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Abstract
To interact with one’s environment, relevant objects have to be selected as targets for saccadic eye movements. Previous studies
have demonstrated that factors such as visual saliency and reward influence saccade target selection, and that humans can
dynamically trade off these factors to maximize expected value during visual search. However, expected value in everyday
situations not only depends on saliency and reward, but also on the required time to find objects, and the likelihood of a successful
object-interaction after search. Here we studied whether search costs and the accuracy to discriminate an object feature can be
traded off to maximize expected value. We designed a combined visual search and perceptual discrimination task, where
participants chose whether to search for an easy- or difficult-to-discriminate target in search displays populated by distractors
that shared features with either the easy or the difficult target. Participants received a monetary reward for correct discriminations
and were given limited time to complete as many trials as they could. We found that participants considered their discrimination
performance and the search costs when choosing targets and, by this, maximized expected value. However, the accumulated
reward was constrained by noise in both the choice of which target to search for, and which elements to fixate during search. We
conclude that humans take into account the prospective search time and the likelihood of successful a object-interaction, when
deciding what to search for. However, search performance is constrained by noise in decisions about what to search for and how
to search for it.
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Introduction

Humans have foveated visual systems, which are charac-
terized by a functional division of the eye’s retina in a
photoreceptor-dense foveal part, used for high-acuity per-
ception, and a peripheral part, where visual acuity gradu-
ally decreases and susceptibility to clutter increases with
rising eccentricity (for reviews, see Rosenholtz, 2016;
Stewart et al., 2020; Strasburger et al., 2011). To overcome
these processing differences across the retina, humans re-
orient their fovea to different points of interest in visual
scenes, using saccadic eye movements. Necessarily, each
saccade results from a decision about which part of the

world to select as a saccade target, as well as a target for
high-acuity perception, and which parts to ignore.

The factors that influence decisions about target selec-
tion for saccades have been studied extensively (for
reviews, see Hayhoe, 2017; Schütz et al., 2011; Tatler
et al., 2011). For example, previous research showed that
low-level features of scenes, such as visual saliency (Itti &
Koch, 2000; Kümmerer et al., 2016), motivational aspects
of stimuli, such as a monetary reward linked to saccade
targets (Liston & Stone, 2008), and the prospective gain in
task-relevant visual information after saccades (for reviews,
see Gottlieb, 2012, 2018; Gottlieb et al., 2014; Gottlieb &
Oudeyer, 2018) influence saccade target selection. For the
information gain of saccades, some studies found evidence
that the human oculomotor system is not only sensitive to
this factor, but it also optimizes saccade target selection to
maximize information gain (Eckstein et al., 2015; Hoppe &
Rothkopf, 2019; Najemnik & Geisler, 2005, 2008; Paulun
et al., 2015; Peterson & Eckstein, 2012; Renninger et al.,
2007; Yang et al., 2016). However, other studies demon-
strated that this is not always the case (Ackermann&Landy,
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2013; Araujo et al., 2001; Clarke et al., 2022b; Clarke &
Hunt, 2016; Ghahghaei & Verghese, 2015; Morvan &
Maloney, 2012; Nowakowska et al., 2017, 2021; Tsank &
Eckstein, 2017; Verghese, 2012; Wolf et al., 2019; Zhou &
Yu, 2021). For instance, human eye-movement behavior
during visual search can be explained equally well by a
stochastic model (Clarke et al., 2016), or better by a model
that focuses on minimizing costs of saccades, while main-
taining a sufficiently high task performance (Zhou & Yu,
2021). For more complex testing environments with multi-
ple competing sources of information, some studies demon-
strated that humans can combine information about saliency
and reward for saccade target selection (Navalpakkam et al.,
2010; Schütz et al . , 2012; Stri tzke et al . , 2009):
Navalpakkam et al. (2010), for example, showed that par-
ticipants can, in accordance with predictions of an ideal
Bayesian observer, dynamically trade off saliency and re-
ward in visual search displays to select saccade targets that
maximize expected value.

However, in cluttered real-world environments, populated
by an abundance of objects, different potential saccade targets
might have equal saliency and comparable motivational value
(e.g., two equally favorable products with similarly conspicu-
ous packaging on supermarket shelves). Furthermore, a single
saccade, which in the paradigm of Navalpakkam et al. (2010)
was in most cases sufficient to find reward-maximizing tar-
gets, is typically not enough to locate sought-after objects
outside the laboratory. Instead, time-consuming visual search
(for reviews, see Eckstein, 2011; Lleras et al., 2022;
Nakayama & Martini, 2011; Wolfe, 2021) is often required,
where parts of scenes have to be fixated sequentially, in order
to locate relevant targets among irrelevant distractors (e.g.,
finding one’s favorite product amidst products with similar
looking packaging). Additionally, saccades in real-world en-
vironments are often not ends in themselves, but objects are
typically chosen as saccade targets to be interacted with after
eye movements (e.g., lifting one’s favorite product from a
supermarket shelf after finding it) and those interactions might
not always be successful (e.g., when the desired product is
placed too high up in a shelf), especially when a searcher is
under time pressure (e.g., shortly before closing-time).
Finally, eye movements in natural environments typically do
not yield monetary rewards, but provide visual information for
a given task (Foley et al., 2017; for a review, see Gottlieb &
Oudeyer, 2018; Horan et al., 2019; Paeye et al., 2016). Thus,
in stimulus-filled environments with multiple comparably
valuable and salient choice-alternatives, the quality of com-
peting saccade targets might not primarily depend on their
relative motivational value and saliency. Instead, saccade tar-
get quality depends on factors such as the necessary time to
find sought-after objects under time pressure (i.e., their rela-
tive search costs) and the likelihood of successful interaction
with them after search.

Previous research has shown that both the difficulty to
discriminate targets from distractors and the perceptual dis-
criminability of stimuli per se influence eye-movement strat-
egies (Pomplun et al., 2013), as well as fixation durations
(Becker, 2011; Näsänen et al., 2001; Williams & Pollatsek,
2007), during visual search. Another line of research demon-
strated that humans take time constraints into account when
making decisions about when to stop looking for targets dur-
ing visual foraging (Cain et al., 2012; Ehinger &Wolfe, 2016)
and how much time to spend on perceptual tasks more gener-
ally (Jarvstad et al., 2012).

For target selection, some studies demonstrated that when
the ratio of two types of distractors, from which ones shares a
feature with the target, is manipulated, human observers are
more likely to fixate distractors from the smaller set during
search (Egeth et al., 1984; Shen et al., 2000; Sobel & Cave,
2002), and this effect cannot be explained by saliency of the
smaller set (Kaptein et al., 1995). Similarly, a series of recent
studies showed that the time required to find targets amidst
distractors also influences decisions about what target to
search for. Irons and Leber (2016, 2018) showed their partic-
ipants large search displays with 54 colored elements.
However, instead of instructing participants to search for one
fixed target in every trial, the authors presented two
differently-colored targets in each trial, and participants
could freely choose which target they want to search for. To
manipulate the efficiency of either searching for one or the
other target, Irons and Leber (2016, 2018) varied the propor-
tion of distractors in search displays which had a similar color
as one or the other target options. As a consequence, search
efficiency (i.e., how many distractors need to be inspected
before finding a target) depended on the number of similar
looking distractors in a display, and participants were hypoth-
esized to dynamically update which target they search for,
depending on the number of similar looking distractors in
search displays. The authors found large individual differ-
ences in their data, with half of their participants failing to
maximize task-performance. However, a subset of partici-
pants, although showing unnecessary target switches and de-
lays in target switches, had a tendency to spontaneously
choose targets that took less time to find, and to fixate
distractors that shared some of their chosen target’s features
(see also Bergmann et al., 2020). The observed individual
strategies of participants were found to be stable over time
as well as context-specific (Clarke et al., 2020; Irons &
Leber, 2018), and participants’ performance improved when
previews of search displays were shown before trials (Hansen
et al., 2019).

