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Abstract
Infants cannot be instructed where to look; therefore, infant researchers rely on observation of their participant’s gaze to 
make inferences about their cognitive processes. They therefore started studying infant attention in the real world from early 
on. Developmental researchers were early adopters of methods combining observations of gaze and behaviour with electro-
encephalography (EEG) to study attention and other cognitive functions. However, the direct combination of eye-tracking 
methods and EEG to test infants is still rare, as it includes specific challenges. The current article reviews the development 
of co-registration research in infancy. It points out specific challenges of co-registration in infant research and suggests ways 
to overcome them. It ends with recommendations for implementing the co-registration of EEG and eye-tracking in infant 
research to maximise the benefits of the two measures and their combination and to orient on Open Science principles while 
doing so. In summary, this work shows that the co-registration of EEG and eye-tracking in infant research can be beneficial 
to studying natural and real-world behaviour despite its challenges.
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Introduction: History of controlled 
laboratory paradigms

In the real world, people can shift their attention relatively 
freely and direct it towards objects they are curious about. 
However, for a long time, neuroscientific research has 
instructed participants where to look in controlled labora-
tory studies. Eye movements have been avoided as they can 
induce large artefacts in neuroimaging data recording (Corby 
& Kopell, 1972; Croft & Barry, 2000; Joyce et al., 2004; 
Luck, 2005). Therefore, adult participants were instructed 
not to move their eyes when neural mechanisms of attention 
were studied (e.g., Anllo-Vento & Hillyard, 1996; Eimer et al., 
2002, 2005; Martinez et al., 1999; Praamstra & Oostenveld, 
2003; Shomstein et al., 2012; Yamaguchi et al., 1994, 1995) 
even though the suppression of eye movements can lead to 
less natural brain responses (Kulke, 2019; Kulke, Atkinson, 
& Braddick, 2016a; Perry & Zeki, 2000).

However, it is not possible to instruct infants and prever-
bal populations on how to behave and where to look. Instead, 
infant researchers have observed infants’ natural eye move-
ments. Very early studies usually relied on an experienced 
‘blind’ adult observer judging the time and direction of the 
infant’s eye movements and making a manual response (e.g., 
Atkinson et al., 1992; Richards, 2005) or frame-by-frame 
video analysis of eye movements (e.g., Butcher et al., 2000; 
Elsabbagh et al., 2013; Hood & Atkinson, 1993; Hunnius & 
Geuze, 2004; Hunnius et al., 2008; Matsuzawa & Shimojo, 
1997).

Many classic studies used infants’ natural gaze behaviour 
to develop eye-movement-based paradigms to measure infant 
development, for example, attention development (Atkinson 
et al., 1988, 1992; Hood & Atkinson, 1993; Kulke et al., 
2015), social development (e.g., Kulke & Rakoczy, 2018; 
Low & Watts, 2013; Southgate et al., 2007; Surian & Geraci, 
2012) and moral development (Hamlin et al., 2007). These 
gaze-based paradigms include habituation paradigms, in 
which an object or situation is presented to an infant, and their 
gaze towards it decreases during the repetitive presentation 
but increases again when a novel stimulus is presented 
(Baillargeon et al., 1985; Cohen, 1976). In particular, violation 
of expectation looking-time paradigms (Onishi & Baillargeon, 
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2005) make use of the natural behaviour of infants to look 
longer at an event or object that violates their expectation 
(for an overview, see Margoni, Surian, & Baillargeon, 2023). 
These paradigms allow us to determine if infants can detect 
unusual events. Preferential looking paradigms (Johnson 
et al., 1991; Spelke, 1985) have been used from birth on and 
even before birth to determine if infants have a preference for 
certain stimuli. Anticipatory looking paradigms measure if 
infants look in anticipation to a location where they expect 
something interesting to appear (Bower et al., 1971; Bower, 
1974; Kulke, Reiß, Krist, & Rakoczy, 2018a; Senju et al., 
2009; Southgate et al., 2007). Gaze shift paradigms such 
as the Fixation Shift Paradigm or Gap/Overlap Paradigm 
have been used to measure early attention (Atkinson & 
Hood, 1993; Atkinson et al., 1988, 1992; Hood & Atkinson, 
1993). In this paradigm (Fig. 1), infants are presented with 
a central fixation stimulus followed by either one peripheral 
target (non-competition condition) or a peripheral and a 
central target that are competing for attention (competition 
condition) (Atkinson et al., 1988, 1992; Hood & Atkinson, 
1993). Early pioneering work demonstrated that very young 
newborns have difficulty in disengaging attention when two 
targets are competing for attention, while they are able to shift 
attention to single targets in the non-competition condition 
(Atkinson et al., 1988, 1992; Braddick & Atkinson, 2011; 
Hood & Atkinson, 1993). Even before modern eye-tracking 
tools were used in laboratories, these paradigms allowed us 
to measure overt attention in typical and atypical populations 
(Atkinson et al., 2003, 2008; Elsabbagh et al., 2009; Gliga 

