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Abstract
Discriminating relevant from irrelevant information in a busy visual scene is supported by statistical regularities in the environ-
ment. However, it is unclear to what extent immediate stimulus repetitions and higher order expectations (whether a repetition is
statistically probable or not) are supported by the same neural mechanisms. Moreover, it is also unclear whether target and
distractor-related processing are mediated by the same or different underlying neural mechanisms. Using a speeded target
discrimination task, the present study implicitly cued subjects to the location of the target or the distractor via manipulations
in the underlying stimulus predictability. In separate studies, we collected EEG and MEG alongside behavioural data. Results
showed that reaction times were reduced with increased expectations for both types of stimuli and that these effects were driven
by expected repetitions in both cases. Despite the similar behavioural pattern across target and distractors, neurophysiological
measures distinguished the two stimuli. Specifically, the amplitude of the P1 was modulated by stimulus relevance, being
reduced for repeated distractors and increased for repeated targets. The P1 was not, however, modulated by higher order stimulus
expectations. These expectations were instead reflected in modulations in ERP amplitude and theta power in frontocentral
electrodes. Finally, we observed that a single repetition of a distractor was sufficient to reduce decodability of stimulus spatial
location and was also accompanied by diminished representation of stimulus features. Our results highlight the unique mecha-
nisms involved in distractor expectation and suppression and underline the importance of studying these processes distinctly from
target-related attentional control.

Keywords Distractor suppression . Expectation . P1 . N2pc . Frontocentral theta . Alpha . Decoding

Introduction

Information processing depends on explicit and implicit
factors. Explicit factors that affect stimulus processing in-
clude preparative cueing, top-down attentional control set-
tings, and context control signals (Fogelson & Fernandez-
Del-Olmo, 2013; Folk et al., 1992; Posner, 1980; Ruff &
Driver, 2006). Neurobiologically, many of these factors re-
sult in facilitative processes (Desimone & Duncan, 1995),
which in the case of goal-relevant stimuli (targets) improve
behavioural performance. By contrast, implicit factors de-
pend on how we process environmental statistics of our
historical experiences (Awh et al., 2012). These processes
can affect goal-relevant and goal-irrelevant stimuli
(distractors), with prominent neurobiological theories, such
as repetition suppression or expectation suppression, arguing
reduced neural activity is associated with increased experi-
ences of stimuli (Henson, 2003; Summerfield et al., 2008).
Target processing is affected by statistics of target-related in-
formation, which can often lead to higher discriminability
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(Summerfield & de Lange, 2014), but it can also bemodulated
by the presence and features of the distractor, such as adjusting
the representation of the target to maximize discriminability
from the distractor (Geng et al., 2017; Yu & Geng, 2019).
While top-down models of explicit factors have often been
investigated, we know less about how trial-wise target pro-
cesses are affected by implicit processes, particularly
distractor-related experience.

To address this, the current study had two aims. First, to
determine the degree to which stimulus repetition, of either
targets or distractors, and higher order expectations, are sup-
ported by the same neural mechanisms. Experimentally, stim-
ulus repetition is often difficult to disentangle from increasing
‘higher order’ expectations. Higher order expectations go be-
yond the physical properties of the stimulus itself and reflect
the probability that a repetition will occur which is itself de-
pendent on the stimuli which occurred further back in the
stimulus history (see Grotheer & Kovacs, 2016, for
extensive discussion). For example, behavioural performance
is dependent on the spatial or feature-based predictability of
the distractor (Feldmann-Wustefeld & Schubo, 2016; Leber
et al., 2016; Reder et al., 2003, Sauter et al., 2018, Wang &
Theeuwes, 2018a, 2018b), with effects showing a spatial gra-
dient from the predicted site (Sauter et al., 2018) and can even
be implicitly tied to the location of the target stimuli (Leber
et al., 2016). While few studies to date have examined the
neural mechanisms underlying distractor expectations, early
evidence suggests reduced distractor-specific processing in
ERP components (van Moorselaar et al., 2020; van
Moorselaar & Slagter, 2019).

The second aim of the present study is to examine whether
the neural mechanisms supporting target and distractor-related
processes after stimulus repetition or higher order expectation
are distinguishable. This aim builds on previous work that has
shown target discriminability is improved, and the cost of a
competing distractor reduced, when distractors are repeated in
the same location (Noonan et al., 2016, Wang & Theeuwes,
2018a, 2018b). Others have shown similar effects in repeated
experience of a particular distractor feature, such as colour
(Cunningham & Egeth, 2016; Lamy et al., 2008). Repeated
distractors also appear to be subjected to the same neural sup-
pression mechanisms to reduce stimulus-evoked neural activ-
ity as targets (Henson, 2016) with evidence of a diminished P1
contralateral to the distractor and a reduction in the lateralized
N2pc component (Noonan et al., 2016) in blocks of trials in
which a distractor repeats to the same location. Suppression of
the P1 is also associated with inhibition of repeated distractor
features such as colour (Moher et al., 2014). While relatively
complementary processes appear to support target and
distractor repetition effects, the mechanisms supporting higher
order target and distractor expectations are unclear.

To investigate the behavioural and neural mechanisms as-
sociated with target and distractor repetition and expectation,

we modified our previous four-location stimulus discrimina-
tion paradigm by implicitly varying the spatial predictability of
targets and distractors across time. The two stimuli could either
be fully predictable to a spatial location (100%), be highly
expected (75%), or appear randomly (25%) in each location,
examining both behavioural and neural measures derived from
EEG and MEG. We predicted improved behavioural perfor-
mance following a repeat target or distractor (as shown
previously; Noonan et al., 2016) as a function of increased
expectations of either target or distractor.

With our results confirming these predictions and sug-
gesting a remarkable similarity in the interactive influence
of these two factors on behaviour, we examined whether
the neural activity, as measured by EEG, would identify
similar neural mechanisms or whether the more temporal-
ly resolved analyses would differentiate stimulus process-
ing. We examined broadband ERP activity and showed
that spatial repetitions predominantly accounted for vari-
ance in early visual event-related components such as the
P1 and N2pc, with targets and distractors having opposing
influence on the direction of these components

Critically, we also examined the modulation of time fre-
quency decomposed stimulus-evoked alpha and theta power
by expected and unexpected stimulus repeats.With oscillatory
power in the alpha range inversely related to other measures of
neural activity (Bonnefond & Jensen, 2012; Haegens et al.,
2011; Laufs, Kleinschmidt et al., 2003; Spaak et al., 2012) as
well as visual excitability (Hanslmayr et al., 2007; Myers
et al., 2014; Romei et al., 2008, van Dijk et al., 2008,), in-
creased alpha power has repeatedly been associated with stim-
ulus suppression (Klimesch, 2012; Worden et al., 2000) and
attentional gating mechanisms (Bonnefond & Jensen, 2015;
Jensen & Mazaheri, 2010). Stimulus evoked alpha power is
also modulated by expectation, with reduced alpha when ex-
pectations are violated (Rungratsameetaweemana et al.,
2018). By contrast, frontocentral theta power is increased
when expectations are violated (Rungratsameetaweemana
et al., 2018). Theta power also differentiates expected target
repetition and unexpected repetitions of a goal-relevant stim-
uli (Summerfield et al., 2011). More broadly, theta often sig-
nals both the need for cognitive control and the instigation of
that control (Cavanagh & Frank, 2014), but whether that sig-
nal is a general alarm or carries specific information is not
clear. Here, we examined whether the modulation of theta
power by expectation and repetition of a stimulus is dependent
on task-relevance of the stimuli. We predicted theta power
would differentiate expected and unexpected repetitions for
target stimuli, in line with findings from Summerfield and
colleagues (2011) but may not show such specificity towards
distractor stimuli.

Finally, given the possibility that reduced neural signals of
an expected distractor could nevertheless still indicate more
efficient stimulus processing (as has been shown in target
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processing; Kok et al., 2012), we explored the impact of
distractor repetition on the neural tuning in the EEG and
MEG data. This analysis examined the time course of classi-
fication accuracy of stimulus-evoked activity at target and
distractor locations as well as investigating whether the altered
neural components and activity during distractor repetitions
reflected broadened or sharpened neural tuning of distractor
features (and therefore potentially reflecting poorer or im-
proved neural representation, respectively). With early evi-
dence suggesting decoding of distractor stimulus features
from stimulus-evoked activity are reduced when distractors
are more predictable (van Moorselaar et al., 2020; van
Moorselaar & Slagter, 2019), we predicted reduced quality
of spatial and feature representation after a distractor repeats
to the same location.

