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Abstract
Why can’t we remember everything that we experience? Previous work in the domain of object memory has suggested that our
ability to resolve interference between relevant and irrelevant object features may limit how much we can remember at any given
moment. Here, we developed an online mouse-tracking task to study how memory load influences object reconstruction, testing
participants synchronously over virtual conference calls. We first tested up to 18 participants concurrently, replicating memory
findings from a condition where participants were tested individually. Next, we examined how memory load influenced mouse
trajectories as participants reconstructed target objects.We found interference between the contents of workingmemory and what
was perceived during object reconstruction, an effect that interacted with visual similarity and memory load. Furthermore, we
found interference from previously studied but currently irrelevant objects, providing evidence of object-to-location binding
errors. At the greatest memory load, participants were nearly three times more likely to move their mouse cursor over previously
studied nontarget objects, an effect observed primarily during object reconstruction rather than in the period before the final
response. As evidence of the dynamic interplay between working memory and perception, these results show that object
reconstruction behavior may be altered by (i) interference between what is represented in mind and what is currently being
viewed, and (ii) interference from previously studied but currently irrelevant information. Finally, we discuss how mouse
tracking can provide a rich characterization of participant behavior at millisecond temporal resolution, enormously increasing
power in cognitive psychology experiments.
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Simultaneous reconstruction task

The capacity of visual working memory is surprisingly lim-
ited. Although we encounter thousands of objects during
our daily lives, we can remember only a few pieces of in-
formation at any moment (Cowan, 2001, 2010). Some re-
search has suggested that this capacity limit is closely

related to our ability to resolve the interference from com-
peting information (Bartsch & Oberauer, 2023; Endress &
Szabó, 2017; Oberauer & Lin, 2017; Shipstead & Engle,
2013). For example, to identify a lemon, we must correctly
associate its shape (“oval”), color (“yellow”), and location
(“on the table”) while distinguishing the lemon from ob-
jects with similar features, such as a lime or an apple.
This interference from overlapping features can be mini-
mized by forming distinct object representations through
feature binding (Cowell et al., 2019; Hedayati et al.,
2022; A. Y. Li et al., 2022; Oberauer, 2019; Schneegans
& Bays, 2017; Swan & Wyble, 2014). When feature bind-
ing fails, binding errors can occur (Treisman, 1996), where
between-item interference can result in the incorrect com-
bination of features belonging to different objects. These
errors manifest commonly in everyday life, such as
misremembering the proper fruit for a dinner recipe but also
in more severe conditions, such as Alzheimer’s disease,
which has been associated with deficits in visual binding
(Parra et al., 2009).
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The study of feature binding in working memory has a rich
history in the psychological sciences. Early influential models
considered binding to operate over independent feature maps,
with attention serving as the “glue” between features sharing
common spatial locations (Treisman & Gelade, 1980). This
seminal work led to debates about the format of the object
representation, with experiments positing shape and color fea-
tures can be bound directly to each other (Luck & Vogel,
1997; Zhang & Luck, 2008), bound by virtue of space or time
(Schneegans et al., 2022; Schneegans & Bays, 2017), or
bound hierarchically as both integrated wholes and indepen-
dent features (Hedayati et al., 2022; A. Y. Li et al., 2022).
Converging findings reveal that the format of the object rep-
resentation can likely include multiple forms of binding, such
that features may be initially bound to shared spatial maps but
are then bound to form object representations that no longer
depend on space (Shepherdson et al., 2022). This view has
support from neuroimaging research whereby early posterior
neocortex may represent features bound to location
(Henderson et al., 2022; Hubel & Wiesel, 1962; M. Li et al.,
2014; Schneegans & Bays, 2017; Sprague & Serences, 2013;
Thyer et al., 2022), with fully specified objects bound to spa-
tial context represented in anterior regions like the medial
temporal lobes (Cooper & Ritchey, 2019; Cowell et al.,
2019; Liang et al., 2020; Martin et al., 2018; Wu &
Buckley, 2022; Yeung et al., 2013; Yeung et al., 2017;
Yeung et al., 2019; Yonelinas et al., 2019). Critically, this
body of work suggests a division between feature-to-
location binding that may depend on posterior regions of the
neocortex with object-to-location binding that may depend on
anterior regions such as the medial temporal lobes.

To study feature binding, working memory researchers of-
ten quantify the errors that occur when binding fails. For ex-
ample, one influential procedure quantifies feature-to-location
binding errors using continuous reconstruction tasks (Ma
et al., 2014). In a typical variant of this task, a number of
colored squares are first shown during the study phase of an
experiment. After a delay period, participants are then cued to
reconstruct the color that was studied at an indicated location.
Participants select the target color by moving their mouse
cursor along a circular color wheel. Studies like these quantify
binding errors as the proportion of participants’ final selec-
tions that correspond with the uncued, nontarget colors, which
have been incorrectly associated with the target location.
When estimated usingmixture models, these nontarget feature
responses are known as “swap” errors (see Bays, 2016; Bays
et al., 2009). This work typically finds that feature-to-location
binding errors increase in tandem with memory load, suggest-
ing that failures in feature integration are more likely to occur
as participants attempt to hold increasingly more information
in mind. However, while existing research in working mem-
ory has most often studied binding errors using simpler fea-
tures like color or orientation when cued by location (i.e.,

feature-to-location binding errors), it remains an open ques-
tion how memory load may influence binding errors for more
complex objects during working memory (i.e., object-to-
location binding errors).

One previous method to study complex feature binding
errors has been through eye tracking (Barense et al., 2012;
Erez et al., 2013; Ryan et al., 2007; Yeung et al., 2013;
Yeung et al., 2017; Yeung et al., 2019), which provides rich
information about the internal representation at millisecond
temporal resolution (for reviews, see Hannula et al., 2010;
Kragel & Voss, 2022; Ryan et al., 2020; Voss et al., 2017;
Wynn et al., 2019). For example, object-to-location binding
errors can bemeasured as the proportion of eye fixations made
towards the relevant target (i.e., previously studied objects)
compared with irrelevant nontarget objects (i.e., similar lures)
over the entire gaze trajectory. This body of work has found
that patients with medial temporal lobe damage (Barense
et al., 2012; Erez et al., 2013; Ryan et al., 2000) and older
adults at risk for Alzheimer’s disease (Yeung et al., 2013;
Yeung et al., 2017; Yeung et al., 2019) have aberrant viewing
behavior compared with healthy older adults. Populations
with medial temporal lobe damage often fail to direct their
gaze towards important locations in scenes, evidence that
these regions may be essential for successfully binding com-
plex objects to locations within spatial environments (Ryan
et al., 2000; Yeung et al., 2019). Analyzing the continuous
trajectory of eye movements can therefore be used to quantify
object-to-location binding errors, operationalized as the fixa-
tions made towards the location of irrelevant objects in a spa-
tial environment.