et al., 2014; HIE, Mercuri et al., 1997, 1999). Research on 
attention of infants who had one cortical hemisphere removed 
(hemispherectomised children) (Braddick et al., 1992) further 
inspired theories about the neural mechanisms underlying 
attention development by Braddick and Atkinson (2011) 
and Johnson (2001) before co-registration of EEG and eye-
tracking was possible.

Paradigms measuring natural eye-movement behaviour 
as overt attention, therefore, flourished in infant research. In 
the meantime, most neuropsychological laboratory research 
on adults instructed participants to keep their fixation still to 
avoid eye-movement artefacts (Corby & Kopell, 1972; Croft 
& Barry, 2000; Joyce et al., 2004; Luck, 2005), although some 
examples also investigated free viewing and reading in adults 
(Csibra et al., 1997; Dimigen et al., 2011; Huber-Huber et al., 
2016, 2021; Kulke, 2019; Kulke et al., 2016a, 2020; Kulke, 
Brümmer, Pooresmaeili, & Schacht, 2021a, 2022a).

Infant research therefore started early on to investigate 
attention with natural eye movements (e.g., Atkinson et al., 
1988, 1992; Hood & Atkinson, 1993; Kulke et al., 2015) and 
in the real world (e.g., Aslin, 2009; Smith et al., 2015; Yoshida 
& Smith, 2008). Although the infant’s natural eye movements 
offered invaluable information, the cognitive mechanisms 
underlying their gaze behaviour were still unrevealed because 
of infants’ limited verbal skills. Thus, developmental scien-
tists quickly developed an interest in measuring neural pro-
cesses to identify what infants can perceive and which cog-
nitive processes underlie their behaviour. EEG is considered 
a particularly useful method to study cognitive processes in 
infants (DeBoer et al., 2007; Johnson et al., 2001; Luck & 
Kappenman, 2011; Thomas & Casey, 2003). EEG had already 
been implemented as a reliable measure of neural responses 
in infants (for a review, see e.g., Braddick & Atkinson, 2011; 
MCculloch, 2013). Visually Evoked Potentials (VEPs) can 
be used from birth onwards (Fielder et al., 1983; Lee et al., 
2012a), and their development across ages had been mapped 
(Barnet et al., 1980a; Fielder et al., 1983; Lee et al., 2012a, 
2012b; McCulloch, 2007; McCulloch & Skarf, 1991; Nelson 
& McCleery, 2008). Attention affects the amplitudes of visu-
ally evoked potentials in infants (de Haan, 2007; Reynolds & 
Richards, 2005; Richards, 2000, 2005) and attentional process-
ing in infants is furthermore reflected in a central negativity (de 
Haan, 2007; Richards, 2003), showing that attentional modula-
tions could be detected using EEG.

