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Abstract
Visual selection is characterized by a trade-off between speed and accuracy. Speed or accuracy of the selection process can be
affected by higher level factors—for example, expecting a reward, obtaining task-relevant information, or seeing an intrinsically
relevant target. Recently, motivation by reward has been shown to simultaneously increase speed and accuracy, thus going
beyond the speed–accuracy-trade-off. Here, we compared the motivating abilities of monetary reward, task-relevance, and image
content to simultaneously increase speed and accuracy. We used a saccadic distraction task that required suppressing a distractor
and selecting a target. Across different blocks successful target selection was followed either by (i) a monetary reward, (ii)
obtaining task-relevant information, or (iii) seeing the face of a famous person. Each block additionally contained the same
number of irrelevant trials lacking these consequences, and participants were informed about the upcoming trial type. We found
that postsaccadic vision of a face affected neither speed nor accuracy, suggesting that image content does not affect visual
selection via motivational mechanisms. Task relevance increased speed but decreased selection accuracy, an observation com-
patible with a classical speed–accuracy trade-off. Motivation by reward, however, simultaneously increased response speed and
accuracy. Saccades in all conditions deviated away from the distractor, suggesting that the distractor was suppressed, and this
deviation was strongest in the reward block. Drift-diffusion modelling revealed that task-relevance affected behavior by affecting
decision thresholds, whereas motivation by reward additionally increased the rate of information uptake. The present findings
thus show that the three consequences differ in their motivational abilities.
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Introduction

Visual decision-making is characterized by a trade-off be-
tween speed and accuracy. When performing a visual selec-
tion task, we can prioritize accuracy, in which case our re-
sponses will most likely be slow. Conversely, if we prioritize
speed, our behavior is sometimes premature and performance
will be prone to errors. The speed–accuracy trade-off de-
scribes this lawful relationship between speed and accuracy
for a fixed task difficulty (Fitts, 1954; Heitz, 2014; Standage
et al., 2014). It can be found across a variety of tasks, for
movements of different effectors (Harris & Wolpert, 2006;
Michmizos & Krebs, 2014; Smyrnis et al., 2000) as well as
across species (Chittka et al., 2003; Franks et al., 2009).

Speed–accuracy data are often modelled using sequential
sampling models (for reviews see Bogacz et al., 2006; Heitz,
2014; Standage et al., 2014)—for example, the drift-diffusion
model (Ratcliff, 1978; Ratcliff et al., 2016). Sequential sam-
pling models commonly assume that information from the
environment is constantly sampled until a threshold is reached
and a response is carried out. A clear advantage of the drift-
diffusion model and other sequential sampling models is that
the joint modelling of speed and accuracy allows one to infer
latent psychological variables like response bias, information
uptake, and decision threshold (Voss et al., 2004). Whereas
response bias can be affected by informing participants that
one of the response options is more likely correct, information
uptake reflects the participant’s ability to perform the task and
can be affected by the stimulus quality. The latter is reflected
in the drift rate parameter. Decision threshold on the other
hand is reflected in the boundary separation parameter and
can be affected when either speed or accuracy is emphasized.
Changes in decision threshold are thus typically indicative of a
speed–accuracy trade-off.
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A recent study showed that motivation bymonetary reward
can operate outside the speed–accuracy trade-off by simulta-
neously speeding up responses and increasing response accu-
racy (Manohar et al., 2015). In that study, participants fixated
one of three discs in a triangular arrangement. A recorded
voice provided information about the maximum amount of
reward that could be obtained in that trial. Then, the other
two discs changed their luminance one after the other. The
disc lit first was the distractor and had to be ignored, whereas
the disc lit second was the target and had to be selected by
means of a saccadic eye movement. Participants received
monetary reward if they correctly selected the target disc.
Importantly, the obtained reward decreased with increasing
reaction time such that a mature response might only yield a
small fraction of the announced maximum reward. The au-
thors found that motivation by monetary reward decreased
both reaction times and error rates, inconsistent with a
speed–accuracy trade-off. The results were explained by a
model that included a noise-reduction component that
operates perpendicular to the speed–accuracy trade-off, but
which comes at a cost. This precision cost can explain why
motivation by reward can increase both speed and accuracy.

Earlier, faster or more accurate saccades have not only been
reported in studies employing a monetary reward (Chen et al.,
2014; Clark & Gilchrist, 2018; Dunne et al., 2015; Kojima &
Soetedjo, 2017; Muhammed et al., 2020; Takikawa et al., 2002)
but also when participants perform a perceptual task at the sac-
cade target (Bieg et al., 2012; Guyader et al., 2010; Montagnini
& Chelazzi, 2005; Schütz & Souto, 2015; Trottier & Pratt, 2005;
Wolf & Schütz, 2017) or when selecting a particular image con-
tent for visual inspection—for example, a human face (Crouzet
et al., 2010; Entzmann et al., 2021; Kauffmann et al., 2019;
Meermeier et al., 2016, 2017; Xu-Wilson et al., 2009; for review,
see Wolf & Lappe, 2021b). The latter findings support the view
that foveal vision of a particular target can itself be rewarding and
that this is reflected in eye-movement dynamics towards that
target (Clark & Gilchrist, 2018; Collins, 2012; Shadmehr et al.,
2010; Wolf & Lappe, 2021b). Yet a benefit in either speed or
accuracy does not necessarily imply that obtaining task-relevant
information or seeing an intrinsically relevant image affects se-
lection processes via motivational mechanisms and, furthermore,
that it can reduce internal noise and simultaneously increase
speed and accuracy.