Although the prospective search costs of target options
seem to influence search behavior of some participants, it is
currently unknown if other factors, such as the relative diffi-
culty of interacting with targets (e.g., discriminating them for a
perceptual task), have a similar influence on target selection
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during visual search. Furthermore, it is currently unknown if
discrimination accuracy can be weighed against the prospec-
tive search costs of competing target-options to optimize eye-
movement behavior. Here we studied whether human partic-
ipants can, under time-pressure, dynamically trade off the pro-
spective search costs as well as discrimination accuracy of two
competing targets to maximize expected value during visual
search.

Methods

Participants

We recorded data from 21 participants. Three participants
were undergraduate student assistants in the laboratory,
whereas the rest of the sample consisted of naïve under-
graduate students. Although student assistants were famil-
iar with eye tracking, they were naïve with respect to the
paradigm, and the hypothesis of the present experiment.
One participant had to be excluded after participating in
the single-target condition, because he/she did not comply
with the instructions. A second participant was excluded
because of extreme average search times in both condi-
tions (single-target: 7,874 ms; remaining participants: M =
2,546 ms, 95% confidence interval (CI95%) = [2,228 ms,
2,865 ms]; double-target: 6,107 ms; remaining partici-
pants: M = 2,320 ms, CI95% = [2,016 ms, 2,625 ms) that
led to a comparatively small number of completed trials
(single-target: 51 trials; double-target: 64 trials).
However, the general pattern of our results did not change
irrespective of whether data from this participant was in-
cluded or not. The remaining 19 participants had a mean
age of 23 years (min.: 19 years, max.: 29 years, 15 fe-
male). Sample size was determined based on previous
studies that focused on similar research questions
(Clarke et al., 2016; Clarke et al., 2022b; Nowakowska
et al., 2021; Zhou & Yu, 2021). Additionally, our study
uses a computational model to quantify individual differ-
ences as its main analysis tool. This has been previously
shown to be a powerful approach, even for studies with
comparatively small sample sizes (Smith & Little, 2018).

All participants were naïve as to the purpose of the exper-
iment and had normal or corrected-to-normal vision.
Participants were compensated with 8 €/h and an additional
performance-dependent bonus payout. The latter was deter-
mined by translating the sum of points, which participants
acquired throughout both conditions of the experiment, into
Euros, with one score point (defined as 0.01 points) corre-
sponding to one Eurocent (e.g., a participant with a final score
of 4.10 received a total bonus payout of 4.10€). The average
total bonus payout was 3.69€ (min.: 0.02€, max.: 7.34€).

Equipment

All experiments were conducted using the Psychtoolbox
(Brainard, 1997) in Matlab R2016b (The MathWorks,
Natick, MA, USA). Stimuli were presented on a back-
projection setup, using a PROPixx projector (VPixx
Technologies Inc., Saint-Bruno, Quebec, Canada) and a
Stewart Filmscreen screen (Stewart Filmscreen Corporation,
Torrance, California, USA). The screen had a size of 90.70 ×
51.00 cm, a spatial resolution of 1,920 × 1,080 pixels and a
refresh rate of 120 Hz. The viewing distance was 106 cm.
Background color was set to gray (R: 128, G: 128, B: 128,
luminance: 69.6 cd/m2) and the screen was calibrated to en-
sure linear gamma correction. A hotspot correction was used
to ensure equal luminance across the screen. Eye movements
of the right eye were recorded with an EyeLink 1000+ (SR
Research Ltd., Ontario, Canada) at a sampling rate of 1,000
Hz. The Eyelink Toolbox was used to control the eye tracker
(Cornelissen et al., 2002).

Stimuli

A combination of cross and bull’s eye (total diameter: 0.60°)
was used as fixation cross (Thaler et al., 2013). Custom stim-
uli were used as targets, distractors, and mask stimuli (Fig.
1A). All stimuli were made up of an unfilled circle with a
colored outline (red (R: 255, G: 0, B: 0, luminance: 43.70
cd/m2) or blue (R: 0, G: 0, B: 255, luminance: 6.10 cd/m2),
circle diameter: 1.20°, line thickness of outline: 0.10°) and a
gray (R: 109, G: 109, B: 109, luminance: 59.70 cd/m2) round-
edged rectangle, centered within the circle (length longer side:
0.69°, length shorter side: 0.23°, line thickness of outline:
0.03°). For targets, the rectangle was oriented either horizon-
tally (90° relative to vertical) or vertically (0°), whereas it had
one of two possible diagonal orientations (45°, 135°) for
distractors. For mask stimuli, rectangles of all orientations
were superimposed onto each other.

Depending on the color of the circle outline, stimuli
belonged to one of two sets: the easy and difficult set. For
the easy set, the target and distractors had a comparatively
large gap (0.08°) on one of its long sides (i.e., the gap was left
or right if the rectangle was oriented vertically and up or down
if it was oriented horizontally), whereas the gap was smaller
for elements of the difficult set (0.05°). Gap sizes were chosen
based on pilot data such that discriminating the gap location
on the easy target during fixation yielded higher perceptual
performance than discriminating the difficult target. Mask
stimuli did not have a gap. Anti-aliasing was applied to both
the circle outline and the rectangle within the circle. To avoid
interference with the discrimination task, anti-aliasing on tar-
gets was only applied to rounded edges, but not the long
rectangle sides and the edges confining gaps.
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Stimuli were randomly distributed over a 20° × 20° area
around the fixation cross. It was ensured that an equal number
of elements appeared in each screen half (left, right, above,
and below the fixation cross). Locations of individual stimuli

in each trial were drawn such that the Euclidean distance be-
tween centers of all displayed stimuli (including the fixation
cross) was at least 5°. This value was chosen based on pilot
data from one experienced observer, and was intended to

Fig. 1 Stimuli and trial procedure. (A) Stimuli were differently oriented
rectangles, centered within blue or red circles. The stimulus pool was
divided into two sets: the easy and difficult set. Each set consisted of
one target (rectangles oriented horizontally or vertically), several
distractor variations (oriented diagonally), and a mask stimulus
(rectangles of all orientations superimposed onto each other). Elements
of both sets differed in their ring color, and the size of a gap located on
one of the two long sides of their rectangles. Depending on gap size,
targets were either difficult (small gap) or easy (large gap) to
discriminate. (B) In the single-target condition, participants were
instructed to find a target, presented among 0–8 distractors from the
target’s set, and to discriminate the position of the gap. The number of
distractors, and the set that was shown in a particular trial, were both

varied across trials. Participants were given 6 min and 30 s to complete
as many trials as they could. (C) In the double-target condition, partici-
pants had the same task as in the single-target condition, however, here,
both targets and eight distractors, composed of elements from both sets,
were shown in each trial. The relative number of easy and difficult
distractors was varied across trials. (B–C) Although trial duration was
unlimited, viewing time of individual stimuli was limited: Each stimulus
could be viewed for up to 500 ms, after which it was replaced by a mask.
Differences between conditions are highlighted. Stimuli are not drawn to
scale. Dashed lines/circles and italic text were not part of the display and
are shown for illustration purposes only. (A–C) For illustration purposes,
rectangles within circles are drawn in black, whereas they were drawn in
gray during the experiment
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ensure that neighboring stimuli were spaced such that partic-
ipants were unlikely to be able to discriminate targets from
distractors with peripheral vision.