Methods

Participants

Thirty-six volunteers participated in the EEG component of
the study. Data sets of six participants were removed from the
analysis due to excessive blink trials (>20%) or reaction times
greater than two standard deviations from the subject mean
resulting in thirty remaining participants (13 female, aged be-
tween 20–44 years (mean = 26.27 years; standard deviation =
5.56 years). Seventeen volunteers participated in the MEG
component of the study of which eight had also participated
in the EEG task. One subject was removed from the analysis
because reaction times were greater than two standard devia-
tions from the mean, reducing the total to sixteen (nine female,
aged between 19–37 years (mean = 25.0 years; standard de-
viation = 4.20 years). All participants reported being right-
handed, having no history of neurological disease, and having
normal or corrected-to-normal vision. They provided written
informed consent for being tested according to a protocol
approved by the Central University Research Ethics
Committee (CUREC). All participants received monetary
compensation of £10/h for their time.

Design

Figure 1 schematically represents the task design and trial
sequence. The four-location visual search task required partic-
ipants to make two-alternative forced-choice target discrimi-
nation judgements while the spatial predictability of targets
and distractors was implicitly varied across time. The location
of the target (T) or distractor (D) was manipulated to repeat
with differing degrees of spatial predictability to the same
location across blocks of varying trial lengths and series of
trials. Spatial predictability for the target or distractor was
either 100%, 75% (i.e., the target or distractor had a 75%

chance of repeating to the same location or a 25% chance of
appearing in any one of the three other locations), or 25% in
which the target stimuli had an equal chance of appearing at
any one of the four locations while the distractor had an equal
chance of appearing at any of the nontarget locations. For each
manipulated stimulus (target or distractor), this resulted in
three blocked conditions, henceforth referred to as T25, T75,
and T100, for the three spatial predictability levels for targets,
and analogously, D25, D75, and D100, for distractors. Please
note that the conditions T25 and D25 are different labels for
the identical control condition in which a given stimulus
would appear in a fixed location one out of four times and
consequently are pooled in some subsequent analyses.

Stimuli

Target stimuli consisted of round checkerboard-like patches
that were generated by linearly superimposing two orthogonal
Gabor patches (i.e., sinusoidal gratings masked by a Gaussian
hull; size visual angle = 3.645°; phase = 90°; sigma/spatial
constant of Gaussian hull = 25). For the discrimination task,
the checkerboard-like targets differed in their “square size”—
that is, the spatial frequency of the overlapping Gabors (cycles
per pixel: 0.0345 (= small squares) vs. 0.0275 (= big squares).
The distractor stimuli were simple oriented Gabor gratings
with the same parameters as targets with the exception that,
first, they were manipulated at 16 different orientation angles,
and, second, they had twice the contrast of target stimuli to
elicit larger signals (the behavioral cost of their presence was
ascertained in Experiment 1 of (Noonan et al., 2016). Target
stimuli could appear in one of four locations, subtending 8.06°
of visual angle from a central fixation cross (0.94° visual an-
gle). Distractors could appear in any of the four locations,
except the one currently occupied by the target.

Procedure

In the main task, participants were instructed to discriminate
the square size (spatial frequency) of the target stimulus.
Each trial started with the fixation period, marked by a black
fixation cross on grey background, and lasting 1,000 ms.
Next, the stimulus display was presented for 200 ms, con-
taining both the target and distractor. In the response period,
participants indicated target differences by pressing the al-
located keyboard response buttons “c” or “m.” Response
allocations were counterbalanced across participants to
avoid systematic differences. Participants were encouraged
to ignore the distractors. They received auditory feedback
on their response accuracy, via a 50-ms presentation of a
high tone (900 Hz) for correct and low tone (500 Hz) for
incorrect responses. Lastly, the fixation cross turned light-
grey to mark the inter-trial interval, variably lasting 300–
600 ms (to reduce the effect of temporal regularity between

847Attention, Perception, & Psychophysics (2023) 85:845–862



trials on response times). From there, the trial cycle started
anew, marked by a black fixation cross. Participants were
encouraged to fixate and minimize their blinks.

Subjects performed 48 blocks, counterbalanced for stimu-
lus locations, target square size, and number of block repeti-
tions (eight blocks per condition), and delivered in a randomly
permuted sequence. Block length varied dynamically for each
participant (mean = 30; SD = 2), so that each participant com-
pleted an average of 1,440 ± 96 trials. All trials were delivered
in a continuous stream without any explicit breaks between
blocks or information about block type. Breaks were sched-
uled every seven blocks (averaging every nine minutes), cre-
ating seven task blocks, in between which participants would
receive measures of their reaction time and accuracy to in-
crease task engagement (they were instructed to aim for 90%
correct trials). Participants who had not previously participat-
ed in a behavioural pilot study were given ca. 3–4 minutes of
practice to reduce training effects.

During each break, participants performed a simple
distractor localization task, in which the display consisted of
only the distractor stimulus that varied in orientation on each
trial. The purpose of these intermittent blocks was to experi-
ment with a novel cross-condition decodingmethod that trains
on the single distractor stimulus and applies this training to
multiple stimuli (Wolff et al., 2015). Yielding no relevant
results, this task added an average of four minutes to each task
block and is not further discussed in the present report.
Including this task and breaks, the total experimental time
was approximately 75 mins.

The experimental script was generated and all stimulus
displays delivered dynamically via the Psychophysics
Toolbox (Brainard, 1997) in MATLAB (The MathWorks
Inc., Natick, MA). In the experiment, for the first 17 subjects,
stimuli were presented using a Dell Optiplex 780 computer
(with MATLAB version 2011b). However, for the remaining
subjects, stimuli were presented using a Dell Optiplex 9020
PC (with MATLAB version 2014a). Both computers
projected to a Samsung Sync-Master 2233 monitor (60 Hz
refresh rate, 1,680 × 1,060-pixel screen resolution) and were
connected to a Dell Optiplex 760 to record the EEG time
series. For both computers, we estimated the offset in trigger
stamp time and actual stimulus presentation with a photodi-
ode. There was a 6-ms delay between trigger stamp and stim-
ulus presentation for the first computer and a 3-ms delay for
the second computer. These respective offsets were corrected
for in the subsequent preprocessing steps. In the MEG study,
participants were inside a sound-attenuated and magnetically
shielded room. For EEG stimuli were presented on the screen
at 55 cm (93 cm in the MEG study) distance from the subject
and 8 (13) cm lateral to the central fixation cross. For MEG,
stimuli were projected from a Panasonic DLP Projector (PT-
D7700E) with a spatial resolution of 1,024 × 768 pixels and a

refresh rate of 60Hz. Viewing distance was constrained by the
MEG scanner to be 93 cm.

EEG time-series data were recorded using a NeuroScan
SynAmps RT ampl i f i e r and Scan 4 .5 so f tware
(Compumedics Neuroscan, Charlotte, NC), measuring from
60 individual scalp Ag/AgCl surface electrodes mounted on
an elastic cap (EasyCap, Herrsching, Germany) according to
the international 10–20 system. Electro-oculograms were re-
corded via two bipolar channels from supraorbital and
infraorbital right eye electrodes (vertical EOG), and from the
electrodes placed at external canthi of the eyes (horizontal
EOG). Data were referenced online to the right mastoid
(TP10) and rereferenced offline to the average of the left and
right mastoid electrodes. The anterior frontal midline elec-
trode was used as a ground.

MEG data were acquired on a 306-channel VectorView
system (Elekta Neuromag) with two orthogonal planar gradi-
ometers and one magnetometer at each of 102 locations allo-
cated in a helmet surrounding the top of the scalp, situated
within a magnetically shielded room. During acquisition, a
band-pass filter of 0.03–330 Hz was applied and the head
position continuously monitored using four head position in-
dicator (HPI) coils attached to the scalp. Before data acquisi-
tion, the HPI coil locations, three anatomical fiducial
locations—the nasion and left and right preauricular
points—and head points across the scalp were digitized using
a Polhemus Isotrak II. Furthermore, to detect eye movements
and heartbeat, wemeasured the horizontal and vertical electro-
oculogram and electro-cardiogram via electrodes attached to
the eyes and forearm. Before starting the MEG task, an
EyeLink 1000 eye-tracking system was calibrated to an indi-
vidual’s head position and eye movements were recorded
continuously.

