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Abstract
Investigating the interface between motivation and cognitive control, we conducted two task switching experiments (N = 
96 each) with reward manipulation where participants switched between three different tasks. We measured N-2 task rep-
etition costs, which denote the performance decrement in N-2 task repetition sequences (ABA) relative to N-2 task switch 
sequences (CBA), and which are presumed to be a marker of inhibitory control in task switching. Participants in the reward 
group received performance-contingent reward in the second phase of each experiment, and in the second experiment they 
were additionally penalized for errors. Reward thresholds were determined individually based on participants’ performance 
during the first phase of each experiment. Participants in the control group did not receive any reward. The reward manipula-
tion led to faster performance in the reward group relative to the control group. Diffusion modeling revealed that the reward 
manipulation induced an increase in drift rate parameter, consistent with dopamine-based enhancement of attentional focus 
under reward. Contrary to our expectations, no robust evidence for a reward-based modulation of N-2 repetition costs was 
found across the two experiments. N-2 task repetition costs were small in both experiments, and possibly, a larger amount 
of inhibitory control is needed in order to obtain empirical evidence for a reward-related modulation thereof. However, 
additional analyses suggested that reward may not interact with inhibitory control on the task level at all.
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Introduction

Motivation and cognitive control have been suggested to be 
closely linked (for reviews, see Botvinick & Braver, 2015; 
Braver, 2015; Chiew, 2021; Chiew & Braver, 2011; Dreis-
bach & Fischer, 2012; Kouneiher et al., 2009; Parro et al., 
2018; van Steenbergen et al., 2019; Yee & Braver, 2018). 
For instance, Botvinick and Braver (2015) defined cognitive 
control as “the set of superordinate cognitive functions that 
encode and maintain a representation of the current task 
(…)” (p. 84), and motivation as “the orienting and invigorat-
ing impact, on both behavior and cognition, of prospective 

reward” (p. 84). They suggested that cognitive control can 
be conceptualized as reward-based decision-making. In line 
with this notion, many studies have manipulated motiva-
tional state by introducing performance-contingent reward 
in the experimental paradigm.

A considerable body of evidence suggests that perfor-
mance-contingent reward leads to enhanced recruitment 
of cognitive control: Interference effects in conflict tasks 
become smaller when a reward manipulation is introduced, 
suggesting that the influence from the irrelevant stimu-
lus feature is attenuated (e.g., Padmala & Pessoa, 2011); 
performance in stop-signal tasks is improved upon reward 
(e.g., Boehler et al., 2014; Leotti & Wager, 2010; Padmala & 
Pessoa, 2010), and proactive control is increased by reward 
prospect in the AX continuous performance task (Chiew & 
Braver, 2013, 2014; Fröber & Dreisbach, 2014, 2016a; Hefer 
& Dreisbach, 2016, 2017, 2020; Locke & Braver, 2008) and 
the dual-task paradigm (Fischer et al., 2018). Furthermore, 
task-switching performance becomes better under reward 
(e.g., Aarts et al., 2010; Hippmann et al., 2019; Kleinsorge 
& Rinkenauer, 2012; Nieuwenhuis & Monsell, 2002).
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For instance, in a recent task-switching study with TMS 
stimulation, Hippmann et al. (2019) had participants switch 
between two number categorization tasks (parity task and 
magnitude task) and manipulated reward expectancy on a 
trial-by-trial basis: A reward cue was presented before each 
stimulus, indicating the amount of money that could be 
gained in the following trial (“1 cent” or “7 cents”). They 
observed the standard finding of slower reaction times (RTs) 
in task switch trials than task repetition trials, and these 
task switch costs were smaller in trials where high reward 
was expected (about 15 ms) as compared to trials where 
low reward was expected (about 30 ms). That is, switching 
between tasks became easier (i.e., was associated with lower 
costs) when reward expectancy was high, and this effect was 
independent from stimulation site. In error rates, a similar 
data pattern of reduced switch costs under high reward 
expectancy was observed, but only with stimulation over 
the left inferior frontal junction (IFJ), not with stimulation 
at a control site, suggesting that the left IFJ plays a causal 
role in the reward-based modulation of task switch costs.

Several (voluntary) task switching studies furthermore 
showed that performance-contingent reward affects task-
switching performance differently depending on the imme-
diate reward history (Fröber et al., 2018, 2019, 2020; Fröber 
& Dreisbach, 2016a, 2021; Shen & Chun, 2011). The pros-
pect of a high reward generally enhanced performance in 
terms of decreased RT compared to low reward prospect, but 
the same high reward prospect either reduced or increased 
switch costs and increased or reduced voluntary switch rates 
depending on the reward sequence: Task switches benefitted 
more from increasing reward expectation (smaller switch 
costs and increased voluntary switch rates when reward 
increased from low to high in the current trial), whereas 
task repetitions benefitted more from remaining high reward 
prospect (higher switch costs and reduced voluntary switch 
rates when reward remained high).

Not only reward sequence, but also task sequence seems 
to be a modulating factor on the impact of reward on task-
switching performance. In another recent task-switching 
study that measured behavioral performance and EEG, 
Zhang et al. (2016) let participants switch between three 
different tasks (two number categorization tasks: parity 
task, magnitude task, and one very simple task that required 
pressing both possible response keys simultaneously) and 
measured N-2 repetition costs, which occur when compar-
ing performance in the last trial of a N-2 task repetition 
sequence (e.g., ABA) and the last trial of a N-2 task switch 
sequence (e.g., CBA, where A, B, and C denote different 
tasks). N-2 repetition costs are usually thought to reflect 
persisting inhibition of a previously abandoned task that 
needs to be overcome when switching back to this task 
(see Koch et al., 2010, for review). Other than Hippmann 
et al. (2019), Zhang et al. (2016) manipulated reward in a 

between-subjects design. Participants in the control group 
never received any reward, while participants in the reward 
group could receive a reward on every trial, depending on 
their performance (they received 2 cents for each correct 
response). Zhang et al. (2016) observed smaller N-2 repeti-
tion costs in the reward group (13 ms, 4.4% more errors) 
than in the control group (70 ms, 4.3% more errors), sug-
gesting that reward modulates inhibitory control in task 
switching. This behavioral effect was accompanied by a 
reward-related modulation of N-2 repetition costs in the 
N2 ERP component, and source localization revealed that 
the N2 effect originated from the anterior cingulate cortex 
(ACC), a brain region that has been associated with another 
component of cognitive control, namely conflict monitoring 
processes (Botvinick et al., 2004). Moreover, Zhang et al. 
(2016) observed faster but more error-prone overall perfor-
mance in the reward group than control group, suggesting 
that the reward manipulation might have induced a shift 
towards a less cautious response strategy.

Reward-based modulations of N-2 repetition costs have 
also been investigated in a study by Jiang and Xu (2014). 
They let participants switch between three different tasks (let-
ter, digit, symbol classification) and manipulated reward in 
a within-subjects design: Participants started with a baseline 
phase without reward, and then proceeded to a reward phase. 
During the reward phase, the possibility of receiving perfor-
mance-contingent reward varied on a trial-by-trial basis (as in 
Hippmann et al., 2019), with a reward cue appearing prior to 
each stimulus and indicating whether or not a reward could be 
gained in the upcoming trial (incentive vs. no-incentive cues). 
In Jiang and Xu’s (2014) data, N-2 repetition costs did not dif-
fer between baseline and reward phase, and neither between 
incentive and no-incentive trials within the reward phase. 
Because Jiang and Xu (2014) had expected to find reward-
based modulation of N-2 repetition costs, they performed 
follow-up analyses looking at local aftereffects of reward on 
a trial-by-trial basis. They observed that N-2 repetition costs 
differed as a function of the incentive cue presented in the N-1 
trial, with larger N-2 repetition costs when an incentive cue had 
been presented in the N-1 trial than when a no-incentive cue 
had been presented. Based on these results, they suggested that 
inhibition of the just-performed task in trial N-2 is increased 
when a reward can be gained in trial N-1, and the aftereffect 
of this increased inhibition is then measured in trial N. In 
other words, they observed a reward-based modulation of N-2 
repetition costs, with larger N-2 repetition costs when reward 
expectancy in the N-1 trial was present than when it was not.1

1  Jiang and Xu (2014) also analyzed N-2 repetition costs as a function 
of the N-2 incentive cue, and observed smaller N-2 repetition costs 
after N-2 incentive (vs. no-incentive) cues. However, in their study 
the sequence of incentive cues was constrained in such a way that an 
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Hence, the evidence for reward-based modulation of N-2 
repetition costs is mixed: While Zhang et al. (2016) reported 
smaller N-2 repetition costs when reward was possible (in 
the reward group) than when it was not (control group), 
Jiang and Xu (2014) did not observe any difference in N-2 
repetition costs between reward phase and control (base-
line) phase. Instead, when zooming into trial-by-trial effects 
during the reward phase, they observed an increase in N-2 
repetition costs when reward had been possible in the N-1 
trial than when it had not.