The aim of the present study was to test whether task-
relevance and/or image content affect selection processes via
motivational mechanisms, and second, whether task-
relevance and image content simultaneously increase speed
and accuracy. To test this, we adopted the paradigm
introduced by Manohar et al. (2015) but varied the conse-
quences following successful target selection. Across different
blocks, participants either obtained a monetary reward, obtain-
ed task-relevant information for a perceptual task, or saw the
face of a famous person. We compared speed and accuracy

from these trials (relevant trials) with interleaved trials from
the same block, lacking these consequences (irrelevant trials).
At the beginning of each trial, participants were informed
whether a trial was relevant (e.g., “reward,” “task,” “face”)
or not. Importantly, peripheral targets were identical in all
trials, excluding the possibility that performance was affected
by low-level properties of peripheral targets which are known
to affect eye movement characteristics (Crouzet & Thorpe,
2011; Honey et al., 2008; Itti & Koch, 2001). This enables
attributing differences in speed and accuracy to motivational
processes. We complement our analysis with a drift-diffusion
modelling approach to attribute the observed differences in
speed and accuracy to differences in decision threshold and
information uptake.

Methods

Participants

We recorded data of 36 participants (mean age = 20 years, age
range: 18–29, six males, 30 females). Participants were under-
graduate students from the University ofMünster and received
course credit or 8€/h for participation. In addition, participants
received a performance-dependent monetary reward of up to
9.60€ in the reward block (up to 0.10€/trial). Obtained re-
wards were rounded up to the first decimal after the comma
and ranged from 2.60 to 7.00€ (median: 4.50€). Written in-
formed consent was provided before testing. The experiment
was approved by the ethics committee of the Department of
Psychology and Sport Sciences of the University of Münster.

Setup

Stimuli were presented on an Eizo FlexScan 22-inch CRTmon-
itor (Eizo, Hakusan, Japan) with a resolution of 1,152 × 870
pixels, a refresh rate of 75 Hz, and an effective display size of
40.7 × 30.5 cm. Participants viewed stimuli from a 67 cm dis-
tance. Head movements were restricted by means of a chin–
forehead rest. Stimulus presentation was controlled via the
Psychtoolbox (Brainard, 1997; Kleiner et al., 2007) in
MATLAB (The MathWorks, Natick, MA). Eye position of
the right eye was recorded at 1000 Hz using the EyeLink
1000 (SR Research, Mississauga, ON, Canada) and the
EyeLink Toolbox (Cornelissen et al., 2002). All stimuli were
presented on a black background. The EyeLinkwas calibrated at
the beginning of each block using a 9-point calibration protocol.

Procedure and stimuli

The experiment comprised three blocks (reward, task, face).
Each block contained 192 trials and consisted of two trial
types that differed in terms of the consequences of a successful
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saccade. We refer to these two trial types as relevant and
irrelevant trials. In relevant trials, participants either received
a small monetary reward of up to 0.1€ (reward block), per-
formed a perceptual orientation task at the saccade target (task
block) or saw the face of a famous person (face block). In
irrelevant trials, participants received no monetary reward (re-
ward block), performed no perceptual task (task block), or saw
a grating (face block). All blocks were recorded within one
session of 60–90 minutes with breaks in-between blocks. The
order of blocks was balanced across participants.

At trial beginning, a centrally displayed text, shown for 1s
(Fig. 1a), announced whether the trial was relevant (green
font, “reward,” “task,” “face”) or irrelevant (red font, “no re-
ward,” “no task,” “grating”). Afterwards, a central white fix-
ation cross and four dark blue discs appeared. We used a
combination of bull’s eye and hair cross as fixation marker
(Thaler et al., 2013). Discs had a radius of 2 deg and were

arranged in a 16-deg square pattern around the fixation point.
Thus, the total distance between the fixation cross and each
disc was approximately 11.3 deg. After a uniform random
interval between 0.5 and 1 s, one of the four discs, the
distractor, changed to white. After additional 187 ms, the tar-
get disc changed to gray. Target and distractor were either
horizontally or vertically adjacent and were therefore always
separated by 16 deg. Consequently, there were two potential
target discs for every distractor location. A disc was labelled
as selected by a gaze movement if gaze was less than 4 deg
away from a disc center. All targets were removed 450 ms
after disc selection or 760 ms after target onset. If no disc had
been selected within 760 ms, the trial was labelled as too slow
and repeated at the end of the experiment (<1% of trials). In
that case a “too slow” message appeared at the screen center.
Participants were instructed to look at the target. No instruc-
tion towards speed or accuracy was given.

Reward

trial type

distractor on

target on

opposing disc

A

+7.52 cent
reward

B
task

face

0 500
t [ms]

0

1

y(
t,f

)

C

Fig. 1 Trial procedure and critical manipulation. a Trial procedure
common for all three blocks. A text at the beginning of each trial
indicated whether the next trial was relevant (“reward,” “task,” “face”)
or irrelevant (“no reward,” “no task,” “grating”). Four blue discs
appeared, of which two changed successively. Participants had to look
at the disc changing second (target) while ignoring the disc changing first
(distractor). Given that distractor and target were always next to each
other, knowing the distractor location renders two discs possible target
locations: The actual target and the disc opposing the target (opposing
disc). b Consequences following successful target selection in relevant
trials of the three respective blocks. Participants either received a mone-
tary reward, saw a face of a famous person, or had to perform a perceptual

task at the saccade target. c Reward, image quality and tilt decayed with
increasing reaction time. Thus, later responses came along with a dimin-
ished reward, worse image quality (and thus impaired recognition) or a
more difficult perceptual task. The actual decay in each trial was derived
from an exponential decay function. The black line denotes the decay
function as it was set at the beginning of each block. The decay addition-
ally depended on the median latency of the previous trials to assure a
constant difficulty across the experiment and across participants. The
initial decay corresponded to a median latency of 230 ms (dashed black
lines). The thin gray lines show how the decay would have become
steeper or shallower, if the median decreased or increased by 100 ms.
(Color figure online)
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Consequences following target selection in the
different blocks

Blocks differed with respect to the consequences following a
successful saccade target selection (Fig. 1b). In the reward
block, if the trial was relevant and participants selected the
correct disc, they received a small monetary reward. The max-
imal reward in each trial was 0.1€ and decayed with increasing
reaction time (see Decay, below). Feedback (e.g., “+7.52
cent”) was provided 0.8 deg above the selected disc as soon
as the disc was selected. In irrelevant trials or if the wrong disc
was selected “+0 cent” was displayed.

