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Abstract
Competing theories attempt to explain what guides eye movements when exploring natural scenes: bottom-up image salience 
and top-down semantic salience. In one study, we apply language-based analyses to quantify the well-known observation 
that task influences gaze in natural scenes. Subjects viewed ten scenes as if they were performing one of two tasks. We 
found that the semantic similarity between the task and the labels of objects in the scenes captured the task-dependence of 
gaze (t(39) = 13.083; p < 0.001). In another study, we examined whether image salience or semantic salience better predicts 
gaze during a search task, and if viewing strategies are affected by searching for targets of high or low semantic relevance 
to the scene. Subjects searched 100 scenes for a high- or low-relevance object. We found that image salience becomes a 
worse predictor of gaze across successive fixations, while semantic salience remains a consistent predictor  (X2(1, N=40) = 
75.148, p < .001). Furthermore, we found that semantic salience decreased as object relevance decreased (t(39) = 2.304; p 
= .027). These results suggest that semantic salience is a useful predictor of gaze during task-related scene viewing, and that 
even in target-absent trials, gaze is modulated by the relevance of a search target to the scene in which it might be located.

Keywords Visual search · Eye movements: cognitive · Natural image statistics

Introduction

Factors influencing gaze in scenes

There are multiple factors that drive where we decide to 
focus our gaze in everyday scenes. Because of this, the study 
of eye movements has become a widely utilized method in 
a variety of research areas. Gaze control in static scenes is 
comprised mainly of two components, fixations (periods of 
time where our eyes are relatively still) and saccades (peri-
ods of time where eyes are moving ballistically to a new 
fixation location). The human eye obtains the highest resolu-
tion information at the center of gaze (the fovea). Because 
visual sensitivity is reduced during saccades (Dorr & Bex, 
2013; Martin, 1974), the majority of spatial information is 

gathered during fixations. To obtain as much high-resolu-
tion information as possible, we move our eyes two to four 
times per second to fixate new locations in a scene (Buswell, 
1936).

Eye movements are strongly linked to attention, as overt 
attention requires us to direct our gaze to an object in order 
to attend to it. Objects attract attention in scenes (Stoll et al., 
2015) even without conscious effort (Kimchi et al., 2007), 
and further research suggests that this is exacerbated with 
unusual or incongruent objects (Henderson et al., 2019; 
Öhlschläger & Võ, 2017). Once fixated, attention spreads 
across the entire surface of the object (Duncan, 1984; Egly 
et al., 1994). Similarly, research shows that the viewer’s 
task also influences their eye movements (Castelhano et al., 
2009; Hayhoe et al., 2003; Nuthmann, 2017; Rothkopf et al., 
2016; Yarbus, 1967), as information in different discrete 
scene areas is necessary to complete different tasks (for a 
comprehensive review on visual search, see Eckstein, 2011). 
With these factors in mind, two prominent theories have 
been developed to explain what image features guide eye 
movements when viewing natural scenes: low-level image 
salience and high-level semantic salience.
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Image salience

Image salience theories posit that eye movements are 
guided by low-level, bottom-up factors such as varia-
tions in color, contrast, edge orientation, and bright-
ness. Because evidence suggests that both overt attention 
(Parkhurst et al., 2002) and gaze (Borji et al., 2013; Harel 
et al., 2007; Itti & Koch, 2001; Parkhurst et al., 2002) 
are guided by areas of high visual salience (areas that 
have high local variation in the above mentioned image 
features), many researchers have developed models that 
successfully predict human gaze based on these low-level 
image salience features (Borji et al., 2013; Harel et al., 
2007; Itti & Koch, 2001; Parkhurst et al., 2002; for review, 
see Pedziwiatr et  al., 2021; Yan et  al., 2021). For our 
experiments, we have elected to utilize graph-based visual 
saliency (GBVS; Harel et al., 2007), due to its availability 
as an open-source toolbox and its robustness and evaluated 
success in predicting human fixations. GBVS combines 
color, edge-orientation, and intensity conspicuity maps, to 
create salience heatmaps that predict human gaze.