The present study

In the present behavioral study, we aimed to further inves-
tigate reward-based modulations of N-2 repetition costs. In 
Experiment 1, we used two different task switching para-
digms that had produced reliable N-2 repetition costs in 
previous studies. One paradigm consisted of three number 
categorization tasks (parity task, magnitude task, interval 
task), where participants had to classify digits as odd or 
even, smaller or larger than five, or positioned in the inner 
or outer areas of a mental number line. The other paradigm 
consisted of three face categorization tasks (age task, gen-
der task, eye color task), where participants had to catego-
rize faces as young or old, female or male, or with bright 
or dark eye color. In Experiment 2, we used a paradigm 
where participants had to categorize pictures of household 
items as belonging to kitchen or garage, standing upright 
or upside down, or being smaller or larger than a shoebox. 
In all paradigms, we used the same two response keys (left 
and right) for responding. The response sets for the differ-
ent tasks were overlapping (i.e., the same two response keys 
served for responding to the three different tasks), which 
is considered to produce maximal interference between the 
different tasks and evoke reliable N-2 repetition costs (see 
Koch et al., 2010, for review).

In both experiments, we manipulated reward between-
subjects (control group vs. reward group), as well as 
within-subjects: Participants in the reward group started 
with a baseline phase without reward, and then proceeded 
to a reward phase; participants in the control group did not 
receive any reward in either phase. In the reward phase, 
every trial could potentially be rewarded, depending on the 
participant’s performance. Individual RT thresholds were 
computed based on baseline performance, and participants 
received reward feedback if they responded correctly and if 
their RT was within the fastest third of their RT distribution 

in the baseline phase. In the reward phase of Experiment 
2, incorrect trials were penalized (see Method for details).

In a first step, we analyzed global effects of the reward 
manipulation, comparing the baseline and reward phases in 
the reward and control groups. A difference in N-2 repetition 
costs between baseline and reward phase in the reward group 
could be due to reward effects, and/or to practice effects, 
while such a difference in the control group could only be 
due to practice effects. Hence, if we observed a larger modu-
lation of N-2 repetition costs from baseline phase to reward 
phase in the reward group than in the control group, we 
would interpret this as globally reward-induced modulation 
of N-2 repetition costs.

In a second step, we analyzed local effects of the reward 
manipulation in the reward phase of the experiment. Fol-
lowing Jiang and Xu (2014), we analyzed N-2 repetition 
costs as a function of reward in the N-1 trial. To this end, we 
separated the data according to response speed in the N-1 
trial (fast vs. slow). In the reward group, but not in the con-
trol group, the fast N-1 trials had been followed by reward 
feedback. In slow N-1 trials, no reward feedback had been 
presented in either group. Hence, if we observed a larger 
modulation of N-2 repetition costs by N-1 response speed 
in the reward than control group, we would interpret this 
effect as locally reward-induced modulation of N-2 repeti-
tion costs.

In addition to analysis of mean performance (RTs and 
error rates), we applied diffusion modeling to the present 
data. The diffusion model is a relatively simple computa-
tional model to account for performance in speeded choice-
RT tasks (Ratcliff, 1978; Voss et al., 2013; for reviews, see 
Ratcliff & McKoon, 2008; Ratcliff et al., 2016). It comple-
ments the analysis of mean performance and provides a 
richer account of the cognitive processes underlying a par-
ticular data pattern, by additionally taking the shape of RT 
distributions into account. In its simplest form, the model 
assumes that overall RT in a single trial can be split up into 
a decisional and a non-decisional component. The decisional 
component reflects the choice (i.e., response selection) pro-
cess; the non-decisional component encompasses all cog-
nitive processes before and after response selection (e.g., 
stimulus encoding, motor processes). The choice process can 
be described by the average rate of evidence accumulation 
towards one or the other response alternative (drift rate) and 
the amount of evidence required before a decision is made 
(boundary separation). The simple diffusion model, thus, 
provides three parameters: drift rate, boundary separation, 
and non-decision time.

N-2 repetition costs are mainly reflected in the drift rate 
parameter, with smaller drift rate in the last trial of an ABA 
than CBA sequence (Schuch, 2016; Schuch & Grange, 
2019; Schuch & Konrad, 2017), in line with the idea that 
response selection in the last trial of an ABA sequence is 

incentive cue in one trial was always followed by a no-incentive cue 
in the subsequent trial, but not vice versa, making the interpretation of 
triplet sequences difficult.

Footnote 1 (continued)
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more difficult due to persisting inhibition of the N-2 task. 
We expected to find this effect in the present study as well. 
Moreover, we expected any reward-based modulations of 
N-2 repetition costs, inasmuch as they are due to modula-
tions of task inhibition, to be reflected in drift rate as well.

The reward manipulation might also have effects on dif-
fusion model parameters that are independent from N-2 
repetition costs. For instance, given that Zhang et al. (2016) 
observed faster but more error-prone performance in the 
reward condition than control condition, it is possible that 
the reward manipulation induced a shift towards a less cau-
tious response strategy, which would be reflected in a lower 
boundary separation in the reward condition. Moreover, it 
has been suggested in the literature that reward enhances 
cognitive control (for review, see Botvinick & Braver, 2015), 
by improving the signal-to-noise ratio of task-relevant rep-
resentations, which is mediated on the neurophysiologi-
cal level by the dopamine system (e.g., Aarts et al., 2010; 
Durstewitz & Seamans, 2008; Yee & Braver, 2018). Such 
an effect of reward-based improved signal-to-noise ratio of 
cognitive representations would be reflected in the diffu-
sion model drift rate, with enhanced drift rate in the reward 
condition.

To summarize, we expected reward to (a) modulate the 
effect of N-2 repetition costs in drift rate, and (b) lead to 
overall smaller boundary separation and/or higher drift rate 
in the reward condition than in the control condition.

Experiment 1

Method

Participants

In total, 97 participants were tested. Forty-eight participants 
performed the digit-categorization tasks and were tested in 
Aachen; they were students, or friends of students, of RWTH 
Aachen University. Half of the participants were randomly 
assigned to the control group (18 female, six male; mean 
age = 23.3 years, SD = 3.6, range 18–35 years), the other 
half to the reward group (17 female, seven male; mean age 
= 25.0 years, SD = 7.4, range 18–54 years). The other 49 
participants performed the face-categorization tasks and 
were tested in Regensburg; they were students, or friends 
of students, of Regensburg University. Twenty-four par-
ticipants were randomly assigned to the control group (20 
females, four males, mean age = 20.0 years, SD = 3.2, range 
19–32); 25 to the reward group (24 females, one male, 
mean age 22.1 years, SD = 6.2, range 17–46). All partici-
pants received either partial course credits or money (8€ 
per full hour) for participation. With a total sample size of 

96 participants, a power analysis with MorePower v6.0.4 
(Campbell & Thompson, 2012) revealed a power of .68 to 
detect a medium-sized ( n2

p
 = .06) three-way interaction of 

motivation group, phase, and task sequence.

Tasks, stimuli, and responses

In the digit-categorization paradigm, the digits 1–9 (except 
5) served as stimuli, and were presented in white on black 
background, centrally on the screen. Participants switched 
between three possible tasks: categorizing the digit as 
smaller or larger than five (size task), odd or even (parity 
task), or situated in the inner (digits 3, 4, 6, 7) or outer (dig-
its 1, 2, 8, 9) area of a mental number line ranging from 1 
to 9 (interval task).

In the face-categorization paradigm, eight different pic-
tures of faces were used as stimuli (354 ×472 pixels, pre-
sented centrally on the screen). They were taken from the 
face database described in Schuch et al. (2012). There was 
one facial picture for each of the eight possible combina-
tions of young/old, female/male, and bright/dark eye color. 
Participants switched between the three possible tasks of 
categorizing the face as young or old (age task), female or 
male (gender task), or having bright (i.e., blue-green) or dark 
(brown) eyes (eye color task).

In both paradigms, the task for each upcoming trial was 
indicated by a colored frame presented centrally on the 
screen, which was then followed by the stimulus (digit or 
facial picture, respectively) presented inside the frame. In 
the digit categorization paradigm, a red frame indicated 
the size task, blue the parity task, and yellow the inter-
val task. In the face categorization paradigm, a red frame 
indicated the age task, blue the gender task, and yellow 
the eye color task.

A left and right response key served for responding in 
both paradigms (the keys Y and M on a QWERTZ key-
board). Participants were instructed to use their left and right 
index fingers for responding. The eight possible response 
mappings were fully counterbalanced across participants 
in each sample. A reminder summarizing the individual 
response mappings for the three tasks was placed below the 
screen and remained visible throughout the experiment.

The trial procedure was identical for both paradigms. 
Every trial started with the presentation of a task cue (frame) 
for 500 ms, which was followed by the presentation of a 
stimulus (digit or facial picture, depending on paradigm). 
Cue and stimulus stayed on the screen until one of the 
response keys was pressed. Upon key press, a performance-
dependent feedback message was presented for 1,000 ms 
(see below). Then, the screen remained empty for 500 ms 
(for 1,000 ms after error) before the next trial started.
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Reward manipulation

In the control group, participants performed the task switch-
ing experiment (four blocks of 120 trials each) without any 
reward manipulation. In the reward group, participants per-
formed the baseline phase (first half: two blocks of 120 trials 
each) without any reward manipulation; in the reward phase 
(second half), they could achieve points for fast and cor-
rect performance, and every trial in the reward phase could 
potentially be rewarded. The criterion for a “fast response” 
was determined based on individual performance in the 
baseline phase (block 2 only); thresholds were computed 
separately for each participant, task, and task sequence. A 
point was achieved when RT was within the fastest third 
of the RT distribution for that participant, task, and task 
sequence.