In the task block, a grating (Gabor patch) was displayed on
the target disc upon selection. The grating had a spatial fre-
quency of 1.69 cycles per degree and a Gaussian envelope with
a standard deviation of 0.3 deg. The gratings orientation slight-
ly deviated clockwise or counterclockwise from vertical. The
maximum tilt was 4 deg and decreasedwith increasing reaction
time, making the perceptual task more difficult the slower the
response (see Decay, below). After stimuli removal, a white
bar appeared that was tilted clockwise or counterclockwise by
4 deg relative to vertical. Using two different buttons on a
keyboard, participants could alternate between these two re-
sponse options and select the option that they thought corre-
sponds to the tilt direction of the grating. They received one
score point for a correct response. Feedback about the current
score and overall score (e.g., “+1 | 7”) was provided at the end
of a trial for 550 ms. If participants selected the wrong disc, no
grating was displayed. A response bar appeared nonetheless,
forcing participants to guess. In irrelevant trials, no response
bar appeared and thus no feedback was displayed.

In relevant trials of the face block, the face of a well-known
person was displayed centered on the target disc once the
target disc was selected. Gray-scale images were circular with
a diameter of 2.42 deg and an additional annulus of 0.14 deg
in which images faded into the background of the gray target
disc. We selected images from the internet with a frontal per-
spective and with a neutral or smiling facial expression. The
96 faces used in the experiment were randomly selected from
a set of 200 images (100 males, 100 females). The depicted
persons included German and international actors, musicians,
show masters and politicians. The reason for using images of
well-known people was the possibility to recognize a person.
Image quality depended on the reaction time in the respective
trial such that images degraded with increasing reaction time
(see Decay, below). To this end, the images were a weighted
average between the face images and a noise image in which
every pixel was randomly assigned a value ranging from black
to white. The relative weight given to the noise image in-
creased with increasing reaction time. In irrelevant trials, a

Gabor patch with a horizontal orientation appeared at the tar-
get disc upon selection. No noise manipulation was applied.
No stimulus appeared if participants selected the wrong disc.

Decay

In relevant trials, reward, tilt angle or image quality decayed
with increasing reaction time (Fig. 1c). An exponential func-
tion yielded a decay factor y for any latency t. Decay factors
were values between 0 and 1 and were multiplied with the
maximal reward (0.1€), the maximal tilt angle (4 deg) or de-
termined the relative weight of the face image (with [1 − y]/2
being the weight given to the noise image). The underlying
decay function was the same in all three blocks and can be
described as:

y t; fð Þ ¼ e
− t−tmin

f *tmin

� �
: ð1Þ

For t > tmin, y values were below one. For t < tmin, y was set
to 1. The tmin parameter was fixed at 100 ms. Thus, reward, tilt
angle and image quality started to decay for latencies above
100 ms. The strength of the decay depended on the f param-
eter, which was determined by the mean latency in the last
eight trials. This assured a comparable difficulty throughout
the experiment and across participants. At block beginning, f
was set to 1.88, corresponding to a mean latency of 230 ms.
Mean latencies and f values were linearly related (Fig. 1c). For
example, the f parameter was set to 0.44 (3.32) for a latency of
130 ms (330 ms). Participants were informed about the decay
before the experiment.

Data analysis

Saccade onsets were defined using the EyeLink 1000 algo-
rithm. We compared mean latencies of correct trials using a 3
× 2 repeated-measures analysis of variance (ANOVA), with
the factors block (reward, task, face) and relevance (relevant,
irrelevant). Latency differences between relevant and irrele-
vant trials within a block were compared using nonparametric
Wilcoxon tests.

To analyze accuracy time courses, we used the SMART
procedure (smoothing method for the analysis of response
time courses; van Leeuwen et al., 2019), where (i) the individ-
ual data is temporally smoothed, (ii) a weighted time course is
constructed that considers the distribution of individual data,
and (iii) a cluster-based permutation test is performed to com-
pare time courses. Data were analyzed at a 1-ms resolution.
We smoothed the data with a Gaussian kernel of 16-ms width
and used 1,000 permutations for every test. Time courses were
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compared in a time window between 0 and 350 ms after target
onset (unless noted otherwise). We report four values for ev-
ery comparison: the p value, the cluster strength of the ob-
served data (t), the time window of the (strongest) cluster in
the observed data, and the 95th percentile of the distribution of
cluster strengths that result from permutation. The latter is the
critical t value (tcrit) to which the cluster strength of the ob-
served data is compared. The p value is given by the relative
position (i.e., percentile) of the observed cluster strength in the
distribution of all permuted cluster strengths.

Cluster-permutation tests thus replace multiple comparisons
(e.g., one t test for every time point) with a single comparison:
the test statistic of the (strongest) observed cluster relative to
the cluster strengths obtained from random permutations,
where a cluster is defined as all adjacent time points that show
a significant effect (p < .05). Hence, the cluster strength (t) is
given by the sum of all t values within the cluster. This cluster
test statistic is compared with a distribution of cluster strengths
that was obtained from permutation: first, the labels assigning
trials to conditions are randomly perturbed. Second, the stron-
gest cluster is determined for the perturbed data. Third, steps
one and two are repeated multiple times. If the cluster strength
of the observed data is larger than 95% of the clusters obtained
from permutation (t > tcrit), then two time courses are assumed
to differ. Please note that this analysis allows to infer that two
time courses differ but not when they do so (Maris &
Oostenveld, 2007; Sassenhagen & Draschkow, 2019).