Infant researchers, therefore, started early on to combine 
gaze measures and EEG. Even before eye-tracking was 
implemented in infant research, early infant work allowed 
infants move their eyes freely while measuring EEG (e.g., 
Csibra et al., 1998). Csibra et al. (1998) measured fixation 
shifts in infants and simultaneously recorded EEG. They 
computed event-related potentials as well as fixation-related 
potentials by determining eye movements from ocular elec-
trodes. This allowed them to gain a picture of attention in 

Fig. 1  The Fixation Shift paradigm (Atkinson et  al., 1988, 1992; 
Hood & Atkinson, 1993) is an early attention shift paradigm that 
presents infants with a central stimulus (e.g., a face) followed by a 
peripheral target that is either competing for attention with the first 
stimulus (Competition condition) or not (Non-competition condition). 
This paradigm was the first paradigm in which infant researchers 
co-registered eye-tracking with EEG to study attention development 
(Kulke et al., 2016b)
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the first year of life. Additionally, researchers started to com-
bine video recordings of gaze with EEG to measure novelty 
preference (e.g., Reynolds et al., 2010). In 2010, a combina-
tion of EEG and behavioural measures was recommended 
in infant research, although studies were rare (Reynolds & 
Guy, 2012).

When more reliable eye-tracking methods were available, 
the classic infant attention paradigms, which previously used 
manual gaze coding or video recording of gaze, were com-
bined with eye-tracking to automatically process gaze data 
(e.g., Kulke et al., 2015). This automatization made it pos-
sible to combine eye-tracking and EEG in infants (Fig. 2). 
To implement this new co-registration of methods, as a first 
step, classic infant attention paradigms were combined with 
eye-tracking and EEG and tested with adult populations to 
determine if this combination was possible, which was the 
case (Kulke et al., 2016a). Kulke et al. (2016b) were the first 
to implement co-registered EEG and eye-tracking in infants 
to study attention. They used the Fixation Shift Paradigm to 
measure attention shifts in infants between 1 and 8 months 
old with simultaneous eye-tracking and EEG, showing that 
attention shift latency decreased with age, coinciding with 
a restructuring of neural responses. The findings could add 
to the understanding of neural underpinnings of attention 
from this earlier work (Braddick & Atkinson, 2011). Only 
very few EEG and eye-tracking co-registration studies have 
been conducted in infants since then. Bache et al. (2017) 
combined eye-tracking and EEG in 10-month-old infants 
to investigate differences in the processing of continuous 
compared to interrupted videos, showing effects on both 
gaze and rhythmic neural brain activity. Monroy et  al. 
(2019) combined EEG and eye-tracking to study the learn-
ing of action sequences in 8- to 11-month-olds. Tan et al. 
(2022) simultaneously recorded EEG and eye movements in 
5-month-olds in response to audio/visual speech, showing 
a relation between infants’ gaze to the mouth of a speaker 
and their cortical tracking of visual speech, as well as devel-
opments until adulthood. Eye-tracking can also be used as 

a gaze control mechanism for EEG studies with infants to 
ensure that they fixate on the stimuli of interest, which can 
improve data quality for 3- to 4-month-olds (Ahtola et al., 
2017).

Most recently, infants’ and young childrens’ gaze (meas-
ured with web-cam-based tracking) and EEG have simulta-
neously been recorded during live interactions with confed-
erates during a waiting-room paradigm (Kulke, Ertuğrul, 
& Reyentanz, 2022b; Kulke et al., 2023; Kulke, Ertuğrul, 
Reyentanz, & Thomas, 2021b). This research was, for the 
first time, able to show that infants avoid staring at strangers 
as indicated by their gaze, even though they are interested in 
them, as indicated by their EEG alpha power (Kulke et al., 
2023, Kulke, Ertuğrul, et al., 2021b). It furthermore shows 
that the combination of EEG and eye-movement measures 
in real-life situations can be particularly useful, as behaviour 
in live interactions differs from behaviour towards videos or 
pictures. Co-registration of EEG and eye-tracking in infants 
in real-world settings is therefore a useful option to investi-
gate new hypotheses in infant research (Kulke et al., 2023).

However, co-registration is still rare in infants due to 
its methodological challenges, which can lead to data loss 
even if co-registrations are desired (e.g., Köster et al., 2021). 
Instead, studies have used eye-tracking and EEG paradigms 
subsequently instead of simultaneously (Falck-Ytter et al., 
2021; Köster et al., 2021; Martin & Becker, 2018) or tested 
older children, for example, from 8 to 12 years of age 
(Vettori, Dzhelyova, et al., 2020a, Vettori, Van der Donck, 
et al., 2020b), 3 to 5 years of age (Cowell & Decety, 2015), 
or 6 years of age and over (Langer et al., 2017).