The majority of existing working memory studies
quantify binding errors using only the final participant
response during the test phase of an experiment (Fig.
1a) without considering the entire trajectory of navigating
to those responses (Fig. 1b; but see Hao et al., 2021; Park
& Zhang, 2022, for recent examples of mouse tracking in
a working memory experiment). The standard approach
may exclude important information, akin to analyzing only
the final gaze position during eye tracking without consider-
ing the eye movements that form the path leading up to the
final gaze position (see Barense et al., 2012; Erez et al., 2013;
Golomb et al., 2008; Golomb & Kanwisher, 2012; Golomb
et al., 2014; Hannula et al., 2010; Liu et al., 2017; Wynn et al.,
2020; Yeung et al., 2017; Yeung et al., 2019, for examples of
eye-tracking experiments that consider the scan path across
the entire trial). Furthermore, existing working memory
research has primarily focused on simpler feature-to-location
binding errors, limiting our understanding of how binding
operates over more complex object features in working
memory. Inspired by eye-tracking methodologies, we
quantified object-to-location binding errors in the present
study not only from the final response at test but also as par-
ticipants continuously reconstructed shape–color objects
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using mouse tracking. This approach enabled us to convert a
dependent variable with a single observation each trial (i.e.,
the final response on a cognitive task) to a dependent variable
with hundreds of observations each trial (i.e., time-series data
at millisecond temporal resolution), providing a rich charac-
terization of participant behavior leading up to the final re-
sponse at test.

To test object-to-location binding errors in working mem-
ory, we adapted a simultaneous reconstruction task to include
online mouse tracking (Fig. 1b; A.Y. Li et al., 2022). Drawing
from previous eye-tracking literature, we define object-to-
location binding errors as the between-item interference stem-
ming from irrelevant lure objects from study. We recorded the
mouse path trajectories every trial as participants reconstruct-
ed objects (analogous to recording gaze trajectories from an
eye-tracking experiment). Moreover, we developed our task
as a downloadable executable file so that participants could
access the task online and run it on their own machines, and
we tested the data reliability and testing efficiency of this
experimental method when paired with virtual conferencing

rooms. Thus, in addition to studying the effect of memory load
on object-to-location binding errors for more complex shape–
color objects than commonly tested in the literature (see Ma
et al., 2014), this work provides a novel online approach to
quantifymouse-path trajectories while participants reconstruct
objects from memory.

Method

We first examined the data reliability of online executables
when paired with virtual conference rooms (Fig. 2),
attempting to replicate previous memory load findings from
the literature (A. Y. Li et al., 2022; Ma et al., 2014; Sone et al.,
2021). In the individual testing condition, participants
downloaded an executable program on their own computers,
and then completed the memory task (Fig. 3a) one-on-one
with the experimenter in virtual conference calls (i.e., over
Zoom; Fig. 3b). Critically, we also examined the testing
efficiency of our virtual conference room approach, testing

Fig. 1 a Simultaneous shape–color reconstruction task. To ensure that the
task could be displayed on most participant computers, the task appeared
in a box spanning 1,080 × 1,080 pixels. Participants were asked to re-
member shape–color objects during the study phase for 2,000ms (set size
was manipulated according to Fig. 3b). After an ISI of 300 ms, a mask
appeared at the positions of the studied objects (300ms). There was then a
retention interval of 1,000 ms between the masks and the cue where no
items were shown. The location of one study object was then cued by a
fixation cross (500 ms), and the test phase display appeared with the
mouse cursor positioned at the centre of the screen. Participants recon-
structed the cued, target shape and color along a 2D response space
(untimed; shown enlarged in panel b; for more details, see A. Y. Li
et al., 2022). While the participant was reconstructing the target object,
the program displayed their reconstruction corresponding to their mouse

cursor position on shape and color space at the cued location (see video
example: https://osf.io/ycq5s). Thus, participants were required to match
the target object frommemory with what is perceived on the display using
the mouse cursor. Critically, along the circle’s circumference, we mapped
the Validated Circular Shape Space (A. Y. Li et al., 2020), and along the
radius we mapped a circular color wheel sampled from CIELAB color
space. b We recorded the participant mouse movement (gray line) con-
tinuously during the entire test phase as participants reconstructed objects.
In this way, we could quantify the mouse movements made towards
target and nontarget object features dynamically during object reconstruc-
tion. On the above, θ refers to angular distance from the target shape,
whereas r refers to radial distance from the target color. (Color figure
online)
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many participants in groups within the concurrent testing con-
dition (Fig. 3c). Having established the efficacy of our online
approach, we then conducted mouse-tracking trajectory anal-
yses to understand how participant reconstruction behavior
may be influenced by memory load. Finally, we examined
the influence of memory load on object-to-location binding
errors during object reconstruction. For details about
converting Python-based experiments into a downloadable
executable, including a full video demo, see a tutorial and
commented code on GitHub: https://github.com/james-y-
yuan/executable-pipeline.

Participants

Sixty participants were recruited from the University of
Toronto and from the community (Mage = 20.41 years,
SDage = 3.83 years, 31 females). Thirty participants
(Mage = 21.97 years, SDage = 4.90 years, 20 females) were
tested individually (Fig. 3a), and 30 participants (Mage =
18.90 years, SDage = 1.37 years, 12 females) were concur-
rently tested (Fig. 3b). Students received course credit,
and community members were compensated with $10/
hour CAD.

Fig. 2 Executable pipeline paired with online virtual conferencing. a The
first step involves building a local experiment (e.g., using Python).
Several adjustments to the experiment may be needed for testing
participants online (see https://github.com/james-y-yuan/executable-
pipeline for details). b To store the data, options include secure cloud
services (e.g., Dropbox) or a lab server. Alternatively, executables can
save data to the participant’s local machine, and participants canmanually
upload the data to a secure cloud service. At this stage, researchers must
carefully consider security and privacy concerns (see Discussion for

further considerations). c To create the executable, open-source packages
(e.g., PyInstaller) automatically compile the local experiment. To reduce
concerns with installation and firewalls blocking the program, the exper-
imenter can also include an installer as well as digitally sign the program.
d Finally, the executable can be downloaded, installed, and run by par-
ticipants. In our study, participants ran the task on their own machines
during a synchronous virtual call to improve data quality at the beginning
of our experiment, but this step could be completed asynchronously de-
pending on the research question. (Color figure online)
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Procedure

We incorporated mouse-tracking into the simultaneous recon-
struction task, such that the position of the mouse cursor was
recorded approximately once every 20 ms (for more details
about the task design, see A. Y. Li et al., 2022; Fig. 1). Shapes
were sampled from the Validated Circular Shape Space (A. Y.
Li et al., 2020), and colors were derived from a circle defined
on CIELAB color space (L = 70, a = 20, b = 38, radius = 60;
Zhang& Luck, 2008). To ensure that there were no systematic
mappings between particular features and locations on the
task, we jittered shape mappings by participant and color map-
pings by trial, following previous work (A. Y. Li et al., 2022).

To manipulate memory load, participants were presented
with twenty trials each of one, two, or three shape–color ob-
jects in a random order (Fig. 3c). Objects were displayed
within a fixed 1,080 × 1,080-pixel square, coded using abso-
lute coordinates so that visual images were never stretched or
distorted across different monitor resolutions (see Fig. 3c).
Object locations were sampled randomly so that no objects
overlapped any other objects. The shapes and colors of the
objects were sampled from VCS space and CIELAB space,
respectively. When sampling from each feature space, values

for a given trial were chosen from a set of six points spread
equidistantly across the circle (i.e., 60 degrees apart). Thus, for
every trial, all objects were at least 60 degrees different in
shape and color from every other object, so that the visual
similarity of objects was always tightly controlled. This sam-
pling approach also ensured that the target object’s shape and
color features were random for each trial.