We measured saccade deviation away from the distractor
as an index of distractor suppression. If the target appeared,
for example, at the upper right disc, a distractor at the upper
left disc would be considered a counterclockwise distractor,
whereas a distractor at the lower right disc would be consid-
ered a clockwise distractor. For salient distractors that appear
at the same time as the target, early responses deviate towards
the distractor. Thus, end points are biased towards the
distractor and saccade curve towards it. The opposite can be
observed long-latency saccades. Typically, the transition from
deviation towards to deviation away can be observed with
latencies of around 200 ms (McSorley et al., 2006; Wolf &
Lappe, 2020). Yet in our paradigm, the distractor preceded the
target by 187 ms, and deviation away can be observed even
for early reaction times. We therefore analyzed saccades with
a reaction time between 80 and 400 ms. Furthermore, for this
analysis we only considered correct trials where (i) gaze was
less than 2 deg away from the fixation cross at saccade onset,
(ii) less than 4 deg away from target center at saccade offset
(disc radius was 2 deg) and (iii) where the gaze shift from
fixation cross to target was achieved by a single saccade.
Saccades with missing data (due to blinks) were discarded.
In total, 69.1% of trials were considered for the analysis.

Saccade trajectories were first coded relative to the gaze po-
sition at saccade beginning. In a second step, trajectories were
rotated to correspond to a rightward saccade. Specifically, tra-
jectories were rotated by 315 deg if the target was at the upper
right disc, 225 deg for targets at the upper left, 135 deg for the
lower left and 45 deg for targets at the lower right disc.
Consequently, the vertical position of a rotated saccade corre-
sponds to the saccade’s deviation. In a third step, we normalized
the saccade duration to have the same amount of data points for
each saccade. To this end, we sampled each trajectory at 25 time
points using linear interpolation. In a fourth step, we computed
the area under the saccade trajectory as an index of deviation
(Fig. 7b). This index reflects deviation due to differences in
curvature and/or end points. For a counterclockwise distractor,
the deviation index was recoded (multiplied with −1) so that
positive deviation indices always reflect deviation away from
the distractor. Deviation indices were compared using a 3 × 2
repeated-measures ANOVA, with the factors block (reward,
task, face) and relevance (relevant, irrelevant). The direction of
main effects was compared using Bonferroni corrected post hoc
t tests. One participant was discarded from the ANOVA, be-
cause this participant had less than five trials available in one
of the six conditions. Including/removing this participant did not
affect any conclusion drawn from the data. We additionally
compared deviation index time courses using the SMART pro-
cedure with a Gaussian kernel of 32-ms width.

Drift diffusion modelling

The drift diffusion model was fit using fast-dm-30 (Voss &
Voss, 2007; Voss et al., 2015). We coded the data such that
the upper threshold was associated with the correct response
and the lower baseline with any error. The model comprised
the four main parameters boundary separation, starting point,
drift rate, and nondecision time (a, z, v, t0) as well as variabil-
ity parameters of the latter three (sz, sv, st0). Drift rate, bound-
ary separation and nondecision time were allowed to vary
across the six conditions. Although the selective influence of
latent variables on a single model parameter has been chal-
lenged (e.g.,Dutilh et al., 2019 ; Rae et al., 2014), emphasizing
speed or accuracy are most consistent with changes in the
boundary separation parameter (Ratcliff & Rouder, 1998;
Voss et al., 2004). However, we additionally analyzed nonde-
cision times as a function of the experimental conditions be-
cause accuracy instructions have been shown to also affect
nondecision time parameters (Dutilh et al., 2019; Rae et al.,
2014). The starting point is typically affected by prior infor-
mation (e.g., Dutilh et al., 2019; Mulder et al., 2012) and
indicative of a response bias. A bias may occur if the target
appeared more frequently at one location, or if the reward had
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been larger for a particular location. For reasons of parsimony,
we therefore decided to not vary the starting point parameter
across conditions, because the location of stimuli was fully
balanced, and participants had no prior information that would
bias their responses towards any location.

We used the Kolmogorov–Smirnov statistic for parameter
optimization (Voss & Voss, 2007). The drift rate is normally
distributed with mean v and standard deviation sv, whereas the
variability of starting point and nondecision time follow a
uniform distribution with means z and t0 and width sz and
st0 (Voss et al., 2015). Boundary separation, nondecision time
and drift rate parameters were compared using a 3 × 2
repeated-measures ANOVA, with the factors block (reward,
task, face) and relevance (relevant, irrelevant).

Experiment 2: Target facilitation versus distractor
suppression

To distinguish whether motivation by reward affects target
facilitation or distractor suppression, we conducted
Experiment 2, where the distractor was absent in half of the
trials. We recorded data of 36 participants (age range: 18–29
years, 30 females). The experiment consisted of one block of
640 trials. Each block contained the same number of trials with
and without distractor as well as the same number of trials with
andwithout reward (2 × 2 design). The trial procedure for trials
with a distractor was equivalent with the trial procedure of the
reward block of Experiment 1: A text at the beginning of each
trial indicated whether the next trial rewarded (“reward”) or
unrewarded (“no reward”). Four blue discs appeared. After a
uniform random time interval between 500 and 1,000 ms one
of the discs turned white. This was the distractor. After addi-
tional 187 ms, the target disc turned gray. Unlike Experiment
1, distractor and target were spatially independent. Thus, the
target could appear opposite to the distractor, at one of the two
neighboring locations or at the same location, in which case it
replaced the distractor. Importantly, for the analysis we only
considered trials in which distractor and target location did not
coincide. In trials without distractor, the target disc turned gray
after the uniform random interval between 500 and 1,000 ms.
The different trial types were randomly interleaved.