Preprocessing: EEG

EEG-recordings were re-referenced offline to the average of
the mastoid electrodes. The data were resampled to 250 Hz
with 16-bit precision and band pass filtered (0.05–40 Hz)
using EEGLAB (Delorme & Makeig, 2004). Obtained trig-
gers from the onset of epochs were realigned to account for
timing lag between the trigger and stimulus onset. Time-
series data were epoched using the digital triggers sent by
the computer executing the MATLAB script to the comput-
er recording the EEG-data. For the event-related potential
(ERP) analyses, the data were epoched between −0.25 s and
+0.4 s relative to the stimulus onset. Trials contaminated by
excessive artifacts (e.g., eye blinks, saccades) were identi-
fied by visual inspection and removed. An automatic crite-
rion was also used to detect remaining artifacts on any chan-
nels included in the analysis (±50 mV). If this resulted in
<25 remaining trials in any condition, the participant was
excluded from that analysis (one instance described below).
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Data were baseline-corrected with respect to the average
voltage at −250 and 0 ms.

For time frequency (TFQ) analyses, the data were epoched
between −0.5 s and +1.0 s relative to the stimulus onset and
decomposed between 4–8 Hz (theta) and 8–12 Hz (alpha) at
increments of 1 Hz using FieldTrip (Oostenveld et al., 2011).
The analyses were conducted using a Hann multitaper method
with three cycles per taper. Trials contaminated by excessive
artifacts as identified in the shorter epoch were removed, in
addition to trials with amplitude ±50 mV or power ±500. No
baseline was applied as the block design meant that the cueing
effects might manifest at any point within the trial. Power was
log-transformed and averaged across this theta range.

Preprocessing: MEG

All MEG data were analyzed using the FieldTrip toolbox
(Oostenveld et al., 2011) and custom-written scripts for
MATLAB (The MathWorks & MATLAB, 2021a). First,
bad channels were identified by visual inspection. External
noise was removed from the data using MaxMove (Elekta
Neuromag) software and applying the signal-space separation
method (SSS) with its temporal extension (ST). Continuous
movement compensation, as indicated by the HPI coils, were
applied and each individual’s data transformed to the coordi-
nate frame of their first scanning block. Before conversion to
the SPM format, the continuous data were bandpass-filtered at
0.1–500 Hz, down-sampled to 500 samples per second, then
epoched with respect to stimulus onset in a time window of
−0.5 to 0.75 s. Time points in which artifacts resulting from
muscles, blinks, saccades, and signal dropout occurred were
marked by visually inspecting all trials. In addition, we used
Independent Component Analysis (ICA) to remove eye-
motion and heart rate artefacts.

Data analyses

Reaction times and accuracy

Analyses were performed in MATLAB (R2021a) and SPSS
(Version 27). We calculated median reaction time from stim-
ulus onset (RT) and mean response accuracy for each of the
three conditions for targets and distractors separately. We ex-
plored how the effects of expected repetition interacted with
spatial predictability by comparing repetition (rep) and
nonrepetition (nrep) trials across conditions. Initially exclud-
ing the fully predicted condition we performed two 2 (spatial
predictability: 25, 75) × 2 (repetition: rep, nrep) ANOVAs for
target and distractor stimuli separately. We also investigated
the performance benefits of repetitions under increasing pre-
dictably, analyzing repeat trials across all spatial predictability
conditions for targets and distractor separately (one-way
ANOVA spatial predictability: 25, 75, 100). Trep trials in

T25 and D25, and Drep trials in T25 and D25 were indepen-
dently pooled. Note, for the behavioural RT analysis, the ex-
clusion criteria for single trials within participants were as
follows: Trials with deviant latencies three times the median
absolute deviation (Leys et al., 2013), error trials, trials after a
break and the first four trials in each new spatial predictability
block as new expectations would be expected to not be fully
established in these trials. This latter criterion was applied to
any later analysis (behavioural or EEG) that compared across
spatial predictably blocks. Accuracy had the same exclusion
criterion with the exception of error trials.

To assess the longer term impact of trial history repetitions,
we collapsed across all spatial predictability conditions and
estimated the residuals of log-transformed RT after account-
ing for the (i) the target location (upper or lower quadrant and
left or right hemifield), (ii) targets and distractors in the same
hemifield, (iii) target identity (small or large squares), (iv)
repetition of target identity. RT outliers, error trials and
postbreak trials were excluded before residual RT was calcu-
lated. We regressed the residuals of RT against five categori-
cal factors of stimulus (target or distractor) repetition. The
terms included in the model characterized single trial repeti-
tions (TT), n-back (TXT&TXXT, with X exclusively not a T,
but could be a D), and DXD and DXXD (with X exclusively
not a D, but could be a T) and cumulative repetitions of targets
and distractors (TTT, TTTT, and DDD, DDDD). Beta esti-
mates were compared in a 2 (stimulus type; target and
distractor) × 5 (repetition factor; SS, SXS, SXXS, SSS,
SSSS) repeated-measures ANOVA and t tests against zero
and between target and distractors.

Trial-wise target and distractor stimulus repetition effects

All EEG data were analyzed using the FieldTrip toolbox
(Oostenveld et al., 2011) and custom-written scripts for
MATLAB (The MathWorks & MATLAB, 2021a). First,
we examined ERP waveforms for channels that were con-
tralateral (contraT) and ipsilateral (ipsiT) to target posi-
tion. Any trial in which the target appeared in the right
hemifield was flipped into the left hemifield. Only trials
in which both stimuli were presented on the same vertical
plane were analyzed, meaning that contraT is equivalent
to ipsilateral to distractor (ipsilaD) and ipsiT is equivalent
to contralateral to distractor (contraD). Upper and lower
visual fields were analyzed separately as early compo-
nents are known to differ relative to stimulus position on
different sides of the horizontal meridian (Di Russo et al.,
2002). All lateralized posterior and occipital electrodes
were included in the analysis (P2, P4, P6, P8, PO4, O2,
PO8, P1, P3, P5, P7, PO3, O1, PO7). Specifically, we
examined the neural mechanisms common to any repeti-
tion of a target or distractor stimulus. Collapsing across
the three Spatial Predictability conditions we compared
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any target or distractor repetition (Trep, Drep) with trials
in which there was no repetition (Tnrep, Dnrep).
Again, only lateralized target/distractor configurations
were included, and upper and lower lateralization are plot-
ted separately. Trials at the beginning of each spatial pre-
dictability block were not removed for this analysis. We
used an a priori time windows interest centred over the
early P1 visual components. Waveforms for time of inter-
est analyses included all trials to ensure subsequent con-
trasts were orthogonal from the derived peaks. The P1
was defined as the maximal peak of the waveform prior
to the N1 (itself identified based on the global peak neg-
ativity). We restrict this analysis to stimuli presented
lateralized in the upper hemifields (to avoid the positive-
going C1 blending into the later P1 in lower hemifield
stimulus configurations). Voltages were extracted from
each subject from a 20-ms window centred on the group
average peak value (134–154 ms). In order to directly
compare P1 activity across the two stimulus types, we
conducted a complementary analysis where we removed
trials in which the other stimulus repeated to the same
location. For example, in the Trep and Tnrep conditions,
we removed trials in which the distractor also happened to
repeat. The equivalent step was also performed in the
Drep and Dnrep conditions. We subjected the average
ERP activity across the P1 to a 2 (stimulus type; target,
distractor) × 2 (stimulus repetition; repeat, nonrepeat)
repeated-measures ANOVA. We also repeated this ana-
lysis for ERP activity averaged over a 20-ms window
centred over the average N1 peak and the N2pc time win-
dow defined by the cluster in the lateralized waveform
that showed significant differences between Drep and
Dnrep (see below).

To complement these focused analyses, we also con-
ducted group level cluster corrected nonparametric
permutation-based tests (p < .05) that estimated statistical
differences between conditions across time (Maris &
Oostenveld, 2007). This method involves estimating the
t-statistic across participants for a contrast of interest at each
time point, defining observed clusters of consecutive above-
threshold time points, and calculating the cluster mass (by sum-
ming all t values in an above-threshold cluster). Next, condition
labels were randomly shuffled within participants (sign-flip for
contrasts against zero), and the largest cluster mass produced
by chance was extracted. This permutation step was performed
10,000 times to estimate the null distribution. The probability
of the observed group-level cluster against chance was then
derived as the rank order of the observed cluster relative to
the null distribution (Myers et al., 2014). Finally, to assess
spatiotemporal differences in later ERP components, all chan-
nels were plotted as spatial topographies using the field trip
toolbox. Epoched data are subjected to the function
“Ft_timelockstatistics,” which computes Monte Carlo cluster-

corrected statistics across space (with at least two neighbouring
channels) and time (latency 0–0.4 s), taking the maximum sum
of the t values within every cluster (p < .05, permutations =
1,000). We examined two contrasts (1) target repetition vs.
nonrepetition, (2) distractor repetition vs. nonrepetition and
cluster corrected across space and time.