Participants in the reward group received the following 
instruction (in German) after the baseline phase: “For the 
remainder of the experiment, you can achieve points. All 
participants will participate in a competition. The person 
with the highest number of points will be awarded an Ama-
zon gift card worth 15€. The person who comes second will 
receive a gift card worth 10€, the person who comes third 
a gift card worth 5€.” The first, second, and third prizes 
were determined separately for the Aachen and Regensburg 
samples; the participants with the highest, second-highest, 
and third-highest number of points at each site received their 
prizes after data collection was completed.

All participants received performance-dependent feed-
back after each trial during the task switching experiment. 
In the control group, participants received the message “Cor-
rect!” after correct responses, and “Error” after incorrect 
responses (all messages were presented in German). This 
was also the case for participants in the reward group during 
the baseline phase. In the reward phase, the reward-group 
participants received one of the following feedback mes-
sages: “Correct! +1 Point” for correct and fast responses; 
“Too slow! No point” for correct but slow responses, or 
“Error! No point” for incorrect responses.

Procedure

Participants were tested in individual sessions that lasted for 
about 45 min in total. They started with a practice phase, 
consisting of four short blocks of 24 trials in total. Practice 
blocks 1–3 were single-task blocks where they practiced 
each task separately; practice block 4 was a mixed-task 
block where all three tasks were intermixed, and every trial 
was a task switch. The experimental phase consisted of 4 
blocks with 120 trials each in total; the experimental blocks 
1 and 2 constituted the baseline phase, experimental blocks 
3 and 4 the reward phase2. Participants could take a short 

self-paced break after each block. Every trial was a task 
switch, and pseudo-random task sequences were created a 
priori that adhered to the following constraints: There was 
an almost equal number of ABA (N-2 repetitions) and CBA 
(N-2 switches) task sequences per block (range 58-60 trials 
per block), and it was controlled that the trial type in the 
current trial (N-2 repetition or switch) was independent from 
the trial type in the preceding trial (i.e., the N-3 effect was 
controlled, see Schuch & Grange, 2015). Moreover, each 
task occurred equally often (i.e., 40 times per block), and 
each possible task-stimulus combination occurred equally 
often (i.e., 5 times per block). The stimulus presented in trial 
N could not be the same as the stimulus presented in trial 
N-1, or trial N-2.

Design

For the analysis of global reward effects, we employed a 
three-factorial design with the within-subjects independent 
variables task sequence (ABA vs. CBA) and phase (baseline 
phase vs. reward phase), and the between-subject variable 
motivation group (reward group vs. control group).3 The 
dependent variables were RT and error rates, as well as the 
three diffusion-model parameters drift rate, boundary sepa-
ration, and non-decision time.

Results I: Global reward effects

Number of rewarded trials

As manipulation check, we first analyzed the number of trials 
in which participants received reward feedback during the 
reward phase. Participants in the reward group could reach a 
score between 0 and 240 points in the reward phase (because 
it consisted of 240 trials). On average, participants reached 
163.9 points (range 103–229 points, SD = 25.9), correspond-
ing to an average reward rate of 68.3%. Participants perform-
ing the digit-categorization tasks reached 161.4 points on 
average (range 115–203 points, SD = 23.0); participants per-
forming the face-categorization tasks reached 166.3 points 
on average (range 103–229 points, SD = 28.2).

2  For one participant in the digit task control group, the computer 
program crashed during the fourth block, such that the last 83 trials 
were not collected from this participant.
3  We also checked for potential differences between the two para-
digms (digit tasks vs. face tasks) by performing an analysis with para-
digm as an additional between-subject variable, which is reported as 
additional material in the Open Science Framework (OSF), see Part 
I (Table  A1, Fig. A1), https://​osf.​io/​uyxc4/?​view_​only=​f671a​29d9e​
f3460​3bd7c​f6fe1​d9b59​5c. We did not find any relevant differences 
regarding reward-based modulation of N-2 task repetition costs.

https://osf.io/uyxc4/?view_only=f671a29d9ef34603bd7cf6fe1d9b595c
https://osf.io/uyxc4/?view_only=f671a29d9ef34603bd7cf6fe1d9b595c
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We also analyzed control group performance and com-
puted the number of trials that would have been rewarded 
in the control group according to the criteria applied to the 
reward group. On average, participants in the control group 
had 97.9 fast trials (range 34–176, SD = 27.4), correspond-
ing to a virtual reward rate of 40.8%. Participants perform-
ing the digit-categorization tasks had an average of 87.3 
fast trials (range 34–141, SD = 24.1), corresponding to a 
virtual reward rate of 36.4%; participants performing the 
face-categorization tasks had an average of 108.5 fast tri-
als (range 69–176, SD = 26.5), corresponding to a virtual 
reward rate of 45.2%.

When comparing the reward rate in the reward group and 
the virtual reward rate in the control group, the reward group 
reached significantly more (virtual) points than the control 
group (163.9 points vs. 97.9 virtual points, respectively; 
t(95) = 12.07, p < .01), indicating that participants in the 
reward group adapted their performance to achieve a high 
number of points.

Data filtering and ANOVA design

Outliers were defined as trials with an RT above or below 
three standard deviations of the individual participant’s 
mean per condition and were excluded from analysis (1.7% 
of trials), as well as the first two trials of each block (1.7%) 
and the two trials following each error (to exclude error 
aftereffects, 14.6%). For analysis of RT data, error trials 
were excluded as well. The mean number of trials per con-
dition and participant included in the analysis of error rates 
was 98.8 (SD = 13.4, range 44–118); for the analysis of RT 
data, it was 91.7 (SD = 17.6, range 26–118). Separate three-
way ANOVAs were conducted employing aforementioned 
design (see Method). The complete ANOVA results are dis-
played in Table 1. The descriptive data are shown in Fig. 1. 
Below, we briefly summarize the most important findings.

Reaction times

In RTs, a main effect of task sequence was obtained, F(1,95) 
= 16.74, p < .01, η2

p = .15, indicating N-2 repetition costs of 
21 ms. Task sequence did not interact significantly with any 
of the other factors; that is, we did not observe any modula-
tion of N-2 repetition costs by the reward manipulation (or 
by the specific paradigm applied, see Open Science Frame-
work (OSF) Additional Material: Part I). Moreover, there 
were significant main effects of phase, F(1,95) = 204.79, p 
< .01, η2

p = .68, and motivation group, F(1,95) = 6.92, p 
= .01, η2

p = .07,which were further qualified by a two-way 
interaction, F(1,95) = 64.53, p < .01, η2

p = .41. RTs were 
faster in the reward phase than in the baseline phase, and this 
effect was larger in the reward group (556 vs. 935 ms) than 
control group (853 vs. 960 ms). Ta
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Error rates

In error rates, the main effect of task sequence was not sig-
nificant. Task sequence did not interact with any of the other 
factors, except for a significant interaction of task sequence 
and motivation group, F(1,95) = 4.91, p < .03, η2

p = .05, 
indicating larger N-2 repetition costs in the reward group 
(0.6%) than in the control group (-0.6%). When tested 
separately for each group, N-2 repetition costs were not 
significant in either group; reward group: t(48) = 1.48, p 
= .15; control group: t(48) = 1.72, p = .09. The ANOVA 
revealed a significant interaction of phase and motivation 
group, F(1,95) = 106.62, p < .01, η2

p = .53, indicating that 

for the reward group, error rates increased from 5.7% in the 
baseline phase to 13.5% in the reward phase, whereas in 
the control group, error rates decreased from the baseline 
phase (7.5%) to the reward phase (5.3%). There were also 
significant main effects of phase, F(1,95) = 32.04, p < .01, 
η2

p = .25, and of motivation group, F(1,95) = 9.20, p < 
.01, η2

p = .09.

Diffusion modeling of global reward effects

Data filtering was the same as for the analysis of mean error 
rates as described above, except that outliers for diffusion 
model analysis were defined according to the procedure 

Fig. 1   Analysis of global reward effects in Experiment 1. Perfor-
mance and diffusion model parameters as a function of motivation 
group (control group, reward group), phase (baseline phase, reward 
phase), and task sequence (ABA, CBA). From top to bottom: Mean 

RT, mean error rates, mean drift rate, mean boundary separation, 
and mean non-decision time. Error bars indicate the 95% confidence 
interval of the ABA-CBA difference per experimental phase (Pfister 
& Janczyk, 2013). N = 48 in control group, N = 49 in reward group
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Fig. 1   (continued)
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recommended by Schmiedek et al. (2007),4 excluding trials 
with RTs faster than 200 ms and trials with RTs larger than 
four standard deviations above each participant’s mean per 
experimental condition; this process was repeated on the 
remaining trials until there were no further outliers (1.1% 
of the trials were defined as outliers in this way). The mean 
number of trials per condition and participant included for 
diffusion modeling was 99.1 (SD = 13.8, range 37–118). 
The software fast-dm (Voss et al., 2015; Voss & Voss, 2007) 
was used to estimate the parameters drift rate (v), bound-
ary separation (a), and non-decision time (t0), separately for 
each individual and each condition. To improve model fit, 
variability of non-decision time (st0) was allowed to vary 
as well. The starting point bias was set to 0.5*a (i.e., in the 
middle between the two boundaries); all other parameters 
implemented in fast-dm were set to 0. The upper and lower 
boundaries corresponded to correct and error responses, 
respectively. We used the Kolmogorov-Smirnov (KS) statis-
tic as optimization criterion; the p values of the KS statistic 
did not reveal any significant deviation between observed 
data and modeled data (p values ranged from .18 to 1.00), 
except for one participant in one condition (where the p 
value was equal to .05). In addition, model fit was inspected 
graphically by plotting the empirical data against the data 
predicted by the model (see OSF Additional Material: Part 
II, Fig. A2); upon visual inspection, all data were included 
in the analysis.