Saccade latencies were compared using a 2 × 2 repeated-
measures ANOVA with the factors distractor presence (present
vs. absent) and reward (reward vs. no reward). The analysis of
accuracy time courses was equivalent to the main experiment,
except that the analysis was restricted to a time window be-
tween 80 to 300 ms after target onset in the distractor absent
condition, and between 0 and 300 ms after target onset in the
distractor present condition. We computed the deviation index
for every saccade, consistent with Experiment 1. Thus, for this

analysis we only considered distractor-present trials where the
distractor was at a neighboring position (clockwise or counter-
clockwise). Deviation indices in rewarded and unrewarded tri-
als were compared using a paired t test. One participant was not
considered for this comparison because of less than five trials in
one condition. Time courses of deviation indices were com-
pared using the SMART procedure in a time window between
80 and 300 ms using a Gaussian kernel with a width of 32 ms.

Results

Speed To analyze how the three different consequences affect
the speed and accuracy of target selection, we analyzed sac-
cade latencies of correct responses as an index of speed, and
the proportion of trials in which the correct disc was selected
as an index of accuracy. Figure 2 shows latencies and their
variability in the three different blocks and the two levels of
relevance, respectively. Descriptively, mean latencies in rele-
vant trials were lowest in the reward block,Mrew = 169.0 ms,
intermediate in the task block,Mtsk = 174.3 ms, and highest in
the face condition,Mfce = 177.4 ms. The opposite pattern was
observed in irrelevant trials (Mrew = 193.4 ms, Mtsk = 187.7
ms, Mfce = 179.5 ms). This was also reflected in the Block ×
Relevance interaction, F(2, 70) = 4.63, p = .013, η2p = 0.117.

Comparing relevant and irrelevant trials within each block,
yielded significantly lower latencies in relevant trials for the
reward block, Z = 4.78, p < .001, and the task block, Z = 4.02,
p < .001, but not for the face block, Z = 1.48, p = .140. The
ANOVA also revealed a main effect of relevance, F(1, 35) =
14.55, p < .001, η2p = 0.294, highlighting the lower latencies in

relevant trials, but no main effect of block, F(2, 70) = 0.088, p
= .8916, η2p = 0.003. Thus, we found faster responses when

obtaining monetary rewards or task-relevant information.
However, seeing a face versus seeing an irrelevant grating
did not affect saccade latencies.

Accuracy The bottom panels in Fig. 3a–c show accuracy time
courses for relevant and irrelevant trials in the three blocks, re-
spectively. Common across all conditions is that response accu-
racy increases with reaction time and reaches an asymptote ap-
proximately 120 ms after target onset. We compared these time
courses of proportion correct responses for relevant versus irrel-
evant trials in the respective blocks (Fig. 3a–c). Time courses in
the reward block differed, t = 250.7, tcrit = 149.3, p = .002. The
cluster was found in a time window 16–100 ms after target onset
(Fig. 3a). During this time window, performance was superior
for relevant compared with irrelevant trials.
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The opposite was found in the task block (Fig. 3b). One
significant cluster was detected (201–255 ms) in which perfor-
mance was superior for irrelevant compared with relevant trials,
t = 147.2, tcrit = 142.8, p = .042. Furthermore, comparing rele-
vant trials in the reward block with those from the task block
(green line in Fig. 3a versus green line in Fig. 3b), revealed
better performance in the reward block, t = 251.2, tcrit =
149.4, p = .002, time window: 7–92 ms (Fig. 3d). No such
difference was observed when comparing relevant and irrele-
vant trials from the face block (Fig. 3c) or when comparing
relevant trials from the face block with relevant trials from
either of the other blocks (Fig. 3e–f; p > .3).

Aggregated across time, we observed no significant perfor-
mance benefit for relevant compared with irrelevant trials in
the reward block (0.91 vs. 0.90), Z = 0.24, p = .813. Although
we observed an accuracy benefit for early responses, it does
not show on the aggregated level, possibly because of the
higher number of short-latency responses in relevant com-
pared with irrelevant trials (22% vs. 17% of trials with laten-
cies <120 ms). Thus, due to the reaction time difference, a
higher number of responses in relevant trials were carried
out in a time window where an incorrect response was more
likely. In the task block, we observed a lower response accu-
racy for relevant compared with irrelevant trials (0.84 vs.
0.87), Z = −2.26, p = .024, whereas no difference between

relevant and irrelevant trials was observed in the face block
(0.90 vs. 0.89), Z = 0.62, p = .536.

In sum, our results are most consistent with (i) faster per-
formance when expecting a monetary reward and an accuracy
benefit for early responses, (ii) faster but less accurate perfor-
mance with a perceptual task, and (iii) no difference in either
speed or accuracy when seeing a human face or an otherwise
irrelevant grating.

Error analysis In a next step, we wanted to know what deter-
mines the differences in accuracy. To this end, we analyzed
the time course of errors (Figs. 4 and 5). Particularly, we
looked at two different kinds of errors. First, responses to
the distractor disc. These errors would be indicative of a pre-
mature response triggered by the strong luminance transient
(Wolf & Lappe, 2020; Yantis & Jonides, 1984). Second, we
analyzed saccadic responses to the opposing disc. Given that
distractor and target disc were always next to each other,
knowing the location of the distractor renders two discs pos-
sible target locations. We refer to this second disc who did not
turn into the target as opposing disc (righthand panel in Fig.
1a). These errors would reflect target anticipation and thus be
possibly indicative of strategic behavior. For example, an an-
ticipatory saccade to either of the two potential target discs

Fig. 2 Speed. a Violin plots of individual latencies for the three different
blocks (Rew = Reward, Tsk = Task, Fce = Face). Data points (gray dots)
in the left panel denote the mean of an individual, horizontal black lines
denote the mean across all participants. Green colors are relevant trials
(reward, task, seeing a face) whereas blueish colors are irrelevant trials
(no reward, no task, seeing a grating). To enhance visibility, one value in

the irrelevant/reward condition (413 ms) is outside the plotted range. b
Latency difference between irrelevant and relevant trials in (a) with pos-
itive values denoting higher latencies in irrelevant trials. Asterisks indi-
cate a value significantly different from 0. Two values in the reward
condition are outside the plotted range (168 ms, 278 ms). (Color figure
online)
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around the time of target onset (or even before) might yield the
maximal reward—yet only with a chance of 50%. Hence,
errors might be due to this strategic gambling behavior.