Each trial proceeded in the typical fashion of continuous
reconstruction tasks (see Fig. 1a). After the initial study phase
of 2,000 ms, there was an ISI of 300 ms. The masks then
appeared at the location of the studied objects for 300 ms.
After a retention interval of 1,000 ms, a cue appeared at the
location of one of the studied objects (500 ms). The test phase
display then appeared, with the mouse cursor positioned at the
centre of the screen. Participants used their mouse to recon-
struct the target shape–color object which was cued at an
indicated location (Fig. 3c). At the onset of the initial mouse
movement, the reconstructed object appeared at the cued lo-
cation corresponding to the position of the mouse cursor on
the test display. This portion of the task was untimed, and we
recorded the mouse movement throughout the entire test
phase until the participant made a response (Fig. 1b). Thus,
participants complete each trial by matching their memory of

Fig. 3 Experimental procedure. Participants across both (a) individual
testing and (b) concurrent testing studied to-be-remembered shape–
color objects in (c) trials that varied in memory load (one object, two
objects, or three objects). During the study phase (2,000 ms), participants
studied either one, two, or three objects. The objects were randomly
sampled from a minimum of 60 errors on shape and color space each,
such that visual similarity was explicitly controlled. We compared indi-
vidual testing (a), where a single participant completed the task while
they were in a virtual conference room with the experimenter, to

concurrent testing (b), where many participants completed the task while
they were in the same virtual conference room with the experimenter. In
this way, we examined whether we could scale data collection using
concurrent testing in which many participants were present in the same
virtual conference call (i.e., over Zoom), and whether a downloadable
executable method of online testing could replicate previous memory
findings from the lab (A. Y. Li et al., 2022). Furthermore, we could
examine whether binding errors occur throughout object reconstruction
using a novel online mouse-tracking task. (Color figure online)
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the target object with what was perceived on the display as the
mouse cursor moved along shape and color space (for a video,
see: https://osf.io/ycq5s). Upon completion of the task, which
ranged from 30 to 60 minutes, the anonymized data was
uploaded to our lab server (Fig. 2), and participants were
debriefed verbally and compensated. To ensure that our task
could be reasonably completed online within this time frame,
each set size condition included 20 trials (see Discussion for
more information about this methodological decision).

In the individual testing condition, we completed the task
across 30 sessions of one-on-one virtual conference calls (Fig.
3a). Critically, we completed the task across six sessions of
multiple groups of participants in the concurrent testing con-
dition (Fig. 3b). We tested up to 18 participants in the same
virtual conference, with the other sessions containing up to
five participants. The concurrent testing condition was
intended to mimic a typical online study, where an experi-
menter may wish to recruit many participants on a rolling
basis.

Statistical analysis

Online task data reliability

To determine the data reliability of our online executable pipe-
line using the simultaneous reconstruction task (Fig. 1), we
first examined whether we could replicate previously ob-
served memory load effects from the lab (e.g., A. Y Li et al.,
2022). We then tested the efficiency of our virtual conference
room approach by comparing memory performance between
the individual and concurrent testing conditions (Fig. 3).

Memory performance was quantified as error, defined as
the absolute angular distance between the reconstructed fea-
ture and target feature on the individual circular shape and
color spaces (see Fig. 1b). More specifically, we defined
fine-grained feature responses as those for which shape or
color error were less than or equal to 15 degrees.
Furthermore, we defined fine-grained object responses as
those for which both shape and color error were less than or
equal to 15 degrees (see A.Y. Li et al., 2022). We predicted
that increases in memory load should lead to decreases in fine-
grained responses, in line with previous findings in the litera-
ture (A. Y. Li et al., 2022; Ma et al., 2014; Sone et al., 2021).

Separate random-intercept linear mixed models were used
to predict fine-grained shape, color, and object responses from
memory load (see Magezi, 2015, for how within-subject psy-
chology experiments can be analyzed using linear mixed
models). For each model, fine-grained shape, color, or object
responses were used as the dependent variable, and memory
load (Set Size 1, 2, or 3) was defined as the fixed factor. In a
follow-up analysis, to directly compare between individual
and concurrent testing conditions (Fig. 3), we additionally
included testing condition as a fixed effects factor. In all

analyses, individual participants were included as a clustering
variable to account for the within-subject design. All linear
mixed model analyses were conducted using jamovi (The
Jamovi Project, 2021).

Mouse-tracking trajectory analysis

Once the reliability of our online approach had been estab-
lished, we then conducted a series of mouse-tracking trajecto-
ry analyses. We first calculated descriptive results, including
the onset time of the mouse movement as well as the mean and
variability of the trial duration across mouse trajectories. We
next analyzed the continuous trajectory, including only the
responses when the mouse cursor began moving and not when
the cursor was displayed at the centre of the screen at the start
of the test phase.

Because we recorded the position of the mouse cursor ap-
proximately once every 20 ms, and because the duration of
trials was not fixed, the number of data points across trials will
vary based on their duration (e.g., a 1,000 ms trial would give
us 50 data points, whereas a 2,000 ms trial would give us 100
data points). Thus, even two paths that follow an identical
trajectory over shape–color space will differ in the number
of data points collected if their durations are not the same
(see Fig. 5a for a visual depiction). For this reason, we linearly
interpolated each trajectory to the same path length to normal-
ize the duration of all mouse paths (Fig. 5b). This approach
allowed us to project the trajectories across all trials of the
experiment onto the same axis. We then converted the
shape–color object corresponding to the position of a given
mouse cursor at each time point into error (i.e., how far that
position was from the target position of the shape–color ob-
ject; Fig. 1b). By depicting the normalized trajectories in terms
of error from the target, we could graphically visualize partic-
ipant object reconstruction behavior over relative positions
along the trajectory (Fig. 5). Put simply, we visualized each
point along the trial in a manner akin to how the final response
is typically depicted (Fig. 4).

In the final trajectory analysis, we analyzed how the normal-
ized mouse paths changed across relative positions along the
trajectory as a function of memory load (Fig. 6). We visualized
the mouse trajectories for each participant in terms of shape
errors and color errors separately, extending our previous visu-
alization which projected errors along shape–color space to-
gether onto the same axis (Fig. 5). The dependent variable in
our linear mixed models was the shape error and color error of
each data point along the normalized mouse trajectory. Fixed
factors were memory load (one objects, two objects, three ob-
jects) and relative position in the trial (start, 25%, 50%, 75%,
and final response). This approach allowed us to statistically
assess the magnitude of the error across memory load condi-
tions and the defined positions along the trajectory. As
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clustering variables, we included information about relative po-
sition, individual trials, and participants.

