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Abstract

Investigating the interface between motivation and cognitive control, we conducted two task switching experiments (N =
96 each) with reward manipulation where participants switched between three different tasks. We measured N-2 task rep-
etition costs, which denote the performance decrement in N-2 task repetition sequences (ABA) relative to N-2 task switch
sequences (CBA), and which are presumed to be a marker of inhibitory control in task switching. Participants in the reward
group received performance-contingent reward in the second phase of each experiment, and in the second experiment they
were additionally penalized for errors. Reward thresholds were determined individually based on participants’ performance
during the first phase of each experiment. Participants in the control group did not receive any reward. The reward manipula-
tion led to faster performance in the reward group relative to the control group. Diffusion modeling revealed that the reward
manipulation induced an increase in drift rate parameter, consistent with dopamine-based enhancement of attentional focus
under reward. Contrary to our expectations, no robust evidence for a reward-based modulation of N-2 repetition costs was
found across the two experiments. N-2 task repetition costs were small in both experiments, and possibly, a larger amount
of inhibitory control is needed in order to obtain empirical evidence for a reward-related modulation thereof. However,
additional analyses suggested that reward may not interact with inhibitory control on the task level at all.
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Introduction reward” (p. 84). They suggested that cognitive control can

be conceptualized as reward-based decision-making. In line

Motivation and cognitive control have been suggested to be
closely linked (for reviews, see Botvinick & Braver, 2015;
Braver, 2015; Chiew, 2021; Chiew & Braver, 2011; Dreis-
bach & Fischer, 2012; Kouneiher et al., 2009; Parro et al.,
2018; van Steenbergen et al., 2019; Yee & Braver, 2018).
For instance, Botvinick and Braver (2015) defined cognitive
control as “the set of superordinate cognitive functions that
encode and maintain a representation of the current task
(...)” (p- 84), and motivation as “the orienting and invigorat-
ing impact, on both behavior and cognition, of prospective
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with this notion, many studies have manipulated motiva-
tional state by introducing performance-contingent reward
in the experimental paradigm.

A considerable body of evidence suggests that perfor-
mance-contingent reward leads to enhanced recruitment
of cognitive control: Interference effects in conflict tasks
become smaller when a reward manipulation is introduced,
suggesting that the influence from the irrelevant stimu-
lus feature is attenuated (e.g., Padmala & Pessoa, 2011);
performance in stop-signal tasks is improved upon reward
(e.g., Boehler et al., 2014; Leotti & Wager, 2010; Padmala &
Pessoa, 2010), and proactive control is increased by reward
prospect in the AX continuous performance task (Chiew &
Braver, 2013, 2014; Frober & Dreisbach, 2014, 2016a; Hefer
& Dreisbach, 2016, 2017, 2020; Locke & Braver, 2008) and
the dual-task paradigm (Fischer et al., 2018). Furthermore,
task-switching performance becomes better under reward
(e.g., Aarts et al., 2010; Hippmann et al., 2019; Kleinsorge
& Rinkenauer, 2012; Nieuwenhuis & Monsell, 2002).
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For instance, in a recent task-switching study with TMS
stimulation, Hippmann et al. (2019) had participants switch
between two number categorization tasks (parity task and
magnitude task) and manipulated reward expectancy on a
trial-by-trial basis: A reward cue was presented before each
stimulus, indicating the amount of money that could be
gained in the following trial (1 cent” or “7 cents”). They
observed the standard finding of slower reaction times (RTs)
in task switch trials than task repetition trials, and these
task switch costs were smaller in trials where high reward
was expected (about 15 ms) as compared to trials where
low reward was expected (about 30 ms). That is, switching
between tasks became easier (i.e., was associated with lower
costs) when reward expectancy was high, and this effect was
independent from stimulation site. In error rates, a similar
data pattern of reduced switch costs under high reward
expectancy was observed, but only with stimulation over
the left inferior frontal junction (IFJ), not with stimulation
at a control site, suggesting that the left IFJ plays a causal
role in the reward-based modulation of task switch costs.

Several (voluntary) task switching studies furthermore
showed that performance-contingent reward affects task-
switching performance differently depending on the imme-
diate reward history (Frober et al., 2018, 2019, 2020; Frober
& Dreisbach, 2016a, 2021; Shen & Chun, 2011). The pros-
pect of a high reward generally enhanced performance in
terms of decreased RT compared to low reward prospect, but
the same high reward prospect either reduced or increased
switch costs and increased or reduced voluntary switch rates
depending on the reward sequence: Task switches benefitted
more from increasing reward expectation (smaller switch
costs and increased voluntary switch rates when reward
increased from low to high in the current trial), whereas
task repetitions benefitted more from remaining high reward
prospect (higher switch costs and reduced voluntary switch
rates when reward remained high).