Semantic salience

Semantic salience theories argue that eye movements are 
instead guided by high-level, top-down factors. These fac-
tors rely more on higher level cognitive processing and 
require prior knowledge of the world. Evidence suggests 
gaze is guided by a setting’s context (Castelhano et al., 
2009; Castelhano & Henderson, 2007; Hayes & Hender-
son, 2021; Henderson et  al., 2019; Yarbus, 1967) and 
locations necessary for future action (Hayhoe et al., 2003; 
Johansson et al., 2001; Land et al., 1999). Additionally, 
research shows that semantically related search targets 
are easier to find in scenes (Biederman et al., 1982; Dav-
enport & Potter, 2004; Henderson et al., 1999; Palmer, 
1975; Rémy et al., 2014). Evidence also demonstrates that 
the general contextual concept of a scene, or “gist,” can 
be extracted upon first glance (Friedman, 1979; Oliva, 
2005), and that this provides the viewer with predicted 
objects and their approximate spatial arrangements in a 
scene based on the prior knowledge of that type of scene 
(Henderson, 2003; Larson & Loschky, 2009; Nakamura, 
1994). This prior knowledge has been shown to guide eye 
movements in various ways, such as directing gaze toward 
areas where a target object is likely to be found (Võ et al., 
2019) and capturing the attention of objects that are incon-
sistent with their scene context (Bonitz & Gordon, 2008; 
Cornelissen & Võ, 2017; Henderson et al., 1999; Loftus 
& Mackworth, 1978; Võ & Henderson, 2009). Numer-
ous researchers have developed models that successfully 

predict human gaze based on these high-level semantic 
salience factors (Henderson et al., 2019; Hwang et al., 
2011; Nyström & Holmqvist, 2008; Onat et al., 2014; 
Rider et al., 2018; Rose & Bex, 2020; Stoll et al., 2015).

Present study

In this study, we attempt to provide further evidence that 
task influences gaze, coupled with a semantic salience-based 
analysis to demonstrate that the semantic understanding 
required for task completion can be quantified with language 
models. We also adapted a standard present/absent visual 
search task using high and low semantic relevance targets 
to examine how image salience and semantic salience-based 
predictions of gaze vary during search. Following classic 
studies in the literature (e.g., Yarbus, 1967), we hypoth-
esize that task will influence gaze, and furthermore, that 
gaze guidance is quantifiable with semantic context when 
performing a task. For our search task, we hypothesize that 
while image salience can be a reliable predictor of gaze 
guidance, especially at the start of a trial, its usefulness 
will decline once semantic understanding of the scene con-
text is processed. Similarly, we hypothesize that search for 
high-relevance semantic targets will be better predicted by 
semantic-salience, while fixations for low-relevance scene 
targets will be better predicted by image-salience.

Methods

Apparatus

MATLAB (The MathWorks, Inc., Natick, MA, USA) with 
Psychtoolbox (Brainard, 1997) was used to program the 
experiment, and MATLAB’s Text Analytics and Statistics 
and Machine Learning toolboxes were used to perform the 
analyses and create figures. R studio was used for all linear 
model analyses. The experiment was run on a Dell OptiPlex 
9020 desktop computer (Dell Inc. Round Rock, TX, USA) 
with a Quadro K420 graphics card (nVidia, Santa Clara, CA, 
USA). Stimuli were presented on a 60 cm x 34 cm BenQ 
XL2720Z LCD monitor (BenQ Corporation, Taipei, Taiwan) 
set to a screen resolution of 1,920 × 1,080 pixels at 120 
Hz. A chinrest was utilized to stabilize the head position of 
participants, who were seated 63 cm from the screen (width 
= 50.9°). Eye movements were recorded using an Eyelink 
1000 (SR Research Ltd. Mississauga, Ontario, Canada) with 
a sampling rate set to 1,000 Hz and utilizing the MATLAB 
Eyelink Toolbox (Cornelissen et al., 2002). We used the 
built-in Eyelink nine-point calibration and validation pro-
cedures at the beginning of the experiment and in between 
blocks. The eye-tracker error specified by the manufacturer 
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was 0.375°, and this value was used to specify the standard 
deviation of Gaussian error for fixation processing.