For statistical analysis, separate ANOVAs were com-
puted on the mean parameter values of boundary separation, 
drift rate, and non-decision time, employing the design as 
described above (see Method). The complete ANOVA results 
are displayed in Table 1; the descriptive data are shown in 
Fig. 1. Below, we summarize the most important findings.

Drift rate  There was no significant main effect or interaction 
of task sequence with any of the other factors. Numerically, 
the mean drift rate was lower in ABA than CBA trials (1.82 
vs. 1.87 evidence units per second as calculated with fast-
dm software), but this effect was not statistically significant 
(F(1,95) = 2.15, p = .15, η2

p = .02). Significant main effects 
of phase, F(1,95) = 30.55, p < .01, η2

p = .24, and motiva-
tion group were observed, F(1,93) = 5.61, p = .02, η2

p = 
.06, which were further qualified by a two-way interaction, 
F(1,95) = 4.62, p = .03, η2

p = .05. Drift rate was higher in 
the reward phase than baseline phase (2.03 vs. 1.66), and 
this increase in drift rate was more pronounced in the reward 
group than control group (difference of 0.51 vs. 0.23).

Boundary separation  No significant main effect or inter-
action of task sequence with any of the other factors was 
observed. There were significant main effects of phase, 
F(1,95) = 188.76, p < .01, η2

p = .67, and motivation group, 
F(1,95) = 14.72, p < .01, η2

p = .13, which were further 
qualified by a two-way interaction, F(1,95) = 156.20, p < 
.01, η2

p = .62. Boundary separation was lower in the reward 
phase than in the baseline phase (1.51 vs. 1.97 evidence 
units as calculated with fast-dm software), and this drop in 
boundary separation was considerably more pronounced in 
the reward group than in the control group (difference of 
0.88 vs. 0.04).

Non‑decision time  The only significant effect was a main 
effect of phase, F(1,95) = 14.64, p < .01, η2

p = .13, indicat-
ing lower non-decision times in the reward phase than in the 
baseline phase.

Interim discussion of global reward effects

We observed small overall N-2 repetition costs of 21 ms in 
RT data, but we did not observe any reward-related modula-
tion of these costs in RT or error rate. Also, while N-2 rep-
etition costs have been observed in the drift rate parameter 
in previous studies (Schuch, 2016; Schuch & Grange, 2019; 
Schuch & Konrad, 2017), with a lower drift rate in the last 
trial of an ABA than CBA sequence, this effect did not reach 
significance in Experiment 1. Hence, it seems that N-2 rep-
etition costs were small in the present experiment, and this 
could be a reason for not finding any modulation of these 
costs by reward, despite a rather large sample (N = 97).5

At the same time, the reward manipulation produced 
large effects, with participants in the reward group respond-
ing faster and less accurate during the reward phase (see 
Zhang et al., 2016, for a similar finding). Diffusion mod-
eling revealed a drop in boundary separation, but also an 
increase in drift rate during the reward phase, especially in 
the reward group. Implications and underlying mechanisms 
are addressed in the General discussion.

An interesting question is whether this increase in drift 
rate during the reward phase is mainly triggered by the pros-
pect of reward in the upcoming trial (reward expectancy), 

5  One possible reason for the overall small N-2 repetition costs in the 
present experiment is that performance-contingent positive feedback 
was provided after correctly responded trials throughout the experi-
ment, which might have acted as a reward signal and attenuated N-2 
repetition costs. However, N-2 repetition costs were very similar 
between the primary control group and an additional control group 
without such positive feedback after correct trials, speaking against 
this possibility (see OSF Additional Material: Part III, Tables A2 and 
A3).

4  We applied two different data filtering criteria for analysis of mean 
performance and diffusion model analysis in order to maximize com-
parability of our results with the respective literature for behavioral 
studies and diffusion model studies.
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or by having experienced a reward in the just-preceding 
trial (reward experience). In the former case, the increase 
in drift rate should be present throughout the reward phase, 
because in the present paradigm participants could poten-
tially receive a reward on every trial during this phase. In the 
latter case, the increase in drift rate should be modulated by 
N-1 reward: The increase in drift rate should be larger when 
the preceding trial had been rewarded than when it had not.

Results II: Local reward effects

To investigate the question of whether having experienced 
a reward in the preceding trial modulates performance in 
the subsequent trial, we performed a second analysis inves-
tigating local trial-by-trial effects during the reward phase. 
To this end, we separated the correct trials of the reward 
group according to whether the preceding trial N-1 had or 
had not been rewarded. Notably, such an effect in the reward 
group could be caused by either the just-experienced reward, 
or by the good (i.e., fast) performance in the previous trial 
(because reward was performance-contingent in the pre-
sent study). In order to distinguish between these two pos-
sibilities, we also conducted a trial-by-trial analysis of the 
reward phase of the control group (where reward did not 
occur, hence any aftereffects must be due to performance). 
We separated control group trials according to performance 
in trial N-1 (hypothetically rewarded or non-rewarded trials 
had participants been assigned to the reward group) apply-
ing the same criteria as in the reward group. Any aftereffects 
observed in both groups can be attributed to previous-trial 
performance; any difference in aftereffects between reward 
group and control group can be attributed to previous-trial 
reward experienced in the reward group.

ANOVA design and data filtering

We employed a three-factorial design with the within-sub-
ject independent variables task sequence (ABA vs. CBA) 
and N-1 reward (trial N-1 rewarded vs. not rewarded), and 
the between-subject variable motivation group (reward 
group vs. control group). Data trimming was the same as 
for the analysis of global reward effects, except that only 
data from the reward phase were included. Several partici-
pants in the reward group had a low trial count in one of 
the “N-1 not rewarded” conditions. For diffusion modeling 
with the fast-dm software, a minimum of 10 trials per condi-
tion is required; based on this criterion, 13 participants from 
the reward group had to be excluded. Hence, the analysis 
of local aftereffects was computed on N = 48 participants 
in the control group and N = 36 participants in the reward 
group. For the analysis of RT data, the mean number of 
trials per participant and condition was 49.0 (SD = 15.2) 
in the “N-1 rewarded” conditions, and 41.4 (SD = 24.7) in 

the “N-1 not rewarded” conditions. For the analysis of error 
rates, the mean number of trials per participant and condi-
tion was 51.5 (SD = 15.2) in the “N-1 rewarded” conditions, 
and 46.3 (SD = 26.8) in the “N-1 not rewarded” conditions. 
For the analysis of mean performance (but not for diffusion 
model analysis), we additionally conducted the analyses of 
local reward aftereffects with all participants included and 
obtained a similar data pattern (see OSF Additional Mate-
rial: Part IV, Table A4).

The descriptive data are plotted in Fig. 2; the complete 
ANOVA results are shown in Table 2. Regarding diffusion 
model fit, the p values of the KS statistic did not reveal any 
significant deviation between observed data and modeled 
data (p values ranging from .32 to 1.00; see OSF Additional 
Material: Part II, Fig. A3 for a visualization of diffusion 
model fit). Here, we summarize the most important results 
of the local reward effects analysis.

Reaction times

Only main effects were found in RT: A main effect of task 
sequence, F(1,82) = 6.07, p = .02, η2

p = .07, indicating N-2 
repetition costs, a main effect of motivation group, F(1,82) = 
16.35, p < .01, η2

p = .17, indicating faster RTs in the reward 
than control group, and a main effect of N-1 reward, F(1,82) 
= 66.17, p < .01, η2

p = .45, indicating faster performance 
after fast N-1 trials (that were rewarded in the reward group, 
but not in the control group) than after slow N-1 trials. N-1 
reward did not significantly interact with any of the other 
factors.

Error rates

The three-way ANOVA on error rates revealed a main effect 
of task sequence, F(1,82) = 5.87, p < .02, η2

p = .07, indi-
cating N-2 repetition costs, and a main effect of motivation 
group, F(1,82) = 36.28, p < .01, η2

p = .31, indicating higher 
error rates in the reward than control group. Moreover, there 
was an interaction of task sequence and motivation group, 
F(1,82) = 4.96, p < .03, η2

p = .06, indicating larger N-2 
repetition costs in the reward group (1.9%) than control 
group (0.1%). There was also a just-significant three-way 
interaction of task sequence, motivation group, and N-1 
reward, F(1,82) = 4.11, p < .05, η2

p = .05. On a descriptive 
level, N-2 repetition costs in the reward group were larger 
after non-rewarded trials (3.0%) than after rewarded trials 
(0.8%), whereas N-2 repetition costs in the control group 
were smaller after virtually non-rewarded trials (-0.8%)  
than after virtually rewarded trials (1.0%). However, when 
analyzing the two groups separately in follow-up ANOVAs 
with the factors task sequence and N-1 reward, the inter-
action was not significant in the reward group, F(1,82) = 
1.38, p = .25, η2

p = .04, and neither in the control group, 
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F(1,82) = 3.49, p = .07, η2
p = .07. Moreover, when all par-

ticipants were included in the analysis, the two-way interac-
tion of task sequence and motivation group, and the three-
way interaction with N-1 reward, were no longer significant 
(see OSF Additional Material: Part IV, Table A4).