We also calculated lateralized waveforms (contraT–ipsiT
ERP activity) for repeat and nonrepeat trials for target and
distractor stimuli and subjected them to the same group level
cluster corrected nonparametric permutation-based tests (p <
.05) that estimated statistical differences between repeat and
nonrepeat trials across time.

Effects of higher order expectation of target and distractor
stimuli on voltage amplitudes

To investigate the effect of higher order expectation on local
stimulus processing, we regressed the EEG amplitude with the
varying trial-wise estimates of expectation of target or
distractor location derived from a reinforcement learning
model described in the Supplementary Material. Importantly,
we sought expectation independent from repetitions and so
included in the regression analysis the repetition of target or
distractor at a particular location. Resulting beta values were
normalized by dividing each time point, for each subject and
channel by the maximum beta value identified for each trial.
Mean beta values of target and distractor expectation for
contraT and ipsiT locations were extracted from a 20 s time
window centred over the peak P1 amplitude as identified in
the raw EEG waveform (see above). The beta values for the
four conditions were subjected to independent one-sample t
tests against zero. We also compared the mean beta coeffi-
cients for targets and distractors against zero for all time points
and all channels before comparing beta coefficients of targets
against distractors. All trials were included regardless of upper
and lower locations. Spatial topographies of the beta coeffi-
cients are estimated as described above, plotted, and cluster
corrected statistics were applied across space and time (p <
.05).

Effects of higher order expectation of target and distractor
stimuli on frontocentral theta power

To investigate the effect of higher order expectation on
frontocentral theta power, we regressed logged theta power
(from C2, C1, C4, C3, CP4, CP3, CPz, Cz, FC3, FC1, FCz,
FC4, FC2 channels) with the varying trial-wise estimates of
expectation of target or distractor location. At the group level,
we compared the mean beta coefficients for targets and
distractors against zero across time in cluster corrected non-
parametric permutation-based one-sample t tests using the
methods described above, and against each other with equiv-
alent paired-sample t tests.
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Alpha power after expected and unexpected target
and distractor repetitions

Next, we investigated stimulus evoked alpha power separately
for target and distractor condition as a function of repetition
(rep and nrep) and spatial predictability (25 and 75). Averaged
log transformed alpha power (from P2, P4, P6, P8, PO4, O2,
PO8, P1, P3, P5, P7, PO3, O1, PO7) in each condition was
calculated relative to each stimulus and pooled across stimuli
in any location or configuration. Cluster corrected nonpara-
metric permutation-based tests (p < .05) compared alpha pow-
er across time between stimulus repeat and non-repeat trials
for contralateral and ipsilateral alpha separately.

Decoding of distractor stimulus features in MEG and EEG data

Finally, we examined whether distractor repetition altered per-
ceptual representations of key features of the distractor such as
location or orientation. Past work has demonstrated that in-
creased target expectations were associated with decreased
neural activity but increased feature decoding (Kok et al.,
2012). We examined this latter possibility in the case of
distractor expectation in the MEG and EEG data. First, we
decoded distractor spatial location by applying a principle
component analysis (PCA) to the time series data over all
trials and channels in the MEG data. For decoding, we used
the first 60 PCA components. For each time point from −100
to +400ms relative to stimulus onset, we took the surrounding
samples at ±40ms, de-meaned this window and made five 16-
ms bins. Within each bin, the data were averaged over time.
For decoding, we trained and tested on separate data sets.
Trials from the localizer task were used for training and those
of the main task were used for testing. For each time point we
used the previously computed averaged time bins and com-
puted for each test trial the standardized Euclidean distance to
the average of the training set between each location. Because
of standardization via PCA, this is equivalent to taking the
Mahalanobis distance. To maximize the congruence to MEG
decoding, we performed identical decoding-specific process-
ing steps in the EEG data and extracted the same amount of 60
PCA components that explained the most variance for loca-
tion and orientation decoding. To compare distractor repeti-
tion with nonrepetition trials, we calculated how often the
shortest distance accurately predicted the actual distractor lo-
cation for trials of each type subtracted chance-level accuracy
(0.25), and smoothed individual subjects’ time series with the
neighbouring ±10 ms. To statistically test whether
nonrepetition trials had higher decodability, we computed a
cluster-based permutation test from 50,000 equal sized ran-
dom trial selections using data from all subjects (Maris &
Oostenveld, 2007). Clusters exceeding a family-wise error
(FWE)-corrected alpha of 0.05 were deemed significant.

Next, we decoded distractor orientation, which varied ran-
domly on a trial-wise basis. Because of this variation very few
trials were identical, which is a prerequisite for decoding. To
increase training and test sets we grouped trials into eight
different orientations and used a 10-fold cross-classification
over the whole data set. Standardized Euclidean distance was
computed between each trial and the average of the training
set for each of the eight orientations. Because similar orienta-
tions should result in shorter distances, the difference between
similar to dissimilar orientations indicates tuning to orienta-
tions, here expressed as the fit to a cosine function. This cosine
fit as a measure of tuning to orientations was estimated for
each of the time steps, resulting in a 2D heat map of tuning
over time.We subjected the overall tuning curves over time to
a cluster-based permutation test procedure with 50,000 ran-
dom resamples that tested the tuning against chance. Clusters
exceeding a, FWE-corrected p < .05 were deemed significant.
Using the overall tuning to distractor orientations, we tested
whether distractor and target repetitions had an effect on
decodability of the distractor orientation by taking the average
peak decoding per subject for repetition and nonrepetition
trials and subjecting these individual subjects means to two
independent paired-samples t tests: Drep vs. Dnrep and Trep
vs. Tnrep.

Results

Repetition and expectation of targets and distractors
improve measures of performance

In a task designed to implicitly manipulate stimulus repeti-
tion independently of spatial expectation for task relevant
and irrelevant information, we show that stimulus repetition
and expectation of both targets and distractors reduce RTs
(Fig. 1c–d). Two independent repeated-measures ANOVAs
confirmed this pattern for the low (25%) and high (75%)
spatial predictability conditions. RTs are reduced when tar-
gets repeat to the same location, Repetition: F(1, 29) =
102.05, p < .001, an effect that was additionally dependent
on spatial predictability, Repetition × Spatial Predictability:
F(1, 29)=5.89,p= .022.The same effects are also evident for
distractor processing, with repeated distractors reducing RT
to target discrimination, Repetition: F(1, 29) = 35.50, p <
.001, an effect amplified by increasing predictability of the
distractor stimulus, Repetition × Spatial Predictability: F(1,
29) = 7.85, p = .009. Furthermore, RTs are reduced with
increasing spatial predictability for both targets and
distractors (one-way ANOVAs of 25%, 75%, and 100%
repetition trials) F(2, 58) = 9.60, p < .001, and F(2, 58) =
4.84, p = .012, respectively.

Complementary analyses in the accuracy data (Fig. S1A–
B) revealed some conserved but weaker effects for target
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repetition. While no effects were significant in the 2
(repetition) × 3 (spatial predictability) ANOVA for either tar-
get or distractor stimuli (all ps > .115), accuracy to report the
target category in repetition trials did increase with increasing
predictability (one-way ANOVA of target repeat trials for
25%, 75%, and 100%), F(2, 58) = 3.56, p = .035. By con-
trast, there were no significant effects in the equivalent
distractor analysis, F(2, 58) = 1.49, p = .235. Importantly,
there was no RT–accuracy trade-off in the distractor condi-
tion (D25 vs. D100 repetition trials), t(29) = 0.701, p =
.489. These patterns in RT and accuracy were replicated
in the behavioural data collected alongside the MEG data
(see Supplementary Material and Fig. S1C–F).