Not only reward sequence, but also task sequence seems
to be a modulating factor on the impact of reward on task-
switching performance. In another recent task-switching
study that measured behavioral performance and EEG,
Zhang et al. (2016) let participants switch between three
different tasks (two number categorization tasks: parity
task, magnitude task, and one very simple task that required
pressing both possible response keys simultaneously) and
measured N-2 repetition costs, which occur when compar-
ing performance in the last trial of a N-2 task repetition
sequence (e.g., ABA) and the last trial of a N-2 task switch
sequence (e.g., CBA, where A, B, and C denote different
tasks). N-2 repetition costs are usually thought to reflect
persisting inhibition of a previously abandoned task that
needs to be overcome when switching back to this task
(see Koch et al., 2010, for review). Other than Hippmann
et al. (2019), Zhang et al. (2016) manipulated reward in a

between-subjects design. Participants in the control group
never received any reward, while participants in the reward
group could receive a reward on every trial, depending on
their performance (they received 2 cents for each correct
response). Zhang et al. (2016) observed smaller N-2 repeti-
tion costs in the reward group (13 ms, 4.4% more errors)
than in the control group (70 ms, 4.3% more errors), sug-
gesting that reward modulates inhibitory control in task
switching. This behavioral effect was accompanied by a
reward-related modulation of N-2 repetition costs in the
N2 ERP component, and source localization revealed that
the N2 effect originated from the anterior cingulate cortex
(ACC), a brain region that has been associated with another
component of cognitive control, namely conflict monitoring
processes (Botvinick et al., 2004). Moreover, Zhang et al.
(2016) observed faster but more error-prone overall perfor-
mance in the reward group than control group, suggesting
that the reward manipulation might have induced a shift
towards a less cautious response strategy.

Reward-based modulations of N-2 repetition costs have
also been investigated in a study by Jiang and Xu (2014).
They let participants switch between three different tasks (let-
ter, digit, symbol classification) and manipulated reward in
a within-subjects design: Participants started with a baseline
phase without reward, and then proceeded to a reward phase.
During the reward phase, the possibility of receiving perfor-
mance-contingent reward varied on a trial-by-trial basis (as in
Hippmann et al., 2019), with a reward cue appearing prior to
each stimulus and indicating whether or not a reward could be
gained in the upcoming trial (incentive vs. no-incentive cues).
In Jiang and Xu’s (2014) data, N-2 repetition costs did not dif-
fer between baseline and reward phase, and neither between
incentive and no-incentive trials within the reward phase.
Because Jiang and Xu (2014) had expected to find reward-
based modulation of N-2 repetition costs, they performed
follow-up analyses looking at local aftereffects of reward on
a trial-by-trial basis. They observed that N-2 repetition costs
differed as a function of the incentive cue presented in the N-1
trial, with larger N-2 repetition costs when an incentive cue had
been presented in the N-1 trial than when a no-incentive cue
had been presented. Based on these results, they suggested that
inhibition of the just-performed task in trial N-2 is increased
when a reward can be gained in trial N-1, and the aftereffect
of this increased inhibition is then measured in trial N. In
other words, they observed a reward-based modulation of N-2
repetition costs, with larger N-2 repetition costs when reward
expectancy in the N-1 trial was present than when it was not. !

! Jiang and Xu (2014) also analyzed N-2 repetition costs as a function
of the N-2 incentive cue, and observed smaller N-2 repetition costs
after N-2 incentive (vs. no-incentive) cues. However, in their study
the sequence of incentive cues was constrained in such a way that an
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Hence, the evidence for reward-based modulation of N-2
repetition costs is mixed: While Zhang et al. (2016) reported
smaller N-2 repetition costs when reward was possible (in
the reward group) than when it was not (control group),
Jiang and Xu (2014) did not observe any difference in N-2
repetition costs between reward phase and control (base-
line) phase. Instead, when zooming into trial-by-trial effects
during the reward phase, they observed an increase in N-2
repetition costs when reward had been possible in the N-1
trial than when it had not.

The present study

In the present behavioral study, we aimed to further inves-
tigate reward-based modulations of N-2 repetition costs. In
Experiment 1, we used two different task switching para-
digms that had produced reliable N-2 repetition costs in
previous studies. One paradigm consisted of three number
categorization tasks (parity task, magnitude task, interval
task), where participants had to classify digits as odd or
even, smaller or larger than five, or positioned in the inner
or outer areas of a mental number line. The other paradigm
consisted of three face categorization tasks (age task, gen-
der task, eye color task), where participants had to catego-
rize faces as young or old, female or male, or with bright
or dark eye color. In Experiment 2, we used a paradigm
where participants had to categorize pictures of household
items as belonging to kitchen or garage, standing upright
or upside down, or being smaller or larger than a shoebox.
In all paradigms, we used the same two response keys (left
and right) for responding. The response sets for the differ-
ent tasks were overlapping (i.e., the same two response keys
served for responding to the three different tasks), which
is considered to produce maximal interference between the
different tasks and evoke reliable N-2 repetition costs (see
Koch et al., 2010, for review).

In both experiments, we manipulated reward between-
subjects (control group vs. reward group), as well as
within-subjects: Participants in the reward group started
with a baseline phase without reward, and then proceeded
to a reward phase; participants in the control group did not
receive any reward in either phase. In the reward phase,
every trial could potentially be rewarded, depending on the
participant’s performance. Individual RT thresholds were
computed based on baseline performance, and participants
received reward feedback if they responded correctly and if
their RT was within the fastest third of their RT distribution

Footnote 1 (continued)

incentive cue in one trial was always followed by a no-incentive cue
in the subsequent trial, but not vice versa, making the interpretation of
triplet sequences difficult.

@ Springer

in the baseline phase. In the reward phase of Experiment
2, incorrect trials were penalized (see Method for details).

In a first step, we analyzed global effects of the reward
manipulation, comparing the baseline and reward phases in
the reward and control groups. A difference in N-2 repetition
costs between baseline and reward phase in the reward group
could be due to reward effects, and/or to practice effects,
while such a difference in the control group could only be
due to practice effects. Hence, if we observed a larger modu-
lation of N-2 repetition costs from baseline phase to reward
phase in the reward group than in the control group, we
would interpret this as globally reward-induced modulation
of N-2 repetition costs.