Quantifying object-to-location binding errors

Next, we examined whether memory load influences
object-to-location binding errors during object reconstruc-
tion; see Fig. 7. For each trial, we identified the number of
times a participant’s mouse hovered over nontarget, uncued

objects presented during the study phase (i.e., a nontarget
lure object; Fig. 7a). More specifically, any period in time,
of any duration, in which the mouse cursor was within 15
degrees of both shape and color error from a nontarget ob-
ject was defined as a “nontarget mouse hover” (see exam-
ple: https://osf.io/7tfn6/). We report this analysis only for
trials with one nontarget object (Set Size 2) and two
nontarget objects (Set Size 3), as only these trials
presented participants with nontarget objects. The benefit

Fig. 4 Results from individual and concurrent testing manipulations. a–f
Qualitatively, there was little difference between the overall response
error distributions between conditions for the shape and color features
across each method of testing. g We replicated a previously described
memory effect, such that fine-grained shape (g), color (h), and object
responses (i) decreased as the memory load increased (all ps < .001).
Critically, there was no difference in any comparison between individual
testing compared with concurrent testing, with all fine-grained responses

replicated within 4% across conditions. These results demonstrate the
data reliability of online executables when paired with a synchronous
virtual conference call. Furthermore, these results suggest that testing
many participants in the same virtual call during concurrent testing can
be a scalable method that increases testing efficiency. Error bars refer to
95% confidence interval for the mean. *** refers to p < .001 and n.s.
refers to not significant. (Color figure online)
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of this approach is that we can examine the trajectory
leading up to the final response at test, akin to the analysis
of eye-tracking experiments that quantify the interference
between target and nontarget object lures (Barense et al.,
2012; Erez et al., 2013; Yeung et al., 2013; Yeung et al.,
2017; Yeung et al., 2019). Thus, mouse tracking provides a
potentially sensitive marker of object-to-location binding
errors that occur during object reconstruction.

We used the same linear mixed models described previous-
ly, except we predicted nontarget hovers from memory load
while including potentially confounding factors in the model.
We included trial duration as a fixed effect, as mouse paths
that span longer durations tend to move over broader areas of
the available shape–color space, inflating the chance of

random hovers over nontargets. We also included the overall
variability of the mouse path trajectory over shape and color
spaces as fixed effects, which would similarly cause system-
atic increases in hovers due to mouse paths spanning a broader
area.

Ruling out alternative explanations

To ensure that our measure of nontarget mouse hovers reflects
actual object-to-location binding errors that increase with
memory load rather than random hovers driven by chance,
we accounted for several alternative explanations. First, our
operationalization of mouse hovers is systematically influ-
enced by the number of objects in a trial. This is because

Fig. 5 Mouse-tracking trajectory analysis. a Example trials with identical
trajectories but different duration. Because data points are collected every
20 ms, even identical trajectories will produce a different number of data
points if the mouse travels at different speeds. b For this reason, we used
linear interpolation to normalize all trials of the experiment so that they
could be visualized together onto the same axis. We then converted the
shape–color object corresponding to the current position of the mouse
cursor at each time point as error from the target shape–color object

(Fig. 1b). c–e This approach produces multivariate error distributions
for each set size across relative positions along the trajectory (start,
25%, 50%, 75%, final). As displayed above, errors along shape–color
space gradually cluster near zero error as the mouse trajectory reaches
the final response. Mouse trajectories are visualized as shape error (y-
axis) and color error (z-axis) in terms of the relative position along the
trajectory (x-axis). (Color figure online)
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mouse hovers will be more likely to occur by chance on trials
with two nontargets (Set Size 3) compared with one nontarget
(Set Size 2), given that twice as much area counts as a hover
when two nontargets are present (see Fig. 7a). Thus, if more
hovers are observed in Set Size 3 than in Set Size 2, this could
be attributed merely to more mouse movements being cap-
tured as nontarget hovers by chance alone. For this reason,
we conducted a control analysis that equated the area that
could be counted as a nontarget hover across set sizes. Using
the same sampling parameters as the actual nontargets (see
Procedure), we generated an “invisible” nontarget in the Set
Size 2 trials and then counted the number of mouse hovers
over both the actual nontarget and the invisible nontarget. By
doing so, the area counted as a hover in Set Size 2 is made
equal to the area in Set Size 3.

Next, we accounted for the theoretical possibility that an
increase in mouse hovers over nontarget objects might be
driven by random guessing behavior. Whereas the previous
analysis controlled for the random hovers driven by chance
from our analytical approach, the present analysis controlled
for the random hovers driven by chance from participant
mouse movements. That is, perhaps more hovers could be
observed at higher memory loads not because of binding er-
rors, but because participants tend more often to forget the
target object and resort to a guess (e.g., Zhang & Luck,
2008, 2009). This possibility is usually addressed by fitting
a uniform distribution from a mixture model, derived from the
final responses at test across all trials of an experiment. Here,
we addressed the possibility of random guessing behavior
trial-by-trial during object reconstruction. If participants select
a random shape–color object on the stimulus space (Fig. 7a),
we expect to find more hovers at any given point on the
shape–color space, not only over nontargets. Thus, we count-
ed the number of hovers over the points directly opposite to
nontarget objects on shape–color space each trial, which
should increase with memory load only if random guessing
is involved. On the contrary, however, we expected that in-
creases in nontarget mouse hovering could not be explained
by random guesses at higher memory loads, and so we predict
that hovers over nontargets should be unrelated to hovers over
a point on the opposite side of shape–color space. Thus, in a
subsequent linear mixed model control analysis, we included
the hovers over the opposite side of shape–color space as a
fixed effect to control for the possibility of random guessing
behavior.

Finally, we examined whether object-to-location binding
errors occurred throughout the entire period of object recon-
struction, providing a rich characterization of participant be-
havior leading up to the final response at test. We compared
the frequency of hovers per trial in the first 75% of the trial’s
mouse path (i.e., object reconstruction) to the final 25% of the
trial’s mouse path (i.e., the final response at test). As longer
mouse path lengths provide more opportunities to hover over

nontarget objects, we normalized the hover frequencies to
ensure the results were in proportion to the entire mouse path.
Specifically, we multiplied the hover frequency over the first
75% of themouse path by 4/3, and the frequency over the final
25% of the mouse path by 4, so that all hover frequencies we
report in the results are in proportion to 100% of the mouse
path.

Results

For anonymized data, see https://osf.io/a4vsb/, and a tutorial
for creating downloadable executables is available at https://
github.com/james-y-yuan/executable-pipeline. See the raw
error distributions for shape and color features from the final
response at test in Fig. 4a–f (i.e., the raw error distributions
akin to a typical continuous reconstruction task; Ma et al.,
2014), and the error distributions over the entire mouse trajec-
tory in Fig. 5 and Fig. 6.

Online task data reliability

Using online executables paired with virtual conference
rooms, we first aimed to replicate a previous effect from in-
person testing using the simultaneous reconstruction task—
namely, that fine-grained responses decrease as memory load
increases (A.Y. Li et al., 2022; Ma et al., 2014; Sone et al.,
2021). To assess the testing efficiency of our approach, we
also compared individual testing, where participants complet-
ed the task one-by-one with the experimenter (Fig. 3a), to
concurrent testing, where many participants completed the
task in the same virtual conference call (Fig. 3b).

