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Abstract
Working memory is typically described as a set of processes that allow for the maintenance and manipulation of information for
proximal actions, yet the “action” portion of this construct is commonly overlooked. In contrast, neuroscience-informed theories
of working memory have emphasized the hierarchical nature of memory representations, including both goals and sensory
representations. These two representational domains are combined for the service of actions. Here, we tested whether, as it is
commonly measured (i.e., with computer-based stimuli and button-based responses), working memory involved the planning of
motor actions (i.e., specific button presses). Next, we examined the role of motor plan learning in successful working memory
performance. Results showed that visual working memory performance was disrupted by unpredictable motor mappings,
indicating a role for motor planning in working memory. Further, predictable motor mappings were in fact learned over the
course of the experiment, thereby causing the measure of working memory to be partially a measure of participants’ ability to
learn arbitrary associations between visual stimuli and motor responses. Such learning was not highly specific to certain
mappings; in sequences of short tasks, participants improved in their abilities to learn to represent items as actions in working
memory. We discuss implications for working memory theories in light of hierarchical structure learning and ecological validity.
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Introduction

Real-world situations that demand the use of workingmemory
abound, from hearing a telephone number and then typing it a
few moments later, to reading a recipe and then walking
throughout the kitchen to gather the necessary ingredients, to
looking at a figure in the assembly instructions for a piece of
furniture and then performing the described steps in the cor-
rect order. These situations often require a combination of
novel task demands and familiar ones, with some degree of
generalization possible from previous knowledge to the pres-
ent behaviors.

Critically, while the examples above each demonstrate the
action-oriented nature of working memory (i.e., that the ev-
eryday utilization of working memory relies on goal context
and the actions necessary to reach goals), conventional

perspectives in the field have focused on more abstract infor-
mation-level considerations (e.g., as related to the capacity of
working memory or the nature of representations in working
memory; Fukuda et al., 2010; Ma et al., 2014; Shipstead et al.,
2014; van den Berg et al., 2014; Vogel et al., 2001). While
debates on such information-level topics are extremely impor-
tant for characterizing the domain of working memory, it is
notable that the use-oriented and goal-directed aspects of
working memory have been considered much less than the
more abstract information-level considerations.

Indeed, the tasks commonly used to investigate working
memory arguably reflect at least an implicit, if not an explic-
itly recognized, desire to measure the construct independently
of the influence of motor action processes. While almost all
tasks necessarily demand some sort of motor response, the
required actions in most previous work have been predictable
(e.g., using natural or well-learned mappings between each
possible stimulus or decision and the associated action) or
even knowable without any prior task-specific knowledge
(e.g., using a mouse to click on a sequence of stimuli or using
automatically verbalizable labels such as numbers or letters).
Using tasks with minimal action-associated load is sensible
given a strong emphasis only on information-level
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considerations. Yet, if real-world uses of working memory
occur in the contexts of actions, then the failure to consider
the role of motor processes may provide an incomplete ac-
count of working memory from an ecological perspective.
For example, contemporary theories of the neuroscience of
working memory highlight the abilities of people to flexibly
attend to stable memory representations (e.g., long-term se-
mantic memories) as a fundamental mechanism of working
memory maintenance and retrieval (Engle, 2002) and stable
representations have been considered in, for example, basic
visual features or in explicit verbalizable knowledge
(D’Esposito & Postle, 2015). Yet, when completing real-
world actions such as cooking a recipe, the relevant informa-
tion may not be maintained (at least not purely) in terms of
attention to abstract verbal information, but rather in terms of
the actions necessary (beat the eggs, zest the lemon, turn on
the oven). In such a set of actions to complete, attention to a
purely verbal coding would constrain the cook to using a
highly impoverished set of information. Instead, to the extent
that the cook knows how to zest a lemon, it seems likely that
the memory would be stored in terms of the action necessary.

Working memory as the representation of future
goal-relevant actions

While clearly less common than work starting from a more
abstract-information perspective, there is a growing body of
evidence for the role of goal-oriented actions in working
memory representations (van Ede & Nobre, 2022). For exam-
ple, evidence for a common representation for verbal working
memory and verbal production was drawn from similar pat-
terns of errors in “tongue twister” sets of verbal information
when compared with stimulus sets that were structured to be
phonologically easier to parse (Acheson & MacDonald,
2009). Follow-up studies using transcranial magnetic stimula-
tion (TMS) demonstrated that perturbation of similar neural
circuits (i.e., posterior superior temporal gyrus) appeared to be
selectively disruptive of both a verbal reading task and a ver-
bal working memory task, but not a picture naming task, fur-
ther supporting the proposition that common representations
are necessary for action and maintenance of verbal working
memory (Acheson et al., 2011).