Stimuli

We used the LabelMe database (Russell et al., 2008) for 
selection of ten images (five indoor, five outdoor) for Experi-
ment 1 and 100 images (50 indoor, 50 outdoor) for Experi-
ment 2.The LabelMe database is a collection of natural 
scenes that have been manually annotated by human vol-
unteers. Because the database is open-source, some noise 
arises from the use of human volunteers, mainly in the form 
of unnecessary labels or incorrectly labeled objects (Rose 
& Bex, 2020). To counteract this, we manually reviewed 
and revised our images to ensure accurate labeling (for 
details, see Walter & Bex, 2022). We only selected large, 
clear images that had at least 15 unique objects and 75% of 
the image surface labeled. Source images ranged from 1,365 
x 1,024 pixels to 3,872 x 2,592 pixels and were resized to 
approximately 1,280 x 960 pixels onscreen with preserved 
aspect ratio and were presented in random order.

Image salience

To create the image salience maps, we ran our images 
through GBVS using the standard settings. GBVS creates 
three individual conspicuity maps: color, orientation, and 
intensity, and combines them to create a final heatmap of 
salient image features. Areas on the heatmap range from 
0 (low image salience) to 1 (high image salience). Areas 
with high image salience are areas that differ strongly from 
their surroundings in the corresponding feature (e.g., color: 
bright red traffic light against green trees; orientation: sharp 
roof edge against plain sky; intensity: bright window in a 
dark room).

Semantic salience

To quantify semantic information, we utilize Global Vectors 
for Word Representations (GloVe; Pennington et al., 2014), 
a pretrained regression model, due to its extensive database 
and established utility in the literature. Semantic similarity 
is quantified by how near two words fall in semantic space, 
which GloVe creates by categorizing words along feature 
dimensions and connecting them as a similarity web. The 
GloVe model can then compute a similarity score (0 = not 
similar, to 1 = identical) by comparing the angles and vec-
tor lengths between words in this semantic space. If any 
object was comprised of two words (e.g., “window blinds”), 
the vectors for each word part were taken individually and 
combined to find the nearest common word, using Glove’s 
vec2word function (in this example, the nearest common 
word was “window”).

GloVe has been operationalized for visual search in the 
Linguistic Analysis of Semantic Salience (LASS) model 
(Rose & Bex, 2020) and is one of the more recent and fre-
quently updated models to date. For this study, we used 
the pretrained word vector Common Crawl (840B tokens, 
2.2M vocab, cased, 300d vectors), which can be obtained 
at https:// nlp. stanf ord. edu/ proje cts/ glove/. To utilize GloVe 
with the LabelMe images, we used it in conjunction with 
LASS. LASS is computed in three steps: generating scene 
context labels (respective to task; see Procedure for details), 
generating scene object labels and masks (LabelMe), and 
calculating the semantic similarity scores between the object 
labels and context labels (GloVe) to then embed in the object 
masks, which assigns a similarity value to each pixel in the 
image for each scene label. The resulting product is a heat-
map of semantic salience features where areas range from 0 
(low semantic salience) to 1 (high semantic salience). Areas 
with high semantic salience are areas that are conceptually 
relevant in the scene, (e.g., a refrigerator in a kitchen; a car 
on a street; a bicycle in a park).

ROC analyses

In both experiments we utilized a receiver operating char-
acteristic (ROC)-based analysis to determine the prediction 
power of our image salience or semantic salience heatmaps. 
ROC curves are created by assessing the number of true 
positives (hits), true negatives (correct rejections), false neg-
atives (misses), and false positives (false alarms) at increas-
ing salience levels. Each metric is classified as follows: true 
positives are areas of heatmap that the model predicted and 
were fixated, misses are areas of heatmap the model pre-
dicted and were not fixated, correct rejections are areas of 
heatmap that were not predicted and were not fixated, and 
false positives are areas of heatmap that were not predicted 
and were fixated. We used a Matlab AUC extension from 
Judd et al. (2012) called AUC_Judd, which calculates the 
true positive and false positive rate from the above-men-
tioned metrics. The true positive rate, or sensitivity, is equal 
to true positives / (true positives + false negatives). The false 
positive rate is equal to 1 – specificity, where specificity is 
true negatives / (true negatives + false positives). In this 
way, an ROC curve is generated from finding these values 
at increasing salience levels, and the area under the resulting 
ROC curve (AUROC) is the prediction power of the salience 
map, given a subject’s gaze.