Diffusion modeling of local reward effects

For the drift rate parameter, a significant main effect of 
N-1 reward was observed, F(1,82) = 9.08, p < .01, η2

p = 
.10, indicating higher drift rate after fast trials (that were 
rewarded in the reward group) than after slow trials. N-1 

reward did not interact with any of the other factors. A main 
effect of motivation group was also observed, with higher 
drift rate in the reward group than control group, F(1,82) = 
11.01, p < .01, η2

p = .12.
For the boundary separation parameter, a significant main 

effect of N-1 reward was observed, F(1,82) = 33.14, p < .01, 
η2

p = .29, indicating lower boundary separation after fast tri-
als than after slow trials. A large main effect of motivation 
group was also observed, with lower boundary separation 
in the reward group than control group, F(1,82) = 60.30, p 
< .01, η2

p = .42. For the non-decision time parameter, the 
ANOVA did not yield any significant effects.

Fig. 2   Analysis of local reward aftereffects in the reward phase of 
Experiment 1. Performance and diffusion model parameters as a 
function of motivation group (control group, reward group), N-1 
reward (not rewarded, rewarded), and task sequence (ABA, CBA). 
From top to bottom: Mean RT, mean error rates, mean drift rate, 

mean boundary separation, and mean non-decision time. Error bars 
indicate the 95% confidence interval of the ABA-CBA difference 
per experimental phase (Pfister & Janczyk, 2013). N = 48 in control 
group, N = 36 in reward group
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Fig. 2   (continued)
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Interim discussion of local reward effects

The analysis of local reward aftereffects revealed faster RTs, 
as well as higher drift rate and lower boundary separation, 
after fast N-1 trials (that were rewarded in the reward group, 
but not in the control group) than after slow N-1 trials. We 
did not observe any differences in aftereffects between 
reward and control group, except for a just-significant three-
way interaction in error rates, which was no longer signifi-
cant when all participants were included (an opposite pattern 
was found in Experiment 2; hence we do not consider this 
a reliable effect). In the General discussion we elaborate on 
why the observed effects are attributable on reward expec-
tancy as opposed to acutal reward experience.

Why do we observe faster RTs after fast N-1 trials than 
after slow N-1 trials in both groups? One possibility is that 
performance fluctuates over the course of the experiment, 
with phases of good performance (lasting for several tri-
als) alternating with phases of less good performance (again 
lasting for several trials). Hence, fast trials would tend to be 
followed by another fast trial, and slow trials by another slow 
trial. In a similar vein, errors are usually not evenly spread 
over the duration of an experiment, but tend to occur in bun-
dles (Dutilh et al., 2012), suggesting that performance fluc-
tuates over the course of an experiment. Such fluctuations 
of performance could be due to “lapses of attention,” as they 
have been reported in the literature on “mind wandering” 
(for reviews, see, e.g., Handy & Kam, 2015, Mooneyham 
& Schooler, 2013; Seli et al., 2016; Smallwood & Schooler, 
2015; see also Esterman et al., 2017, for neuroimaging evi-
dence of attentional fluctuations and their modulation by 
reward). In the present data, we observed that the faster RTs 
after fast (vs. slow) N-1 trials were associated with a higher 
drift rate. This difference in drift rate is in line with the idea 
of attentional fluctuations, with higher drift rate correspond-
ing to an attentional state that is more focused on the current 
task. We also observed a lower diffusion model boundary 
separation after fast (vs. slow) N-1 trials. This could indicate 
that participants’ response strategy also fluctuates over the 
course of the experiment, with more cautious responding 
after slow trials, where attention is less focused on the cur-
rent task.

Experiment 2

Addressing the lack of a reward-based modulation of N-2 
repetition costs, we conceptually replicated Experiment 1 
with another version of the N-2 task switching paradigm 
and a slightly modified reward manipulation. In particular, 
in Experiment 2, we used pictures of household items as 
stimuli, all of which were emotionally neutral. Participants 
switched between three different categorization tasks of the Ta
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household items. Further, we modified our reward manipula-
tion to include penalties for incorrect responses, in order to 
foster the requirement for inhibitory control and to prevent 
an overemphasis on speed over accuracy.

Method

Participants

The sample comprised 96 new participants, which were 
again students or friends of students from RWTH Aachen 
University. Half of them were randomly assigned to the 
reward group (36 female, 11 male, one diverse; age: M = 
22.6 years, SD = 4.0 years, range 18–39 years), and the 
other half to the control group (35 female, 13 male, age: 
M = 23.5 years, SD = 4.4 years, range 18–34 years). The 
acquisition and compensation of participants proceeded in 
the same way as in Experiment 1.

Task, stimuli, and responses

Forty different pictures of ubiquitous household items 
were used as stimuli. Each picture showed a different 
household item, measured 17 × 19.5 cm, and was taken 
from the Bank of Standardized Stimuli (Brodeur et al., 
2010). Relevant stimulus dimensions were the size, typical 
storage location, and orientation of the household items, 
yielding three tasks: Participants had to categorize house-
hold items as smaller or larger than a shoebox (size task); 
being typically located in the kitchen or in the garage 
(location task); or being displayed upright or upside down 
(orientation task). Colored frames were used as task cues. 
A red frame indicated the size task, a blue frame the loca-
tion task, and a yellow frame the orientation task in the 
upcoming trial. Response keys, response mappings, and 
the trial procedure were corresponding to Experiment 1.

Reward manipulation

The reward manipulation from Experiment 1 was slightly 
modified to reduce the focus on speed over accuracy in the 
reward phase. In case of an incorrect response, participants 
in the reward group now lost a reward point and received 
the feedback “Error! – 1 point” (all feedback messages were 
presented in German). As in Experiment 1, they received the 
feedback “Correct! + 1 point” for correct and fast responses, 
and “Slow! No point” for correct but too slow responses. 
Participants in the control group received the feedback mes-
sage “Error!” after incorrect responses, “Correct!” after cor-
rect and fast responses, and “Slow!” after correct and slow 
responses. The performance-dependent feedback message 
“Slow!” was newly introduced in order to make the feedback 

messages in the reward phase as similar as possible between 
the two groups.

Procedure and design

Two additional reward blocks with 120 trials each were 
added in Experiment 2 in order to increase trial numbers. 
Thus, Experiment 2 comprised four practice blocks à 24 tri-
als, two baseline blocks à 120 trials, and four reward blocks 
à 120 trials. The analysis design was identical to Experi-
ment 1.

Results I: Global reward effects

Number of rewarded trials

A maximum of 480 (virtual) points could be scored dur-
ing the four reward blocks in Experiment 2. Reward scores 
were significantly higher in the reward group (M = 287.0 
points, SD = 88.2, range 5–429; corresponding to 59.8% of 
the maximally attainable score) than virtual reward scores 
in the control group (M = 254.1 virtual points, SD = 86.6, 
range -6–367; 52.9% of the maximally attainable virtual 
score), t(94) = 1.85, p = .034, one-tailed.

Data filtering

Data filtering was conducted as in the analysis of global 
reward effects in Experiment 1. Practice blocks, the first two 
trials of each block (1.7%), the first two post-error trials 
(19.1%), and outliers (1.8%) were excluded. For RT analysis, 
error trials (9.5%) were also removed. For diffusion model 
analysis, outliers were defined following Schmiedek et al. 
(2007) and discarded (1.5%). On average, 141.2 trials (range 
100.6–181.9 trials) remained for each subject and condition 
for diffusion modeling. P-values from the KS statistics indi-
cating model fit ranged from .13 to 1.00. Graphical inspec-
tion of empirical data plotted against data predicted by the 
model indicated poor model fit for four participants in the 
control group, which were therefore excluded from all analy-
ses. For the remaining participants (44 in control group, 48 
in reward group), diffusion model fit was good (see OSF 
Additional Material: Part II, Fig. A4). For completeness, we 
also report the analyses of Experiment 2 with all participants 
included in the OSF Additional Material: Part IV, Table A5; 
the data pattern was similar.

Data analysis

Data analysis procedure was identical to the analysis 
of global reward effects in Experiment 1. The complete 
ANOVA results for behavioral data and diffusion model 
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parameters are displayed in Table 3. The descriptive data 
are shown in Fig. 3.

Reaction times

Significant main effects of phase, F(1, 90) = 354.03, p < 
.001, n2

p
 = .80, and task sequence, F(1, 90) = 22.10, p = 

.001, n2
p
 = .20, were found. Responses were faster in the 

reward phase compared to the baseline phase (700 vs. 1,090 
ms), and slower in ABA than in CBA task sequences (906 
vs. 885 ms) yielding N-2 task repetition costs of 21 ms. On a 
descriptive level, N-2 task repetition costs were 24 ms in the 
baseline phase, and 18 ms in the reward phase, however, the 
interaction of phase and task sequence was not significant, 
F(1, 90) < 1.