Next, we assessed the longer term impact of trial history rep-
etitions, for targets and distractors, collapsed across all spatial
predictability conditions and independent of a number of poten-
tially confounding variables (see Methods, Fig. 1e). Comparison
of regression-derived beta estimates in a repeated-measures
ANOVA of Stimulus Type and Repetition Factor suggests target
repetitions explained broadly more variance in RTs than
distractors, Stimulus Type: F(1, 28) = 16.07, p < .001, and dif-
ferent repetition factors account for differential RT variance,
Repetition Factor: F(4, 112) = 9.94, p < .001, with most variance
being explained by the single most recent stimulus repetition,
post hoc t test against zero, TT: t(29) = −13.08, p < .001; DD:
t(29) = −10.10, p < .001. Indeed, there was increasingly

Fig. 1 Task schematic, design, and behavioural impact of target and
distractor expectation and repetition. a Schematic of the experimental
task. Participants judged whether target chequered patterns were of high
frequency (‘small squares’) or low frequency (‘large squares’).
Distractors were gratings oriented in one of 16 angles. Targets and
distractors could appear in one of four locations (upper and lower left
and right). The target or distractor could appear in each location across a
block of 30 trials (±2 trials) with three levels of differing degrees of
certainty: 25%, 75%, and 100%. On each trial, participants were
required to fixate for 1 second prior to the onset of the stimuli, which
appeared for 200 ms. Participants judged whether the target pattern was
low/high frequency and responded by right/left button press and received
auditory feedback in the form of high and low tones. Then, the fixation
cross turned white to mark the intertrial interval. b The ongoing spatial
predictability of the two stimuli in an example subject test session across
the 48 blocks for targets (green) and distractors (red). Blue dashed line
marks random spatial predictability at 25%. Note that if the target stimu-
lus occupied a location for a period of time in the 75% and 100% condi-
tion, then the spatial uncertainty of the distractor was reduced and there-
fore its spatial predictability was higher than 25%. Conversely, the same
is true for the target when the distractor stimuli was in the higher spatial
predictability condition. c Mean and standard errors of RTs when the
target has a 25% (blue), 75%, and 100% chance of appearing at a

particular spatial location, divided according to whether the expected
stimulus, target (green) or distractor (red) repeated to the same location
(rep: lighter colours) or did not repeat to the same location (nrep: darker
colours). d Mean and standard errors of RTs when the distractor is the
expected stimulus. Format is same as (c). Treps and Dreps were indepen-
dently pooled across the T25 and D25 conditions. Results suggest that
reduced RTs with increased expectation were driven by expected stimu-
lus repeats for both targets and distractors. e Regression beta weights (and
standard error) reflecting variance explained in RTs by the different num-
bers of stimulus (S) repetitions of either the target (green) or distractor
(red). The model includes single repetitions of expected stimuli (SS), n-
back repetitions (SXS, SXXS) with intervening trials not filled by the
expected stimulus but could be unfilled or filled by the unexpected stim-
ulus (denoted by X), and cumulative repetitions of expected stimuli (SSS,
SSSS). Results suggest that target repetitions consistently explained more
RT variance than distractor repetitions. For both targets and distractors
most RT variance is explained by a single stimulus repetition with in-
creasingly less additive benefit if the repetition was further back in time.
Black asterisk (*) denotes significant (p < .05) difference between the
amount of variance explained between target and distractor conditions,
green and red stars indicate significant amount of variance explained by
target and distractor conditions relative to zero, respectively. (Colour
figure online)
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less additive benefit for repetitions that occurred fur-
ther back in time, TXT: t(29) = −8.08, p < .001; DXD:
t(29) = −4.91, p < .001; TXXT: t(29) = −6.04, p < .001;
DXXD: t(29) = −2.55, p = .016. Additional cumulative
repetitions only significantly affected RT when there are
four consecutive repetitions of either target, TTT: t(29)
= −0.90, p = .376; TTTT: t(29) = −3.89, p = .001, and
distractor, DDD: t(29) = −1.01, p = .320; DDDD: t(29) =
−291, p = .007.

Trial-wise stimulus repetition effects differentiate
target and distractor processing

The behavioural results suggest that both stimulus repetition
and increased expectation of both targets and distractors im-
prove task performance. Turning to the neural data, we there-
fore asked whether the similar behavioural profiles would be
underwritten by related or distinctive neural mechanisms.
First we examined the impact of a single repetition of either
target or distractor on ERP components, as behaviourally this
factor had the largest impact on RT. Pooling over objective
spatial predictability (Fig. 2) we show that a single trial repe-
tition of a distractor decreases P1 amplitude contralateral to
distractor location (Fig. 2d), t(29) = −2.28, p = .03, and is
complemented by an enhancement of P1 amplitude contralat-
eral to target location when targets repeat to the same location
(Fig. 2a), t(29) = 2.17, p = .039. Direct comparison between
targets and distractor ERP activity at the P1 time window
revealed a significant difference, Stimulus Type: F(1, 29) =
21.74, p < .001, a difference that was modulated by whether
the stimulus repeated or not, Stimulus Type × Repetition: F(1,
29) 8.92, p = .006. However, there was no independent effect
of Repetition,F(1, 29) = 0.54, p = .479. Repeating the analysis
for the N1 component showed a similar difference between
target and distractor activity overall, Stimulus Type: F(1, 29)
= 18.80, p < .001, but no other significant effects, Repetition:
F(1, 29) = 0.07, p = .790, Stimulus Type × Repetition: F(1,
29) = 0.03, p = .862.

Spatial topographies confirm relative spatial distinctions
between target and distractor repetition effects and their
confinement to posterior electrodes at the P1 time window
(Fig. 2 insets). However, neural differences distinguish be-
tween repetitions of target and distractor stimuli later in
time. For targets we see reduced amplitude contralateral
to target in the lower visual field channels between 0.168
and 0.224 s (Fig. 2e, p = .010) corresponding to the N1 and
ipsilateral to target in two clusters between 0.256 and
0.308 s and 0.340 and 0.396 s (Fig. 2f, p = .011 and p =
.02, respectively). By contrast, after distractor repeats, sig-
nals are enhanced contralateral to target when in upper
channels between 0.228 and 0.312 s (Fig. 2c, p < .001).

Next, we investigated the spatial-temporal topography of
the repetition effects on amplitude and again demonstrated

differential processing of the two stimulus categories. Target
repetition manifested in a single positive cluster from 0.120–
0.228 s (Fig. 2i, p = .031). Beginning before the time of the P1,
this cluster begins relatively nonlateralized, growing anterior-
ly into a large posteriocentral cluster. By the time of the P1,
this cluster has refocused on posterior electrodes contralateral
to the target. By contrast, distractor repetition manifested in a
single positive cluster at later time points from 0.236–0.336 s
(Fig. 2j, p = .001). This cluster begins at posterior electrodes
contralateral to the target and progresses anteriorly with time.
This neural signal likely includes the distractor repetition ef-
fects seen in Fig. 2c.

Lateralization of the waveforms also suggests differences
between target and distractor repetition. Repetition of the tar-
get amplifies contralateral signals relative to ipsilateral signals
between 0.152 and 0.224 s (Fig. 2k, p = .001) at the P1 time
window. By contrast, repetition of a distractor reduces the
N2pc, potentially reflecting less attentional capture by the
distractor (Fig. 2l, 0.240–0.320 s, p < .001). Again, direct
comparison between ERP activity at the N2pc time window
for targets and distractors revealed a significant main effect
of Stimulus Type: F(1, 29) = 33.48, p < .001, and
Repetition: F(1, 29) = 26.92, p = < .001, with reduced
lateralization for both targets and distractors after either
stimulus repeated to the same location. The two factors
did not interact, F(1, 29) = 0.78, p = .384.

Notably, the data from the current experiment also lends
itself to be analyzed in the same way as described in our
previous study (Noonan et al., 2016). For completeness,
we repeat the past analyses and show that our past distractor
effects in the P1 and N2PC replicated in this new sample
(Fig. S2).