Complementary results have been observed in the visuo-
spatial domain. Whereas the verbal domain’s production sys-
tem is itself verbal, the visuospatial production system is likely
to be spatial in naturalistic contexts (e.g., motor movement of
fingers or legs). Exploiting this fact, it has been observed that
ambiguity in the motor responses required to successfully
complete a task (i.e., pronation vs supination of the hand and
wrist to match a remembered target angle) allows that re-
sponse to be biased by the presentation of other presented
stimuli that, while not explicitly relevant to the subsequent
motor response, nonetheless bias the probability of supination

or pronation on a given trial (Gallivan et al., 2016). The au-
thors found that the motor demands of the nontarget stimuli
essentially bled into the motor execution of the target stimuli,
thereby providing evidence that the memory of the target itself
was at least partially represented in terms of its motor
execution.

More direct evidence for the common representation of
visuospatial and motor information in working memory has
come from observing the similar time courses of motor and
visual EEG activity during a working memory task involving
lateralized responses (i.e., using the left or right hand; van Ede
et al., 2019). Neural activity was much more indicative of
parallel activation rather than sequential activation, the latter
of which would be expected if (as traditional theories of WM
tend to tacitly assume) visuospatial working memory were to
be stored as visual and spatial (i.e., non-motor) representa-
tions. Indeed, response-related aspects of working memory
performance may at first glance appear to be restricted to
“retrieval” processes, but the parallel activation observed in
this study provides evidence for working memory mainte-
nance using action codes as well.

The extant work has thus provided compelling evidence for
the maintenance of working memory representations in
action-planning codes (Olivers & Roelfsema, 2020; Trentin
et al., 2023; van Ede & Nobre, 2022). These advances have
brought experimental work on working memory progressive-
ly closer to the putative ecological applications of working
memory. Nonetheless, like simple two-alternative forced-
choice tasks or block-tapping tasks, previous studies on the
action-oriented nature of working memory have not addressed
the fact that attention to action plans is likely to dynamically
interact in real-world situations with learning of action plans.
That is, the stable representations utilized during working
memory maintenance must themselves frequently be learned.
These dynamic interactions between working memory and
learning have yet to be thoroughly explored (cf. Kruijne
et al., 2021; Zambrano et al., 2021), which motivated us to
investigate whether learning action plans supports working
memory performance.

Working memory as the product of learning the
actions relevant to a goal context

Models of prefrontal cortex activity in working memory per-
formance have supported the proposition that initially unorga-
nized neural activity may rapidly become structured in re-
sponse to task constraints and informative feedback (Savin
& Triesch, 2014). That is, in order to successfully deploy
working memory for a particular task, a certain amount of task
learning must be achieved. Such a perspective parallels that
linking language production and verbal working memory; in
order to represent verbal information in terms of a production
representation, extensive language-specific learning is likely
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to be necessary (Acheson&MacDonald, 2009). In day-to-day
situations these learning processes are likely to be character-
ized, not by long trajectories of learning, but instead by the
rapid use of current goals and task constraints to determine
what features are relevant for attention and maintenance in
memory. In this sense, the act of effectively and flexibly
deploying working memory is itself reliant on processes such
as reinforcement learning that operate on somewhat longer
(but still fairly short) timescales.

Such propositions are compatible with theories that empha-
size the nature of working memory as utilizing the goal-
oriented activation of long-term memory representations
(Cowan, 1995; D’Esposito & Postle, 2015). Yet, despite the
likely ecological utility of on-the-fly learning of relevant
memory representations, the extent to which on-the-fly stable
representations emerge that may subsequently be dynamically
used by working memory remains to be explored. Given the
hierarchically structured nature of information and tasks in the
real world, it seems likely that a combination of novel learning
and generalization from previous experiences is necessary
(Botvinick, 2012; Kruijne et al., 2021).

Does rapid learning play a role in working memory
tasks that have typically disregarded a role for
learning?

Despite the wealth of evidence indicating the possibility of an
important role for learning task-relevant actions for the effec-
tive use of working memory, such learning is only rarely con-
sidered directly. This state of affairs is often by design and by
convention; cognitive psychology has typically attempted to
avoid “learning effects” or “order effects” through various
methodological choices. For instance, the use of relatively
short tasks is partially justified by the idea that longer tasks
may be more sensitive to learning. Alternatively, when longer
tasks are implemented, often participants must complete some
number of “practice” trials prior to the “real”workingmemory
task. Here, it is worth noting that while both approaches are
quite common (Foster et al., 2015; Jaeggi et al., 2010;
Unsworth & Engle, 2007; van den Berg et al., 2012), they
actually make opposite assumptions. The former approach
assumes that total naïveté leads to the purest measurement of
the construct of interest, while the latter approach assumes that
allowing for practice improves the subsequent measurement
of the construct. Each of these perspectives has value.
Unfortunately, methodological decisions often lead to their
mutual incompatibility. In contrast, when using time-
sensitive measurements of participants’ trajectories of perfor-
mance over a working memory task, each of the perspectives
is vindicated using a unified methodological and analytical
framework. That is, by modeling multiple components of per-
formance trajectories, even tasks as short as 64 trials can allow
for dissociable effects of early-trial dynamic changes and late-

trial stabilized performance measures (Cochrane & Green,
2021).