Error rates

The main effect of phase was significant, F(1, 90) = 73.54, 
p < .001, n2

p
 = .45, indicating that more errors occurred in 

the reward phase than in the baseline phase (11.9 vs. 7.2%).

Diffusion modeling of global reward effects

For drift rate, the main effect of phase, F(1, 90) = 95.20, p 
< .001, n2

p
 = .51, as well as the interaction between motiva-

tion group and phase, F(1, 90) = 9.27, p = .003, n2
p
 = .09, 

were significant. Drift rate was higher in the reward phase 
than baseline phase (1.99 vs. 1.49), while this increase was 
more pronounced in the reward group than control group 
(difference of 0.67 vs. 0.35). Moreover, the main effect of 
task sequence, F(1, 90) = 4.35, p = .040, n2

p
 = .05, and the 

two-way interaction of phase and task sequence, F(1, 90) 
= 4.47, p = .037, n2

p
 = .05, reached significance. Drift rate 

was lower in in the last trial of an ABA than CBA task 
sequence (1.71 vs. 1.77), and these N-2 task repetition costs 
were higher in the reward phase than in the baseline phase 
(0.11 vs. 0.01).

For boundary separation, the main effect of phase, F(1, 
90) = 315.86, p < .001, n2

p
 = .78, and the interaction of phase 

and motivation group, F(1, 90) = 7.61, p = .007, n2
p
 = .08, 

were significant. Boundary separation decreased strongly 
from the baseline phase to the reward phase (1.99 vs. 1.25), 
and this decrease was more pronounced in the reward group 
than in the control group (difference of 0.85 vs. 0.62).

Regarding non-decision time, a significant main effect of 
phase, F(1, 90) = 19.69, p < .001, n2

p
 = .18, and a signifi-

cant interaction of motivation group and phase, F(1, 90) = 
5.68, p = .019, n2

p
 = .06, indicated a lower non-decision time 

in the reward phase relative to the baseline phase, and the 
decrease in non-decision time was less pronounced in the 
reward group than in the control group. Ta
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Interim discussion of global reward effects

Significant differences between the average reward rate in 
the reward group and the virtual reward rate in the control 
group indicate a successful reward manipulation, although 
the between-group difference was numerically smaller 
in Experiment 2 than in Experiment 1 (8% vs. 28%; see 
General discussion for more details). The ANOVA results 
largely coincide with the results of Experiment 1: There 
was an increase in response speed and decrease in bound-
ary separation from baseline phase to reward phase. The 
latter was more pronounced in the reward group than in the 
control group, likely reflecting a shift in response strategy 

from the baseline phase to the reward phase induced by the 
reward manipulation. There were also some minor differ-
ences between the data patterns in Experiments 1 and 2: In 
Experiment 2, the reward group and control group did not 
differ statistically with respect to overall accuracy level and 
boundary separation, and in RT data, the interaction between 
phase and motivation group was no longer significant. These 
differences between experiments are likely due to the slight 
changes in reward schedule between Experiments 1 and 2.

Importantly, in Experiment 2 as well as in Experiment 
1, the increase in drift rate from baseline phase to reward 
phase was larger in the reward group than control group. See 
General discussion for more details on why this result shows 

Fig. 3   Analysis of global reward effects in Experiment 2. Perfor-
mance and diffusion model parameters as a function of motivation 
group (control group, reward group), phase (baseline phase, reward 
phase), and task sequence (ABA, CBA). From top to bottom: Mean 

RT, mean error rates, mean drift rate, mean boundary separation, 
and mean non-decision time. Error bars indicate the 95% confidence 
interval of the ABA-CBA difference per experimental phase (Pfister 
& Janczyk, 2013). N = 44 in control group, N = 48 in reward group
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Fig. 3   (continued)
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that the reward manipulation did not just induce a speed-
accuracy tradeoff, and for considerations that reward expec-
tancy may sharpen task set representations (Yee & Braver, 
2018) and/or increase visual attention (Grahek et al., 2021).

Moreover, in Experiment 2, there was a significant inter-
action of phase and task sequence in drift rate across both 
groups, suggesting that the increased difficulty in evidence 
accumulation in ABA relative to CBA task sequences was 
more pronounced in the reward phase (but this effect was not 
specific to the reward group). This data pattern is different 
to Experiment 1, where we had observed a significant inter-
action of phase and motivation group in drift rate (but this 
effect was not specific to ABA vs. CBA task sequences). No 
other modulations of N-2 task repetition costs were observed 
in the analysis of global reward effects in either Experiment 
1 or 2.

Results II: Local reward effects

As in Experiment 1, we performed a second analysis zoom-
ing into a trial-by-trial level in the reward phase to inves-
tigate whether N-2 task repetition costs are modulated by 
reward locally. Performance differences between reward 
group and control group subsequent to a fast trial would 
imply effects due to reward experience. A modulation of 
N-2 task repetition costs after fast correct trials in the reward 
group would suggest a local reward-based enhancement of 
task-set inhibition.

Data filtering

The four control-group participants that were excluded from 
the global analysis (due to poor diffusion model fit) were 
excluded from the local analysis as well. As with Experi-
ment 1, data trimming for the local analysis was the same as 
for the global analysis, except that only data from the reward 
phase were included. Three participants in the reward group 
and one further participant in the control group had less than 
10 trials in one of the “N-1 not rewarded” conditions and 
therefore were also excluded from the local analysis (as in 
Experiment 1). Thus, in total, 43 participants in the control 
group and 45 participants in the reward group were included 
in the analysis of local reward effects.

As for Experiment 1, outliers for diffusion-model analy-
sis were defined according to Schmiedek et al. (2007) and 
removed (1.4%). On average, 97.6 trials (range 42.1–152.8 
trials) remained for each subject and condition for diffusion 
model analysis. P-values from the KS statistics ranged from 
.17 to 1.00. Diffusion model fit for the included participants 
(43 in control group, 45 in reward group) was good (see OSF 
Additional Material: Part II, Fig. A5 for a graphical illustra-
tion of diffusion model fit).

Data analysis

Data analysis was identical to the analysis of local reward 
effects in Experiment 1. The complete ANOVA results for 
behavioral data and diffusion model parameters are dis-
played in Table 4. The descriptive data are shown in Fig. 4. 
As crosscheck, RT and error analyses were additionally run 
including all 96 participants (OSF Additional Material: Part 
IV, Table A6). We further report analyses including partici-
pants with poor diffusion model fit but excluding partici-
pants with low trial numbers (OSF Additional Material: Part 
IV, Table A7); the results pattern was similar.

Reaction times

The main effects of motivation group, F(1, 86) = 6.22, p = 
.015, n2

p
 = .07, N-1 reward, F(1, 86) = 80.74, p < .001, n2

p
 = 

.48, and task sequence, F(1, 86) = 4.29, p = .041, n2
p
 = .05, 

were significant. Participants in the reward group responded 
faster than participants in the control group (682 vs. 792 
ms), and responses were faster after fast N-1 trials (which 
were rewarded in the reward group) than after slow N-1 tri-
als (671 vs. 802 ms). N-2 task repetition costs amounted to 
12 ms.

Error rates

Only the three-way interaction of motivation group, N-1 
reward, and task sequence was significant, F(1, 86) = 8.88, 
p = .004, n2

p
 = .09. N-2 task repetition costs were modulated 

less by fast N-1 trials in the reward group (2.5%) than in 
the control group (–3.1%). Descriptively, the reward group 
showed an N-2 task repetition benefit after slow (non-
rewarded) N-1 trials (1.7%), and N-2 task repetition costs 
after fast (rewarded) N-1 trials (0.8%), while the control 
group showed the opposite pattern, that is, N-2 task rep-
etition costs after slow N-1 trials (1.9%) and an N-2 task 
repetition benefit after fast N-1 trials (1.2%). When analyz-
ing the two groups separately in follow-up ANOVAs with 
the factors task sequence and N-1 reward, the interaction 
remained significant only in the control group, F(1,42) = 
6.00, p = .019, η2

p = .13.

Diffusion modeling of local reward effects

For drift rate, a significant main effect for N-1 reward was 
observed, F(1, 86) = 7.81, p = .006, n2

p
 = .08, revealing drift 

rate was higher in trials following a fast N-1 trial relative 
to a slow N-1 trial (2.06 vs. 1.91). The three-way interac-
tion of motivation group, N-1 reward, and task sequence 
was significant, F(1, 86) = 7.02, p = .010, n2

p
 = .08. N-2 

task repetition costs increased after fast N-1 trials relative 
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to slow N-1 trials in the reward group (0.21 vs. – 0.25) but 
decreased after fast N-1 trials relative to slow N-1 trials in 
the control group (– 0.03 vs. 0.15). Follow-up ANOVAs 
conducted separately for the two groups with the factors 
N-1 reward and task sequence revealed that the main effect 
of N-1 reward as well as the interaction of N-1 reward and 
task sequence remained significant only in the reward group, 
F(1, 44) = 8.74, p = .005, n2

p
 = .17, and F(1, 44) = 8.15, p 

= .007, n2
p
 = .16, respectively.