Design

To study the combined influence of prospective search costs
and discrimination accuracy on target selection, we designed a
combined visual search and perceptual discrimination task.
We used a within-subject design with two conditions: the
single-target and double-target condition. Data for both con-
ditions was collected in one session, with the order of condi-
tions being fixed (always single-target first). The color of the
circle surrounding the rectangles was balanced between par-
ticipants: for even participant numbers, easy elements were
surrounded by a red circle and difficult elements by a blue
circle. This pattern was flipped for odd participant numbers.
Target orientation was randomized over trials, so, in each trial,
a target could be oriented either horizontally or vertically, but
their orientation was never the same when both targets were
shown in the double-target condition. We manipulated the
number of easy/difficult distractors per trial (nine levels, 0–8
easy/difficult distractors per trial) and the discrimination ac-
curacy of targets (two levels, easy and difficult).

Both conditions had a variable number of trials and partic-
ipants were told to complete as many trials as they could
within a timeframe of 6 min and 30 s. To ensure that we
collect roughly an equal number of trials for each combination
of factor-levels, trials were presented as miniblocks. In the
single-target condition, each miniblock was made up of 18
trials (one target per trial (easy or difficult) with 0–8
distractors from the same set as the shown target), presented
in a random order. In the double-target condition, each
miniblock consisted of nine trials (two targets and 0–8 easy/
difficult distractors per trial).

Procedure

Single-target condition At the start of each trial, a fixation
cross appeared at screen center and participants could start
trials by pressing the space-bar (Fig. 1B). After a random time
interval between 500 ms and 1,000 ms, drawn from a uniform
distribution, the stimulus array appeared, while the fixation
cross stayed on the screen.

In each trial of the single-target condition, the stimulus array
contained one target (easy or difficult) as well as a variable num-
ber of distractors (0–8) from the same set as the shown target.
Participants were instructed to locate the target and to discrimi-
nate the position of a gap, located on one of the two long sides of
its rectangular part, by pressing one of the arrow keys on the
keyboard. Participants were explicitly told which stimulus set
(red or blue) had smaller/larger gaps. Individual trials had no time
limit and participants could take as much time as they deemed

necessary to locate and discriminate the target. However, each
stimulus on the screen (excluding the fixation cross) could only
be viewed for up to 500 ms (see Eye movement and data
analysis), before the currently fixated element was replaced by
a mask stimulus with the same ring color as the currently fixated
element (participants were instructed about the limited viewing
time). If an element was fixated for less than 500 ms, the differ-
ence to the remaining time was used as an updated maximum
viewing time for the next fixation of the same element. The
search display remained visible until a response was provided
and participants could respond immediately after stimulus array
onset (i.e., without ever fixating any of the elements on the
screen). To reduce accidental terminations of trials, the active
response keys were confined to the orientation of the target in a
trial (e.g., if the target orientation in a trial was vertical, only the
left and right arrow keys were active).

After a response was detected, the stimulus array and fixa-
tion cross disappeared and visual feedback was shown at
screen center. The feedback consisted of the score for the
current trial as well as an overall score, which was translated
to a monetary payout at the end of the condition (e.g., “0.02 |
0.44”); for each correct discrimination participants received
two points (+0.02) and they lost two points (−0.02) for each
incorrect response. Additionally, a timer was shown under the
score, indicating how much time was left for the task (e.g.,
00:06:00). The remaining time was updated after each trial by
subtracting the time elapsed between stimulus array onset and
response from the remaining time. If participants did not look
at the fixation cross at stimulus onset (see Eye movement and
data analysis), a red error message (“Not fixated!”) was
shown instead of the visual feedback and timer. In this case,
participants lost two points, irrespective of their actual re-
sponse, and the remaining time was updated, just as in trials
without fixation errors. The feedback stayed on for 1,500 ms,
after which it was replaced by a fixation cross and the next
trial began. Before the task, participants performed ten dem-
onstration trials.

The purpose of the single-target condition was to familiar-
ize participants with the stimuli and the task. Furthermore, the
single-target condition allowed us to quantify a participant’s
discrimination performance and search behavior for each tar-
get option in isolation.

Double-target condition The double-target condition was
identical to the single-target condition, except for the compo-
sition of the stimulus array and some aspects of the task.
Instead of one target, always two targets were shown per trial
(easy and difficult), which were accompanied by 0–8 easy
distractors, leading to 1–9 easy elements (NE), and 8–0 diffi-
cult distractors, leading to 9–1 difficult elements (ND) (Fig.
1C). Therefore, the stimulus array contained ten elements in
each trial, from which two were targets and eight were
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distractors. However, the exact composition of the elements
(NE > ND, NE < ND, NE = ND) varied randomly over trials.
Participants were instructed that they could freely choose
which target they wanted to search for and discriminate. As
in the single-target condition, participants could respond right
after stimulus onset, however, in the double-target condition,
all response keys were active in each trial (since each trial
contained two targets with different orientations).
Participants, again, performed ten demonstration trials before
the condition.

Although the double-target condition has some notable
similarities to a paradigm previously used by Irons and
Leber (2016, 2018) (freedom to choose between compet-
ing targets that varied in their relative search costs), our
paradigm also differed in several critical aspects to the
paradigm from Irons and Leber (2016, 2018). First, time
to complete trials as well the maximum viewing duration
of individual stimuli was limited in our paradigm, where-
as both of those factors were unlimited in the paradigm by
Irons and Leber (2016, 2018). We introduced those
changes to create temporal urgency for participants, and
to encourage changes in the preferred target when the
search costs of a target (i.e., the required time to find it)
became too high. Second, we manipulated the discrimina-
tion difficulty of targets, whereas the study by Irons and
Leber (2016, 2018) kept discrimination difficulty of target
options constant. This addition was a direct consequence
of our research question. Third, the distractor ratio in the
paradigm by Irons and Leber (2016, 2018) changed in a
predictable manner, whereas the relative number of easy
and difficult distractors in our paradigm varied unpredict-
ably from trial to trial. We used unpredictable stimulus
conditions because we wanted to minimize the impact of
statistical learning (i.e., participants learning the pattern in
which relative set sizes are presented) and anticipation on
our results. Finally, participants in our paradigm received
monetary rewards for correct discriminations, whereas the
participants from Irons and Leber (2016, 2018) were not
rewarded for performance. We introduced this additional
factor to motivate participants, and to have a performance
measure, which participants could actively influence via
more or less sensible target decisions in our paradigm.

The purpose of the double-target condition was to measure
if participants take into account the relative discrimination
accuracy as well as prospective search costs of target options,
when deciding which target to search for and discriminate.