Opportunities for co‑registered EEG 
and eye‑tracking in infants

In the following sections, opportunities for and challenges of 
co-registering EEG and eye-tracking in infants are reviewed.

Natural eye movements

The co-registration of EEG and eye-tracking in infants 
brings some new advantages. The combination can be used 
in very young infants and in preverbal populations (Kulke, 
2015). It allows infants to move their eyes freely, which is 
required due to their lack of understanding of instructions. 
It, therefore, permits a combination of classic gaze-based 
infant paradigms with neural measures, allowing a deeper 
understanding of the mechanisms underlying behavioural 
and cognitive mechanisms in infants.

Gaze-contingent eye-tracking furthermore allows 
researchers to adjust the research procedure to infants’ gaze 
patterns during the test session (Kulke, 2015). Gaze-contin-
gent programming of experiments can also save time if the 

Fig. 2  Infant co-registration set up: The infant is seated on the car-
egiver’s lap, wears an EEG cap, and is presented with stimuli while 
an eye-tracker (under the monitor) tracks the gaze
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program automatically continues when the infant is looking, 
and no additional control by the experimenter is necessary 
(Kulke et al., 2016b).

Fixation control

Eye-tracking can be used for gaze control in neuroscientific 
studies (e.g., Domínguez-Martínez et al., 2015). As infants 
cannot be instructed to stay still, this helps ensure that EEG 
data are only analysed when infants are fixating on the target 
of interest (Ahtola et al., 2017). It can also help exclude the 
possibility that findings in EEG data of infants are related to 
microsaccades (Köster, 2016).

Improved artefact control

Co-registered gaze data can also improve artefact identifica-
tion in the infants’ data. As eye movements of infants cannot 
be avoided through instructions, their measurement makes 
it possible to improve artefact rejection using modern tool-
boxes (Dimigen et al., 2011), which can be useful in infant 
populations (Kulke, 2015). These toolboxes make use of 
the co-registered eye-tracking data to detect instances with 
eye artefacts and improve independent component analysis 
(ICA) quality (Dimigen et al., 2011). Another example of 
avoiding eye-movement artefacts is analysing EEG data only 
during time periods when no eye movements occurred, with 
eye-tracking data being used to exclude trials with eye move-
ments (Kulke, 2015).

Filters should be avoided as they can distort even eye-
movement-free data in datasets with frequent eye movements 
(Kulke & Kulke, 2020). This occurs because eye-movements 
induce large voltage changes, similar to a rectangular pulse. 
If a high-pass filter is applied to such a pulse in the fre-
quency domain, the lower frequencies are blocked or weak-
ened. If the frequency-domain data are transformed back 
to the time-domain using a Fast Fourier Transformation, 
the voltage changes induced by the lack of low-frequency 
oscillations due to the high-pass filter affects slopes in the 
vicinity of the rectangular pulse (i.e., eye movement). This 
results in a filter error revealing itself as a higher slope of the 
opposite polarity before and after the eye movement (Kulke 
& Kulke, 2020).

Studying saccade‑related processes

Another application is the investigation of saccade-related 
potentials. However, it should be noted that this is also possi-
ble without the use of eye-tracking, as even before sufficient 
infant-friendly eye-trackers were on the market, researchers 
already succeeded in using ocular electrodes to measure hor-
izontal eye movements simultaneously with EEG in infants 
(Csibra et al., 1998).

