spencer, & Schöner, 2009). Some models that
have posited active maintenance of multiple objects (e.g.,
Macoveanu, Klingberg, & Tegnér, 2006) have not (yet)
been extended to account for change detection tasks in
visual working memory. We propose that an extension
involving habituation of neural representations could
provide a sensible account of change detection in these
tasks.

In a recent model based on dynamic field theory, it was
proposed that change detection in visual working memory
tasks is mediated by an interactive network of three neural
layers (Johnson, Spencer, & Schöner, 2009; Johnson,
Spencer, et al. 2009). The model is able to generate
repetition suppression through inhibition of the input layer
that comes from an intermediate layer, which in turn is
maintained by a memory layer. Although the model is much
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more complex than the single-layer model we have used, it
does show the profile of habituation. Therefore, this model
is also well-suited to capture the qualitative profile of
Experiment 2. However, it is unclear whether this three-
layer model, which spans from early visual areas to
prefrontal areas, is able to capture the pattern of MEG
topography seen in Experiment 1. In any case, the fact that
this model and the habituation model both include neurally
plausible mechanisms for repetition suppression and are
both consistent with our behavioral results lends further
credence to our claim that change detection arises through a
single nondecision novelty detection process.

Conclusion

Our investigation was driven by the question of whether
detection of change on brief time scales is based on both
familiarity and novelty, or mainly on one of these signals.
Combining evidence from MEG recordings with theory-
driven analyses of choice response data allowed us to
identify that novelty detection likely underlies both detec-
tion of change and detection of sameness in a word change
detection task, as measured with same/different responses
and with go/no-go responses. Furthermore, we found
support for the claim that this novelty detection is enabled
by transient habituation of neural responses. This interpre-
tation contrasts with the central role of familiarity in
theories of episodic recognition memory, which operate at
much longer time scales. Such apparent discrepancies
across tasks suggest that cognitive processing flexibly
adapts to task demands, exploiting the dynamics of
different signals (e.g., short-lived novelty vs. long-lived
familiarity) that could aid performance.
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