For boundary separation, the main effects of motivation 
group, F(1, 86) = 5.04, p = .027, n2

p
 = .06, and N-1 reward, 

F(1, 86) = 74.32, p < .001, n2
p
 = .46, were significant, show-

ing boundary separation was lower in the reward group than 
in the control group (1.25 vs. 1.44), and after fast N-1 trials 
relative to slow N-1 trials (1.20 vs. 1.49). No effects were 
significant for non-decision time, F(1, 86) < 1.

Interim discussion of local reward effects

Converging with the previous results from Experiment 1, RT 
was faster, drift rate higher, and boundary separation lower in 
the reward group than in the control group, and after fast trials 
relative to after slow trials. This pattern confirms both long-
term and short-term adjustments in response strategy towards 
faster responses to maximize reward in the reward group, and 
to maximize positive feedback in the control group.

The three-way interaction of N-1 reward, task sequence, 
and motivation group was significant in error rate in Exper-
iment 2. However, the pattern was opposite to the one 
observed in Experiment 1, and it was no longer significant in 
the reward group in post-hoc analyses, suggesting the effect 
was not reliable. The same interaction became significant 
in drift rate showing that N-2 task repetition costs increased 
after fast (i.e., rewarded) trials in the reward group. So far, 
this is the only evidence suggesting a reward-based increase 
of task-set inhibition, while results in the other dependent 
variables did not suggest any reward-based modulation 
thereof.

Combined analysis of data from both experiments

As we did not find clear evidence concerning a reward-based 
modulation of N-2 task repetition costs, we combined the 
data from Experiments 1 and 2 and performed a global 
and a local analysis thereof analogously to the previously 
described analyses. With a total sample size of 193 par-
ticipants, a power analysis with MorePower v6.0.4 (Camp-
bell & Thompson, 2012) revealed a power of .93 to detect 
a medium-sized ( n2

p
 = .06) three-way interaction of motiva-

tion group, phase, and task sequence, and a power of .80 to 
detect a small- to medium-sized ( n2

p
 = .04) three-way inter-

action. Additionally, we performed Bayesian ANOVAs with Ta
bl
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JASP software version 0.16.3 (https://​jasp-​stats.​org) on the 
dependent variables RT and error rate, and on the diffusion 
model parameters, for global and local reward effects, by 
comparing the model including the critical three-way inter-
action of interest to all models excluding the critical three-
way interaction (see OSF Additional Material: Part V for a 
full description of the Method and Results of the Combined 
Analysis).

The result pattern largely mirrored the effects previ-
ously found in Experiments 1 and 2 and did not indicate any 
reward-based modulation of task-set inhibition. All Bayesian 
analyses yielded an Exclusion Bayes Factor greater than 3, 

which according to convention can be interpreted as “sub-
stantial evidence” for the absence of the effect of interest 
(Jeffreys, 1961). Thus, Bayesian analyses implied that the 
present data is more likely to be found in models excluding 
the critical three-way interaction of phase, motivation group, 
and task sequence for global reward effects, and excluding 
the three-way interaction of N-1 reward, motivation group, 
and task sequence for local reward effects.

Overall, task-set inhibition as measured by N-2 task repe-
tition costs appear to be modulated neither by reward expec-
tancy (globally) nor by reward experience (locally) with the 
reward manipulations employed in Experiments 1 and 2. 

Fig. 4   Analysis of local reward aftereffects in the reward phase of 
Experiment 2. Performance and diffusion model parameters as a 
function of motivation group (control group, reward group), N-1 
reward (not rewarded, rewarded), and task sequence (ABA, CBA). 
From top to bottom: Mean RT, mean error rates, mean drift rate, 

mean boundary separation, and mean non-decision time. Error bars 
indicate the 95% confidence interval of the ABA-CBA difference 
per experimental phase (Pfister & Janczyk, 2013). N = 43 in control 
group, N = 45 in reward group

https://jasp-stats.org
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Fig. 4   (continued)
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Note that this combined analysis is somewhat limited since 
it averages data from two slightly different paradigms (e.g., 
errors were not penalized in Experiment 1, but in Experi-
ment 2).

N-2 task repetition costs were relatively small (12 ms) in 
the local analysis, i.e., in the reward phase. One possibility 
is that effects of two or more fast previous trials (consecutive 
rewards for the reward group) may have opposing effects 
on the level of task sets. However, an explorative analysis 
considering additionally the performance in trial N-2 in our 
data did not find robust effects to confirm possibly opposing 
effects of consecutive rewards on the level of task sets (see 
OSF Additional Material: Part VI).

General discussion

The present study contributes to research on the interface 
between motivation and cognitive control. We let partici-
pants perform a task switching paradigm that allowed us to 
measure N-2 repetition costs, which can be taken as a marker 
of inhibitory control on the task level. We compared perfor-
mance between two groups: A reward group that received 
performance-contingent reward in the second part of the 
experiment (reward phase), and a control group that did not 
receive any reward. The baseline phase was identical for 
both groups (no reward could be obtained). Two experiments 
were conducted that differed slightly with respect to the 
reward scheme and the task switching paradigm. Regarding 
reward scheme, in both experiments, fast and correct trials 
were rewarded and slow correct trials were not rewarded; in 
addition, error trials were penalized in Experiment 2 (but 
not Experiment 1). We analyzed effects on a global level 
by assessing N-2 repetition costs in the baseline and reward 
phase in the reward and control group, as well as on a local 
level by assessing trial-by-trial reward aftereffects in the 
reward phase only. Across both experiments, we observed 
a reward-based modulation of general performance and 
reliable N-2 repetition costs. However, we did not observe 
robust effects indicating any reward-related modulation of 
inhibitory task control.

Reward‑based modulation of task inhibition

The only result suggesting a reward-based modulation of 
N-2 task repetition costs was found in the drift rate param-
eter in the local analysis of Experiment 2, in which a strong 
inhibition of irrelevant task sets was required since errors 
were penalized. If this effect was robust, it would indicate 
increased inhibition to currently irrelevant task sets due to 
recent reward experience. Assuming that effects in drift rate 
reflect visual attention (Grahek et al., 2021; Wang et al., 
2019) and/or strength of task set representations (e.g., Etzel 

et al., 2016; Hall-McMaster et al., 2019; Yee & Braver, 
2018; see also following section), reward experience may 
locally weaken representations of reward-irrelevant task sets 
and/or decrease visual attention when switching back to a 
still-inhibited task after a competing task has been rewarded. 
However, the Bayes Exclusion Factors and all other analyses 
across the two experiments suggest the absence of reward-
based modulation of task inhibition.

In sum, the evidence for reward-based modulation of 
task inhibition (as measured by N-2 repetition costs) seems 
to be inconsistent, ranging from a reward-based decrease 
of task inhibition (Zhang et al., 2016, N = 28 per group) 
to a reward-based increase of task inhibition (Jiang & Xu, 
2014; N = 20). Our results do not support any modulation 
even with a larger sample size (two experiments, N = 48 per 
group per experiment). This may help to explain the previ-
ously inconsistent findings, suggesting that reward does not 
interact with cognitive control on the level of task sets at all.

In contrast, the evidence for reward-based modulation of 
response inhibition reported in the literature seems to be 
more unequivocal. Several studies investigated the influence 
of reward on stopping performance in a stop-signal para-
digm, by manipulating reward in stop trials (Boehler et al., 
2012, 2014; Wang et al., 2019). These studies consistently 
observed improved stopping performance (i.e., reduced stop-
signal reaction time) under reward. Nevertheless, one can-
not simply conclude that reward leads to increased response 
inhibition; rather, the emerging picture is more complex: 
Wang et al. (2019) empirically disentangled two component 
processes involved in stop-signal performance: the atten-
tional capture triggered by the stop-signal (mediated by the 
inferior frontal gyrus (IFG) brain region), and the inhibition 
of the initiated motor response (mediated by the pre-supple-
mental motor area (pre-SMA)). They observed that reward 
improved attentional capture by unexpected stimuli (such 
as a stop signal), but not stopping of the motor response per 
se (see also Langford et al., 2016, for reward-related modu-
lation of attention in a stop-signal task). Moreover, when 
performance in go trials is rewarded (instead of performance 
in stop trials, as in the above-mentioned studies), stop-signal 
reaction time is increased in the reward condition (Padmala 
& Pessoa, 2010; see Leotti & Wager, 2010; for a theoretical 
model of reward manipulations on stop-signal performance). 
Taken together, it seems that reward-based modulations of 
inhibitory functions are multi-faceted, and more research is 
necessary for a more complete picture.

Reward‑based modulation of general performance

The present study reveals interesting effects of the reward 
manipulation on general performance: Participants 
responded considerably faster, and more error prone, when 
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the reward manipulation was introduced. This performance 
shift optimized participants’ performance, as it led to a sig-
nificantly higher reward rate in the reward group relative to 
the “virtual reward rate” in the control group (where partici-
pants had no incentive to shift their performance since no 
reward was provided). Diffusion modeling revealed that at 
least two different cognitive processes might be underlying 
this performance shift in the reward group: Firstly, partici-
pants change their response strategy towards faster and less 
cautious responding, as indicated by a lower boundary sepa-
ration parameter in the reward phase. Secondly, participants 
become more focused on the task and have a better signal-
to-noise ratio of the currently relevant task representation, as 
indicated by a higher drift rate in the reward phase.