Previous work on trajectories of performance in working
memory tasks have shown the utility of considering partici-
pants’ learning, for instance, by highlighting multiple disso-
ciable links between working memory and fluid intelligence
task performance (Cochrane & Green, 2021). While this work
showed that learning occurs even over a somewhat small
number of working memory task trials, and that considering
the learning trajectory allowed for deeper inferences regarding
links between working memory and intelligence task perfor-
mance, this previous work could not address what was being
learned. In the majority of canonical working memory mea-
sures it is evident that many dimensions of the task environ-
ment could be learned and lead to improved performance.
These dimensions range from the identities of possible stimuli
(e.g., images, sounds, colors, shapes), to temporal structure
(i.e., at what cadence will stimuli appear), to the motor actions
necessary (e.g., turning a knob, physically tapping on a series
of items, pressing one of two buttons). Many other dimensions
are more subtle but potentially may assist learning. Previous
work has shown that sequences of tasks sharing structural
features, such as stimulus timing, may lead to accelerated
learning in novel tasks even when the superficial features be-
tween tasks are different enough that no immediate generali-
zation is observed (Kattner, Cochrane, Cox, et al., 2017a).
Modeling of working memory tasks using reinforcement
learning approaches has extended learning-to-learn into the
realm of working memory proper (Kruijne et al., 2021), yet
behavioral evidence for such effects has been scarce.

Given the many reasons to believe that real-world deploy-
ment of working memory includes representations of learned
goal-oriented actions, we thus sought to test whether those
goal-oriented actions are measurably learned on the timescale
of a typical working memory task. That is, we used action
representations as a clear and ecologically relevant feature of
working memory that can be learned on short timescales.

The current experiments: WM in which action plans
are learnable versus nonlearnable

Here we test whether, as it is commonly measured (i.e., with
computer-based stimuli and button-based responses), putative-
ly visual working memory involves the planning of motor ac-
tions (i.e., specific button presses). Such a demonstration al-
lows for the investigation of action planning in working mem-
ory without the use of specialized hardware (e.g., to measure
EEG or reaching movements; cf. pressing one of two buttons
until a probe stimulus matches a target; Boettcher et al., 2021).
Next, we examine the role of learning to make action plans in
successful working memory performance. Then, because con-
dition differences may be due to recall disruption, we test a
learnable action-planning condition in which we implement a
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secondary search task interrupting recall. That is,WM has been
often studied by identifying disrupting factors; if a secondary
task disrupts WM performance, shared cognitive load presum-
ably exists. We use such a disrupting secondary task to dem-
onstrate that, despite overall decreases in performance, learning
action mappings still occurs.

Next, in Experiment 2, we address two ways in which
Experiment 1 lacked both ecological validity and links to pre-
vious experiments in working memory. Both real-world be-
haviors and behavioral research tasks are often supported by
on-the-fly learning on reasonably short timescales. Given this,
in Experiment 2 we examined learning within single blocks of
30 trials each. Further, since a crucial ability in the real world
(and an underaddressed phenomenon in behavioral research)
is the generalization of learning, in Experiment 2 we test
whether within-block consistency in stimulus–response map-
pings helps improve learning to represent working memory
memoranda. Evidence for this phenomena would indicate
learning-to-learn, or hierarchical learning (Henin et al., 2021;
Kattner, Cochrane, Cox, et al., 2017).

General methods

Sample characteristics

Undergraduates enrolled in an Introduction to Psychology
course were provided extra credit in return for completing
one of the five conditions from the two experiments described
below. All participants read and signed a consent form. All
procedures were approved by the University of Wisconsin
ethics board. The target sample size was 30 participants in
each of the five conditions, and a sample of 151 (81 female;
age mean = 19.2, SD = 0.99; 71% White, 25% Asian, 3%
multiple races, 1% other) participants are reported here (see
Supplementary Information Table S1). An additional 29 par-
ticipants were excluded for failing to have a capacity of at least
one item, when calculating capacity across all trials (capacity
calculated with a Weibull psychometric function maximum-
likelihood fit to each participant’s data; 50% accuracy thresh-
old divided by 2).

Procedure

All participants across both experiments (see below) complet-
ed four blocks of a visual working memory span task. Each
block consisted of 30 trials, with memory span Set Sizes 2
through 6 presented in a partially randomized order. The first
five trials of each block were in the order 2 3 4 5 6 to retain
consistency; after that, presentation was fully randomized.
Stimuli on two of the blocks (either first and third or second
and fourth) were an oval with a wedge removed, while stimuli
on the remaining blocks were an irregular pentagon (see Fig.