Eye movement and data analysis

Online tracking of element viewing time In both conditions,
participants could view each element in a trial for up to 500ms
before it was replaced by a mask. To determine how long
individual elements have been viewed we defined circular

areas of interest (AOIs) around the centers of elements on
the screen (diameter: 5°, non-overlapping; invisible to partic-
ipants) and tracked online for how long the measured raw gaze
position was located within each AOI. Our algorithm tracked
when gaze entered as well as left an AOI and for how long it
dwelled within it, but not how the AOI was entered/left. Thus,
both instances where gaze actually dwelled within an AOI and
where it merely passed through an AOI mid-flight (e.g., dur-
ing saccades to different elements) were treated as AOI visits
and subtracted from the viewing time of the corresponding
element.

Offline eye-movement analysis On- and offsets of saccades
and blinks were detected using the EyeLink algorithm. The
main concern of the offline analysis of eye-movement be-
havior in our paradigm was to determine which elements
participants fixated in a trial while searching for targets.
Since both saccades and blinks could shift gaze, and thus
change which element participants fixated, both eye-
movement types were analyzed together. For offline ana-
lysis of viewed elements, we used the same logic as for
online tracking of element viewing time (see Online track-
ing of element viewing time). To render our analysis robust
against recording errors and random fluctuations in gaze
position (e.g., after saccades), we used the average gaze
position between offset and onset of consecutive gaze shifts
to determine if gaze was located within an AOI between
gaze shifts or not. If the average gaze position was located
within an AOI, we flagged the corresponding element as
viewed and the consecutive gaze shifts as causes for the
AOI being entered and left, respectively. If gaze was located
within an AOI more than once per trial, each instance was
treated as an independent AOI visit. Thus, each visit to an
AOI was treated as a separate event, and our analysis does
not account for factors such as integration of visual infor-
mation over multiple fixations of one and the same stimulus.

We excluded gaze shifts with durations shorter than 5 ms,
with offsets after stimulus array offset, with onset/offset coor-
dinates outside screen bounds and corrective gaze shifts with-
in AOIs (i.e., small gaze shifts that did not change the current-
ly viewed AOI) from analysis. Additionally, last gaze shifts in
trials (i.e., before a response) were excluded if they targeted a
location outside of any specified AOI (i.e., the screen
background).

We excluded trials from analysis in which participants’
gaze deviated more than 2° from the fixation cross within a
timeframe of −20 ms to 80 ms relative to stimulus onset.
Additionally, some trials had to be excluded due to technical
difficulties during data recording. Applying those criteria left,
on average, 96.83% (single-target condition; min.: 89.35%,
max.: 100.00%) and 95.73% (double-target condition; min.:
82.91%, max.: 100.00%) valid trials.
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Calculating planning, inspection, and response time Planning
times were calculated trial-wise as the time between onset of
the stimulus array and offset of the first gaze shift after stim-
ulus array onset. Inspection times were also calculated trial-
wise by, first, determining which elements were viewed in a
trial, second, calculating for each viewed element how long
gaze dwelled in the respective AOI around it, and third, aver-
aging the resulting vector of individual dwell times to obtain
the average inspection time over all elements in a trial. The
dwell time within an AOI was calculated by tracking the time
between the gaze entering and leaving the AOI around an
element. To account for differences in information uptake
when an AOI was left via saccade or blink, dwell times were
calculated slightly differently for those cases: When an AOI
was left via a saccade, dwell time was calculated as the time
between offset of the entering gaze shift (irrespective of if it
was a saccade or blink) and offset of the leaving saccade.
However, if an AOI was left via a blink, dwell time was
calculated as the time between offset of the entering gaze shift
(again, irrespective of if it was a saccade or blink) and onset of
the leaving blink. If a participant blinked during an AOI visit
(i.e., average gaze position was within the same AOI before
and after the blink), the duration of the blink was subtracted
from the corresponding dwell time to account for interruptions
in information uptake during the blink. In the single-target
condition, no inspection times were calculated for gaze shifts
to targets. In the double-target condition, inspection times for
targets were calculated for all instances except for when the
last gaze shift in a trial landed on a target.

Finally, response times were calculated trial-wise as the time
between offset of the last gaze shift before response (i.e., button-
press, indicating the location of the gap) and the time of response.
If the last gaze shift landed on a distractor instead of either of the
targets, no response time was calculated (single-target condition:
89.19% trials with valid response times, min.: 32.23%, max.:
98.15%; double-target condition: 91.09% trials, min.: 77.32%,
max.: 100.00%). If the response was given during a gaze shift
that left the AOI around a target or if the response was given after
a gaze shift to screen background (i.e., area outside any defined
AOI), the corresponding gaze shift was ignored and the cases
treated as if the target was fixated until response.

Statistical analysis Two-sided paired-sample t-tests as well as
two-sided one-sample t-tests were used for inference statistics.
Normality assumptions were tested using the Lilliefors-test,
with exact p-values being determined by Monte-Carlo ap-
proximation with a maximum Monte-Carlo standard error of
0.001. For calculations of proportion gaze shifts as well as
accuracy, planning, inspection and decision times we first
calculated the corresponding variable for each set size condi-
tion individually, and second averaged over the resulting vec-
tor to obtain the final variable estimate for a participant.

Modeling

Modeling was used to represent the proportion of choices for
the easy and the difficult target and the resulting gain as well
as the proportion of fixations on the chosen set. We assumed
that participants generally acted like an ideal observer, who
knows about its individual performance limitations and who
can accurately estimate which target in a trial of the double-
target condition will yield a higher monetary gain per unit of
time. We assumed that unsystematic noise corrupted gain es-
timates, leading to occasional choices for lower-gain targets.
Additionally, we assumed that participants, while searching
for targets, had a variable bias to fixate elements from the set
of the chosen target, which sometimes resulted in fixations on
elements from the set of the non-chosen target.

We modeled this general framework in two steps: First, we
used performance data of individual participants and generat-
ed, for each set size condition individually, ideal observer
predictions about the relative monetary gain per unit of time
of available target options. This allowed us to quantify which
target participants should search for, in order to maximize
their individual gain. In a second step, the ideal observer pre-
dictions were used as input to a generative stochastic model,
where they were corrupted by noise (Fig. 2A). For this, the
generative stochastic model had two free parameters: one free
parameter controlled noise that corrupted the gain estimates,
provided as input. By this, we allowed our model to occasion-
ally choose lower-gain targets. A second free parameter was
used to control the transformation of noisy gain estimates into
a set-size-condition-specific fixation bias. During this trans-
formation, additional noise was added that corrupts estimates
of participants’ individual fixation biases. By this, we allowed
our model to occasionally fixate elements from the set of the
non-chosen target during search. Critically, the generative
stochastic model only received gain estimates as input and
thus ignored factors such as the position of elements on the
screen and their spatial distance relative to each other.

The generative stochastic model was implemented as a
decision tree, which simulates the series of fixations a partic-
ipant makes while searching for targets (Fig. 2B). This
allowed us to calculate the probabilities of all possible search
outcomes (i.e., finding a target with the first, second, … ith

fixation, after having fixated zero, one, two, etc. easy and
difficult distractors) under different set size conditions and
under varying amounts of noise. The final outputs of the gen-
erative stochastic model were two predictions: one for the
proportion of cases in which participants chose to discriminate
easy targets, and a second prediction of the proportion of
fixations on elements of the chosen set. To evaluate model
performance, we compared those predictions to the empirical
data from the double-target condition. For a more extensive
formal description of our generative stochastic model, we
would like to refer the reader to the OSM.
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Results

Gap size and set size influence discrimination
performance and search time

Participants in the single-target condition completed, on aver-
age, 160 trials within the provided time frame of 6 min and 30
s (min.: 94 trials, max.: 231 trials) and received an average
bonus payout of 1.57€ (min.: 0.04€, max.: 3.66€, CI95% [1.08,
2.07]). To get insights into how participants completed trials,
we analyzed eye-movement behavior and which elements
were fixated while searching for targets. Since the currently
fixated element could change as both the consequence of sac-
cades as well as blinks, both types of eye movements were
analyzed together and are referred to as gaze shifts from here
on now (see Methods for details).