We used separate linear mixed models to predict fine-
grained shape responses, fine-grained color responses, and
fine-grained object responses from set size in the individual
testing condition. Fine-grained feature responses were calcu-
lated for the shape feature and color feature independently,
and fine-grained object responses were calculated for both
shape and color features together. We found that participants
were less able to reconstruct the exact target shape (Fig. 4g),
target feature (Fig. 4h), or target shape–color object (Fig. 4i)
as the number of studied objects increased. For the individual-
testing condition, there was a significant main effect of mem-
ory load on the proportion of fine-grained shape responses,
F(2, 58) = 11.78, p < .001, ηp

2 = 0.29; fine-grained color
responses, F(2, 58) = 48.48, p < .001, ηp

2 = 0.63; and fine-
grained object responses, F(2, 58) = 28.99, p < .001, ηp

2 =
0.50 (Fig. 4g). These results suggest that testing participants
online with executables can produce reliable data, as we rep-
licated previous findings from the lab (see A.Y. Li et al.,
2022).

Revealing the testing efficiency of concurrent virtual con-
ference calls, we were able to replicate the findings from the
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Fig. 6 Shape and color error trajectories are shown separately as a
function of memory load. During object reconstruction, participants
initially moved rapidly along shape (a, b, c, g) and color space (d, e, f,
h) before slowing down, an effect that interacted with memory load and
the relative positions along the trajectory (g, h). Critically, because
distance on circular space is a proxy for visual similarity, we know that
participants moved more rapidly over dissimilar shapes and colors (i.e.,
higher error) compared with similar shapes and colors (i.e., lower error).

Indeed, the slope of errors from the first half of the trajectory differed
from the final half of the trajectory and was influence by memory load.
These results provide evidence that decision uncertainty was partially
driven by interference between working memory (i.e., the target object
in memory) and the similarity of the currently perceived object (i.e., the
reconstructed object corresponding to the current position of the mouse
cursor). Error bars refer to 95% confidence interval for the mean. ***
refers to p < .001. (Color figure online)
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individual testing condition within 4% of values for all fine-
grained responses (see Fig. 4). For the concurrent testing con-
dition, we observed a significant main effect of number of
objects on the proportion of fine-grained shape responses,
F(2, 58) = 67.60, p < .001, ηp

2 = 0.70; fine-grained color
responses, F(2, 58) = 13.20, p < .001, ηp

2 = 0.31; and fine-
grained object responses (Fig. 4h), F(2, 58) = 40.97, p < .001,
ηp

2 = 0.59. Critically, when we included the individual and
concurrent testing conditions within the linear mixed model as
a fixed factor, we found no difference between the individual
and concurrent testing conditions for fine-grained shape mem-
ory, F(1, 58) = 0.20, p = .66, fine-grained color memory, F(1,
58) = 0.019, p = .89, or fine-grained object memory, F(1, 58)
= 0.010, p = .75 (Fig. 4g, h, i).

These results not only suggest that data from online testing
can be reliable when paired with synchronous virtual confer-
ence calls, but also provide evidence that concurrent testing
can be a scalable way to increase experimental efficiency
while maintaining high data quality during online testing.
See further validation measures when participants are tested
with downloadable executables on GitHub: https://github.
com/james-y-yuan/executable-pipeline.

Mouse-tracking trajectory analysis

One participant was excluded as their mouse paths were not
recorded due to technical error. Notably, we found no signif-
icant difference in trial duration across memory load condi-
tions (one object: Mean = 6.42 seconds, SD = 3.67 seconds;
two objects: Mean = 6.08 seconds, SD = 3.37 seconds; three
objects:Mean = 6.12 seconds, SD = 3.73 seconds), F(1, 2359)
= 3.07, p = .08. There was also no significant difference in the
onset time of the mouse movement across memory load con-
ditions (one object:Mean = 0.59 seconds, SD = 0.28 seconds;
two objects: Mean = 0.57 seconds, SD = 0.32 seconds; three
objects:Mean = 0.62 seconds, SD = 0.43 seconds), F(1, 2359)
= 1.65, p = .20.

Next, we looked at the entire mouse-path trajectory during
object reconstruction (Fig. 5a), enabling us to study partici-
pant behavior leading up to the final response at millisecond
temporal resolution. To visualize mouse paths across memory
load conditions onto the same axis, we linearly interpolated
the trial-by-trial trajectories (Fig. 5a) to be of the same rel-
ative path length (Fig. 5b). We then plotted absolute shape
error (y-axis) and color error (z-axis) from the target by
relative position along the trajectory (x-axis), allowing us
to visualize participant mouse paths in terms of continuous
error to the target (Fig. 5c–e). This approach extends the
analysis of error distributions from only the final response
at test (e.g., Ma et al., 2014; Fig. 4a–f) into the entire con-
tinuous mouse-path trajectory (Fig. 5c–e). In other words,
we used mouse-tracking to convert a dependent variable
with a single observation each trial (i.e., the final response

on a continuous reconstruction task) into time-series data
with hundreds of observations each trial (i.e., the entire
continuous mouse path trajectory).

We next displayed the mouse trajectories by shape errors
and color errors individually for each participant (Fig. 6).
Although the average trial duration and the onset time did
not differ across memory load conditions (see previous ana-
lysis), the magnitude of errors robustly differed across mem-
ory load conditions (Set Size: one object, two objects, and
three objects) and across relative positions along the trajectory
(i.e., absolute error at: onset, 25%, 50%, 75%, final response).
We found a main effect of memory load, shape: F(1, 16511) =
926.42, p < .001; η2p = 0.05; color: F(1, 16511) = 49.93, p <
.001; ηp

2 = 0.0042, a main effect of position along the trajec-
tory, shape: F(1, 16511) = 937.68, p < .001; ηp

2 = 0.44; color:
F(1, 16511) = 1432.44, p < .001; ηp

2 = 0.55, and an interac-
tion between memory load and relative position along the
trajectory, shape: F(1,16511) = 18.12, p < .001; ηp

2 =
0.0061; color: F(1, 16511) = 10.21, p < .001; ηp

2 = 0.0035.
In other words, we found that (i) errors for shape and color
were higher when participants studied more objects, (ii) errors
were lower as participants neared their final response during
object reconstruction, and (iii) the slope of errors across rela-
tive positions along the trajectory differed by memory load
(i.e., interaction between memory load and position along
the trajectory; Fig. 6).

These results suggest that participants initially moved rap-
idly over shape–color space before slowing down as they
neared the target, and this effect was modulated by memory
load. Because distance on circular space is a proxy for visual
similarity (e.g., validated in previous experiments; for shape,
see A. Y. Li et al., 2020; for color, see Schurgin et al., 2020),
these results reveal that participants moved rapidly over dis-
similar objects (i.e., high error) before slowing down over
similar objects (i.e., low error) as they neared their final re-
sponse. That is, the fact that mouse movement slowed as the
objects became more similar to the target during reconstruc-
tion suggest interference between the contents of working
memory (i.e., the target object held in mind) with the currently
perceived object (i.e., the object on the display corresponding
to the position of the mouse cursor; Fig. 1a). By analogy to eye
tracking, our results would suggest that participants move
their eyes rapidly over dissimilar objects relative to the target
before slowing down in their gaze behavior when objects are
similar to the target.