Figure 4 shows error time courses for responses to the
distractor disc (upper row) and responses to the opposing disc
(lower row). The proportion of trials in which the distractor was
selected as saccade target is high for early responses and then
decreases with increasing latency. In the reward block we found

a significant cluster in a time window 20–127 ms after target
onset (Fig. 4a, upper panel), t = 368.7, tcrit = 152.6, p < .001.
During this cluster, there were fewer error responses for relevant
compared with irrelevant trials. This is consistent with the pattern
observed in accurate trials (Fig. 3). In the task block, error time
courseswere also consistent with the accuracy data. Relevant and
irrelevant trials differed, t = 184.0, tcrit = 136.3, p = .018. The
corresponding cluster was detected 200 – 259 ms after target

Fig. 3 Accuracy. a–c The lower panels show accuracy time courses for
relevant (green) and irrelevant (blue) trials in the three blocks, respective-
ly. Each time course shows the proportion of saccades to the correct disc,
the target, as a function of saccade latency. Shaded regions denote the
95% confidence interval that results from comparing the two time courses

against each other (van Leeuwen et al., 2019). Gray horizontal lines and
asterisk indicate a significant cluster. Upper panels show reaction time
histograms pooled across all participants. d–f Accuracy time courses
comparing the relevant conditions (i.e., green data) from a–c. (Color
figure online)
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onset. In this timewindow,we observedmore errors in trials with
a perceptual task (relevant) than without (irrelevant). In the face
block, no cluster (and thus no difference) between relevant and
irrelevant trials was detected. Hence, the test-statistic t is effec-
tively zero (t = 0) and smaller than the critical value of tcrit =
148.7.

When comparing relevant trials of different blocks in term
of erroneous responses to the distractor (Fig. 5, upper row), we
found that data from the reward block differed from the other
two, task: t = 423.5, tcrit = 166.2, p < .001, 10–106ms, face: t =
253.6, tcrit = 173.0, p = .006, 26–99 ms. In each case, fewer
errors were found in the reward block during the detected
clusters. Moreover, time courses of relevant trials differed in
the task versus the face block, t = 238.0, tcrit = 141.3, p = .004,
128–228 ms, with more errors in the task block during the
detected cluster.

For error responses to the opposing disc, no clusters were
detected when comparing relevant and irrelevant trials in each
of the three blocks. This analysis was restricted to the first
150 ms after target onset, because hardly any of these errors
occurred after this time point. However, we observed a differ-
ence between blocks (Fig. 5, lower row). The reward block

differed from the task block, t = 224.7, tcrit = 123.5, p < .001,
15–84ms, as well as from the face block, t = 171.3, tcrit = 109.3,
p = .009, 22–84 ms. In both cases, erroneous responses to the
opposing disc were more pronounced in the reward block.

To summarize, we found more errors due to strategic antic-
ipation in the reward block than in the other two blocks (Fig. 5,
lower row). Yet, relevant trials of the reward block were char-
acterized by fewer erroneous responses to the distractor (Figs.
4 and 5, upper row). The difference in response accuracy be-
tween relevant and irrelevant trials (Fig. 3) was better ex-
plained by avoiding a response towards the distractor than by
differences in target anticipation.

Drift diffusion modelling Speed–accuracy trade-offs can be
captured by sequential sampling models. We therefore
complemented our analysis with a drift diffusion modelling
approach to reveal how the different consequences affect
latent decision variables. The drift diffusion model
(Ratcliff, 1978; Ratcliff & Tuerlinckx, 2002; Fig. 6) allows
to infer these latent decision variables based on the joint
modelling of reaction times on the one hand and either free

Fig. 4 Error analysis. Proportion of erroneous responses over time for
relevant (green) and irrelevant (blue) trials in the three blocks. The upper
row shows trials in which the distractor was selected, whereas the lower
row shows trials in which the disc opposing the target was selected. Given
that the onset of the distractor renders two discs possible target locations

(the target disc and the opposing disc), the latter can be seen as an index of
strategic anticipation. Asterisks and solid gray lines indicate clusters, and
shaded regions denote the 95% confidence interval that results from com-
paring relevant and irrelevant time courses (van Leeuwen et al., 2019).
(Color figure online)
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binary decisions or correct/incorrect responses on the other
hand. The model assumes that evidence starts to accumulate
in between two boundaries until one of the boundaries is
reached. The systematic component of the evidence accumu-
lation process is called the drift rate. It denotes the mean
evidence uptake per time. Yet evidence accumulation is
noisy. Therefore, even if the drift rate favors one of the two
decision outcomes, the other threshold can be reached first
due to the noise. Thedrift rate canbe affected by changing the
difficulty of the task—for example, by decreasing or increas-
ing the target’s signal to noise ratio. Therefore, the informa-
tion uptake is sometimes referred to as the ease of processing.
Decision threshold on the other hand is reflected in the
boundary separation parameter. This parameter can be af-
fected by instructing the participant to either emphasize
speed or accuracy. Thus, the boundary separation parameter
captures trade-offs in speed and accuracy. Increasing the
boundary separation would reduce the number of errors but
would also increase reaction times. The other two main pa-
rameters are the starting point and the nondecision time. The
former can capture responsebiases that canoccur if oneof the
response options is more likely or associated with a higher
payoff (e.g.,Dunovanet al., 2014;Mulder et al., 2012). In our

paradigm this would have been the case if the target was not
equally distributed across the four discs or if one of the discs
was associatedwith a higher reward than the other discs. The
nondecision time parameter is thought to capture all aspects
of the reaction time that is not devoted to the decision itself
but devoted to other processes, like sensory encoding and
motor execution. However, the nondecision time has been
reported to be also affected when accuracy or speed is em-
phasized (Dutilh et al., 2019).