Generally, participants made at least one gaze shift to one
of the shown elements in the majority of trials (99.97% of
trials with at least one gaze shift to any element), indicating
that participants did not tend to systematically skip over trials
that were deemed too difficult, either because of too many
distractors or because the trial contained a difficult-to-
discriminate target. From all gaze shifts, the vast majority
targeted AOIs around one of the two element types (targets
and distractors) (M = 0.93, CI95% = [0.92, 0.95]), while only a
minority of gaze shifts landed on the screen area outside any
defined AOI (i.e., the screen background: M = 0.07, CI95% =
[0.05, 0.08]) (Fig. 3A). Thus, the vast majority of the gaze
shifts were meaningful and intended to sample visual infor-
mation from search displays.

Since stimuli were designed such that targets could only be
discriminated from distractors with foveal vision, we expected

Fig. 2 Model schematics. (A) Our model received relative expected
values of target options under different relative set sizes, as calculated
by Equation 3 (see Online SupplementaryMaterial (OSM)), as input. In a
first step, gain estimates were corrupted by decision noise, drawn from a
normal distribution with standard deviation as a free parameter. This
allowed for occasional choices for lower-gain targets. Noisy gain esti-
mates were, in a second step, transformed by a cumulative Gaussian
distribution function with its standard deviation as a free parameter; by
this, we allowed for occasional fixations on elements of the non-chosen
set. The fixation bias parameter, obtained by this transformation, was then
used as input to the generative stochastic model, in order to calculate
model predictions. (B) The generative stochastic model was implemented
as a binary decision tree, which was traversed recursively. Here, each
recursion step (horizontal gray bars) corresponds to one fixation a

participant could make: At each recursion step/fixation, the model
chooses to fixate either an element from the easy (blue elements) or
difficult set (red elements) and each fixation could either land on a
distractor (green polygon) or a target (green circle). After each fixation,
one element is removed from the fixated set (numbers inside polygons
indicate the remaining set elements after fixation). Recursion terminates
when a target was fixated. Predictions for the probability to choose an
easy target were obtained by summing over all instances where a target
was found (product symbols in green circles). For illustration purposes,
the decision tree is only shown partially and terminates prematurely at the
black dashed line. For the first recursion step, example values for the
results of Equations 7–18 and Equations 23–24 (see OSM), given a
search display with seven easy and three difficult distractors and a fixation
bias of 1.86 for this particular relative set size, are provided

30 Attention, Perception, & Psychophysics (2023) 85:23–40



that visual search in our paradigms progresses serially, and
that the time participants spent searching for targets (search
time), thus, should increase linearly as a function of the num-
ber of distractors shown (for examples on how search times
increase logarithmically during parallel search, see Buetti
et al., 2016; Ng et al., 2018). To quantify search time, we
tracked how much time passed between stimulus onset and
response in individual trials and calculated the average of the
resulting vector for each participant and set size condition.
Analyzing the resulting search time, without separating for
which target-difficulty was shown, revealed that participants,
on average, spent more time searching for targets the more
distractors were shown (Fig. 3B), with each additional
distractor on the screen increasing search time for targets by
M = 264 ms, CI95% = [225 ms, 302 ms], t(18) = 14.49, p <
0.001. This value corresponds to roughly half of the time
participants, on average, spent fixating elements of either set
(inspection time without separating for target difficulty: 482

ms, CI95% = [415 ms, 550 ms]) before finding a target. This
result serves as a manipulation check that participants, as
intended by our stimulus design, had to fixate elements indi-
vidually while searching for targets among distractors: Since
we assume that an ideal observer has to inspect half the
distractors in a trial before finding a target, each additional
distractor on the screen should increase the required number
of inspected distractors by 0.50 elements, and thus increase
search time by half of the inspection time per element.
Furthermore, this also serves as evidence that targeting loca-
tions in-between elements, in order to assess the identity of
multiple elements at once (Eckstein et al., 2015; Najemnik &
Geisler, 2005), was not functional in our paradigm.

After finding a target, most participants had, in accordance
with our intended manipulation of discrimination difficulty, a
lower perceptual performance when discriminating difficult
(proportion correct M = 0.70, CI95% [0.65, 0.76]) compared
to easy targets (M = 0.79, CI95% [0.75, 0.84]), t(18) = 5.84, p =

Fig. 3 Search behavior and perceptual performance in the single-target
condition. (A) Proportion gaze shifts that landed within areas of interest
(AOIs) around elements from the presented set, and the background. (B)
Search time (average time between onset of stimuli and response) for
different distractor numbers. Search times for easy and difficult targets
were analyzed together. (C) Discrimination performance, (D) planning
time (time between stimulus array onset and offset of the first gaze shifts

in a trial), (E) inspection time (average time between entering and leaving
AOIs around elements), and (F) response time (time between offset of the
last gaze shift in a trial and response) for easy and difficult targets. (A–F)
Small, light dots are data from individual participants, large, dark dots are
means across participants. Error bars are 95% confidence intervals. Note
the different scales of the y-axes in panels B and D–F
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< 0.001 (Fig. 3C). Other than that, participants did not behave
significantly different when searching and discriminating dif-
ferent targets: they spent a comparable amount of time plan-
ning their search at the start of trials, irrespective of which
target they eventually had to discriminate (planning time; easy
target: M = 237 ms, CI95% [219 ms, 255 ms]; difficult target:
M = 238 ms, CI95% [223 ms, 253 ms]) (Fig. 3D), t(18) =
−0.22, p = 0.831, they spent a comparable amount of time
inspecting elements in-between successive gaze shifts (in-
spection time; easy target: M = 486 ms, CI95% [417 ms, 555
ms]; difficult target: M = 479 ms, CI95% [413 ms, 544 ms])
(Fig. 3E), t(18) = 1.35, p = 0.195, and it took them comparably
long to discriminate gap positions on both target types (re-
sponse time; easy target: M = 1,052 ms, CI95% [889 ms,
1,215 ms]; difficult target: M = 1,062 ms, CI95% [914 ms,
1,209 ms]) (Fig. 3F), t(18) = −0.30, p = 0.768.

Taken together, results from the single-target condition
demonstrate that participants, as intended by our stimulus de-
sign, had to fixate elements individually while searching for
targets among distractors. Furthermore, results from this con-
dition demonstrate that both our manipulations were success-
ful: Participants spent more time searching for targets the
more distractors of the same set were shown and they had a
lower perceptual performance when discriminating targets
from difficult, compared to easy sets. Critically, although dif-
ferent gap sizes influenced perceptual performance, they did
not influence search behavior, with participants spending a
comparable amount of time planning their search, inspecting
elements in-between gaze shifts, and making perceptual deci-
sions for both set types.