Distinct time courses of target and distractor
processing in markers of neural expectation

Having shown that the repetition of a target and distractor
stimulus produces different effects on the ongoing ERP time
courses, we next investigated whether the higher order expec-
tation of stimulus repeating to a particular location, as shaped
by stimulus history effects, similarly differentiated the neural
signals to target and distractor stimuli. To do so, we first esti-
mated trial-wise expectation using a reinforcement learning
model. Model construction, tests and comparison are detailed
in Supplementary Materials (Fig. S3A–C) through which we
replicated behavioural findings by simulating RT data from
the model fits (Fig. S3D–E). We regressed the parametric
expectation for a target or distractor at each location on every
trial to the corresponding ERP amplitude. Our model included
covariates of single-trial repetitions meaning that expectation
values are independent of repetition effects. When these are
included in the model and we focus a priori on the P1 time
window, there is no significant relationship between P1
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Fig. 2 Distractor repetitions diminish P1 amplitude and N2PC. ERP
waveforms average from occipital and posterior electrodes for target (green)
and distractor (red) repetition (rep: light colours) and nonrepeat (nrep: dark
colors) plotted separately for sensors contralateral to target (contraT: dashed
lines) and ipsilateral to target (ipsiT: solid lines) when stimuli were presented
in the upper (a–d) or lower (e–h) visual field. Significance bar indicates
cluster-corrected (p < .05) t tests between repeat and stimulus-specific
nonrepeat trials. Gray panels represent a 20-ms window centered over the
peak of the P1 components only readily identifiable in the upper visual field
due to overlap with C1 in the lower field. Asterisks indicate significant dif-
ferences between repeat and nonrepeat conditions using nonparametric
permutation-based correction. Repeated targets increase the P1 amplitude
contralateral to the target stimuli relative to nonrepeat trials. By contrast,
distractor repeat trials result in smaller P1 amplitude contralateral to the
distractor stimuli relative to nonrepeat trials. Insets: Topographies of the P1

repetition effects (repetition vs. nonrepetition) averaged between 0.132 and
0.152 s are illustrated to show the relative lateralized posterior distribution. i–j
Spatially and temporally cluster-corrected topographies for target and
distractor for repetition minus nonrepetition trials, respectively. Target repeti-
tion manifests in a single positive cluster between 0.120 and 0.228 s. By
contrast, distractor repetition manifests in a single positive cluster from
0.236 to 0.336 s. T and D represent the location of the target and distractor,
respectively. Separate significant clusters for target and distractor are denoted
by x and * symbols, respectively. k–l Lateralized components were isolated
for target and distractor (respectively) by subtracting ipsilateral waveforms
from contralateral waveforms from the respected expected stimulus for both
stimulus repeat (lighter colours) and nonrepeat (darker colours) trials.
Repeated distractors result in a reduced N2pc component, whereas repeated
targets are associated with an enhanced lateralized component at an earlier
timepoint. (Colour figure online)
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amplitude and expectation (Fig. S4), Target contraT: t(29) =
0.66, p = .512; Distractor CT: t(29) = 0.13, p = .897; Target
ipsiT: t(29) = 1.55, p = .132; Distractor ipsiT: t(29) = −0.69, p
= .496. This indicates these early effects are driven predomi-
nantly by the expectation of a stimulus repetition and do not
reflect more subtle higher order expectations.

By contrast, we observe distinct higher order expectation
effects for distractors and targets in more frontocentral signals
(Fig. 3). Target expectation is significantly negatively corre-
lated with ERP amplitude in two clusters (Fig. 3a). Firstly,
from 0.048–0.208 s (p = .014), ERP amplitude decreases with
increasing expectation in a relatively sparse central distribu-
tion which intensifies over time into frontal channels. Then,
between 0.22 and 0.308 s (p = .030) the second large
frontocentral cluster progresses posteriorally. By contrast, in-
creased distractor expectation (Fig. 3b) at a particular spatial
location is negatively correlated with ERP amplitude between
0.008 and 0.112 s (p = .037) and again between 0.164 and
0.280 s (p = .004). This pattern begins most posteriorly, before

rapidly shifting to frontal electrodes and then advancing back
posteriorly and broadly over the whole scalp. The P1 time
window sits between these two clusters.

Finally, we investigated the expectation of targets and
distractors in frontocentral theta power. Frontocentral theta
has previously been linked with target expectation, with
Summerfield et al. (2011) showing that expected target repe-
tition is associated with reduced theta power relative to trials
in which the target was expected to repeat but did not. Here we
first tested whether frontocentral theta power was differential-
ly associated with target or distractor expectation. We
regressed log-transformed theta power against expectation of
targets or distractors in each location on every trial. Note crit-
ically that stimulus repetition was regressed out of the vari-
ance in theta power.We observe that frontocentral theta power
decreases with increasing distractor expectation in a cluster
between 0.08 and 0.396 s (p = .001). Target expectation is
similarly associated with reduced theta but in a much shorter,
less pronounced cluster between 0.168 and 0.284 s (p = .048).

Fig. 3 Higher order expectations impact later frontocentral activity and
theta. ERP amplitude correlates with target (a) and distractor (b)
expectations (as derived from the learning model, with stimulus
repetition regressed out of the variance) in distinct frontal temporal
topographies. Target expectation is significantly negatively correlated
with amplitude in two clusters from 0.048 to 0.208 s (p = .009) and
0.22 to 0.312 s (p = .018). While increased distractor expectation at
particular locations is negatively correlated in two cluster 0.008–0.112 s
(p = .04) and between 0.164–0.280 s (p = .005). T and D represent the

location of the target and distractor, respectively. The significant clusters
for target and distractor are denoted by x and * symbols. c Frontocentral
theta power correlates with target (green) and distractor (red) expecta-
tions. Frontocentral theta power decreases with increasing target and
distractor expectation in single clusters respectively (target 0.168–0.284
s, p = .048 and distractor 0.08–0.396 s, p < .001). Asterisks indicate
significant differences relative to zero using nonparametric permutation-
based correction. (Colour figure online)
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Then, in a complementary analysis, we examined whether
theta power distinguished between expected and unexpected
repetition differentially for targets and distractors. We com-
pared log-transformed frontocentral theta power across repe-
tition and nonrepetition trials in the high (75%) and low (25%)
spatial predictability blocks. This analysis, which was more
directly comparable to Summerfield and colleagues, revealed
that expected repeats of targets and distractors to the same
location were both associated with reduced theta power (Fig.
S5A, T75 Trep vs. Tnrep, 0.220–0.376 s, p = .254; Fig. S5B,
D75 Drep vs. Dnrep, 0.220–0.388 s, p = .0352). However,
unlike unexpected target repeats (Fig. S5C, TD25 Trep vs.
Tnrep, no significant cluster, p = .108), unexpected distractor
repeats also reduced theta power (Fig. S5D, TD25 Drep vs.
Dnrep, 0.100–0.312 s, p = .224). This implies that theta dis-
tinguishes between repetitions of task-relevant stimuli but not
task-irrelevant information.

Dissociable alpha modulation after expected and
unexpected target and distractor repetitions

Next, we examined the lateralization of alpha power to the
target or distractor location as a function of repetition and
spatial predictability (Fig. 4). The results suggested that
when targets fulfilled expectations by repeating in a low
repeat condition or repeating in a high probability of repeat
condition, alpha was reduced over channels contralateral to
the location of target (T25nrep p = .0476, T75rep p = .019).
However, alpha also distinguished between the other target

conditions in which expectations are violated. Specifically,
targets that repeated in a low repeat condition showed no
alpha lateralization (T25rep p = .999). By contrast, there
was significant target lateralization when targets did not
appear at an expected location in the high repeat condition
and instead appeared at a new location, with reduced alpha
over channels contralateral to the new target location
(T75nrep two clusters p = .0376, p = .0474).

When distractors fulfilled expectations by not repeating in
a low repeat condition (D25nrep) or repeating in a high prob-
ability of repeat condition (D75rep) there was increased later-
alization of alpha, with reduced alpha over channels contra-
lateral to the location of the distractor (D25nrep p < .001,
D75rep p = .002). By contrast, when the distractor violated
expectations by repeating in a condition with few repeats
(D25rep) or not repeating in a condition when it was expected
to (D75nrep), there was significantly less lateralization
(D25rep p = .99, D75nrep p = .249), potentially suggesting
stimulus evoked increased alpha over contralateral channels
acted to suppress the distracting influence of the distractor.