In a second step, we analyzed local effects of the reward
manipulation in the reward phase of the experiment. Fol-
lowing Jiang and Xu (2014), we analyzed N-2 repetition
costs as a function of reward in the N-1 trial. To this end, we
separated the data according to response speed in the N-1
trial (fast vs. slow). In the reward group, but not in the con-
trol group, the fast N-1 trials had been followed by reward
feedback. In slow N-1 trials, no reward feedback had been
presented in either group. Hence, if we observed a larger
modulation of N-2 repetition costs by N-1 response speed
in the reward than control group, we would interpret this
effect as locally reward-induced modulation of N-2 repeti-
tion costs.

In addition to analysis of mean performance (RTs and
error rates), we applied diffusion modeling to the present
data. The diffusion model is a relatively simple computa-
tional model to account for performance in speeded choice-
RT tasks (Ratcliff, 1978; Voss et al., 2013; for reviews, see
Ratcliff & McKoon, 2008; Ratcliff et al., 2016). It comple-
ments the analysis of mean performance and provides a
richer account of the cognitive processes underlying a par-
ticular data pattern, by additionally taking the shape of RT
distributions into account. In its simplest form, the model
assumes that overall RT in a single trial can be split up into
a decisional and a non-decisional component. The decisional
component reflects the choice (i.e., response selection) pro-
cess; the non-decisional component encompasses all cog-
nitive processes before and after response selection (e.g.,
stimulus encoding, motor processes). The choice process can
be described by the average rate of evidence accumulation
towards one or the other response alternative (drift rate) and
the amount of evidence required before a decision is made
(boundary separation). The simple diffusion model, thus,
provides three parameters: drift rate, boundary separation,
and non-decision time.

N-2 repetition costs are mainly reflected in the drift rate
parameter, with smaller drift rate in the last trial of an ABA
than CBA sequence (Schuch, 2016; Schuch & Grange,
2019; Schuch & Konrad, 2017), in line with the idea that
response selection in the last trial of an ABA sequence is
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more difficult due to persisting inhibition of the N-2 task.
We expected to find this effect in the present study as well.
Moreover, we expected any reward-based modulations of
N-2 repetition costs, inasmuch as they are due to modula-
tions of task inhibition, to be reflected in drift rate as well.

The reward manipulation might also have effects on dif-
fusion model parameters that are independent from N-2
repetition costs. For instance, given that Zhang et al. (2016)
observed faster but more error-prone performance in the
reward condition than control condition, it is possible that
the reward manipulation induced a shift towards a less cau-
tious response strategy, which would be reflected in a lower
boundary separation in the reward condition. Moreover, it
has been suggested in the literature that reward enhances
cognitive control (for review, see Botvinick & Braver, 2015),
by improving the signal-to-noise ratio of task-relevant rep-
resentations, which is mediated on the neurophysiologi-
cal level by the dopamine system (e.g., Aarts et al., 2010;
Durstewitz & Seamans, 2008; Yee & Braver, 2018). Such
an effect of reward-based improved signal-to-noise ratio of
cognitive representations would be reflected in the diffu-
sion model drift rate, with enhanced drift rate in the reward
condition.

To summarize, we expected reward to (a) modulate the
effect of N-2 repetition costs in drift rate, and (b) lead to
overall smaller boundary separation and/or higher drift rate
in the reward condition than in the control condition.

Experiment 1

Method
Participants

In total, 97 participants were tested. Forty-eight participants
performed the digit-categorization tasks and were tested in
Aachen; they were students, or friends of students, of RWTH
Aachen University. Half of the participants were randomly
assigned to the control group (18 female, six male; mean
age = 23.3 years, SD = 3.6, range 18-35 years), the other
half to the reward group (17 female, seven male; mean age
= 25.0 years, SD = 7.4, range 18-54 years). The other 49
participants performed the face-categorization tasks and
were tested in Regensburg; they were students, or friends
of students, of Regensburg University. Twenty-four par-
ticipants were randomly assigned to the control group (20
females, four males, mean age = 20.0 years, SD = 3.2, range
19-32); 25 to the reward group (24 females, one male,
mean age 22.1 years, SD = 6.2, range 17-46). All partici-
pants received either partial course credits or money (8€
per full hour) for participation. With a total sample size of

96 participants, a power analysis with MorePower v6.0.4
(Campbell & Thompson, 2012) revealed a power of .68 to
detect a medium-sized (nﬁ = .06) three-way interaction of
motivation group, phase, and task sequence.

Tasks, stimuli, and responses

In the digit-categorization paradigm, the digits 1-9 (except
5) served as stimuli, and were presented in white on black
background, centrally on the screen. Participants switched
between three possible tasks: categorizing the digit as
smaller or larger than five (size task), odd or even (parity
task), or situated in the inner (digits 3, 4, 6, 7) or outer (dig-
its 1, 2, 8, 9) area of a mental number line ranging from 1
to 9 (interval task).

In the face-categorization paradigm, eight different pic-
tures of faces were used as stimuli (354 x472 pixels, pre-
sented centrally on the screen). They were taken from the
face database described in Schuch et al. (2012). There was
one facial picture for each of the eight possible combina-
tions of young/old, female/male, and bright/dark eye color.
Participants switched between the three possible tasks of
categorizing the face as young or old (age task), female or
male (gender task), or having bright (i.e., blue-green) or dark
(brown) eyes (eye color task).