Discrimination accuracy and search costs are traded
off when choosing targets

Whereas we showed either the easy or difficult target in the
single-target condition, accompanied by a varying number of
distractors from the same set, both targets and a mix of easy
and difficult distractors were presented in the double-target
condition. Thus, here, participants not only had to find and
discriminate targets, but they also had to make a series of
decisions in each trial: (a) which target they want to search
for, and (b) which elements they want to fixate during search
for the chosen target. Under these more challenging condi-
tions, participants, on average, completed 180 trials within
the provided time frame (min.:: 103 trials, max.: 245 trials)
and received an average bonus payout of 2.12€ (min.: −0.02€,
max.: 4.02€, CI95% [1.57, 2.67]), which was significantly
higher than the bonus payout in the single-target condition,
t(18) = −4.73, p < 0.001 (see OSM Fig. S1 for search behavior
and perceptual performance in the double-target condition).
As in the single-target condition, at least one shown element
was fixated in the majority of trials (99.98% of trials with at
least one gaze shift to any element), indicating that

participants, again, did not utilize a systematic strategy to skip
over certain trials. Participants in the double-target condition
thus completed more trials and accumulated a higher bonus
payout compared to the single-target condition. This alone
implies that discrimination accuracy and search costs of target
options in the double-target condition must have been taken
into account to optimize which target is discriminated, other-
wise we would have expected a similar performance as in the
single-target condition.

To get a more fine-grained insight into how search costs
and discrimination accuracy affected participants’ choice be-
havior in the double-target condition, we analyzed which tar-
get they chose to discriminate under different set size condi-
tions. When given the freedom to choose which target to dis-
criminate, participants, similar to previous studies (Irons &
Leber, 2016), showed large interindividual differences in their
choice behavior: A minority of participants showed a strong
preference for easy targets (2 out of 19 participants) and this
preference persisted irrespective of the relative number of easy
and difficult distractors in trials (Fig. 4A; see also participant
20 in OSM Fig. S2). However, other participants showed, to
varying degrees, changes in their preferred target: They pre-
ferred easy targets when only a few easy distractors were
shown, and they gradually switched their preference to diffi-
cult targets the more distractors from the easy set were shown
(Fig. 4B). Only some of the participants (3 out of 19 partici-
pants) showed no discernable pattern in their choice behavior,
with choice-curves fluctuating around chance across all rela-
tive set sizes (Fig. 4C; see also participants 10 and 19 in OSM
Fig. S2).

To choose targets participants could base their decisions on
multiple sources of information: First, they could base their
decision entirely on target difficulty and, by this, maximize the
probability of correct target discriminations after search.
Second, participants could choose targets purely based on
the relative number of easy and difficult distractors in trials,
that is, the temporal costs that come with searching for a target
in the corresponding set. Searching for targets in sets with less
elements would allow participants to minimize search costs
per trial and, by this, to maximize the number of completed
(although not necessarily correctly discriminated) trials.
Finally, participants could take into account both search costs
as well as discrimination accuracy, and select targets that have
the higher ratio between prospective search costs and proba-
bility of correct discrimination, that is, targets with higher
monetary gains per unit of time.

To quantify which factors contributed to the choice behav-
ior of participants, we fitted linear regressions to the choice
curves of individuals and analyzed slopes and intercepts of the
resulting fits. The regression of easy target choices on number
of easy distractors was normalized such that an intercept of
zero corresponds to a perfectly balanced choice behavior (i.e.,
50% easy choices at four easy and four difficult distractors).
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Therefore, chance performance (0.50) was subtracted from
empirical proportion choices for easy targets, and four was
subtracted from the actual number of easy distractors before
fitting. We found that both average intercepts (M = 0.16,
CI95% [0.08, 0.25]), t(18) = 4.20, p = 0.001, and average
slopes (M = −0.07, CI95% [−0.09, −0.04]), t(18) = −6.09, p =
< 0.001, differed significantly from zero (Fig. 4D). More spe-
cifically, intercepts of a notable subset of participants showed
a positive shift away from zero, implying that those partici-
pants tended to prefer easy over difficult targets, whereas
slopes of a notable subset of participants showed a negative
trend, suggesting that those participants preferred targets with
lower over targets with higher search costs (see OSM Fig. S2
for regression fits of all participants in the double-target
condition).

In summary, results from the double-target condition show
that a majority of participants, when choosing targets, not only
considered the relative discrimination accuracy or the relative
search costs of target options in trials. Instead, a notable subset

of our participants took into account both of these factors and
dynamically adapted their preference for targets to unpredict-
able changes in the relative search costs of easy and difficult
targets across trials.

Fixations during search in the double-target condi-
tion favor elements from both stimulus sets

Besides choosing targets, participants also had to decide
which elements to fixate while searching for the chosen target
in the double-target condition. To check which elements were
fixated during visual search, and if participants, in accordance
with ideal observer predictions, restricted fixations to ele-
ments from the set of the chosen target, we analyzed which
elements were fixated over the course of trials in the double-
target condition. Since the number of executed gaze shifts per
trial could vary drastically, depending on the individual par-
ticipant, the chosen target, and the relative set size, we restrict-
ed our analysis to the first two gaze shifts in trials.

Fig. 4 Choices for targets in the double-target condition. (A–C)
Proportion of trials in which three representative participants chose to
discriminate easy targets, separately for different relative numbers of easy
and difficult distractors. A minority of participants always chose to dis-
criminate easy targets (A), irrespective of the relative number of easy
distractors in trials, most participants adapted their behavior to changes
in the relative number of easy and difficult distractors (B), and some

participants showed no discernable pattern in their choice behavior (C).
Small, light dots are proportions for individual participants, black lines
are fits of linear regressions. (D) Slopes and intercepts of linear regres-
sions, fitted to the choice curves of individual participants. Small, light
dots are data from individual participants, the larger, dark dot is the mean
across participants. Error bars are 95% confidence intervals
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Our analysis revealed that, for first gaze shifts in trials,
fixations on average showed a slight preference for elements
belonging to the set of the eventually chosen target (propor-
tion first gaze shifts on chosen set: M = 0.59, CI95% [0.53,
0.65]; chance level: 0.50) and this preference became signifi-
cantly more pronounced for second gaze shifts in trials (M =
0.77, CI95% [0.70, 0.83]), t(18) = −7.76, p < 0.001 (Fig. 5A).
Similarly, first gaze shifts in trials on average also showed
slight biases towards elements belonging to the smaller set
(proportion first gaze shifts on smaller set: M = 0.40, CI95%
[0.35, 0.45]; chance level: 0.25), which, once again, became
more pronounced later in trials (M = 0.61, CI95% [0.52, 0.70]),
t(18) = −6.28, p < 0.001 (Fig. 5C). Additionally, constant (and
interindividually variable) biases towards elements from the
easy set (proportion first gaze shifts on easy set: M = 0.65,
CI95% [0.58, 0.71]; second gaze shifts:M = 0.65, CI95% [0.57,
0.74]; chance level: 0.50), t(18) = −0.48, p = 0.636 (Fig. 5B),
and elements closest to the current fixation location (propor-
tion first gaze shifts to closest element:M = 0.37, CI95% [0.32,
0.41]; second gaze shifts:M = 0.36, CI95% [0.31, 0.41]; chance

level: 0.10), t(18) = 0.52, p = 0.612) (Fig. 5D), were observed
throughout trials.

To summarize, although participants, on average, showed a
general bias to preferentially fixate elements from the set of
the ultimately chosen target, a substantial proportion of gaze
shifts was directed to elements from the set of the non-chosen
target. Although this preference was most pronounced for first
gaze shifts in trials, it also persisted, to a smaller degree, even
later in trials.