1). Within each block, distinctive stimuli were generated by
rotating the block’s stimulus to six unique configurations 28
degrees apart. Rotations across blocks (e.g., the stimulus sets
in Blocks 1 and 3) used nonoverlapping sets of angles (e.g.,
Block 1 may have been mostly pointing “upward” while
Block 3 may have been pointing “downward”). That is, rela-
tive to a rotation of zero (e.g., the oval’s wedge pointing di-
rectly left), one block with the oval would have rotations of
[20 48 76 104 132 160] while the other block with the oval
would have rotations of [200 228 256 284 312 340]. Each
block therefore had separate stimulus sets that were visually
discriminable and fell along a counterclockwise-to-clockwise
dimension.

The critical manipulation in this task was the mappings
between stimuli and responses. Specific stimuli (e.g., the
pentagon rotated at 76 degrees) could in principle be mapped
to any arbitrary response. Here, the responses were mapped to
six buttons, three for each hand, indicated by blank covered
keys on a regular keyboard. Across the five between-subjects
conditions in the two experiments, the response predictability
was manipulated without any explicit instructions to the par-
ticipants about response mappings (two conditions in
Experiment 1 and two conditions in Experiment 2; see
below). Given our interest in assessing the extent that learning
of actions plays a role in the measurement of working memory
task performance, both experiments used a shared “random-
mappings” control condition that made motor learning impos-
sible. In the “randommappings” condition, each stimulus was
randomly assigned to a response button on every trial. The
predictability of the necessary motor response was thus re-
moved. In the absence of the ability to encode or maintain
actions, the task became a test of only visual memory (i.e.,
encoding and maintenance of visual stimuli) rather than
allowing any motor action planning during the stimulus pre-
sentation and delay periods. The data from these random-
mapping participants was used as a comparison condition
for each experiment.

Analytical methods

Traditional approaches to examining learning typically divide
behavior into blocks of trials which are then compared.
However, in many learning contexts, within-block changes
in performance are likely to be present. In such situations
modeling the time-dependent improvements as a continuous
parametric function of trial number presents various benefits
for understanding the detailed time-course of change
(Cochrane & Green, 2021; Kattner, Cochrane, & Green,
2017b; Zhang et al., 2019). In the present studies, time-
evolving models used the TEbrm function from the R package
TEfits (Cochrane, 2020), which used Bayesian modeling in
Stan using the brms package (Bürkner, 2017). In short, trial-
wise accuracy was modeled as arising from aWeibull [Quick]
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psychometric function with 100% accuracy on a set size of
zero and a 16.67% accuracy with an arbitrarily large set size
(i.e., a guessing rate of 1/6; Cochrane & Green, 2021;
Wichmann & Hill, 2001). This psychometric function has
two by-participant parameters, a constant shape and a thresh-
old that may vary due to many factors (e.g., learning, task
difficulty). The threshold represents the memory span set size
at which a certain level of accuracy is reached; here, we chose
a 50% threshold to retain some heuristic interpretability as
“twice the number of items successfully recalled from WM.”
For example, if a participant’s accuracy was 50% at a set size
of four (i.e., threshold of four), then that would indicate that
they could respond correctly for two items (noting that this is a
heuristic, not mechanistic, interpretation). Thresholds and
time constants of change were estimated on log scales. Fully
disaggregated data was modeled, with each stimulus within
each trial being associated with either a binary correct or an
incorrect response for that stimulus at that point in the within-
trial sequence. For model code, including formulas of psycho-
metric functions and nonlinear learning models, see the
Supplementary Information. Parameter reliability was deter-
mined using the posterior distributions of parameters or the
differences between parameters’ posterior distributions (i.e.,
95% CI falling above or below zero; see also Supplemental
Figs. S3–S6 for comparisons with aggregated raw data).

Experiment 1: The role of learning actions
in visual working memory

Experiment 1a: Does visual working memory involve
learning motor action representations?

In Experiment 1a, performance in two conditions were
contrasted. The first was a condition that closely followed
typical cognitive psychology experiments (“constant map-
pings”), where the mappings of stimuli to responses was con-
stant across blocks (i.e., within each block, the most-
counterclockwise stimulus was always mapped to the left
hand’s middle response, while the most-clockwise stimulus
was always mapped to the right hand’s left response, etc.).
All participants in this constant-mappings condition utilized
the same stimulus–response mapping. The second condition,
as noted above, utilized random mappings.

As described briefly above, threshold was modeled as
changing as an exponential function of overall trial number
(i.e., 1 to 120; see also Supplementary Information). By-
participant random intercepts for the three parameters of the
exponential were also included (i.e., the starting threshold,
amount of time taken to 50% of change, and asymptotic
threshold). In all cases we expected learning to be evidenced
by within-condition starting thresholds being lower than the

Fig. 1 Span task used in the experiment. Set Size 3, with no visual search task, is shown as an example. In the conditions including the secondary visual
search task, the search display was presented immediately preceding the memory response screen
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corresponding asymptotic thresholds. Further, we expected
learning to be apparent in the form of higher asymptotic
thresholds for the learnable-mappings conditions when com-
pared with the random-mappings conditions (note that this
same prediction holds for Experiment 1b). Differences in the
amount of time taken to change may indicate accelerated
learning in certain situations, but this parameter is difficult to
interpret in the absence of reliably different starting and as-
ymptotic thresholds.