In both paradigms, the task for each upcoming trial was
indicated by a colored frame presented centrally on the
screen, which was then followed by the stimulus (digit or
facial picture, respectively) presented inside the frame. In
the digit categorization paradigm, a red frame indicated
the size task, blue the parity task, and yellow the inter-
val task. In the face categorization paradigm, a red frame
indicated the age task, blue the gender task, and yellow
the eye color task.

A left and right response key served for responding in
both paradigms (the keys Y and M on a QWERTZ key-
board). Participants were instructed to use their left and right
index fingers for responding. The eight possible response
mappings were fully counterbalanced across participants
in each sample. A reminder summarizing the individual
response mappings for the three tasks was placed below the
screen and remained visible throughout the experiment.

The trial procedure was identical for both paradigms.
Every trial started with the presentation of a task cue (frame)
for 500 ms, which was followed by the presentation of a
stimulus (digit or facial picture, depending on paradigm).
Cue and stimulus stayed on the screen until one of the
response keys was pressed. Upon key press, a performance-
dependent feedback message was presented for 1,000 ms
(see below). Then, the screen remained empty for 500 ms
(for 1,000 ms after error) before the next trial started.
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Reward manipulation

In the control group, participants performed the task switch-
ing experiment (four blocks of 120 trials each) without any
reward manipulation. In the reward group, participants per-
formed the baseline phase (first half: two blocks of 120 trials
each) without any reward manipulation; in the reward phase
(second half), they could achieve points for fast and cor-
rect performance, and every trial in the reward phase could
potentially be rewarded. The criterion for a “fast response”
was determined based on individual performance in the
baseline phase (block 2 only); thresholds were computed
separately for each participant, task, and task sequence. A
point was achieved when RT was within the fastest third
of the RT distribution for that participant, task, and task
sequence.

Participants in the reward group received the following
instruction (in German) after the baseline phase: “For the
remainder of the experiment, you can achieve points. All
participants will participate in a competition. The person
with the highest number of points will be awarded an Ama-
zon gift card worth 15€. The person who comes second will
receive a gift card worth 10€, the person who comes third
a gift card worth 5€.” The first, second, and third prizes
were determined separately for the Aachen and Regensburg
samples; the participants with the highest, second-highest,
and third-highest number of points at each site received their
prizes after data collection was completed.

All participants received performance-dependent feed-
back after each trial during the task switching experiment.
In the control group, participants received the message “Cor-
rect!” after correct responses, and “Error” after incorrect
responses (all messages were presented in German). This
was also the case for participants in the reward group during
the baseline phase. In the reward phase, the reward-group
participants received one of the following feedback mes-
sages: “Correct! +1 Point” for correct and fast responses;
“Too slow! No point” for correct but slow responses, or
“Error! No point” for incorrect responses.

Procedure

Participants were tested in individual sessions that lasted for
about 45 min in total. They started with a practice phase,
consisting of four short blocks of 24 trials in total. Practice
blocks 1-3 were single-task blocks where they practiced
each task separately; practice block 4 was a mixed-task
block where all three tasks were intermixed, and every trial
was a task switch. The experimental phase consisted of 4
blocks with 120 trials each in total; the experimental blocks
1 and 2 constituted the baseline phase, experimental blocks
3 and 4 the reward phase”. Participants could take a short
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self-paced break after each block. Every trial was a task
switch, and pseudo-random task sequences were created a
priori that adhered to the following constraints: There was
an almost equal number of ABA (N-2 repetitions) and CBA
(N-2 switches) task sequences per block (range 58-60 trials
per block), and it was controlled that the trial type in the
current trial (N-2 repetition or switch) was independent from
the trial type in the preceding trial (i.e., the N-3 effect was
controlled, see Schuch & Grange, 2015). Moreover, each
task occurred equally often (i.e., 40 times per block), and
each possible task-stimulus combination occurred equally
often (i.e., 5 times per block). The stimulus presented in trial
N could not be the same as the stimulus presented in trial
N-1, or trial N-2.

Design

For the analysis of global reward effects, we employed a
three-factorial design with the within-subjects independent
variables task sequence (ABA vs. CBA) and phase (baseline
phase vs. reward phase), and the between-subject variable
motivation group (reward group vs. control group).® The
dependent variables were RT and error rates, as well as the
three diffusion-model parameters drift rate, boundary sepa-
ration, and non-decision time.

Results I: Global reward effects
Number of rewarded trials

As manipulation check, we first analyzed the number of trials
in which participants received reward feedback during the
reward phase. Participants in the reward group could reach a
score between 0 and 240 points in the reward phase (because
it consisted of 240 trials). On average, participants reached
163.9 points (range 103-229 points, SD = 25.9), correspond-
ing to an average reward rate of 68.3%. Participants perform-
ing the digit-categorization tasks reached 161.4 points on
average (range 115-203 points, SD = 23.0); participants per-
forming the face-categorization tasks reached 166.3 points
on average (range 103-229 points, SD = 28.2).

2 For one participant in the digit task control group, the computer
program crashed during the fourth block, such that the last 83 trials
were not collected from this participant.