Quantifying object-to-location binding errors using
mouse tracking

The previous analyses examined how memory load influ-
enced object reconstruction for the target shape–color object,
finding interference between the contents of working memory
(i.e., the target object) with the similarity of the viewed object
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over time (i.e., the object corresponding to the position of the
mouse cursor). In our next analysis, we looked at how mem-
ory load might influence object-to-location binding errors,
providing evidence of between-item interference stemming
from previously studied but currently irrelevant nontarget ob-
ject lures. Inspired by previous eye-tracking methodologies
(Erez et al., 2013; Ryan et al., 2000; Yeung et al., 2013;
Yeung et al., 2017; Yeung et al., 2019), we operationalized
object-to-location binding errors as the number of mouse
hovers over nontarget objects from the study phase (Fig. 7a).

We used a linear mixed model to predict hovers over non-
target objects from set size, controlling for the potential con-
founding factors of trial duration and variability of the shape
and color paths. We found that memory load significantly
predicted the number of hovers over nontarget objects, F(1,
113) = 121.88, p < .001 (Fig. 7b), such that participants were
more likely to mouse over nontarget objects during the con-
dition with two nontarget objects at Set Size 3 (M = 0.27
hovers per trial, SD = 0.18) compared with the condition with
one nontarget object at Set Size 2 (M = 0.10 hovers per trial,

Fig. 7 Mouse-tracking analysis of object-to-location binding errors (i.e.,
mouse hovers over nontarget object lures). a From the mouse path on
each trial, we counted the number of “mouse hovers” over nontarget
objects as participants reconstructed the target object’s shape and color.
A hover was defined as amousemovement, of any length of time, over 15
errors around a nontarget object’s shape and color. b In the initial ana-
lysis, we found that participants were nearly 3× more likely to mouse
hover over nontarget object features at the highest memory load.
Subsequent control analyses ensured that this effect was not driven by
random chance stemming from our operationalization of nontarget mouse
hovers nor by random guessing behavior (see Results). c When we

separately analyzed the first 75% of the mouse path (i.e., object recon-
struction behavior) from the final 25% of the mouse path (i.e., the final
response at test), we found that participants were 2.64 timesmore likely to
make nontarget mouse hovers during object reconstruction. This compar-
ison was normalized by path length, so that the hover frequencies in (c)
account for path length differences across object reconstruction and the
final response. In summary, these results provide evidence of between-
item interference stemming from previously studied but currently irrele-
vant lures during object reconstruction. Error bars refer to 95% confi-
dence interval for the mean. *** refers to p < 0.001. (Color figure online)
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SD = 0.093). Participants were almost three times more likely
to mouse over nontarget object features at the highest memory
load, suggestive of object-to-location binding errors that oc-
curred throughout object reconstruction (i.e., the influence of
previously studied but currently irrelevant objects). The vari-
ability of the mouse movement in shape space significantly
predicted the number of hovers over nontargets, F(1, 113) =
4.80, p = .031, but not the variability of the mouse movement
in color space,F(1, 113) = 0.62, p = .43, or the length of time it
takes to complete a trial, F(1, 113) = 0.25, p = .62.

Ruling out alternative explanations

In the subsequent analyses, we addressed several alternative
theoretical possibilities (for rationale, see Statistical Analysis).
To ensure that our results could not be driven by random
chance driven by our operationalization of nontarget mouse
hovers, we generated an “invisible” object in the trials with
one nontarget object (Set Size 2) to equate area to the trials
with two nontarget objects (Set Size 3). In addition, to account
for the possibility that more hovers at higher set size might be
explained by random guessing behavior, we also included the
number of hovers over the opposite side of shape–color space
from the nontargets into a linear mixed model. That is, if
random guessing increased with set size and entirely account-
ed for our results in Fig. 7b, then these opposite-side hovers
should also increase in tandem with nontarget hovers. Even
after these stringent controls, participants were still 22% more
likely to mouse over nontargets at the highest memory load
during object reconstruction, F(112) = 7.01, p = .009. That is,
these control analyses assume that participant mouse behavior
was driven by random chance, yet we still observed evidence
that memory load influenced mouse hovers over nontarget
object features. Thus, 22% reflects the lowest possible differ-
ence in object-to-location binding errors between Set Size 2
and Set Size 3 trials after assuming that mouse hover behavior
stem from random chance. By contrast, trial duration, F(1,
112) = 2.48, p = .12, standard deviation of shape path, F(1,
112) = 0.93, p = .34, and standard deviation of color path, F(1,
112) = 0.73, p = .40, did not significantly predict the number
of hovers over nontarget object features. Critically, hovers
over the opposite side of shape–color space did not increase
in tandem with nontarget object hovers, F(1, 112) = 0.16, p =
.69. Thus, our results are not explained by random chance
stemming from our operationalization of nontarget mouse
hovers. Nor are they explained by random guessing behavior
from our participants, as then the number of hovers over lo-
cations opposite to nontargets should have increased in tan-
dem with hovers over nontarget objects.

Finally, we calculated the average number of hovers ob-
served per trial using only the first 75% of each trial (i.e.,
during object reconstruction) compared with only the final
25% of each trial (i.e., the final response at test). After

normalizing the responses to the length of the mouse path each
trial, we found that the average number of hovers over non-
targets in the first 75% of trials (M = 0.29 hovers per trial, SD
= 0.19) exceeded the average number of hovers over nontar-
gets in the final 25% of the path by nearly a factor of 3 (M =
0.11 hovers per trial, SD = 0.20), t(234) = 7.25, p < .001; Fig.
7b. Participants were 2.64 times more likely to make mouse
hovers over nontarget object features during the first 75% of
the mouse path compared with the final 25% after correcting
for path length, revealing that mouse reconstruction behavior
can provide a sensitive marker of between-item interference
from previously studied but currently irrelevant object lures.

Overall, our mouse trajectory analyses reveal that object
reconstruction behavior provides rich information about the
internal representation leading up to the final response on a
continuous memory task. We observed interference between
the contents of working memory with the currently perceived
object (Figs. 5, 6), as well as from previously studied but
currently irrelevant object lures (i.e., object-to-location bind-
ing errors; Fig. 7).