Conceptual advantages

In infant research, gaze has been used as an indicator of 
attention for several decades (Atkinson et al., 1988, 1992; 
Hood & Atkinson, 1993; Kulke et al., 2015). And although 
gaze and attention can overlap, they can also differ. For 
example, infants can shift attention covertly (Richards, 2000, 
2005). This may be one of the reasons why infant studies 
that use gaze measures sometimes show mixed findings. For 
example, if infants look longer at a stimulus, this is some-
times interpreted as preference for novelty and sometimes 
as preference for familiarity (Houston-Price & Nakai, 2004; 
Wetherford & Cohen, 1973). Similarly, studies demonstrat-
ing Theory of Mind in infants (Senju et al., 2009; Southgate 
et al., 2007) could recently not be replicated (Kulke et al., 
2019; Kulke & Rakoczy, 2018; Kulke, Reiß, et al., 2018a, 
Kulke, von Duhn, Schneider, & Rakoczy, 2018b; Schuwerk 
et al., 2018). This does not necessarily mean that infants 
are incapable of Theory of Mind, but instead might reflect 
that the gaze measure is not sufficient to detect underlying 
cognitive processes as gaze is the result of different con-
flicting cognitive processes such as overt attention conflict-
ing with social inhibition of gaze (Kulke, von Duhn, et al., 
2018b; Poulin-Dubois et al., 2018). In fact, recent research 
has demonstrated that gaze patterns and covert EEG meas-
ures of attentiveness can in fact diverge in infants (Kulke 
et al., 2023). The co-registration of EEG and eye-tracking 
therefore provides new opportunities to investigate attention 
in infants and provides a more comprehensive understand-
ing of which cognitive processes underlie the observed gaze 
patterns.

Challenges of co‑registered EEG 
and eye‑tracking in infants

Using either EEG or eye-tracking on its own in infants is 
already challenging. When combined, some difficulties can 
be reduced (e.g., eye-tracking data can be used to improve 
artefact removal and gaze-contingency can ensure that 
participants are fixating the stimuli of interest, see section 
Opportunities of co-registered EEG and eye-tracking in 
infants) while other difficulties add up (Kulke, 2015).

Challenges with EEG in infants

Challenges with EEG in infants include challenges during 
the preparation of the EEG system. Infants have a limited 
attention span. Preparing the EEG system takes some time, 
for example, determining the correct cap size, attaching elec-
trodes, and filling electrodes with gel/liquid. The time for 
preparing the EEG is deduced from the time that the infant 
can take part in the study. Furthermore, infants may not like 
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putting on a hat or cap, and thus may respond negatively. 
Distraction, for example, with interesting toys, may help, 
as well as creating a positive and comfortable atmosphere 
for infants and their caregivers. Infants also may not like 
the feeling of gel/liquid in the electrodes on their heads. It 
can be useful to warm the gel/liquid up to body temperature 
before applying it to the head. Additionally, the experiment-
ers need to be particularly careful when placing electrodes 
over young infants’ scalps, as the risk of injury is higher.

Further challenges arise during testing. Infants move 
freely, which may lead to motion artefacts. If infants are 
seated on their caregivers’ lap during the testing proce-
dure, it may be useful to instruct the caregivers to stay still 
(Kulke et al., 2015). Infants are only attentive for a short 
time, meaning that fewer trials can be completed by them. 
This may pose a problem as EEG data becomes more reli-
able when averaged across many trials.

There are furthermore challenges during the analysis of 
infant EEG data. Infant EEG studies have higher attrition 
rates than infant studies without EEG (Stets et al., 2012). 
Templates and pipelines for artefact removal are often based 
on adult participants, and adult head models/scans may be 
used, which are not fully transferable to infants. Therefore, 
special infant algorithms need to be developed for ICA 
(Haresign et al., 2021). It can be useful to apply median 
threshold procedures for outlier detection in the EEG signal 
if the data are more noisy (Kulke et al., 2015).

Challenges with eye‑tracking in infants

Although eye-tracking is suitable for developing 
populations (for a review, see Gredebäck et al., 2009), 
eye-trackers are often developed for adult populations. 
In particular,  wearable mobile eye-trackers are often 
developed for adult head sizes, making them unsuitable 
for infants. Therefore, the accuracy and usability for infants 
can be challenging (e.g., Morgante et al., 2012). Infants 
still have more reflective eyes, making it difficult to get a 
clear eye-tracking signal (Kulke et al., 2015). The signal 
may be improved by using infant-friendly lenses, adjusting 
the infant’s position, or using neutral density filters 
(Kulke et al., 2015). Infants are not attentive for a long 
time, making it desirable to keep calibrations particularly 
engaging, for example by using videos or animations short 
(Gredebäck et al., 2009) or even completely omitting them 
(Kulke et al., 2015). Infants’ vision is less sharp, meaning 
that small calibration targets cannot be seen by them. 
Furthermore, stimuli need to be sufficiently large and have 
high contrast for young children to see.