3 We also checked for potential differences between the two para-
digms (digit tasks vs. face tasks) by performing an analysis with para-
digm as an additional between-subject variable, which is reported as
additional material in the Open Science Framework (OSF), see Part
I (Table Al, Fig. Al), https://osf.io/uyxc4/?view_only=f671a29d%e
£34603bd7cfofe1d9b595¢c. We did not find any relevant differences
regarding reward-based modulation of N-2 task repetition costs.
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We also analyzed control group performance and com-
puted the number of trials that would have been rewarded
in the control group according to the criteria applied to the
reward group. On average, participants in the control group
had 97.9 fast trials (range 34-176, SD = 27.4), correspond-
ing to a virtual reward rate of 40.8%. Participants perform-
ing the digit-categorization tasks had an average of 87.3
fast trials (range 34-141, SD = 24.1), corresponding to a
virtual reward rate of 36.4%; participants performing the
face-categorization tasks had an average of 108.5 fast tri-
als (range 69-176, SD = 26.5), corresponding to a virtual
reward rate of 45.2%.

When comparing the reward rate in the reward group and
the virtual reward rate in the control group, the reward group
reached significantly more (virtual) points than the control
group (163.9 points vs. 97.9 virtual points, respectively;
1(95) = 12.07, p < .01), indicating that participants in the
reward group adapted their performance to achieve a high
number of points.

Data filtering and ANOVA design

Outliers were defined as trials with an RT above or below
three standard deviations of the individual participant’s
mean per condition and were excluded from analysis (1.7%
of trials), as well as the first two trials of each block (1.7%)
and the two trials following each error (to exclude error
aftereffects, 14.6%). For analysis of RT data, error trials
were excluded as well. The mean number of trials per con-
dition and participant included in the analysis of error rates
was 98.8 (SD = 13.4, range 44—118); for the analysis of RT
data, it was 91.7 (SD = 17.6, range 26—118). Separate three-
way ANOVAs were conducted employing aforementioned
design (see Method). The complete ANOVA results are dis-
played in Table 1. The descriptive data are shown in Fig. 1.
Below, we briefly summarize the most important findings.

Reaction times

In RTs, a main effect of task sequence was obtained, F(1,95)
=16.74,p < .01, nzp = .15, indicating N-2 repetition costs of
21 ms. Task sequence did not interact significantly with any
of the other factors; that is, we did not observe any modula-
tion of N-2 repetition costs by the reward manipulation (or
by the specific paradigm applied, see Open Science Frame-
work (OSF) Additional Material: Part I). Moreover, there
were significant main effects of phase, F(1,95) =204.79, p
< .01, nzp = .68, and motivation group, F(1,95) = 6.92, p
= .01, nzp = .07,which were further qualified by a two-way
interaction, F(1,95) = 64.53, p < .01, nzp = .41. RTs were
faster in the reward phase than in the baseline phase, and this
effect was larger in the reward group (556 vs. 935 ms) than
control group (853 vs. 960 ms).

Table 1 Analysis of global reward effects in Experiment 1. Analysis of Variance (ANOVA) on the behavioral measures reaction times (RTs) and error rates, and on the diffusion-model param-

eters drift rate, boundary separation, and non-decision time

Non-decision time

Boundary separation

Drift rate

RT Error rate

49 in Reward Group

N
N

48 in Control Group

n2

p value
0.00
0.29
0.95
0.71
0.13
0.34
0.57

F(1,95)
14.64
1.12
0.01
0.14
2.35
0.92
0.33

n2

p value
0.00
0.93
0.00
0.11
0.00
0.59
0.66

F(1,95)
188.76
0.01

n?

p value
0.00
0.15
0.02
0.36
0.03
0.24
0.27

F(1,95)
30.55

n2

p value
0.00
0.92
0.00
0.13
0.00
0.03
0.95

F(1,95)
32.40
0.01
9.20
2.28

14

n2

p value
0.00
0.00
0.01
0.90
0.00
0.15
0.99

F(1,95)
204.79

Source of variance

Phase

0.13
0.01
0.00
0.00
0.02
0.01
0.00

0.67
0.00
0.13
0.03
0.62
0.00
0.00

0.24
0.02
0.06
0.01
0.05
0.02
0.01

0.25
0.00
0.09
0.02
0.53
0.05
0.00

0.68
0.15
0.07
0.00
0.41
0.02
0.00

2.15
5.61
0.84
4.62
1.42
1.25

16.74
6.92
0.02

Task Sequence

14.72
2.61

Motivation Group

Phase * Task Sequence

156.20
0.30
0.19

106.62
491

64.53

Phase * Motivation Group

2.08
0.00

Task Sequence * Motivation Group

0.01

Phase * Task Sequence * Motivation Group
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Fig.1 Analysis of global reward effects in Experiment 1. Perfor-
mance and diffusion model parameters as a function of motivation
group (control group, reward group), phase (baseline phase, reward
phase), and task sequence (ABA, CBA). From top to bottom: Mean

Error rates

In error rates, the main effect of task sequence was not sig-
nificant. Task sequence did not interact with any of the other
factors, except for a significant interaction of task sequence
and motivation group, F(1,95) = 4.91, p < .03, nzp = .05,
indicating larger N-2 repetition costs in the reward group
(0.6%) than in the control group (-0.6%). When tested
separately for each group, N-2 repetition costs were not
significant in either group; reward group: #(48) = 1.48, p
= .15; control group: #(48) = 1.72, p = .09. The ANOVA
revealed a significant interaction of phase and motivation
group, F(1,95) =106.62, p < .01, nzp = .53, indicating that
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Reward
Phase

Baseline
Phase

Reward Group

RT, mean error rates, mean drift rate, mean boundary separation,
and mean non-decision time. Error bars indicate the 95% confidence
interval of the ABA-CBA difference per experimental phase (Pfister
& Janczyk, 2013). N = 48 in control group, N = 49 in reward group

for the reward group, error rates increased from 5.7% in the
baseline phase to 13.5% in the reward phase, whereas in
the control group, error rates decreased from the baseline
phase (7.5%) to the reward phase (5.3%). There were also
significant main effects of phase, F(1,95) =32.04, p < .01,
n2p = .25, and of motivation group, F(1,95) = 9.20, p <
01,17, = .09.