Results

As a first test of whether working memory performance
was worse when participants were unable to encode and
maintain information in terms of consistent motor map-
pings, we fit generalized linear mixed-effects models using
the R package lme4 (Bates et al., 2015). When comparing
accuracy on the last block of the task between the
constant-mappings condition (n = 31) and the random-
mapping condition (n = 30), the random-mapping condi-
tion was associated with reliably lower accuracy (b =
−0.561, CI95 = [−0.987, −0.134]; the GLMEM used a
binomial family and included fixed effects of condition
and stimulus type, as well as by-participant random effects
and by-participant set-size random slopes). When using a
similar model using all 120 trials, however, such a reliable
difference was not evident (b = −0.207, CI95 = [−0.474,
0.06]). This discrepancy indicated that the condition dif-
ferences were likely to be due to learning of the motor
mappings, and as such, our subsequent analyses utilize
models that are sensitive to the detailed time courses of
change over the course of the task.

The Bayesian generalized nonlinear mixed-effects model
had satisfactory convergence indices (i.e., all r-hats below
1.02 and all tail effective sample sizes above 500). When
modeling the 50% accuracy threshold’s change as an expo-
nential change of overall trial number, we found that the
constant-mappings condition showed reliable improvements
[increases] in threshold (b = 0.583, CI95 = [0.075,1.139]; see
Figs. 2 & S3). Further, there was no reliable initial difference
between the constant-mappings condition and the random-
mappings condition (b = 0.122 CI95 = [−0.063,0.308]). In
stark contrast, by the end of the 120 trials, the random-
mapping condition showed reliably lower thresholds than
the constant-mappings condition (b = −0.907 CI95 =
[−1.749, −0.233]). These two results provided evidence that
the constant-mappings condition achieved superior perfor-
mance due to learning of their stimulus–response mappings.
When specifically testing for whether participants in the
random-mapping condition learned, there was not a reliable
difference between asymptotic thresholds and starting thresh-
olds (b = −0.430, CI95 = [−1.064, 0.057] ; see Supplemental
Information Fig. S3).

Discussion

Participants’ visual workingmemory threshold improved over
the course of 120 trials when stimulus–response mappings
were learnable, but not when they were random. This provides
some evidence for a role within working memory for on-the-
fly learning to represent memoranda as motor actions.
However, there remains a question regarding whether the dif-
ferences between the above two conditions could be attribut-
able to an extra task demand (i.e., in the random-mapping
condition, participants had to visually search for target loca-
tions prior to responding).

Experiment 1b: Are the condition differences in
Experiment 1a due to disrupted recall (e.g., visual
search)?

To test for the possibility that the results in Study 1a were
simply due to the introduction of an intervening search task
and not due to working memory directly interacting with ac-
tion plans, we implemented a constant-mappings condition
with an intervening visual search task. This condition was
identical to the above constant-mappings no-visual-search
constant-mappings condition with one exception: After stim-
ulus presentation and prior to response availability, there was
a simple visual search task. Six hexagons were presented on
the screen in the same locations that the targets would subse-
quently be presented (see Fig. 1). Five of the hexagons were
tilted slightly to one direction while the sixth, in a random
location, was tilted slightly to the other direction.
Participants were instructed to find the oddball shape and
say aloud “left” or “right” to indicate the side with the oddball.
This verbalization then triggered the experiment to continue to
the span recall portion of the trial. The verbal answers were
not recorded.

Results

We found that the initial thresholds were lower [worse] for the
constant-mappings with visual search condition (n = 31) than
the constant-mappings no-dual-task condition (b = -0.361
CI95 = [-0.591,-0.148]) and the random-mappings dual-task
condition (b = −0.483, CI95 = [−0.713, −0.260]; see Fig. 3),
indicating that our dual task did interrupt primary-task recall.
However, by the end of the task, there was no reliable differ-
ence between the visual search condition and the constant-
mappings no-visual-search condition (b = −0.352 CI95 =
[−1.005, 0.277], and there was no difference in the magnitude
of change between the two conditions (b = .024, CI95 =
[−.703, .707]). In contrast, while there was no reliable differ-
ence between asymptotic threshold with the random-
mappings condition (b = 0.55, CI95 = [−0.041, 1.268] ), the
constant-mappings dual-task condition did improve reliably
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more than the random-mappings condition (b = 1.038, CI95 =
[0.353, 1.814]) When considering just participants in the dual-
task condition, reliable learning was observed (i.e., higher
asymptotic thresholds than starting thresholds; b = 0.593,
CI95 = [0.087, 1.123]; see Supplemental Information Fig. S3).