Noise at the decision and fixation level limits gain in
the double-target condition

The optimal solution (i.e., the one that maximizes the individual
monetary gain per unit of time) to the task in the double-target
condition would be to determine the higher-gain target before
making the first gaze shift, and to exclusively inspect distractors
from the set of the chosen target until it is found. Empirical
results from the double-target condition, however, suggest that
participants only partially deployed this optimal strategy:

Fig. 5 Choices for fixation locations of the first two gaze shifts in trials in
the double-target condition. Proportion of gaze shifts to elements belong-
ing to the set of the eventually chosen target (A), elements belonging to
the set of the easy target (B), elements belonging to the set with less
distractors (C), elements closest to the current fixation location (D). (C)
Conditions with equal numbers of easy and difficult distractors were

excluded when analyzing proportion gaze shifts to the smaller set. (A–
D) Gaze shifts to the background were excluded when calculating pro-
portions. Small, light dots are data from individual participants, large,
dark dots are means across participants. Error bars are 95% confidence
intervals. Dashed gray lines are chance levels

34 Attention, Perception, & Psychophysics (2023) 85:23–40



Although themajority of participants, on average, chose higher-
gain targets, lower-gain targets were also chosen occasionally
(OSMFig. S2). Furthermore, although participants, on average,
preferentially fixated elements from the set of the chosen target,
while searching for it, a substantial proportion of gaze shifts
also landed on elements from the set of the non-chosen target
(Fig. 5). To quantify the impact of such deviations from the
optimal strategy on participants’ performance in the double-
target condition, we compared their average empirical mone-
tary gain per unit of time in the double-target condition to a
theoretical maximum gain they could have achieved if they
always deployed the optimal strategy. In line with the observed
deviations, participants, on average, achieved a smaller mone-
tary gain per unit of time (M = 0.59 Cent/s, CI95% [0.46 Cent/s,
0.73 Cent/s]), compared to what was theoretically possible,
given their individual properties of visual search and perception
(M = 0.71 Cent/s, CI95% [0.53 Cent/s, 0.88 Cent/s]), r = 0.90,
CI95% [0.75, 0.96]), p < 0.001 (Fig. 6A).

To quantify the impact of noise at the decision level (i.e.,
occasional choices for lower-gain targets) and noise at the
fixation level (i.e., occasional fixations on elements from the
set of the non-chosen target) on participants performance in
the double-target condition, we built a generative stochastic
model and fitted it to participant’s data from the double-target
condition. Our model relaxes both the assumption that partic-
ipants can always perfectly estimate which target will yield
higher gain, and that participants will restrict fixations during
search to elements from the set of the chosen target. Instead,
one free parameter introduces decision noise that corrupts rel-
ative gain estimates of target options in trials, and thus allows
for occasional choices of lower-gain targets. Furthermore, the
model treats choices for fixation locations during visual search
as a stochastic process, where participants have a variable bias
to fixate elements from the set of the chosen target, which
allows for some proportion of “random” fixations to elements
of the non-chosen set (see Methods for details).

Generally, both noise at the decision (M = 0.31, CI95%
[0.22, 0.40]) and the fixation level (M = 0.58, CI95% [0.26,
0.90]) contributed to participant’s fixation locations during
visual search and choices for targets (Fig. 6B). Overall, our
model not only succeeded in predicting participant’s perfor-
mance in the double-target condition (empirical gain: M =
0.59 Cent/s, CI95% [0.46 Cent/s, 0.73 Cent/s]); predicted gain:
M = 0.55 Cent/s, CI95% [0.41 Cent/s, 0.70 Cent/s]) (Fig. 6C), r
= 0.95, CI95% [0.87, 0.98]), p < 0.001, but it also captured their
average choice behavior for targets (Fig. 6D, see OSM Fig. S2
for individual fits) and eye-movement behavior during visual
search (empirical proportion of fixations on elements from the
chosen set:M = 0.74, CI95% [0.69, 0.79]; predicted:M = 0.75,
CI95% [0.70, 0.80]) (Fig. 6C; see OSM Fig. S3 for
comparisons between empirical and predicted proportion
gaze shifts on elements of the chosen set for different set
size conditions), r = 0.99, CI95% [0.98, 1.00]), p < 0.001.

To summarize, modeling results demonstrate that both
noise at the decision level, modeled as decision noise that
corrupted individual estimates of relative target gain, and
noise at the level of fixations during visual search, modeled
as a variable fixation bias that allowed for some proportion of
random fixations to elements of the non-chosen set, contrib-
uted to participants showing a lower performance in the
double-target condition than theoretically possible. Thus, al-
though the majority of participants could successfully trade
off search costs and discrimination accuracy to discriminate
gain-maximizing targets, their final performance in the
double-target condition was constrained by noise in decisions
and fixations.

Discussion

Previous studies on target selection during visual search found
that humans can dynamically trade off saliency and reward to
select targets that maximize expected value (Navalpakkam
et al., 2010). Here we investigated if a similar principle applies
to more complex scenarios: Participants in our paradigm had
to choose between two equally salient targets, which differed
in their respective discrimination accuracy and the associated
search costs. Since time to complete trials was limited, partic-
ipants, in each trial, had to weigh the probability of correctly
discriminating targets against the required time to find them
amidst distractors, in order to search for targets that maximize
individual monetary gains per unit of time.

Similar to previous findings (Navalpakkam et al., 2010),
we report that participants were, on average, able to dynami-
cally trade off discrimination accuracy and search costs of
target-options to search for targets that maximized expected
value (Fig. 4). However, despite basing their choice for which
target to search for on the relative monetary gains of available
target options, participants accumulated slightly less reward
than was theoretically possible (Fig. 6A). Our analysis re-
vealed that this was due to deviations from the optimal choice
in decision making (Fig. 4) and occasional fixations on ele-
ments from the non-chosen set during search (Fig. 5). Using a
generative stochastic model with two free parameters, which
successfully captured the observed trade off in discrimination
accuracy and search costs, we found that noise corrupting
subjective gain estimates in decision making and noise in
the selection of fixation locations during search were neces-
sary to explain participants’ choice and eye-movement behav-
ior during search (Fig. 6B–E) (a similar approach was recently
used to explain target selection during visual foraging (Clarke
et al., 2022a) and visual search (Clarke et al., 2016)). Thus,
occasional choices for low-gain targets and a failure to per-
fectly restrict fixations during search to elements from the set
of the chosen target diminished participants’ individual
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monetary gain per unit of time in the double-target condition
and caused them to fall short of the theoretically possible gain.

Our findings share some similarities with results from a
series of recent studies (Irons & Leber, 2016, 2018) that in-
vestigated selection of visual search targets in dynamic envi-
ronments with multiple target options. Similar to us, Irons and
Leber gave participants the freedom to choose between two
differently-colored visual search targets, while varying how
many of the shown distractors shared a color with one or the
other target. The authors reported that some of their partici-
pants spontaneously tended to choose targets that came with
less distractors, that is, that minimized search time. However,
most participants of Irons and Leber (2016, 2018) were slug-
gish in updating their preferred target to variations in the rel-
ative number of distractors and some participants had strong
biases to preferentially search for one particular target, which

the authors interpret as tendencies to minimize effort instead
of search time (Irons & Leber, 2016, 2018; for a review, see
Irons & Leber, 2020).