Diffusion modeling of global reward effects
Data filtering was the same as for the analysis of mean error

rates as described above, except that outliers for diffusion
model analysis were defined according to the procedure
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recommended by Schmiedek et al. (2007),* excluding trials
with RTs faster than 200 ms and trials with RTs larger than
four standard deviations above each participant’s mean per
experimental condition; this process was repeated on the
remaining trials until there were no further outliers (1.1%
of the trials were defined as outliers in this way). The mean
number of trials per condition and participant included for
diffusion modeling was 99.1 (SD = 13.8, range 37-118).
The software fast-dm (Voss et al., 2015; Voss & Voss, 2007)
was used to estimate the parameters drift rate (v), bound-
ary separation (a), and non-decision time (t0), separately for
each individual and each condition. To improve model fit,
variability of non-decision time (st0) was allowed to vary
as well. The starting point bias was set to 0.5*%a (i.e., in the
middle between the two boundaries); all other parameters
implemented in fast-dm were set to 0. The upper and lower
boundaries corresponded to correct and error responses,
respectively. We used the Kolmogorov-Smirnov (KS) statis-
tic as optimization criterion; the p values of the KS statistic
did not reveal any significant deviation between observed
data and modeled data (p values ranged from .18 to 1.00),
except for one participant in one condition (where the p
value was equal to .05). In addition, model fit was inspected
graphically by plotting the empirical data against the data
predicted by the model (see OSF Additional Material: Part
II, Fig. A2); upon visual inspection, all data were included
in the analysis.

For statistical analysis, separate ANOVAs were com-
puted on the mean parameter values of boundary separation,
drift rate, and non-decision time, employing the design as
described above (see Method). The complete ANOVA results
are displayed in Table 1; the descriptive data are shown in
Fig. 1. Below, we summarize the most important findings.

Driftrate There was no significant main effect or interaction
of task sequence with any of the other factors. Numerically,
the mean drift rate was lower in ABA than CBA trials (1.82
vs. 1.87 evidence units per second as calculated with fast-
dm software), but this effect was not statistically significant
(F(1,95)=2.15,p = .15, nzp =.02). Significant main effects
of phase, F(1,95) = 30.55, p < .01, nzp = .24, and motiva-
tion group were observed, F(1,93) = 5.61, p = .02, nzp =
.06, which were further qualified by a two-way interaction,
F(1,95) =4.62, p = .03, nzp = .05. Drift rate was higher in
the reward phase than baseline phase (2.03 vs. 1.66), and
this increase in drift rate was more pronounced in the reward
group than control group (difference of 0.51 vs. 0.23).

* We applied two different data filtering criteria for analysis of mean
performance and diffusion model analysis in order to maximize com-
parability of our results with the respective literature for behavioral
studies and diffusion model studies.
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Boundary separation No significant main effect or inter-
action of task sequence with any of the other factors was
observed. There were significant main effects of phase,
F(1,95)=188.76,p < .01, n2 = .67, and motivation group,
F(1,95) =14.72, p < .01, b = .13, which were further
qualified by a two-way interaction, F(1,95) = 156.20, p <
.01, nzp = .62. Boundary separation was lower in the reward
phase than in the baseline phase (1.51 vs. 1.97 evidence
units as calculated with fast-dm software), and this drop in
boundary separation was considerably more pronounced in
the reward group than in the control group (difference of
0.88 vs. 0.04).

Non-decision time The only significant effect was a main
effect of phase, F(1,95) = 14.64, p < .01, nzp = .13, indicat-
ing lower non-decision times in the reward phase than in the
baseline phase.

Interim discussion of global reward effects

We observed small overall N-2 repetition costs of 21 ms in
RT data, but we did not observe any reward-related modula-
tion of these costs in RT or error rate. Also, while N-2 rep-
etition costs have been observed in the drift rate parameter
in previous studies (Schuch, 2016; Schuch & Grange, 2019;
Schuch & Konrad, 2017), with a lower drift rate in the last
trial of an ABA than CBA sequence, this effect did not reach
significance in Experiment 1. Hence, it seems that N-2 rep-
etition costs were small in the present experiment, and this
could be a reason for not finding any modulation of these
costs by reward, despite a rather large sample (N = 97).°

At the same time, the reward manipulation produced
large effects, with participants in the reward group respond-
ing faster and less accurate during the reward phase (see
Zhang et al., 2016, for a similar finding). Diffusion mod-
eling revealed a drop in boundary separation, but also an
increase in drift rate during the reward phase, especially in
the reward group. Implications and underlying mechanisms
are addressed in the General discussion.