Decoding of stimulus location and features: Weaker
representation of distractor features after distractor
repetition

The distinct effect of target and distractor repetition on ERP
components, as well as the distinguishable time courses in
ongoing EEG amplitude and theta power, suggests dissociable
underlying neural mechanisms support the similar improved

Fig. 4 Lateralized stimulus evoked alpha power differentially modulated by
expected and unexpected target and distractor repetitions. Log alpha power
plotted contralateral (dashed lines) and ipsilateral (solid lines) to stimuli for
target (a-d) and distractor (e-h) repeated and non repeated
conditions. Posterior electrodes contralateral to a target stimulus showed
reduced alpha power, relative to ipsilateral electrodes, when expectations of
target repetition were fulfilled across the two spatial predictability conditions

(T25nrep and T75rep). Alpha power was also reduced contralateral to targets
that appear at an unexpected location when expectations were violated (i.e.,
when a target did not repeat to the same location in the high spatial
predictability condition; T75nrep). By contrast, alpha power only showed
this lateralization pattern to distractor locations when expectations were
fulfilled (D25nrep and D75rep) with reduced alpha over channels
contralateral to the location of the distractor. (Colour figure online)
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behaviour we see after target and distractor repetitions and
increased expectation of either stimulus. In particular, we see
reduced amplitude after distractor repetitions (P1 and N2PC)
and increased expectation of a distractor. However, these anal-
yses cannot tell us whether this reduced activity translates to
an effective neural suppression of the distractor. To test this,
we investigated whether a single repetition of a stimulus loca-
tion affected the neural representation of that stimulus in the
MEG data and EEG. Examining the neural representations of
target and distracter separately, we tested how often the
shortest standardized Euclidean distance between a trial’s data
and the average of the training set predicted the location of the
stimulus, separately for target and distractor location. In both
data sets, we show that a single repetition of a distractor and
target to the same location reduced decoding accuracies (Fig.
5a–b). Differences in distractor location decoding extended

between 0.178 and 0.220 s (p = .002), while target location
repetition effects diminished two clusters between 0.104 and
0.168 s (p = .004) and 0.188 and 0.236 s (p = .012), with the
first cluster potentially corresponding to the P1 time period. A
similar pattern of effects was observed in the EEG data
(Fig. S6A–B).

Next, we investigated the effect of trial repetitions of stim-
ulus features on neural representation. To do so, we first com-
pared the standardized Euclidean distance between trials rela-
tive to the distractor orientation angle. As the similarity be-
tween two trials should scale with the similarity in angle, we
were able to extract a tuning curve to the distractor angle over
time, represented as heat maps (Fig. 5c). Clearly visible after
100 ms, we observe tuning to the distractor angle denoted by a
higher similarity in red for similar angle trials compared to a
lower similarity in dissimilar angles shown in blue. To

Fig. 5 Representation of distractor location and stimulus features diminished
by distractor repetition but not target repetition. Accuracy of decoding
distractor (a) and target (b) spatial location is reduced after a single trial
repetition (lighter colour) relative to a nonrepetition trial (darker colour).
Asterisks denote significant cluster-based permutation tests. Differences in
distractor location decoding extend between 0.168 and 0.222 s while target
repetition effects are significantly different between 0.116 and 0.160 s. cHeat
maps show mean standardized Euclidean distance between trials relative to
the distractor orientation angle and represents a tuning curve to the distractor
angle over time. Hot/red areas reflect higher similarity for similar angles,

while cold/blue areas represent lower similarity in dissimilar angles. Higher
tuning to distractor angle is visible after 100 ms. d Comparison of the tuning
curve to a cosine function averaged across participants and representing fea-
ture encoding across time. Asterisks denote significant cluster-based permu-
tation tests of subjects’ tuning curves and show significant stimulus features
encoding with a peak between 200 and 300ms. eMean and standard error of
the cosine similarity extracted from the peak tuning window for target and
distractor repetitions and nonrepetitions. Results suggest distractor repetition
diminishes tuning to distractor orientation, but target repetition does not re-
duce distractor orientation tuning. (Colour figure online)
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quantify the tuning to orientation, we compared the tuning
curve to a cosine function. This resulted in one value estimat-
ing the level of feature encoding over time (Fig. 5d). A cluster-
based permutation test of all subjects’ tuning curves over all
trials revealed significant encoding of stimulus features from
100 ms (0.098–0.378 s, p < .001), with peak tuning inMEG at
around 200–300 ms. Finally, we focused on this peak tuning
window, comparing mean cosine similarity for stimulus
repetitions compared to nonrepetitions (Fig. 5e). In two
independent comparisons of means, we found that
distractor repetition resulted in diminished tuning to orien-
tation, t(15) = 2.30, p = .036, while target repetition, as a
control comparison, did not result in a significant reduction
of distractor orientation coding, t(15) = 1.56, p = .139.
However, both repetition conditions showed a similar pat-
tern, with MEG being more attuned to repetition vs.
nonrepetition effects and almost identical mean tuning
values for each condition across the two analyses. EEG
showed a similar pattern of effects although the reduced
decoding of distractor orientation did not reach significance
(Fig. S6D). Given that MEG and EEG are sensitive to dif-
ferent underlying neural sources, high decoding perfor-
mance in MEG does not mean that we should always expect
corresponding high decoding performance in EEG (Cichy
& Pantazis, 2017). Therefore, this discrepancy between the
two methods does not undermine findings in MEG.

Discussion

Goal-directed behaviour is facilitated when our environment
is consistent and we can anticipate patterns in our sensory
processing. Here, we teased apart the contributions of stimulus
repetition and higher order expectation of task relevant and
task irrelevant information on behavioural performance and
neural signals. We show subjects were faster and typically
more accurate with increased expectations for both types of
stimuli and that these effects were driven by expected repeti-
tions in both cases. The behavioural similarity is not however
mirrored in the neural measures. While early neural signals
like the P1 were driven predominantly by low level repeti-
tions, higher order expectations of targets and distractors were
captured in decreased voltages and theta power in later
frontocentral locations. However, we observed that a single
repetition of a distractor is sufficient to reduce decodability of
stimulus spatial location and is also accompanied by dimin-
ished representation of stimulus features.

Stimuli that are irrelevant to our goals can capture our
attention and impair performance (Luck et al., 2021). Here,
we show that increased expectation of these distracting stimuli
can enhance performance in a comparable pattern to increased
expectations derived from target repetitions. This pattern ap-
peared robust and replicated across two studies and supports

the growing literature on the behavioural value of being able
to predict one’s environment, regardless of goal-relevance
(Lamy et al., 2008; Reder et al., 2003, van Moorselaar et al.,
2020; van Moorselaar & Slagter, 2019). Furthermore, we saw
that both expected and unexpected repetitions improved be-
havioural performance for both targets and distractors and
contributed unique variance to explain behaviour, thus repli-
cating and extending findings from our previous work
(Noonan et al., 2016). Collectively, these results suggest that
repetition suppression and distractor expectation interact, with
similar behavioural effects to those seen in the task-relevant
stimulus domain (de Gardelle et al., 2013; Summerfield et al.,
2011). In the context of the recently developed theories that
spatial predictions of distractors and targets combine to form
spatial priority maps (Wang & Theeuwes, 2018a, 2018b;
Zhang et al., 2019), our results suggest that the initial stimulus
repetition is particularly informative to this temporally evolv-
ing map. In our study, later repetitions appear to contribute
less and less weight to the priority maps, although sensitivity
for past repetitions may bridge discontinuities in expectations.
Interestingly, our results suggest priority maps could be much
more flexible than previous studies which showed that the
longer term history, not the immediate past, most informs
the priority map (Zhang et al., 2019) and that spatial distractor
expectations are relatively robust to extinction (Valsecchi &
Turatto, 2021). However, these inconsistencies likely reflect
differences in the task-based volatility of stimulus spatial pre-
dictability, with the studies showing longer term influences
holding the location of the frequent distractor constant for
hundreds (sometimes thousands) of trials. By contrast, spatial
predictability of a stimulus to a particular location in the pres-
ent study repeatedly changed after approximately 30 trials.
Potentially, therefore, subjects are learning both the spatial
and temporal dynamics of the environment, which suggests
that in volatile environments inhibitory mechanisms may
adapt flexibly and rely on shorter term fluctuations in stimulus
repetition to build saliency maps compared to tasks with less
environmental volatility. Sensitivity to this higher order tem-
poral structure is akin to dynamic learning rate mechanisms
that track volatility of reward (Behrens et al., 2007). Our
modeling results similarly suggest equivalent weighting of
new spatial information contribute to the build-up of expecta-
tion for both target and distractor stimuli. Future research
should examine the conditions and environmental factors that
affect how stimulus expectations update spatial priority maps.