We observed similar variations in choice behavior in our
paradigm, with some participants showing strong preferences
for easy targets, whereas other participants dynamically
adapted their target preference to unpredictable changes in
the relative search costs of available target options (Fig. 4,
OSM Fig. S2). Whereas Irons and Leber (2016) interpreted
those variations as failures of participants to take into account
relevant properties of stimulus displays, we would refrain
from doing so. Instead, our modelling shows that these indi-
vidual differences are the consequences of individual perfor-
mance differences in the discrimination task and speed differ-
ences in the search task. For instance, some participants might
have experienced the difficult target as too difficult, leading

Fig. 6 Results of model fit. (A) Comparison between empirical gain and
theoretically possible gain if participants always discriminated higher-
gain targets and restricted fixations during visual search to elements from
the set of the chosen target. Empirical gain was calculated as the ratio
between accumulated reward (bonus payout in the double-target condi-
tion) and the time participants had to complete the task (the time provided
to complete as many trials as participants could). (B) Distributions of free
model parameters that represent noise at the decision and fixation level.

(C) Comparison between empirical gain and predicted gain. (D) Average
empirical proportion choices for easy targets and predicted proportion
choices for easy targets. (E) Empirical proportion fixations to elements
of the chosen set and predicted proportion fixations to elements of the
chosen set. (A–E) Small, light dots are data from individual participants,
large, dark dots are means across participants. Error bars are 95% confi-
dence intervals. Note the truncated y-axis in panel E
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them to adopt a strong preference for the easy target, which
they were reluctant to abandon because choosing the easy
target still maximized participants' individual gain, given their
inability to discriminate the difficult target.

However, our results also show some dissimilarities:
Whereas Irons and Leber (2016) reported that their partici-
pants chose targets before trial start, and mainly searched
within the set of the chosen target from the first fixation on-
wards, our participants showed a tendency to inspect elements
from both stimulus sets, which was most pronounced for the
first gaze shift and became weaker for subsequent gaze shifts
(Fig. 5). Even late in trials, a substantial proportion of gaze
shifts continued to land on elements from the set of the non-
chosen target. One reason for this difference might be that the
search environments in the study of Irons and Leber (2016)
followed a predictable pattern that allowed participants to an-
ticipate which target will be quicker to find in the following
trial, well before stimulus onset (see also Hansen et al., 2019).
Search environments in our paradigm, however, changed un-
predictably between trials and participants only learned about
the composition of a search environment after stimulus onset.
Thus, in order to optimally react to a given environment, par-
ticipants in our paradigm would have needed to delay initial
gaze shifts in trials until a target was chosen based on periph-
eral vision and search for the chosen target was planned.

Indeed, target selection for saccades improves when eye
movements are delayed (Ghahghaei & Verghese, 2015;
Schütz et al., 2012), however, delaying eye movements also
requires active inhibition of the initial reaction to suddenly
appearing stimuli (Wolf & Lappe, 2020), which might consti-
tute an effortful process. A failure to successfully inhibit gaze
shifts might cause premature gaze shifts to elements from
suddenly appearing stimulus arrays, executed before a target
was chosen and directed to whichever stimulus is closest to
fixation (Irons & Leber, 2016), to whatever is the most salient
stimulus (Vanunu et al., 2021) or to random distractors, in an
attempt to search for all available target options simultaneous-
ly (Kristjánsson et al., 2014). Thus, participants in our para-
digm did not only have to trade off search costs and discrim-
ination difficulty of target options, but they also had to balance
the benefits of cognitive control to restrict fixations to ele-
ments from the set of the chosen target against the costly
mental effort that is required to maintain such control (see
also Petitet et al., 2021; for a review, see Shenhav et al.,
2017). Delaying gaze shifts and increasing the time to inspect
search environments before starting search (Hansen et al.,
2019; Wolf & Lappe, 2020) might improve selection of fixa-
tion locations for first as well as subsequent gaze shifts (Caspi
et al., 2004) and reduce noise in target selection.

Although selection of fixation locations generally im-
proved later in trials, roughly a quarter of gaze shifts continued
to land on elements from the non-chosen set even late in trials.
Previous studies reported that humans are generally capable of

choosing fixation targets based on their prospective task utility
(Stewart et al., 2022) and that eye-movement targets for both
individual saccades (Najemnik & Geisler, 2005, 2008) as well
as saccade sequences (Hoppe & Rothkopf, 2019) can be cho-
sen such that they maximize information gain after eye move-
ments. However, other studies report contrary findings, with
participants failing to optimize information gain after eye
movements in a variety of different paradigms (Araujo et al.,
2001; Clarke & Hunt, 2016; Morvan & Maloney, 2012;
Nowakowska et al., 2017, 2021). Similarly, although short
saccade sequences can be planned so that the eye-movement
sequence maximizes the final information gain (De Vries
et al., 2014; Hoppe & Rothkopf, 2019), longer movement
sequences in search tasks are planned for hand movements,
but not for saccades (Diamond et al., 2017).

Our data are in line with previous findings reporting fea-
tures of suboptimality in oculomotor behavior: Instead of ex-
clusively fixating elements that maximize information about
the target’s location (i.e., elements from the same set as the
chosen target), selection of fixation locations for early and late
gaze shifts in our paradigm was also influenced by factors
such as proximity of elements to the current fixation location,
implying that participants acted shortsightedly when
searching for targets (Fig. 5D). Especially strongly unbal-
anced search displays, where a singular higher-gain target
was shown surrounded by multiple elements from the set of
the lower-gain target, might thus have promoted selection of
fixation locations that corresponded to closer, but lower-gain
elements over locations corresponding to the more distant but
higher-gain target (Araujo et al., 2001). Furthermore, occa-
sional fixations on elements of the non-chosen set might also
be a consequence of a maladaptive exploration/exploitation
trade off (Hills et al., 2010). Instead of exploiting the expected
value of available target options, search displays might have
been explored overly extensively, in order to refresh knowl-
edge about the relative target accuracy or to reduce uncertainty
about the search environment, although costing participants
valuable time in which more reward could have been accumu-
lated. Finally, fixations on elements from the set of the non-
chosen target might also be indicative of a decision process
which gradually unfolds over the course of a trial. Although
previous research found evidence that participants plan sac-
cade sequences instead of planning each saccade individually
(De Vries et al., 2014; Hoppe & Rothkopf, 2019), and that
perceptual decision are made before a motor response that
communicates the decision (Lisi et al., 2022), fixations on
elements from the non-chosen set might correspond to chang-
es of mind about which target to search and discriminate
(Resulaj et al., 2009). The fixation noise in our model is un-
specific and does neither favor nor exclude the possibility that
changes of mind might be the driving force behind fixation on
elements from the non-chosen set. However, due to the fact
that the noise parameters in our model are unspecific, they
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might capture changes of mind, and other behavioral heuris-
tics (e.g., preferences for saccades of a given amplitude), im-
plicitly. Future research needs to determine the impact of
those factors on performance in our paradigm.

To conclude, we found that a notable subset of our partici-
pants could dynamically trade off search costs and discrimination
accuracy to search for targets that optimize individual monetary
gains per unit of time. This ability might have yielded an
evolutional advantage in the past (deciding from which source
to forage in the presence of nearby predators) and can still be
helpful to adapt behavior to the demands of the modern world
(grocery shopping close to closing time). However, it is ultimate-
ly limited by noise that corrupts the decision between competing
objects of interest, and noise that corrupts what information to
sample from the world, while searching for an object of interest.
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