An interesting question is whether this increase in drift
rate during the reward phase is mainly triggered by the pros-
pect of reward in the upcoming trial (reward expectancy),

5 One possible reason for the overall small N-2 repetition costs in the
present experiment is that performance-contingent positive feedback
was provided after correctly responded trials throughout the experi-
ment, which might have acted as a reward signal and attenuated N-2
repetition costs. However, N-2 repetition costs were very similar
between the primary control group and an additional control group
without such positive feedback after correct trials, speaking against
this possibility (see OSF Additional Material: Part III, Tables A2 and
A3).
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or by having experienced a reward in the just-preceding
trial (reward experience). In the former case, the increase
in drift rate should be present throughout the reward phase,
because in the present paradigm participants could poten-
tially receive a reward on every trial during this phase. In the
latter case, the increase in drift rate should be modulated by
N-1 reward: The increase in drift rate should be larger when
the preceding trial had been rewarded than when it had not.

Results Il: Local reward effects

To investigate the question of whether having experienced
a reward in the preceding trial modulates performance in
the subsequent trial, we performed a second analysis inves-
tigating local trial-by-trial effects during the reward phase.
To this end, we separated the correct trials of the reward
group according to whether the preceding trial N-1 had or
had not been rewarded. Notably, such an effect in the reward
group could be caused by either the just-experienced reward,
or by the good (i.e., fast) performance in the previous trial
(because reward was performance-contingent in the pre-
sent study). In order to distinguish between these two pos-
sibilities, we also conducted a trial-by-trial analysis of the
reward phase of the control group (where reward did not
occur, hence any aftereffects must be due to performance).
We separated control group trials according to performance
in trial N-1 (hypothetically rewarded or non-rewarded trials
had participants been assigned to the reward group) apply-
ing the same criteria as in the reward group. Any aftereffects
observed in both groups can be attributed to previous-trial
performance; any difference in aftereffects between reward
group and control group can be attributed to previous-trial
reward experienced in the reward group.

ANOVA design and data filtering

We employed a three-factorial design with the within-sub-
ject independent variables task sequence (ABA vs. CBA)
and N-1 reward (trial N-1 rewarded vs. not rewarded), and
the between-subject variable motivation group (reward
group vs. control group). Data trimming was the same as
for the analysis of global reward effects, except that only
data from the reward phase were included. Several partici-
pants in the reward group had a low trial count in one of
the “N-1 not rewarded” conditions. For diffusion modeling
with the fast-dm software, a minimum of 10 trials per condi-
tion is required; based on this criterion, 13 participants from
the reward group had to be excluded. Hence, the analysis
of local aftereffects was computed on N = 48 participants
in the control group and N = 36 participants in the reward
group. For the analysis of RT data, the mean number of
trials per participant and condition was 49.0 (SD = 15.2)
in the “N-1 rewarded” conditions, and 41.4 (SD = 24.7) in

the “N-1 not rewarded” conditions. For the analysis of error
rates, the mean number of trials per participant and condi-
tion was 51.5 (SD = 15.2) in the “N-1 rewarded” conditions,
and 46.3 (SD = 26.8) in the “N-1 not rewarded” conditions.
For the analysis of mean performance (but not for diffusion
model analysis), we additionally conducted the analyses of
local reward aftereffects with all participants included and
obtained a similar data pattern (see OSF Additional Mate-
rial: Part IV, Table A4).

The descriptive data are plotted in Fig. 2; the complete
ANOVA results are shown in Table 2. Regarding diffusion
model fit, the p values of the KS statistic did not reveal any
significant deviation between observed data and modeled
data (p values ranging from .32 to 1.00; see OSF Additional
Material: Part II, Fig. A3 for a visualization of diffusion
model fit). Here, we summarize the most important results
of the local reward effects analysis.

Reaction times

Only main effects were found in RT: A main effect of task
sequence, F(1,82) =6.07, p = .02, n2P = .07, indicating N-2
repetition costs, a main effect of motivation group, F(1,82) =
16.35, p < .01, nzp =.17, indicating faster RTs in the reward
than control group, and a main effect of N-1 reward, F(1,82)
=66.17, p < .01, nzp = .45, indicating faster performance
after fast N-1 trials (that were rewarded in the reward group,
but not in the control group) than after slow N-1 trials. N-1
reward did not significantly interact with any of the other
factors.

Error rates

The three-way ANOVA on error rates revealed a main effect
of task sequence, F(1,82) = 5.87, p < .02, nzp = .07, indi-
cating N-2 repetition costs, and a main effect of motivation
group, F(1,82) =36.28, p < .01, 0>, = 31, indicating higher
error rates in the reward than control group. Moreover, there
was an interaction of task sequence and motivation group,
F(1,82) = 4.96, p < .03, nzp = .06, indicating larger N-2
repetition costs in the reward group (1.9%) than control
group (0.1%). There was also a just-significant three-way
interaction of task sequence, motivation group, and N-1
reward, F(1,82) =4.11, p < .05, nzp =.05. On a descriptive
level, N-2 repetition costs in the reward group were larger
after non-rewarded trials (3.0%) than after rewarded trials
(0.8%), whereas N-2 repetition costs in the control group
were smaller after virtually non-rewarded trials (-0.8%)
than after virtually rewarded trials (1.0%). However, when
analyzing the two groups separately in follow-up ANOVAs
with the factors task sequence and N-1 reward, the inter-
action was not significant in the reward group, F(1,82) =
1.38, p = .25, nzp = .04, and neither in the control group,
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Fig.2 Analysis of local reward aftereffects in the reward phase of
Experiment 1. Performance and diffusion model parameters as a
function of motivation group (control group, reward group), N-1
reward (not rewarded, rewarded), and task sequence (ABA, CBA).
From top to bottom: Mean RT, mean error rates, mean drift rate,

F(1,82)=3.49,p = .07, nzp = .07. Moreover, when all par-
ticipants were included in the analysis, the two-way interac-
tion of task sequence and motivation group, and the three-
way interaction with N-1 reward, were no longer significant
(see OSF Additional Material: Part IV, Table A4).