Participants

Forty subjects (31 female, nine male) between the ages of 17 
and 20 years were recruited from the Northeastern Univer-
sity undergraduate population. Thirty-eight subjects received 
course credit as compensation for their participation, and 

https://nlp.stanford.edu/projects/glove/
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two subjects received monetary compensation. Sample size 
was determined using a power analysis with the means of 
image salience and semantic salience and average standard 
deviation from previous work (Walter & Bex, 2022), an 
alpha of .05, and a desired power of .80. In order to main-
tain a balanced design, the total subject count needed to be a 
multiple of 4. Because the effect size of our previous results 
was high (d = 7.424), we decided to use a similar number 
of subjects (N = 30), but as a multiple of 4. Subjects were 
required to complete a demographic questionnaire and sign a 
consent form approved by the Institutional Review Board at 
Northeastern University before participation in this experi-
ment. Thirty-one subjects reported English as their first 
language, and of the remaining nine, eight reported being 
fluent in English while one reported they were still learning 
English. However, none of the subjects reported difficulty 
in completing the task due to a lack of understanding during 
the search task. This experiment was performed in accord-
ance with the tenets of the Declaration of Helsinki. IRB #: 
14-09-16 - Psychophysical Study of Visual Perception and 
Eye Movement Control.

Subjects underwent a vision screening procedure before 
the experiment (for details, see Bex & Skerswetat, 2021). 
They were tested for acuity, color detection, and depth. 
These tasks were presented in random order for each sub-
ject. All subjects had normal acuity and color vision; four 
subjects had deficiencies in at least one spatial frequency 
during our depth task.

Procedure

Experiment 1: Simulated task

In our first study, subjects (N = 40) were given a simulated 
task to carry out when viewing a scene. There were ten 
scenes, five indoor and five outdoor, taken from the LabelMe 
database (Russell et al., 2008). Each scene was assigned two 
possible tasks, for example, in a kitchen scene, the tasks were 
either “make a cup of tea” or “unload the dishwasher.” Each 
subject randomly received one of these two tasks, and tasks 
were balanced across subjects. Subjects were instructed to 
view the scene as if they were accomplishing the task. Sub-
jects were instructed to press the spacebar when finished 
with each imaginary task. Analysis for the simulated task 
focused only on semantic salience. We calculated a semantic 
salience heatmap for the two simulated tasks for each image; 
each heatmap represented the similarity between each object 
and each task. To generate scene-context labels, we used the 
task as our scene descriptor. Because GloVe does not accept 
multiple words as a single input, we broke our tasks down 
into only the main words excluding prepositions (e.g., “Read 
a book by the fire” became “Read,” “book,” and “fire”), then 

calculated the individual heatmaps for each word and aver-
aged those maps together.

In one analysis, we examined the semantic salience val-
ues for image content at the locations of individual fixations 
during a trial. We used Eyelink’s built in fixation detection 
to parse out the fixations within each trial. In a further anal-
ysis, we used all gaze data to perform an ROC analysis. 
We calculated the area under the receiver operating char-
acteristic curve (AUROC) score for gaze that overlapped 
with each semantic salience heatmap. The average fixation 
and AUROC for each subject and simulated task across 
all ten scenes/tasks were compared between matched and 
unmatched (task not presented to the subject) heatmaps 
(Fig. 1).

Experiment 2: Search task

In our second study, subjects (N = 40) viewed 100 scenes 
(50 indoor, 50 outdoor), while searching for a target object. 
The name of the target object was displayed as a word in 
the center of the screen before the scene for 2 s and was 
then replaced with the search scene, thus all subjects began 
the task with fixation at the screen center. Subjects were 
instructed to search the scene for the target object and use 
the mouse to click on the object once located. Target objects 
were present in 50% of trials. If the target object was not 
present, subjects were instructed to click a box labeled “no 
object” that was below the scene. In the target-absent trials, 
the target was either high relevance (25%) or low relevance 
(25%). Feedback was provided between trials. There was 
a break after 50 trials, and the eye tracker was recalibrated 
after the break. Recalibration could occur at any point in 
between trials, if the experimenter supervising the Eyelink 
monitor noticed significant drift or loss of tracking.