Challenges combining EEG and eye‑tracking 
in infants

When combining EEG and eye-tracking in infants, some of 
the problems listed above add up, leading to even higher 
attrition rates (Kulke, 2015, Kulke et al., 2016b). As infant 
participants are more difficult to recruit than typical adult 
student populations, with infant studies often being under-
powered (Bell & Cuevas, 2012; Frank et al., 2017), the 
exclusion of participants is particularly dramatic. A solu-
tion can be to develop paradigms where data can also be 
used if only EEG or eye-tracking is recorded, although this 
may not always be practical or desirable, as eye movements 
do not always reflect cognitive processes (Foulsham et al., 
2011; Kulke, Ertuğrul, et al., 2021a; Laidlaw et al., 2011) 
and the combination may lead to novel findings regarding 
differences between visual and neural processing (Kulke, 
Ertuğrul, et al., 2022b, Kulke et al., 2023, Kulke, Ertuğrul, 
et al., 2021b).

Another challenge that may be particularly pronounced 
in infant research is the alignment of EEG and eye-tracking 
data. In infant research, eye-trackers with low sampling rates 
are commonly used, as they were found to be useful to avoid 
data loss. However, when co-registering EEG and eye-track-
ing, the two datasets need to be aligned, for which timing 
plays a crucial role, which may be easier when eye-trackers 
have a higher sampling rate. As delays can be a common 
problem for EEG systems (e.g., Electrical Geodesics, 2014), 
the timing of the systems should be measured for the respec-
tive experimental set-up (Kulke, 2015).

Even if the specific sections of data that are analysed do 
not include eye movements, filters can induce artefacts in 
data that contain eye movements, affecting eye-movement-
free periods as well (Kulke & Kulke, 2020). This may be 
particularly challenging in infants, where eye-movement 
latencies vary more than in adults (e.g., Kulke et al., 2015), 
making them less predictable. Researchers should be aware 
that ICA does not reliably remove all artefacts. In particular, 
ICA can be challenging in infants because fewer electrodes 
can be filled with gel in infants and because ICA templates 
are not ideal for infants.

Specific challenges arise when mobile EEG and eye-
tracking are combined. As standard wearable mobile eye-
trackers were developed for adults and cannot be worn by 
infants, the signal needs to be aligned with camera record-
ings for live interaction studies (Kulke, Ertuğrul, et al., 
2021b, Kulke, Ertuğrul, et al., 2022a). These have a lower 
temporal resolution than high-frequency eye-trackers; there-
fore, events may fall between two samples recorded by the 
camera.
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Recommendations

To overcome the specific challenges posed by combining 
EEG and eye-tracking in infant populations, some steps may 
help.

Time is of the essence when testing infants. As many steps 
as possible should be prepared before the infant arrives. Par-
ents might be asked for the head circumference in advance 
so that researchers can prepare the cap before the participant 
arrives, but it should be noted that parents may not always 
correctly measure the size, which in turn leads to even more 
preparation efforts. The use of caps with integrated elec-
trodes may save time. In very young infants, it may be use-
ful to place electrodes during sleep, as they are only awake 
and alert for a short time. If stimuli are designed sufficiently 
large, the eye-tracking calibration may be shorter or even 
omitted to save time (Kulke et al., 2015). There is a trade-off 
between the required accuracy and the loss of accuracy due 
to fewer trials until the infant gets fussy or falls asleep. The 
use of saline-based instead of gel-based electrodes may save 
time. Furthermore, the experiment should be designed in a 
flexible manner so that infants can feed and nap at any time.

As data loss is inherently greater when combining two 
methods, the number of conditions in an EEG–eye-tracking 
co-registration paradigm should be kept to a minimum in 
infant research. In gaze-contingent paradigms, it may be 
useful to program an alternative to gaze contingency. For 
example, if the eye-tracking signal is not sufficient to fulfil 
the gaze-contingency criteria, an additional loop may allow 
the manual starting of trials by the experimenter. This avoids 
EEG and overall data loss due to insufficient eye-tracking 
signals.