Discussion

By implementing mouse-tracking during an online executable
version of a simultaneous reconstruction task, we show that
memory load influences continuous mouse trajectories during
object reconstruction. We observed interference between the
contents of working memory and perception, such that partic-
ipant mouse movement was more rapid when the currently
viewed objects were dissimilar (i.e., higher error) before
slowing down when the currently viewed objects were similar
(i.e., low error) to the target object (Figs. 5, 6). Furthermore,
we observed robust interference between previously studied
target and lure objects during reconstruction (i.e., object-to-
location binding errors), such that participants were nearly 3
times more likely to “mouse over” lure object features at the
highest memory load (Fig. 7b). This between-item interfer-
ence from object lures occurred primarily during the earlier
reconstruction phase rather than the period leading up to the
final response at test, suggesting that mouse-tracking can pro-
vide a sensitive index of object-to-location binding errors. We
complement these trajectory analyses with data reliability and
testing efficiency metrics of our online mouse-tracking task
using an executable pipeline, finding that testing many par-
ticipants in the same virtual conference room (i.e., over
Zoom) can be an efficient method to ensure high data qual-
ity (Figs. 2, 3, 4). Taken together, these results show that
tracking the dynamic mouse movement on a continuous
memory task during online testing can provide a rich char-
acterization of participant behavior leading up to the final
response at test.
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Mouse-tracking as participants reconstructed shape–color
objects over perceptually uniform space (Fig. 1b) revealed
two critical insights. First, mouse-tracking converts tasks which
would measure only a single observation each trial (e.g., yes/no
on a discrete task or the final error response on a continuous
reconstruction task) into tasks measuring hundreds of observa-
tions each trial at millisecond temporal resolution (see Hao
et al., 2021; Park & Zhang, 2022, for previous mouse-
tracking approaches applied to working memory). Even when
the number of trials in an experiment may be limited due to time
constraints inherent with online testing, our mouse-tracking
analyses was well powered because information from the entire
trajectory could be incorporated into the analyses (Figs. 5, 6).
However, while 20 trials per set size was sufficient for our
specific purposes, future work will need to consider whether
other research questions will require more trials. Approaches
involving model-fitting (e.g., for models applied to working
memory, see Bays, 2016; Oberauer, 2021; Rademaker et al.,
2018; Schurgin et al., 2020; Sutterer & Awh, 2016; Zhang &
Luck, 2008; also see evidence accumulation models: Bornstein
et al., 2017; Evans & Wagenmakers, 2020; Fradkin & Eldar,
2022; Krueger et al., 2017; Shenhav et al., 2018) or individual
differences (e.g., Baker et al., 2020; Xu et al., 2017) will have
different considerations. Due to our limited trial numbers, it is
also difficult to directly compare our trajectory measures (i.e.,
object-to-location binding errors indexed as nontarget object
hovers) to more traditional model-based approaches based on
the final response at test (i.e., feature-to-location binding errors
indexed as “swaps” on a mixture model; see Bays, 2016; Bays
et al . , 2009). Nevertheless , we bel ieve that our
operationalization of binding errors is complementary to how
binding errors are typically defined from the final response at
test.

Second, in addition to measuring well-established aspects
of motor movement (Woodworth, 1899), mouse-tracking pro-
vides a powerful tool to measure decision uncertainty leading
up to the final response on a cognitive task. On our task,
participants needed to match what they were representing in
mind with what they were viewing on the display during ob-
ject reconstruction (Fig. 1; for a video example, see https://osf.
io/ycq5s). We observed that participants rapidly moved
towards the target in the first half of the trial, before slowing
down as they neared the target in the final half of the trial and
approached the decision (Fig. 6). We suspect that a major
contributor to this slowing behavior was due to the increasing
interference as participants neared the end of the trial. As
distance on shape and color space is a proxy for visual simi-
larity (for shape, see A. Y. Li et al., 2020; for color, see
Schurgin et al., 2020), the similarity between the target (held
in working memory) and the reconstructed object (perceived
on the screen) increased parametrically as the participant
neared the target during their reconstruction. The slowing ef-
fects suggest interference between the target object from

working memory with the similarity of the currently perceived
object corresponding to the mouse cursor. Traditionally, inter-
ference is considered as arising largely from lures and targets
presented at study, yet we observed interference between the
contents of working memory and information presented dur-
ing the response phase of the task itself (Figs. 5, 6). These
findings extend previous mouse-tracking work finding
between-item interference for colors (Hao et al., 2021; Park
& Zhang, 2022) to more complex shape–color object repre-
sentations, as well as show that interference may arise from
the similarity match between what is being held in memory
with what is shown on the screen.

Although we suggest mouse-tracking can measure
mnemonic-perceptual interference, there are other important
sources of variance that should also be considered. For exam-
ple, motor movements have long been known to have an initial
accelerating and later decelerating component (Woodworth,
1899). These “coarse-to-fine” adjustments are typical for mo-
tor movement trajectories (e.g., Marteniuk et al., 1987), and are
likely present in mouse-tracking tasks as well. However, these
motor movements cannot be the only driver of the slowing we
observed as the participant reached their final response (Figs.
5, 6). There was a robust difference between trajectories across
memory load conditions, even though the overall time it took
to complete these trials did not differ. That is, the motor re-
quirements across conditions in the test phase were identical
(i.e., participants reconstructed a single shape–color object;
Fig. 3c). What distinguished the conditions was the amount
of material presented at study, indicating that it was differences
in the contents of memory rather than motor requirements that
guided trajectory differences. For this reason, we suggest that
interference between the contents of memory and what is per-
ceived contributes to mouse trajectory behavior above and be-
yond motor movements alone. That is not to say that interfer-
ence is the only factor that drives trajectory behavior—future
research could more directly decouple the multiple sources of
variance that contribute to the final response at test, potentially
using different feature spaces that manipulate the similarity
match between what is held in memory with what is perceived.
Such an approach could also record response trajectories that
do not involve mouse tracking, isolating the contribution of
motor movements (e.g., participants could “hold down” arrow
keys or move a joystick to reconstruct objects across the di-
mensions of perceptual space). Finally, this line of research
could examine the interaction between trajectory speed and
target–lure similarity (Figs. 5, 6) in other domains involving
trajectories such as gaze behavior or spatial navigation. These
future investigations may offer exciting avenues to further
study the interaction between memory and perception.

Notably, our continuous measure of mouse tracking may
be analogous to previously describedmeasures of eye tracking
(e.g., Barense et al., 2012; Erez et al., 2013; Golomb et al.,
2008; Golomb et al., 2014; Golomb & Kanwisher, 2012;
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Hannula et al., 2010; Kragel & Voss, 2022; Liu et al., 2017;
Ryan et al., 2020; Voss et al., 2017; Wynn et al., 2019; Wynn
et al., 2020; Yeung et al., 2017; Yeung et al., 2019). For
example, eye tracking can be used to examine the errors made
by participants as they switch their gaze between target and
nontarget object features (i.e., object-to-location binding er-
rors). Previous eye-tracking studies have found that amnesic
patients as well as older adults at risk for Alzheimer’s disease
show altered gaze behavior compared with healthy controls,
which was interpreted as interference between the contents of
memory with the perceived object lure (Barense et al., 2012;
Erez et al., 2013; Yeung et al., 2017; Yeung et al., 2019). Our
online mouse-tracking study extends this work, showing that
memory load (i.e., the number of objects held in working
memory) influences object reconstruction (Figs. 5, 6) and in-
creases object-to-location binding errors (Fig. 7). Future stud-
ies could more directly examine how age and risk for cogni-
tive decline may interact with a continuous mouse-tracking
measure during working memory. One possibility could be
to examine both the binding errors that occur at the object-
level (as was done in the present study; Fig. 7), but also at the
feature-level (i.e., the individual nontarget shapes and colors
bound to spatial locations). Such an approach could compare
the similarities and differences between eye-tracking and
mouse-tracking more directly, identifying important factors
like the type of binding error (i.e., object-to-location or fea-
ture-to-location), time, and search variability.