To generate scene context labels, we used PlacesCNN 
(Zhou et al., 2014) to generate the top five most likely scene 
labels for each image. PlacesCNN is a convolutional neu-
ral network that contains over 7 million labeled scenes and 
is capable of generating scene labels for newly provided 
images. The mean semantic similarity of the top five scene 
labels was used to estimate the similarity of each object to 
the scene in which it was located.

We took care to ensure the target-present and target-
absent conditions were equally weighted with semantic rel-
evance. For each scene, we listed all other scenes that had 
at least one matching scene label from the top five matches 
provided by PlacesCNN. We then found the object similarity 
values for all objects in the target scene, as well as all object 
similarity values in each non-target scene with a matching 
scene label. To select a target-absent search object, we cross-
referenced these objects and their similarity scores to each 
scene and chose the target-absent object with the highest 
similarity with a score within 5% similarity within the target 
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scene (but was not present in the scene). For example, if a 
target scene had the label “kitchen,” we searched all other 
scenes with a “kitchen” label for potential target-present 
objects and target-absent objects. Target-absent objects 
were required to have a similarity score with the scene label 
that was within 5% of the target-present object in the target 
scene but was not present in the target scene. These were 
considered “high-relevance” targets. Based on this criterion, 
we ensured that the target-present and target-absent objects 
were equally semantically relevant in the scenes presented.

We also chose an additional set of target-absent objects 
that were within 15% semantic relatedness to the present 
object. These were considered “low-relevance” targets. 
Because the potential target objects were taken from other 
scenes with similar object labels, these targets were similar 
enough within the scene that they were not highly improb-
able objects (e.g., a penguin in a kitchen), but they were less 
relevant than the object-present and high-relevant object-
absent targets. For example, in one kitchen scene, the present 
object was “stove” (similarity = 0.450), the high-relevance 
absent object was “dishes” (similarity = 0.454), and the low-
relevance absent object was “bucket” (similarity = 0.308).

We manually checked the most relevant objects to ensure they 
were suitable targets. We started with the most relevant (highest 
semantic similarity to the scene label) target-present object and 
worked down. If there was an issue with the most relevant object 
(e.g., corresponding target-absent object was present in the scene 
but unlabeled, target was ambiguous or could be mistaken for a 
different object, there were multiple versions of the object within 
the scene, etc.), we checked the next most relevant object, and 
continued until a suitable pair of objects was found.

As in the simulated task, we calculated both fixation 
and AUROC scores for both image salience and semantic 
salience heatmaps. On average, the GBVS model produces 
heatmaps with more low-salience areas compared to the 
GloVe model. In order to normalize the image salience 
and semantic salience maps (to allow better comparison 
between methods), we divided our image salience maps 
into the same number of discrete areas as the number of 
objects in the matching semantic salience map. This was 
performed to ensure an equal distribution of discrete areas 
between both map types. This was done by generating a 
linearly spaced vector with a number of points equal to the 
number of objects in a given scene, then grouping the image 

Fig. 1  Example of a scene presented to a subject (A), the semantic 
salience heatmap for the task presented to the subject (Matched) (B), 
and the semantic salience heatmap for the task not presented to the 

subject (unmatched) (C). Red X’s represent subject’s gaze (note that 
in unmatched case (C), gaze is reproduced from matched case (B), as 
subject did not perform the unmatched task)
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salience heatmap into the levels specified by that vector. We 
applied a Gaussian smoothing (σ = 0.375°) to both maps 
to accommodate uncertainty in fixation location from eye 
tracker imprecision (Fig. 2).

Results

Simulated task

Out of 400 trials, one trial was removed due to missing eye-
tracker data (0.25%).

A paired-samples t-test found that fixation scores for 
matched cases were significantly higher than that of unmatched 
cases (t(39) = 9.714; p < 0.001), and a large effect was found (d 
= 1.536), suggesting that subjects search a scene in correlation 
with the semantic content of the task being performed (Fig. 3).

Similarly, a paired-samples t-test found that AUROC 
scores for matched cases were significantly higher than that 
of unmatched cases (t(39) = 13.083; p < 0.001), and a very 
large effect was found (d = 2.069), in line with the fixation 
analysis (Fig. 4).