Discussion

The combined results from Experiment 1 indicated that par-
ticipants were able to learn how to represent stimuli in work-
ing memory as the actions that the stimuli would be used for.

Fig. 2 Group-level fits of change in thresholds (i.e., set size associated
with 50% accuracy). The constant-mappings no-visual-search condition
showed learning, while the random-mappings condition did not. Shaded
area indicates the 95% CI of model fit values for each set size. For a

visualization of the change in psychometric function as well as set sizes'
accuracies over time, see the Supplementary Information (Figs. S1, S3,
S5)

Fig. 3 Group-level fits of change in thresholds. The condition with
constant mappings and an intervening visual search task showed
learning, while the random-mappings condition did not. Shaded area

indicates the 95% CI of model fit values for each set size. For a visuali-
zation of the change in psychometric function as well as set sizes' accu-
racies over time, see the Supplementary Information (Figs. S1, S3, S5)
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Such learning was in stark contrast to a condition in which
stimulus–response mappings were not learnable and in which
no improvement in performance was apparent over time.
Learning was not solely attributable to the additional com-
plexity involved in visually searching for a stimulus after the
memory items were presented; in this condition participants’
thresholds actually improved by slightly more than in the
constant-mappings no-visual-search condition.

Experiment 2: Testing for shorter-term
learning, and the possibility
of learning-to-learn

Experiment 2a. Does learning happen within blocks?
Does it generalize between blocks? Does it accelerate?

Experiment 1 showed the utility of learning to represent actions
in working memory, but this test of learning still lacked some
key features. In the real world, as well as in the behavioral
laboratory, people are likely to switch between tasks fairly fre-
quently (e.g., moving from chopping to whisking to measuring
while cooking, or moving from a forwardmemory span task to a
backward memory span task in the psychology lab). Sequences
of tasks thus have the potential to form a hierarchy of learnable
features that may be generalized from one task to the next
(Botvinick, 2012; Kattner, Cochrane, Cox, et al., 2017). In some
senses Experiment 1 addressed this issue, by using different
specific sets of six stimuli in each block, and the entire course
of learning did reveal improvements in participants’ ability to
represent the items in working memory. In Experiment 2, the
need for generalization was taken one step further. Here, the
stimulus–response mappings were not identical across blocks,
thereby allowing for a test of both within-block learning and
between-block generalization of learning. Specifically, on the
beginning of each block, each participant’s mappings for that
blockwere chosen randomly and then kept fixed throughout that
block (i.e., “blocked” mappings). Notably, within-block learn-
ing had to happen within 30 trials, which is quite rapid and is
more compatible with on-the-fly real-world situations as well as
common experimental paradigms.

The model of learning used to analyze Experiment 2 was a
model of change over time, which was nearly identical to
Experiment 1, with the by-participant trajectories of change oc-
curring within blocks rather than across the entire experiment
(i.e., exponential function of within-block trial number 1 to 30;
see Supplementary Information). The model in Experiment 2
additionally allowed each of the three parameters of the expo-
nential function to change monotonically across blocks for each
participant, that is, to either decrease or increase for a given
participant with no constraint regarding the cross-block magni-
tudes of those increases or decreases (see Supplementary
Information for further details). By-participant random

intercepts for the three parameters of the exponential were also
included (i.e., the starting threshold, amount of time taken to
50% of change, and asymptotic threshold). Learning was ex-
pected to be evidenced by within-condition starting thresholds
being lower than the corresponding asymptotic thresholds.

Results

In the blocked-mapping condition with no dual task (n = 30),
neither within-block starting thresholds (b = 0.091 CI95 = [-
0.048,0.173]) nor within-block asymptotic thresholds (b =
0.012 CI95 = [−0.119, 0.249]) were reliably different between
the fourth and the first blocks (in all comparisons here the fourth
block is the reference, and the coefficient indicates the difference
between that and the first block; see Supplemental Information
Figs. S2, S4, S6). Instead, apparent improvements in perfor-
mance were best explained by differences between Block 1
and Block 4 rates of change in threshold as a function of trial
number (b = 2.312 CI95 = [1.753, 3.009]). That is, participants’
trajectories indicated similar eventual points of performance
across all blocks when extrapolated to a large number of trials,
but only in later blocks did the number of trials needed for the
performance improvements decrease to a timescale that was
captured by the blocks (see Fig. 4). Similar results were found
by running a set of three models in which only one of the
nonlinear parameters (start, rate of change, or asymptote) was
allowed to change across blocks for eachmodel. In thesemodels
the other two nonlinear parameters were still estimated using by-
group fixed effects and by-participant random effects, but their
values did not change from one block to the next. Using model
comparison with an approximation to leave-one-out cross-
validation (LOO; Vehtari et al., 2017), the model that only
allowed for flexibility in rate fit much better than the models
that only allowed for flexibility in starting value (ΔLOOIC =
208.5, SE = 35.4) or flexibility in asymptotic value (ΔLOOIC =
201.9, SE = 39.4). This model showed qualitatively similar re-
sults as the model allowing full flexibility (e.g., reliable differ-
ences from early to late blocks in within-block rate of change).