Another line of future investigation may be to consider
whether aspects of our mouse-tracking work are applicable
to navigation tasks derived from the Morris water maze
(Morris, 1984), as well as to the literature on spatial schemas
more generally. The Morris water maze is a paradigm widely
used to investigate rodents’ navigational abilities, in which
rodents are placed in a water tank and learn to navigate to
the location of a hidden platform on which they can stand.
This paradigm, combined with the analysis of search trajecto-
ries, has recently been popularized for studying the formation
of spatial schemas in rodents (Richards et al., 2014), and var-
iations of schema learning tasks have been studied in humans
used computer-based versions (Antony et al., 2022; Cockcroft
et al., 2022; Tompary et al., 2020). Future work could explore
the similarities and differences between the search paths of
mouse cursors towards target locations and the paths taken
by actual mice towards physical platforms. Visual inspection
of our human participant mouse path trajectories shows that
they resemble actual mouse behavior (Fig. 7a): When a non-
target mouse hover occurs during a trial, participants generally
make a detour (they “check out a location”) before continuing
to navigate towards the target object. These trajectory errors,
like the false memories for platform locations on a Morris
water maze, yield meaningful information about participants’
internal representations of the target and nontarget objects.

A notable difference, however, is that previous water-
maze studies are analyzed over physical space (with actual
mice in a water maze) or 2D coordinate space (with abstract
human tasks), whereas our study examines shape–color fea-
ture space. That is, our mouse-tracking approach could be
used to extend existing research on the formation and influ-
ence of spatial schemas into an investigation of how visual
features are integrated into analogous higher-order integrat-
ed representations. To give one example, an analysis of
statistical divergence is often used in the spatial schema
literature, in order to examine how closely rodents’ or par-
ticipants’ search trajectories fit a learned distribution of spa-
tial locations over time (Antony et al., 2022; Richards et al.,
2014). A closer statistical fit is taken as evidence that nav-
igation is being guided or influenced by aggregate informa-
tion about spatial locations—that is, by spatial schemas.
While we did not conduct this analysis here, a future study
could investigate the analogous phenomenon over shape–
color space, where participants’ search trajectories map onto
a statistical distribution of objects defined by shape–color
dimensions. Similarly, key findings on the structure of spa-
tial information, such as the role of grid and place cells in
representing space (Bellmund et al., 2018; Moser et al.,
2015) can also be investigated in the domain of shape–
color object space. For instance, might some visual neurons
encode conjunctions in a learned shape–color space, just as
place cells do in coordinate space? Alternatively, it may be
the case that “navigation” through physical space and
shape–color object space relies on a common coordinate
system (i.e., a cognitive map; de Cothi et al., 2022;
Epstein et al., 2017; Theves et al., 2019; Whittington
et al., 2022). For these reasons, applying trajectory analyses
in the domain of continuous object space may yield new
insights into the neural basis of feature integration across
generalized task contexts during working memory.

Comparisons with existing online testing approaches

In developing our task, we created an open-source pipeline for
developing online tasks in Python (see https://github.com/
james-y-yuan/executable-pipeline for details, including
additional timing measures). Although downloadable
executables have been described at least over 2 decades ago
(see Hewson et al., 1996), our work lays out the concrete
implementation of this idea, providing open-source code in a
freely accessible programming language. Moreover, we com-
pared the data reliability of participants when tested individu-
ally and concurrently over virtual conference calls (i.e., over
Zoom), replicating memory results within 4% of values (see
Fig. 4). Importantly, we highlight that concurrent testing may
be a straightforward method to increase testing efficiency
while maintaining high data quality—even with existing on-
line approaches (e.g., online experiments built though
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JavaScript; Anwyl-Irvine et al., 2021; de Leeuw, 2015; de
Leeuw&Motz, 2016).We suggest downloadable executables
complement existing browser-based approaches to online test-
ing; as with any tool, researchers must carefully consider the
benefits and weaknesses of applying a given tool to their spe-
cific research question.

In our study, downloadable executables greatly simplified
transitioning a mouse-tracking task already built for in-person
experimentation into a format amenable to online testing.
However, one possible limitation of using downloadable ex-
ecutables for online testing is their potential for security con-
cerns. For example, researchers can hypothetically access as-
pects of the participant computer, like keyboard responses
outside of the experiment or other malicious actions. We note
that this potential security concern also exists with online test-
ing using browser-based experiments, such that a researcher
could in theory ask participants to click on a malicious link
during an online task. In our study, we explicitly minimized
these possible security concerns, as we recorded information
from only the position of the mouse cursor and select keys
during the experiment (see Fig. 2). The data was further
anonymized and stored on our secure lab server, and we dig-
itally signed the executable with detailed information from our
laboratory. Finally, participants downloaded the executable
from our lab website and completed informed consent directly
with the experimenters in a virtual conference room through
video call.

Importantly, we collected online data from 30 participants
in just six testing sessions in the concurrent testing condition
while maintaining high data quality (Figs. 3, 4). In a typical
online experiment, participants often complete tasks with no
oversight. By contrast, we speculate that the social pressure of
having the experimenter present with other participants during
a synchronous virtual conference call may have increased the
likelihood that participants will focus on their task. Future
studies could explore different experimental setups, such
as a version of our online approach where participants are
tested with their video camera on. Just as students in an
online university course report feeling increased engage-
ment, accountability, and connectedness when their cam-
eras are on as opposed to off (Schwenck & Pryor, 2021),
participants may similarly complete an experimental task in
a more engaged manner with their cameras on. Though
such an approach may increase conscientiousness in partic-
ipants, future studies will also need to address privacy con-
cerns, including the possibility that others can view their
living circumstances. Nevertheless, our results suggest that
testing many participants in the same virtual conference
call (i.e., over Zoom, with or without video cameras on)
may be a straightforward method to collect high quality
data, even for approaches that do not involve downloadable
executables (e.g., online browser-based experiments;
Anwyl-Irvine et al., 2021; Sauter et al., 2020).

Conclusion

Altogether, our results provide evidence that capacity limits in
visual working memory may arise partly from resolving—or
failing to resolve—interference during object reconstruction.
We found two sources of between-item interference during
object reconstruction that increased with memory load: (i)
the similarity match between the contents of working memory
with what is currently being viewed (Figs. 5, 6) and (ii) object-
to-location binding errors from previously studied but current-
ly irrelevant lure objects (Fig. 7). Indeed, our trajectory anal-
yses quantify object reconstruction behavior during the entire
test phase of a simultaneous reconstruction task, converting
what would typically be a dependent variable with a single
observation each trial (i.e., the final response) to a dependent
variable with hundreds of observations each trial at millisec-
ond temporal resolution (i.e., time-series data). For these rea-
sons, analyzing only the final response on a continuous mem-
ory task may fail to capture important aspects of behavior,
akin to analyzing only the final gaze position during eye track-
ing or only the final position of a rodent during spatial learn-
ing. Potential future work could explore whether factors such
as motor movements (Marteniuk et al., 1987), value-based
choice (de Martino & Cortese, 2022), attention (Dowd &
Golomb, 2019; Olivers et al., 2006), working memory distor-
tions (Chunharas et al., 2022), ensemble coding (Whitney &
Yamanashi Leib, 2018), or subjective similarity between the
to-be-remembered objects (Lin & Luck, 2009) influence ob-
ject reconstruction behavior beyond the effects we present
here. In conclusion, our results show that measuring mouse-
tracking behavior permits a more complete understanding of
the internal representations leading up to the final response on
a cognitive task, providing new insight into the dynamic in-
terplay between working memory and perception.
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