Fig. 2  Example of a presented scene (A) and its corresponding image salience (GBVS; B) and semantic salience (GloVe; C) heatmaps

Fig. 3  Average salience scores at fixation points for matched and 
unmatched cases. Gray lines represent difference in average scores for 
individual subjects. Black line represents mean decrease. Red lines 
represent median values
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Search task

Out of 4,000 trials, 20 trials were removed due to missing 
eye-tracker data (0.50%).

Reaction time

A one-way ANOVA showed that reaction time was signifi-
cantly faster for the target present condition (x̄ = 1.983 s, 
σ = 1.477 s) than the target absent high semantic salience 
(x ̄ = 4.373 s, σ = 2.581 s) and low semantic salience (x ̄ = 
4.434 s, σ = 2.716 s) conditions (both p < .001); and the 
high and low conditions were not significantly different from 
one another (p = .976).

Fixations for high and low semantic relevance 
targets

Figure 5 shows the average image and semantic salience 
score across all fixations, split across trials where targets 
had high or low semantic salience. A paired-samples t-test 
found that semantic salience was an overall better predictor 
of gaze than image salience (t(39) = -57.089, p < .001), 
and a huge effect was found (d = 6.383). A paired-samples 
t-test found that model predictions did not change between 
target objects with high semantic salience and those with 
low semantic salience for image salience (t(39) = 0.957; p 
= .345; d = 0.151), but significantly decreased for semantic 
salience (t(39) = 2.337; p = .025; d = 0. 370) heatmaps.

For number of fixations, a one-way ANOVA showed that 
there were significantly fewer fixations made in the target-
present condition (x ̄ = 6.136, σ = 4.784) than the target-
absent high-semantic salience (x ̄ = 14.639, σ = 8.710) and 
low-semantic salience (x̄ = 15.044, σ = 9.118) conditions 

(both p < .001); and the high- and low-semantic salience 
conditions were not significantly different from one another 
(p = .902).

ROC for high and low semantic relevance targets

Figure 6 shows AUC for analysis of fixations predicted by 
image salience (blue) and semantic salience (red) heatmaps 
for search targets with high or low semantic similarity with 
the scene. A paired-samples t-test found that image salience 
was an overall better predictor of gaze than semantic sali-
ence (t(39) = 49.591, p < .001, d = 7.841). A paired-samples 
t-test found that model predictions did not change between 
target objects with high semantic salience and those with 
low semantic salience for image salience (t(39) = 1.130; p 

Fig. 4  As Fig. 3, for AUROC (area under the receiver operating char-
acteristic curve) scores

Fig. 5  Average salience scores at fixation points for image salience 
(blue) and semantic salience (red), separated across target-absent 
objects with high semantic salience and target-absent objects with 
low semantic salience. Light blue and red lines represent trends 
within individual subjects. Red lines within boxplots represent 
median values. Black lines connecting box plots represent mean val-
ues



 Attention, Perception, & Psychophysics

= .265; d = 0.179) but significantly decreased for semantic 
salience (t(39) = 2.304; p = .027; d = 0. 364) heatmaps.

Fixations across time

We recorded the salience value at each fixation location for 
both image and semantic salience heatmaps. For each fixa-
tion throughout each trial, we calculated the average salience 
score across subjects and images. Figure 7 shows boxplots of 
image salience (blue) and semantic salience (red) for the first 
to the tenth fixation through the trial. A paired-samples t-test 
found that semantic salience was an overall better predictor 
of gaze than image salience (t(39) = -14.631, p < .001, d = 
2.313). A linear mixed model analysis showed a significant 
interaction between salience type and fixation number where 
image salience decreased with increasing fixation number 
and semantic salience remained constant throughout tri-
als  (X2(1, N = 40) = 75.148, p < .001). This analysis also 
showed a significant interaction between salience type and 
target condition, where semantic salience increased with tar-
get relevance  (X2(1, N = 40) = 17.029, p < .001).