Similar to the blocked-mapping condition, the random-
mapping condition showed no reliable changes across blocks in
starting (b = 0.045, CI95 = [−0.037, 0.147]) or asymptotic (b =
−0.126, CI95 = [−1.339, 0.28]) thresholds. Also like the blocked-
mapping condition, in the random-mapping the timescale of
change was reliably longer on Block 1 than Block 4 (b =
2.613, CI95 = [1.691, 4.061]). This result is difficult to interpret,
however, since thresholds showed negligible change from start to
asymptote in the random condition (b = 0.005, CI95 = [−0.46,
0.477]; see Fig. 4). Parameters in hierarchical Bayesian models
are primarily informed by priors when the data does not strongly
drive them; because the random-mapping condition’s fixed ef-
fects were parameterized as an offset (with a minimally informa-
tive zero-centered prior) from the constant-mapping [reference]
condition (see Supplementary Information), it seems likely that
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its reliable block-to-block difference in rate of change is in fact
spurious. This lack of improvement in performance also
corresponded to somewhat lower within-block asymptotic
thresholds in the random condition than the blocked condition
(b = −0.494 CI95 = [−1.028, 0.013]), although this effect was not
reliable. There were likewise no differences in within-block
starting thresholds (b = 0.118 CI95 = [−0.434, 0.418]).

Discussion

Participants with sequences of within-block learnable stimulus–
response mappings showed rapid learning in later blocks when
compared with earlier blocks. Such a decrease in the amount of
time needed to learn the stimulus–response mappings is com-
patible with the proposition that participants learned a hierarchi-
cal feature of the task set—namely, they learned to learn the
stimulus–response mappings in order to support their effective
representation of the working memory stimuli.

Experiment 2b. Are the condition differences in
Experiment 2a due to disrupted recall (e.g., visual
search)?

As in Experiment 1, there remained the possibility that the
contrast between the conditions reported in Experiment 2a
was in fact due to the additional task demands intervening
between the presentation of stimuli and the responses on the
working memory task. Experiment 2b addressed this by in-
cluding the same visual search task used in Experiment 1b,
with all other methods remaining identical to Experiment 2a.

Results

In the blocked-mappings dual-task condition (n = 29) partic-
ipants’Block 1 starting thresholds were lower than their Block
4 starting thresholds (b = −0.093, CI95 = [−0.181, −0.003]),
with the contrast between Block 1 and Block 4 asymptotic
thresholds showing the opposite pattern (b = 0.424, CI95 =
[0.135, 0.955]). Like the blocked-mapping condition, in the
visual-search condition the timescale of change was reliably
longer on Block 1 than Block 4 (b = 3.437, CI95 = [2.179,
4.917]). The within-block magnitude of change was small and
variable, however, making the timescale of change difficult to
interpret (b = −0.223, CI95 = [-−0.82, 0.365]; see Fig. 5). This
decrement in performance corresponded to reliably lower
within-block asymptotic thresholds in the visual search con-
dition than the blocked condition with no visual search (b =
−0.706 CI95 = [−1.322, −0.112]) despite there being no con-
dition differences in within-block starting thresholds (b =
0.133 CI95 = [−0.285, 0.474]).

Discussion

Experiment 2b did not provide evidence that participants
learned to represent working memory memoranda as action
plans. Within-block learning and between-block learning-to-
learn, as observed in Experiment 2a, was evidently disrupted
by the inclusion of a visual search task. This disruption seems
likely to have occurred due to the relative difficulty of
Experiment 2b, which may have made learning extremely
difficult in only 30 trials. An alternative explanation that is

Fig. 4 Group-level fits of within-block change in thresholds. The condi-
tion with blocked mappings showed accelerating learning, while the
random-mappings condition did not. Shaded area indicates the 95% CI

of model fit values for each set size. For a visualization of the change in
psychometric function as well as specific set sizes’ accuracies over time,
see the Supplementary Information (Figs. S2, S4, S6)
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impossible to rule out is that the learning-to-learn in
Experiment 2a was not due to participants’ increasingly rep-
resenting working memory memoranda as actions but instead
involved learning to more effectively remember the visual
features of the stimuli themselves. That is, because this learn-
ing was prevented by the need to complete a search task prior
to memory recall, it is conceivable that the increased process-
ing load in the random-mapping condition was equivalently
disrupting stimulus learning. Last, it is possible that the diffi-
culty of completing both the memory and visual search tasks
increased the extent to which participants in that condition
were susceptible to fatigue-related declines toward the end
of their participation; this would explain the decrease in per-
formance during Block 4.