We fit the full drift diffusion model to the data and allowed
drift rate, boundary separation and nondecision time to vary
across condition. To assess whether our manipulation affected
decision thresholds, we compared boundary separation pa-
rameters using a 3 × 2 repeated-measures ANOVA (Fig. 6c).
The ANOVA revealed a main effect of relevance, F(1, 35) =
5.70, p = .022, η2p = 0.140, as well as a block × relevance

interaction, F(2, 70) = 4.44, p = .015, η2p = 0.113: Boundary

separation was lower with a reward compared with no reward,
t(35) = 2.36, p = .024, d = 0.394, and it was lower with a task
compared with no task, t(35) = 2.69, p = .011, d = 0.448 We
found no difference in boundary separation when the conse-
quence of a successful saccade was either a face or a grating,
t(35) = 0.83, p = .412, d = 0.138.

Fig. 5 Error analysis across blocks. Top row: Time courses for erroneous
responses to the distractor comparing the relevant conditions (i.e., green
data) from the top panels of Fig. 4. Bottom row: Time courses for

erroneous responses to the opposing disc comparing merged data from
relevant and irrelevant trials (i.e., green and blue data) from bottom panels
in Fig. 4. (Color figure online)
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We additionally analyzed nondecision time parameters be-
cause emphasizing accuracy has been shown to also affect non-
decision times in addition to the boundary separation (Dutilh
et al., 2019). The observed pattern in nondecision times (Fig.

6d) was mostly consistent with the pattern of results observed
in the boundary separation parameter: There was a main effect of
relevance, F(1, 35) = 17.54, p < .001, η2p = 0.334, but no Block ×

Relevance interaction, F(2, 70) = 2.97, p = .058, η2p = 0.078.

Fig. 6 Drift diffusion model. a Illustration of the drift diffusion model.
The model assumes that a response is made once the accumulation
process reaches either of two boundaries. Each boundary is associated
with a different response (here: correct response versus error). The
systematic component of the drift process is the drift rate (i.e., mean
evidence uptake per time), whereas the random component is reflected

by noise. The thin orange line denotes an example trial, and the colored
areas denote latency distributions for correct trials (orange) and errors
(red). b, c, d Violin plots of drift rate (b), boundary separation (c), and
nondecision time parameter (d). Gray lines and asterisks indicate a sig-
nificant different between relevant and irrelevant trials of a particular
block. (Color figure online)
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Nondecision times were lower with a reward compared with no
reward, t(35) = 2.70, p= .005, d= 0.45, andwith a task compared
with no task, t(35) = 3.59, p < .001, d = 0.598. Again, we found
no difference between the two conditions of the face block (face
vs. grating), t(35) = 1.32, p = .098, d = 0.219. This suggests that
relevant and irrelevant trials differed in decision thresholds and
thus that participants behaved less cautious when they expected a
monetary reward or a perceptual task.

We next analyzed drift rate parameters to reveal whether
conditions differ in information uptake (Fig. 6b). Typically,
drift rates are expected to be higher when the task easy, for
example because the target has a higher contrast and can be
more easily processed. The ANOVA on drift rates revealed a
main effect of block, F(2, 70) = 7.53, p = .001, η2p = 0.177.

Descriptively, mean drift rates were highest in the reward
block, Mrew = 3.91, intermediate in the face block, Mfce =
3.56, and lowest in the task block, Mtsk = 2.85. Drift rates in
the task block were significantly lower than drift rates in the
reward block, t(35) = 3.81, p < .001, d = 0.635, or the face
block, t(35) = 2.37, p = .023, d = 0.395. There was no differ-
ence between the reward and face block, t(35) = 1.37, p =
.178, d = 0.229. Most importantly, we observed a Block ×
Relevance interaction, F(2, 70) = 3.27, p = .044, η2p = 0.085:

Whereas drift rates were higher with a reward compared with
no reward, t(35) = 2.811, p = .008, d = 0.468, there was no
difference in drift rates between the task and no task condition,
t(35) = 0.043, p = .966, d = 0.007, or between the face and
grating condition, t(35) = 0.255, p = .800, d = 0.042.

In sum, drift diffusion modelling revealed that relevant and
irrelevant trials of the reward block (reward vs. no reward) and
task block (task vs. no task) differed in decision thresholds.
Participants emphasized speeded responses when they expected
a perceptual task or a monetary reward. This was reflected in the
boundary separation parameter. The same pattern was observed
in nondecision times. On the other hand, a difference in infor-
mation uptake between relevant and irrelevant trials was only
observed in the reward block. This was reflected in drift rates.

Saccades deviate away from distractor locations To test
whether the behavioral results can be explained by differences
in distractor suppression, we analyzed saccade deviation as a
function of distractor position. We made use of the fact that
long-latency saccades curve away from distractors (McSorley
et al., 2006; Mulckhuyse et al., 2009), reflecting distractor
suppression (for review, see Van der Stigchel, 2010). A sim-
ilar temporal dependency reflecting distractor suppression can
be observed in saccade end points (Wolf & Lappe, 2020). If
the distractor in our paradigm is suppressed, we would thus
expect that saccades deviate away from it, because of differ-
ences in saccadic end points as well as saccadic curvature.

Given that the distractor preceded the target by 187 ms and
did not appear simultaneously, even short-latency saccade
showed characteristics of deviation away (Fig. 7). Figure 7a
shows trajectories of saccades (80–400 ms) towards each of
the four target locations when the distractor was at a neigh-
boring position, either clockwise (blue) or counterclockwise
(orange) relative to the target’s position. To analyze this data,
we first rotated each saccade so that the ordinate axis codes the
saccade’s deviation (Fig. 7b). Please note that this measure of
deviation jointly codes deviation due to saccade curvature
(McSorley et al., 2006) as well as due to differences in saccade
end points (Wolf & Lappe, 2020). In a second step, we nor-
malized saccade duration to have the same number of data
points for each saccade. In a third step, we computed the area
under the saccade trajectory as an index of deviation (shaded
areas in Fig. 7b). We coded deviation indices so that positive
values always denote deviation away from the distractor.