Diffusion modeling of local reward effects
For the drift rate parameter, a significant main effect of
N-1 reward was observed, F(1,82) = 9.08, p < .01, nzp =

.10, indicating higher drift rate after fast trials (that were
rewarded in the reward group) than after slow trials. N-1
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mean boundary separation, and mean non-decision time. Error bars
indicate the 95% confidence interval of the ABA-CBA difference
per experimental phase (Pfister & Janczyk, 2013). N = 48 in control
group, N = 36 in reward group

reward did not interact with any of the other factors. A main
effect of motivation group was also observed, with higher
drift rate in the reward group than control group, F(1,82) =
11.01, p < .01, 1%, = .12.

For the boundary separation parameter, a significant main
effect of N-1 reward was observed, F(1,82) = 33.14, p < .01,
n2p = .29, indicating lower boundary separation after fast tri-
als than after slow trials. A large main effect of motivation
group was also observed, with lower boundary separation
in the reward group than control group, F(1,82) = 60.30, p
< .01, nzp = .42. For the non-decision time parameter, the
ANOVA did not yield any significant effects.
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household items. Further, we modified our reward manipula-
tion to include penalties for incorrect responses, in order to
foster the requirement for inhibitory control and to prevent
an overemphasis on speed over accuracy.

Method

Participants

The sample comprised 96 new participants, which were
again students or friends of students from RWTH Aachen
University. Half of them were randomly assigned to the
reward group (36 female, 11 male, one diverse; age: M =
22.6 years, SD = 4.0 years, range 18-39 years), and the
other half to the control group (35 female, 13 male, age:
M = 23.5 years, SD = 4.4 years, range 18-34 years). The
acquisition and compensation of participants proceeded in
the same way as in Experiment 1.

Task, stimuli, and responses

Forty different pictures of ubiquitous household items
were used as stimuli. Each picture showed a different
household item, measured 17 X 19.5 cm, and was taken
from the Bank of Standardized Stimuli (Brodeur et al.,
2010). Relevant stimulus dimensions were the size, typical
storage location, and orientation of the household items,
yielding three tasks: Participants had to categorize house-
hold items as smaller or larger than a shoebox (size task);
being typically located in the kitchen or in the garage
(location task); or being displayed upright or upside down
(orientation task). Colored frames were used as task cues.
A red frame indicated the size task, a blue frame the loca-
tion task, and a yellow frame the orientation task in the
upcoming trial. Response keys, response mappings, and
the trial procedure were corresponding to Experiment 1.

Reward manipulation

The reward manipulation from Experiment 1 was slightly
modified to reduce the focus on speed over accuracy in the
reward phase. In case of an incorrect response, participants
in the reward group now lost a reward point and received
the feedback “Error! — 1 point” (all feedback messages were
presented in German). As in Experiment 1, they received the
feedback “Correct! + 1 point” for correct and fast responses,
and “Slow! No point” for correct but too slow responses.
Participants in the control group received the feedback mes-
sage “Error!” after incorrect responses, “Correct!” after cor-
rect and fast responses, and “Slow!” after correct and slow
responses. The performance-dependent feedback message
“Slow!” was newly introduced in order to make the feedback

messages in the reward phase as similar as possible between
the two groups.

Procedure and design

Two additional reward blocks with 120 trials each were
added in Experiment 2 in order to increase trial numbers.
Thus, Experiment 2 comprised four practice blocks a 24 tri-
als, two baseline blocks a 120 trials, and four reward blocks
a 120 trials. The analysis design was identical to Experi-
ment 1.

Results I: Global reward effects
Number of rewarded trials

A maximum of 480 (virtual) points could be scored dur-
ing the four reward blocks in Experiment 2. Reward scores
were significantly higher in the reward group (M = 287.0
points, SD = 88.2, range 5-429; corresponding to 59.8% of
the maximally attainable score) than virtual reward scores
in the control group (M = 254.1 virtual points, SD = 86.6,
range -6-367; 52.9% of the maximally attainable virtual
score), #(94) = 1.85, p = .034, one-tailed.

Data filtering

Data filtering was conducted as in the analysis of global
reward effects in Experiment 1. Practice blocks, the first two
trials of each block (1.7%), the first two post-error trials
(19.1%), and outliers (1.8%) were excluded. For RT analysis,
error trials (9.5%) were also removed. For diffusion model
analysis, outliers were defined following Schmiedek et al.
(2007) and discarded (1.5%). On average, 141.2 trials (range
100.6-181.9 trials) remained for each subject and condition
for diffusion modeling. P-values from the KS statistics indi-
cating model fit ranged from .13 to 1.00. Graphical inspec-
tion of empirical data plotted against data predicted by the
model indicated poor model fit for four participants in the
control group, which were therefore excluded from all analy-
ses. For the remaining participants (44 in control group, 48
in reward group), diffusion model fit was good (see OSF
Additional Material: Part I, Fig. A4). For completeness, we
also report the analyses of Experiment 2 with all participants
included in the OSF Additional Material: Part IV, Table AS;
the data pattern was similar.

Data analysis
Data analysis procedure was identical to the analysis

of global reward effects in Experiment 1. The complete
ANOVA results for behavioral data and diffusion model
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