General discussion

In a working memory task that did not have any overt spatial
or motor-learning components, participants with predictable
stimulus–response mappings were able to learn these map-
pings and perform better than participants with unpredictable
mappings. This learning effect was not explained by a disrup-
tion in recall due to the introduction of a secondary visual
search task. Further, when presented with a series of working
memory tasks with consistent stimulus–response mappings
within blocks but changing ones between blocks, the time
necessary for participants to improve their working memory
performance decreased across blocks. Such learning-to-learn
effect was disrupted, however, in the presence of an

intervening visual search task, indicating that the increased
demands of this secondary task prevented within-block learn-
ing from being strong enough to effectively generalize to sub-
sequent blocks.

Representations of working memory memoranda as action
plans are apparently highly relevant in working memory tasks
even when using standard response methods (i.e., a keyboard)
rather than more complex and explicitly spatial actions (e.g.,
pronation or supination when rotating an input device;
Gallivan et al., 2016). Clear implications thus exist for many
working memory tasks which use simple and well-learned
stimulus–response mappings (e.g., digit span, 2AFC judge-
ments). Such tasks rely on relatively automatic mappings
and thus allow participants to represent memoranda as upcom-
ing actions. As a result, the ecological validity of inferences
from these tasks are limited to real-world situations with high-
ly stereotyped stimulus–response mappings. Stereotyped
mappings are likely to be present in common behaviors
(e.g., spreading a condiment, chopping a potato) and tradition-
al information-centered approaches may appropriately charac-
terize working memory in these circumstances. In contrast,
other behaviors may need to be learned on-the-fly (e.g., peel-
ing a novel fruit, turning on an oven for the first time at a
friend’s house), and standard approaches to working memory
may be poor models for real-world behaviors in these cases.

Participants in Experiment 2a appeared to be able to learn,
not just to represent items using associated actions, but to learn
a hierarchical structure facilitating successive learning. Such
learning-to-learn is an exciting topic in diverse fields (Bejjanki
et al., 2014; Botvinick, 2012; Gershman & Niv, 2010;

Fig. 5 Group-level fits of within-block change in thresholds. Neither
condition showed learning. Shaded area indicates the 95% CI of model
fit values for each set size. For a visualization of the change in

psychometric function as well as specific set sizes’ accuracies over time,
see the Supplementary Information (Figs. S2, S4, S6)
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Kattner, Cochrane, Cox, et al., 2017; Kruijne et al., 2021). The
evidence presented here for such learning is preliminary but
promising, as extensions of this learning-to-learn to effective-
ly use working memory may bring theories explaining exper-
imental behavior ever closer to the on-the-fly flexibility nec-
essary for real-world behaviors. The lack of learning-to-learn
in Experiment 2b indicates limits on learning-to-learn and
prevents clear inferences from Experiment 2a, though, and
further work is needed to probe the limits of structure learning
supporting cognition.

The methods used here to identify and isolate learning in
working memory performance were limited in several ways.
First, while the intervening visual search task did successfully
reduce performance in each Experiment, indicating some de-
gree of interference, it was not possible to quantify whether
the cost of searching in the secondary task was well-matched
to the cost of searching in the memory task. Further, because
verbal responses in the visual search task were not recorded
and analyzed, it was not possible to assess compliance.

Second, the model-based analyses provided powerful tools
for examining trajectories of performance, but they may have
been overparameterized due to the sparsity of data. Especially
in Experiment 2, considering several trajectories of just 30
trials each, it may have been impossible to adjudicate between
differences in thresholds’ rates of change and their asymptotic
levels. As indicated by our model parameter estimates as well
as comparisons of reduced models, block-to-block differences
in performance on a task with fairly consistent demands and
stimuli seem more likely to be due to changes in rate of learn-
ing rather than change in maximum performance.

Further, given the structure of the data, it is impossible to
accurately or precisely adjudicate between the gradual learn-
ing process reported in our model results and an alternative—
namely, that participants explicitly noticed a pattern of consis-
tent mappings within blocks. Such learning could in principle
lead to a step-like improvement in performance once the reg-
ularity was noted, which would be able to be identified with
richer sources of data than 6AFC responses (e.g., EEG
decoding; van Ede et al., 2019). Step-like improvements are
not apparent in the group-aggregated data (see Figs. S5 and
S6), but it is possible that aggregation obscures individual-
level step functions.

Conclusion

Here we have utilized a behavioral paradigm that is superficially
similar to many “span” tasks, but we have approached this task
with a very different set of assumptions than more-standard ap-
proaches. Rather than the typical emphasis on the information in
stimuli themselves, in which case stimulus–response mappings
are likely to be well-learned already, we have shown that the
process of learning the ability to represent visual stimuli as future
actions goes on to support effective use of working memory.

Critically, sequences of short blocks provided initial evidence
for hierarchical learning and learning-to-learn to support working
memory. Due to the real-world need to represent both abstract
information as well as the actions relevant to it, and the need for
ongoing and sequential learning in naturalistic settings, we be-
lieve that such an integrated approach toworkingmemory allows
for a more ecologically relevant investigations of working mem-
ory processes.
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