While our behavioural analyses broadly suggest similar
patterns of processing for target and distractors, our assess-
ment of neural EEG signals delineated the perceptual process-
ing of the two stimuli. For example, the P1 demonstrated
complementary but opposing processing of task-relevant and
task-irrelevant information. Here, repetition of a target in-
creases the P1 amplitude contralateral to target locations,
whereas repetition of distractor produces the opposite effect,
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with decreased amplitude over electrodes contralateral to the
distractor location. The P1 is thought to reflect the cost of
attention (Luck et al., 1994) with decrements of this compo-
nent occurring when attention is incorrectly focused outside of
the target stimulus (Mangun & Hillyard, 1991; Van Voorhis
& Hillyard, 1977), presumably, in our case, the distractor. The
P1 suppression may represents the cost of stopping and
shifting attention to the target location. As we found nothing
to indicate the P1 amplitude was further modulated by the
higher order expectations, our interpretation of the repetition
effects falls in line with these views. Specifically, our results
suggest that a repetition of a distractor is associated with a
reduced neural attentional cost, while repetition of a target to
the same location is associated with a neural attentional gain.

While the P1 has this bidirectional characteristic, suggest-
ing complementary task-relevant and irrelevant neural mech-
anisms, the spatiotemporal and lateralized analyses suggest
that other ERP components more clearly distinguish the two
visual events. Only after a target repeats do we see that the P1
cluster of activity, localized contralaterally to the target in
posterior sensors, advances anteriorly at the N1 time period,
with a focus on lateralized occipitoparietal electrodes. Luck
and colleagues (Luck et al., 1994; Vogel & Luck, 2000) have
argued that the N1 indexes the benefit of attention and dis-
crimination at attended locations, with increments in ampli-
tude observed when attention is focused on a location where
the target subsequently appears. The presence of target repe-
tition effects over the N1 and not distractor repetition effects
are in accord with this proposed role. By contrast, distractor
repetition vs. nonrepetition only affects later timepoints,
where we observe that the posterior visual signal ipsilateral
to distractor locations spreads anteriorly into a large
frontocentral cluster. This lateralized component likely corre-
sponds to the N2pc, a component that reflects attentional se-
lection (Eimer, 2014; Luck, 2012; Luck&Hillyard, 1994) and
thus may reflect less attentional capture by the distractor. This
pattern replicates our previous work, of which we further rep-
licate the core findings with analogue analysis methods in the
current data set (Noonan et al., 2016). The nature of our task
prevents us from disentangling the N2pc from the Pd compo-
nent, which has been argued to reflect attentional suppression.
Not only has recent work shown that the magnitude of behav-
ioral suppression reflects the magnitude of the PD component
across subjects, distractor expectations of location and stimu-
lus features are also capable of eliminating the PD component
altogether (Gaspelin & Luck, 2018—although note this is not
always the case; Feldmann-Wustefeld & Schubo, 2016).

In examining the differential effects of higher order
distractor and target expectation in the present experiment,
we distinguish between low-level repetition effects. We iden-
tified negative correlations between amplitude and increasing
expectations of target and distractor throughout the trial.
Specifically, increasing target expectation led to prolonged

reductions in amplitude, beginning early in frontocentral elec-
trodes and spreading posteriorly from there. By contrast,
distractor expectation signals begin more posteriorly before
rapidly localizing on frontal electrodes and then spreading
posteriorly to broadly cover the scalp. This pattern in EEG
amplitude is mirrored by frontocentral theta power, with theta
negatively correlated with distractor and target expectation
over the same time period. However, theta appears to be mod-
ulated both by repetition and expectation. Frontocentral theta
has previously been linked with target expectation
(Rungratsameetaweemana et al., 2018; Summerfield et al.,
2011), with Summerfield and colleagues (2011) showing that
expected repetition of face stimuli was associated with re-
duced theta relative to trials in which the face was expected
to repeat but did not. Theta power did not distinguish between
repetition and nonrepetition trials in a condition where faces
were expected to alternate (equivalent to our 25% expectation
condition). In the present study, we replicated Summerfield’s
findings in the spatial domain with reduced theta to target
repetition only if the target is expected. By contrast, we found
that distractor repetition, regardless of expectation, was asso-
ciated with reduced frontocentral theta power. With
frontocentral theta power linked elsewhere to distractor inhi-
bition in the context of conflict monitoring and resolution
(Haciahmet et al., 2021; Zavala et al., 2013), we could infer
here that conflict between target and distractor processing is
reduced after both stimulus repetition and increased high-level
expectation of a distractor.

Our results also suggest that stimulus evoked alpha power
may have a role in modulating stimulus processing of expect-
ed and unexpected events and may distinguish between stim-
uli on the basis of task relevance. While preparatory alpha
modulation and lateralization in anticipation of expected tar-
gets is well documented (Noonan et al., 2016; Worden et al.,
2000), alpha lateralization is also triggered by the appearance
of a target that cannot be anticipated, suggesting that alpha
may also serve as an active mechanism of target processing
(Bacigalupo & Luck, 2019). Interestingly, in line with current
findings, stimulus evoked alpha lateralization also itself ap-
pears to depend on whether expectations of a target are vio-
lated or not (Rungratsameetaweemana et al., 2018). In this
context, the present results may suggest that alpha is gating
distractors that fulfill expectation through towards the next
level of information processing via reduced alpha contralateral
to these stimuli. By contrast, the absence of alpha lateraliza-
tion after distractors that violate expectations potentially sug-
gests that relative increased alpha contralateral to distractors
reflects a stimulus evoked suppression. While this may be
counterintuitive to the idea that expected distractors should
be gated as quickly as possible to reduce the computational
cost, it could be in line with the perceptual load theory (Lavie
et al., 2004), with expected distractors potentially contributing
less to perceptual load and thus being processed more.
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Despite the collective evidence of reduced visual process-
ing of distractor stimuli, thus far there remains the possibility
that this reduced signal is accompanied by sharpened neural
representations. In the target domain, if a presented stimulus
feature matches one’s expectation then BOLD signal is re-
duced but classification accuracy increases, potentially
reflecting sharpened neural tuning (Kok et al., 2012), with this
increased sensitivity even evident during preparatory target
feature processing (van Moorselaar et al., 2020; van
Moorselaar & Slagter, 2019). Yet this pattern is not evident
in distractor processing. Recent work has shown that, while
distractor stimulus features can be decoded both in preparato-
ry activity and stimulus evoked activity, they appear reduced
when distractors are more predictable (van Moorselaar et al.,
2020; van Moorselaar & Slagter, 2019). In line with this latter
result, we also observed reduced classification accuracy for
distractor features after a distractor repetition, suggesting that
when a distractor stimulus repeats, there is broader tuning
profile and thus a less defined neural representation of that
distractor. By contrast, we saw no such reduction in distractor
orientation decoding after a target stimulus repeated in the
environment. Interestingly, though, while we could decode
both distractor and target location, accuracy of decoding was
reduced for both stimulus types after a single stimulus repeti-
tion to the same location of each respective class. This result
could potentially be an index of response adaptation or a
poorer neural representation of both stimuli. However, while
the reduced target location decoding accuracy began early in
visual processing, around the P1 time component, the
distractor location decoding accuracy was diminished consis-
tently at a later time window. One potential feature that may
warrant future attention is the bimodal structure of the
decoding curves. Notably, the nonrepetition decoding curves
have a more pronounced structure of two peaks, one between
100 and 120 ms and another from 200 ms poststimulus. This
possibly suggests that, after initial processing, stimulus infor-
mation is refreshed after one alpha cycle (about 100 ms), and
that this alpha refresh is more prominent when the information
is more irrelevant—that is, on repeat trials, acting to locally
suppress content. While past studies of our own work did not
identify changes in alpha after distractor repetition, only target
repetition (Noonan et al., 2016), more recent work has shown
that alpha does track distractor location (Wöstmann et al.,
2019), which may fit with this local mechanistic interpreta-
tion. Finally, we acknowledge the slight differences in
decoding results between MEG and EEG. In addition to
EEG being known as a noiser signal, with poorer spatial res-
olution than MEG, we note that these neuroimaging methods
are sensitive to different underlying neural sources and so high
decoding performance in one method should not lead to the
expectation for corresponding high decoding performance in
the other. While others have observed convergent and com-
plementary decoding effects in the two methods, the same

paper also noted neural differences contributed to decoding
patterns (Cichy & Pantazis, 2017). This means that the dis-
crepancy between the results in the present study should not
undermine the positive effects we see in theMEG data, which,
in the interests of transparency, should continue to motivate
the adoption of multimodal analyses.
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