Discussion

When viewing scenes, we make multiple fixations that 
bring the high-resolution fovea onto different locations in 
the scene for detailed visual analysis. A number of low-level 
and high-level approaches have been developed to predict 
the probability that a given location in a scene will be fix-
ated. In Experiment 1 we asked subjects to view scenes as 
if they were carrying out one of two imaginary tasks. We 
calculated matched and unmatched fixation and AUROC 
scores by overlaying subject’s gaze atop the task-relevant 
heatmap of their performed task (matched) and compared 
that same gaze to the task-relevant heatmap of the task they 
did not receive (unmatched). We found that both fixation 
and AUROCs were significantly and consistently higher for 
matched cases compared to unmatched cases, confirming 
many previous reports that task is related to gaze – but here 
we show that task-related gaze can be quantified using an 
automated semantic based language analysis without human 
scoring of semantic similarity. Thus, our results confirm that 
task can moderate fixation behavior in a manner that can-
not be predicted by image salience approaches. It should be 
noted that while this experiment had far fewer trials than 
Experiment 2, we still found a robust effect that demon-
strates the strong influence of task during gaze. Our results 
show that language-based models of the semantic relation-
ships among objects and tasks may provide a quantitative 
mechanism that captures part of this change.

In our second study, subjects completed a present/absent 
visual search task where targets were of either high or low 

Fig. 6  As Fig. 5, for AUC (area under the curve) scores

Fig. 7  Salience scores for image salience (blue) and semantic sali-
ence (red) across number of fixations. For figure simplicity, only 
fixation numbers 1 through 10 are displayed. Boxplots represent sum-
mary statistics of all subjects at each fixation number. White circles 
with black centers represent median values. Black lines connecting 
boxplots represent mean values. Unfilled circles represent outliers
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semantic relevance. In line with many previous studies, par-
ticipants had significantly higher reaction times and made 
significantly more fixations when searching for absent tar-
gets compared to present targets (for review, see Wolfe et al., 
2010). Here we show that subjects searched for approxi-
mately the same amount of time and made approximately the 
same number of fixations when searching for absent targets 
of both high and low semantic relevance. This suggests that 
participants were not confounded by low-relevance targets 
and continued to search for them as long as for high-rele-
vance targets.

Using both image salience and semantic salience heat-
maps, we calculated the salience of successive fixations and 
additionally calculated AUROC scores using all gaze per 
trial. We found that image salience does not predict gaze 
differently when searching for high- or low-relevance tar-
gets, which is to be expected since there is no a priori reason 
for them to be lower in feature contrast. However semantic 
salience is lower for low-relevance targets and therefore is a 
worse predictor. This makes sense, as high-relevance targets 
have more predictable locations in the scene based on their 
normal semantic context (e.g., a dishwasher is typically near 
a sink in a kitchen, see Võ, 2021), but low-relevance targets 
do not have the same predictability (e.g., where would a 
bucket be found in a kitchen? On the counter? On the floor? 
On a chair?). In another sense, low-relevance targets do not 
hold strong associations to “anchor objects”. Anchor objects 
are objects which generally influence the predicted spatial 
position of other objects (Boettcher et al., 2018; Draschkow 
& Võ, 2017). For example, a desk may serve as an anchor for 
a computer, a bowl as an anchor for a spoon, or a sink as an 
anchor for soap. Low relevance targets in this study are less 
likely to have anchor objects and thus do not benefit from the 
semantic priming of anchors, so gaze is not usefully guided 
by related objects in these scenes. It has been reported that 
incongruent objects draw gaze when viewing scenes (Coco 
et al., 2020; Friedman, 1979; Henderson et al., 1999; Öhls-
chläger & Võ, 2017; Pedziwiatr et al., 2021; Underwood & 
Foulsham, 2006), however our results demonstrate an addi-
tional conclusion: even in the absence of an object, gaze 
strategies are impacted when searching for a semantically 
unrelated target.

Additionally, we hypothesized that objects with high 
semantic similarity with a scene might benefit more from 
this semantic-based knowledge, while objects with low 
semantic relevance would benefit less and depend more on 
an image-based search strategy. However, while we deter-
mined that search strategies for objects with high semantic 
salience are better predicted by semantic salience models 
than objects with low semantic salience, we found no differ-
ence in image salience predictions. Our original hypothesis 
had assumed that the decline of one strategy would result 
in the increase of another, however we found that this is 

not necessarily the case. Upon further reflection, this result 
is somewhat unsurprising, given that semantic relevance 
should not affect spatial feature contrast.