The observed reward-based performance shift does 
not constitute a simple speed-accuracy tradeoff. Previous 
research with instructed speed-accuracy tradeoffs revealed 
that the reduced boundary separation is typically accom-
panied by a decrease in drift rate and non-decision time in 
the speed condition relative to the accuracy condition (e.g., 
Mittelstädt et al., 2022; Rae et al., 2014; Voss et al., 2004). 
Notably, along with reduced boundary separation, we con-
sistently observed an increase in drift rate from baseline 
to reward phase, which was particularly pronounced in the 
reward group compared to the control group. Thus, while 
the participants’ response criterion was more liberal when 
expecting reward, performance was additionally optimized 
in terms of drift rate.

The increased drift rate under reward suggests two mutu-
ally non-exclusive mechanisms: Firstly, visual attention 
likely increases under reward prospect as we used visual 
stimuli in all trials (see Grahek et al., 2021, for EEG evi-
dence that reward enhances stimulus processing in the visual 
cortex; Wang et al., 2019). Secondly, mental representations 
of task sets are likely improved due to better signal-to-noise 
ratio under reward as we used N-2 task switching paradigms 
in both experiments (Etzel et al., 2016; Hall-McMaster et al., 
2019; Yee & Braver, 2018).

Since every trial was a task switch in the present study, 
we cannot determine whether the process of switching 
between tasks was facilitated, or whether the better signal-
to-noise ratio was independent from switching and would 
occur on task repetition trials as well. On a more general 
level, the reward-triggered increase in drift rate is consistent 
with the notion of sharpened task set representations under 
reward, which is presumably mediated by a dopamine-based 
enhancement of attentional focus under reward (e.g., Aarts 
et al., 2010; Durstewitz & Seamans, 2002, 2008; Goschke 
& Bolte, 2014; Yee & Braver, 2018). There is neurosci-
entific evidence that reward leads to an improved signal-
to-noise ratio of task set representations. For instance, an 
fMRI study on task switching using the methodology of 
multivariate pattern analysis (MVPA) showed that task set 

representations in frontoparietal brain regions become more 
discriminable under reward (Etzel et al., 2016). Converging 
evidence comes from a recent EEG study using represen-
tational similarity analysis, which found that task-set rep-
resentations were enhanced under reward, and this reward-
based enhancement was more pronounced on task switch 
trials than task repetition trials (Hall-McMaster et al., 2019). 
As the increase in drift rate is associated with the onset of 
reward expectancy in the present study, we would expect 
similar results with increasing reward expectations on a local 
trial-by-trial basis (e.g., Fröber et al., 2018, 2019, 2020; Frö-
ber & Dreisbach, 2016a, 2021).

Reward expectancy

In research on motivation and reward, different aspects of 
reward have been distinguished (Berridge & Robinson, 
2003), which in turn have differential impact on cognitive 
control functions (Notebaert & Braem, 2015). Berridge and 
Robinson (2003) distinguished between three components 
of reward: the “motivational component” (i.e., reward expec-
tancy), the “affective component” (i.e., the positive affect 
associated with reward), and the “learning component” (i.e., 
reinforcement learning, where rewarded behaviors are more 
likely to be executed again). Building up on this distinction, 
Notebaert and Braem (2015) suggested that each reward 
component has a distinct impact on cognitive control func-
tions: The motivational component of reward (i.e., reward 
expectancy) promotes anticipatory behavior, or “proactive 
control” (as opposed to “reactive control”) in the dual-mech-
anisms of control (DMC) framework by Braver (2012). The 
affective component of reward (i.e., positive affect) promotes 
cognitive flexibility and explorative behavior. Finally, the 
learning component of reward promotes the repeating of 
actions that have been rewarded in the past.

The reward effects observed in the present study are most 
likely related to the motivational component (i.e., reward 
expectancy), rather than to the affective and learning com-
ponents of reward processing. We observed global effects 
of reward, that is, faster RTs and higher error rates in the 
reward phase of the reward group, together with higher drift 
rate and lower boundary separation in this phase. Moreover, 
we investigated local reward aftereffects in the reward phase. 
We observed faster RTs, higher drift rate and lower bound-
ary separation after rewarded trials than after non-rewarded 
trials in the reward group. Importantly, we observed the 
same data pattern also in the control group, when split-
ting the data into fast correct trials (that would have been 
rewarded in the reward group) and slow correct trials (that 
were not rewarded). This suggests that the global reward 
effects observed in the present study are more likely due to 
the prospect of receiving a reward in the upcoming trial (i.e., 
reward expectancy), rather than the experience of reward in 
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the preceding trial. Hence, the reward effects observed in 
the present study are probably related to the motivational 
component of reward expectancy, and less so to the affective 
and learning components of reward processing.

It should be noted that in the present study, every trial 
in the reward phase could potentially be rewarded. Hence, 
the prospect of reward was constant across all trials in the 
reward phase (but differed between reward and baseline 
phase, and between the groups; see Zhang et al., 2016, 
for a similar design). This is different from other studies 
that manipulated reward expectancy on a trial-by-trial basis 
(e.g., Hippmann et al., 2019; Jiang & Xu, 2014). In these 
studies, participants received a cue at the beginning of 
each trial indicating whether a large or small/zero reward 
could be gained in the upcoming trial. Given that reward 
expectancy seemed to be the component that was most 
likely driving the reward effects in the present study, future 
research might benefit from incorporating a trial-by-trial 
manipulation of reward expectancy. Such a manipulation 
would also allow for analyzing the influence of changes in 
reward expectation, which have been shown to modulate 
task-switching performance (e.g., Fröber & Dreisbach, 
2016b). Regarding N-2 repetition costs, it is conceivable 
that an increasing reward expectation from trial N-2 to trial 
N-1 (relative to a high-remaining reward expectation from 
N-2 to N-1) might modulate N-2 repetition costs. Assum-
ing that an increasing reward expectation increases cogni-
tive flexibility and leads to smaller task switch costs and 
increased voluntary task switch rates (Fröber et al., 2018, 
2019, 2020; Fröber & Dreisbach, 2016b, 2021; Shen & 
Chun, 2011), one might hypothesize that less task inhibi-
tion is necessary, and hence, N-2 repetition costs become 
smaller when reward expectancy increased from the N-2 
trial to the N-1 trial.

Limitations

Two concerns may be raised questioning the effectiveness of 
our between-group reward manipulation: Firstly, between-
group differences in (virtual) reward scores were numeri-
cally much smaller in Experiment 2 than in Experiment 1; 
and secondly, behavioral data showed decreasing RTs and 
increasing error rates from the baseline to the reward phase 
in both groups, which may be interpreted as a speed-accu-
racy tradeoff elicited by the verbal feedback rather than the 
point-based reward scheme. Regarding the first concern, 
the reward group obtained statistically significantly higher 
reward scores than the control group. The numerically small 
between-group difference in Experiment 2 was likely due 
to the different reward scheme in which participants in the 
reward group could actually loose points. Regarding the sec-
ond concern, we acknowledge that drift rate increased from 
baseline to reward phase in both groups. However, in both 

experiments, this effect was significantly larger in the reward 
group than in the control group, which can only be explained 
by reward expectancy specific to the point-based reward 
scheme in the reward group. As discussed above (see section 
on Reward-based modulation of general performance), the 
present data cannot be explained by a simple speed-accuracy 
tradeoff, but rather it indicate a reward-specific optimization 
of performance.

Significant N-2 task repetition costs were observed in RT 
and drift rate. While they were numerically small (21 ms in 
both experiments), they were statistically significant in all 
three task switching paradigms (face and digit categoriza-
tions in Experiment 1; categorizations of household items 
in Experiment 2), and hence can be considered robust. Nev-
ertheless, should reward modulate N-2 repetition costs, it 
would be easier to find corresponding interaction effects if 
N-2 repetition costs were larger.

While our overall result pattern and Bayesian analyses 
suggest that inhibitory control as measured by N-2 repetition 
costs is not modulated by reward, we found one significant 
result indicating a local reward-based increase of inhibition 
to reward-irrelevant task sets in the diffusion model drift 
rate parameter. This was found in Experiment 2, where the 
reward scheme penalized errors to strenghten the require-
ment for inhibitory control. Thus, it may be speculated that 
stronger reward manipulations could be necessary to detect 
a robust reward-based modulation of task-set inhibition.

In sum, we encourage a stronger reward manipulation for 
future research to allow for drawing stronger conclusions 
about the absence – or presence – of reward-based modula-
tion of task-set inhibition. This may be accomplished by 
setting the reward threshold even faster, while maintaining 
point withdrawal for incorrect answers or even increasing it 
(e.g., withdrawal of two points for each error). This would 
also prevent or reverse the high focus on speed leading to 
floor effects in RT.

Conclusion

In the current task-switching study with reward manipula-
tion, we did not observe any robust evidence for reward-
related modulation of N-2 repetition costs, raising the pos-
sibility that reward does not interact with inhibitory control 
on the task level. At the same time, the reward manipulation 
had pronounced effects on general performance, with faster 
and more error-prone performance in the reward group than 
control group. Diffusion modeling revealed that the reward 
manipulation induced a reduction in the boundary separation 
parameter, indicating a shift towards a less cautious response 
strategy under reward, as well as an increase in the drift rate 
parameter, consistent with the notion of sharpened task-set 
representations under reward, which are mediated by the 
dopamine system.
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