As the attrition rate is particularly high when combining 
EEG and eye-tracking, and recruitment can be challenging, 
the Many Babies model of international multi-lab collabora-
tions may help increase sample sizes in co-registration data 
(Visser et al., 2022). This model initiates international col-
laborations in which several labs recruit and/or test infants, 
leading to larger sample sizes than could be recruited in 
single lab studies.

The analysis poses some additional challenges. Pre-
processing pipelines for adult EEG data processing may 
need adjustments for infant data. For example, amplitudes 
of ERPs change with age, and therefore different artefact 
rejection procedures (Haresign et al., 2021) and thresholds 
based on medians for outlier detection in the EEG signal 
can be used (Kulke et al., 2015). The recently developed 
artefact detection pipelines can also be useful for EEG 
studies with newborns (Newborn EEG Artifact Removal 
(NEAR), Kumaravel et  al., 2022), infants and children 
(Automated Pipeline for Infants Continuous EEG (APICE), 
Fló et  al., 2022; Multiple Artifact Rejection Algorithm 
(MARA), Haresign et al., 2021; The Maryland analysis of 

developmental EEG (MADE), Debnath et al., 2020; The 
Harvard Automated Processing Pipeline for Electroenceph-
alography (HAPPE), Gabard-Durnam et al., 2018; HAPPE 
In Low Electrode Electroencephalography (HAPPILEE), 
Lopez et al., 2022) and for developmental hyperscanning 
studies (dual EEG pipeline for developmental hyperscanning 
studies (DEEP), Kayhan et al., 2022).

Open science

The replication crisis is a well-known problem in neurosci-
ence (Nebe et al., 2023), particularly in EEG studies (Pav-
lov et al., 2021). Due to the larger data sets and increase in 
outcome variables, the potential for questionable research 
practices (Bailey, 2015; Banks et al., 2016; John et al., 
2012; Nosek et al., 2015), particularly hypothesizing after 
the results are known (HARKing), “cherry-picking” of sig-
nificant results (Andrade, 2021), or p-hacking (Hartgerink 
et al., 2016; Leggett et al., 2013) increases. When EEG and 
eye-tracking are combined, the resulting datasets are par-
ticularly large with numerous options for analyses so that 
the probability of a significant finding by chance increases 
compared to when just one measure is used. A solution to 
minimise false positive results due to questionable research 
practices is the preregistration of co-registration studies.

In infant research, preregistration of EEG studies is par-
ticularly difficult as amplitudes latencies of ERPs and fre-
quency bands change with age (Barnet et al., 1980b; Bell & 
Fox, 1994; Gasser et al., 1988; Stroganova et al., 1999) and 
may be difficult to set in advance. However, Many Babies 
projects show that preregistration and even registered reports 
are possible in infant behavioural research (Visser et al., 
2022). Although researchers often worry that preregistra-
tion may be too difficult, particularly with physiological 
measures, recent preregistrations show that preregistration of 
co-registered EEG and eye-tracking is possible in both adult 
(Kulke, 2019) and infant (Kulke, Ertuğrul, et al., 2021b) 
studies. Preregistration of co-registration studies should 
therefore become the norm in infant research and beyond.

Conclusion

In summary, infant research has been a pioneering dis-
cipline in combining EEG with behavioural measures in 
natural situations, as infant behaviour cannot be controlled 
as easily as adult behaviour. The combination of EEG and 
eye-tracking in infants can be very useful in identifying the 
neural mechanisms underlying behaviour, particularly as 
behaviour and neural processing can diverge in real-world 
settings. Co-registered data can be used to improve data 
quality and test new hypotheses, but other challenges arise 
when studying infants, as pipelines were often developed 
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for adults and as attrition rates can be high. Due to the 
large datasets, preregistrations and Open Science are 
important and possible. The combination of EEG and 
eye-tracking in infants can lead to novel insights about 
the development of attention in real-world interactions.
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