We also found that over time, semantic salience remained 
a consistent predictor of fixations, while image salience 
became a less reliable predictor after 3-4 fixations. The lat-
ter result is consistent with the predictions of image salience 
approaches, which have demonstrated that image salience is 
a more prominent factor in search when the image is immedi-
ately presented, but as context of the scene begins to become 
apparent, it becomes less reliable (Parkhurst et al., 2002). In 
other words, as soon as a scene is presented, image salience 
is a driving factor in gaze-guidance, but rapidly becomes 
less utilized once the semantic context is understood (within 
approximately 3-4 fixations). However, it should be noted 
that many salience models, including GBVS, exhibit a cen-
tral bias prediction which can potentially be attributed to this 
decline. It is possible that the decrease in prediction power 
of the image salience model is simply an artifact of a ten-
dency to look at the center of the scene at presentation, and 
then shift fixations around the image as time goes on (Tatler 
et al., 2005). In the resent study, the word cue for the search 
target was presented at the center of the display for 2 sec-
onds before each trial. Although observers may have fixated 
away from the word during the cue phase, participant fixa-
tions were therefore biased towards the center of the display, 
which would potentially increase the AUC for GBVS. Center 
bias is not a contributing factor in the GloVe model, as it is 
unrelated to the semantic salience of the objects (Rose & 
Bex, 2020).

The AUC method has been criticized with the introduc-
tion of newer models, many of which are complex neural 
networks. However, AUC is included in the “similarity 
cluster” of a variety of different gaze measuring metrics, 
including Normalized Scanpath Saliency, Pearson’s Cor-
relation Coefficient, Earth Mover’s Distance, and Similar-
ity or Histogram (Bylinskii et al., 2019). In other words, it 
performs similarly in a pairwise comparison (between 0.80 
and 0.99) to these additional metrics. With this in mind, we 
find it important to discuss the results of our ROC analysis 
in more detail.

We find that in the ROC analysis, image salience con-
sistently outperforms semantic salience approaches because 
ROC analyses penalize gaze that does not land in predicted 
locations. AUC metrics ignore low-valued false positives 
(Judd et al., 2012), and as a result, using a model that rates 
the majority of areas as low salience increases the odds of 
performance. Because all objects in a kitchen are generally 
semantically kitchen-related, the majority of areas around 
the scene have high similarity scores with the scene descrip-
tion. Not attending these locations lowers the overall AUC 
when performing an ROC analysis. In contrast, the GBVS 
model only rates a few discrete areas as having high image 
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salience, so the model scores much higher. These factors 
should be considered when performing comparison analy-
ses with these methods, and so an additional comparison is 
detailed in our fixation-based analyses. The fixation analyses 
take the raw heatmap value of where all fixations land on a 
scene and average them together for a mean prediction score. 
This does not consider false positives or misses, and rather 
focuses on just what the participant actually viewed dur-
ing the scene. The limitation of this approach, however, is 
again the counterbalance of heatmap values between image 
and semantic salience (where image salience has mainly low 
values, and semantic salience has mainly high values).

We find this discrepancy between the AUC and fixation 
analyses important to discuss, as it demonstrates how two 
methods can produce seemingly opposite results. We also 
find it important to note that the significant decrease in pre-
diction power of the semantic salience model when search-
ing for low-relevance targets is consistent in both the fixation 
and AUC analyses. It is interesting that the prediction power 
of the two models is flipped between these analyses (image 
salience being better under AUC, semantic salience being 
better under fixation), but the overall trends between high 
and low targets remain consistent. Because of this, we stress 
the trends within the analyses, rather than focus on which 
model is a better predictor in which context.

Overall, we establish the principal that semantic infor-
mation carries significance when viewing scenes and that 
gaze can be guided under the semantic properties of a given 
task, and our analysis demonstrates that this guidance can 
be quantified through the application of language models to 
semantic analysis. We also illustrate that even in the absence 
of a target object, gaze strategies are still modulated by the 
semantic relevance of the target search object.
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