Deviation indices (Fig. 7c) were above zero in all conditions
(p < .001, d > 1.3). The ANOVA on the deviation indices re-
vealed a main effect of block, F(2, 68) = 10.45, p < .001, η2p =

0.235. Deviation indices were higher in the reward block com-
pared with both, the task block, t(34) = 3.64, p = .003 or the face
block, t(34) = 5.24, p < .001. No difference was observed be-
tween the task and face block, t(34) = 0.07, p > 0.999.We neither
observed a Block × Relevance interaction, F(2, 68) = 1.019, p =
.366, η2p = 0.029, nor a main effect of relevance, F(1, 34) = 1.64,

p = .209, η2p = 0.046. Thus, there was also no evidence for a

difference in deviation indices between rewarded and unreward-
ed trials, t(34) = 1.80, p = .080, d = 0.299.

We next analyzed deviation indices as a function of sac-
cade latency. Consistent with the ANOVA on the aggregated
values, we observed no difference between relevant and irrel-
evant trials in any of the three blocks (Fig. 7d, no clusters
detected). Yet deviation time courses from the reward block
differed from the task block, t = 814.1, tcrit = 205.6, p < .001,
80–360 ms, as well as from the face block, t = 594.4.1, tcrit =
221.1, p < .001, 83–248 ms (Fig. 7e).

Distractor suppression versus target enhancement To reveal
whether motivation by reward facilitates target processing or
whether it aids distractor suppression (Pearson & Le Pelley,
2021), we conducted Experiment 2, where the distractor was
only present in half of the trials and where distractor and target
were spatially independent (see Methods). If motivation by
reward increases speed and accuracy by improving distractor
suppression, then we would expect that performance only dif-
fers when the distractor is present. If, however, we observe a
reward benefit in trials with and without distractor, this would
be evidence that motivation by reward improves performance
by improving target facilitation.
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Fig. 7 Saccades deviate away from distractor locations. a Saccade
trajectories of all conditions to the four different target locations when the
distractor was at a neighboring location, i.e., clockwise (blue data) or
counterclockwise by 90° (orange data). The data was coded relative to
saccade starting points. b Computation of deviation index. Saccades were
normalized in length and rotated such that the straight connection between
fixation cross and target center was purely horizontal. Consequently, any
deviation in saccade trajectories can be found along the vertical dimension.
For each saccade, we computed a deviation index as the area under the
saccade trajectory (blue and orange shaded area). For a counterclockwise

distractor, values were recoded (multiplied with -1) so that positive deviation
indices denote deviation away from the distractor. cViolin plots of the mean
deviation index in the respective conditions. Indices were different from0 and
larger in the reward block. d Deviation indices as a function of saccade
latency (SMART analysis) comparing relevant (green) and irrelevant trials
(blue) from the respective blocks. Shaded regions denote the 95% confidence
interval that results from comparing the two time courses against each other
(van Leeuwen et al., 2019). e Comparison of merged data from relevant and
irrelevant trials (i.e., green and blue data from d). Gray lines and asterisks
denote a significant cluster. (Color figure online)
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Figure 8a shows saccade latencies and accuracy time
courses for distractor present versus absent trials. The
ANOVA on the saccade latencies revealed a main effect of
distractor presence: saccades were initiated later when the
distractor was absent, F(1, 35) = 52.66, p < .001, η2p =

0.601. Importantly, we observed a distractor presence ×

reward interaction, F(1, 35) = 4.776, p = .036, η2p = 0.120.

Latencies in the reward and no reward condition differed
when the distractor was present, Z = 4.29, p < .001, but not
when it was absent, Z = 1.49, p = .135. The latency results are
thus more consistent with the idea that reward improves
distractor suppression.

Fig. 8 Experiment 2: Target facilitation vs. distractor suppression. a
Violin plot of saccade latencies when the distractor was present or
absent, both for the condition with reward (green) and without (blue).
Gray dots represent individual values whereas black lines indicate the
aggregated mean. The asterisk and horizontal gray line denote a signifi-
cant comparison. b, c Time course analysis for distractor present (b) and
absent trials (c). Each time course shows the proportion of saccades to the

correct disc as a function of saccade latency. Shaded regions denote the
95% confidence interval that results from comparing the two time courses
against each other (van Leeuwen et al., 2019). Upper panels show reac-
tion time histograms pooled across all participants. d Violin plot of the
deviation index in rewarded (green) and unrewarded trials (blue). e
Deviation index as a function of saccade latency (SMART analysis).
(Color figure online)
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Accuracy time courses can be found in Fig. 8b–c. Whereas
performance was at ceiling in distractor-absent trials, time
courses increased starting from around 80ms after target onset
when the distractor was present. No cluster (and thus no dif-
ference between time courses) was detected when the
distractor was absent. In distractor-present trials, we detected
a cluster in a time window between 94 and 120 ms after target
onset, yet we found no evidence for a difference between the
time courses, t = 67.2, tcrit = 139.1, p = .289.

Consistent with Experiment 1, we computed deviation indi-
ces when the distractor was at a neighboring position. Thus, this
analysis can only be conducted for distractor-present trials.
Deviation indices (Fig. 8d) were positive and different from 0,
both in trials with a reward, t(34) = 4.20, p < .001, d = 0.709, as
well as in unrewarded trials, t(34) = 2.58, p = .014, d = 0.436.
We observed no difference in deviation indices between
rewarded and unrewarded trials, t(34) = 0.83, p = .413, d =
0.14. This was also true when deviation indices were analyzed
as a function of saccade latency (Fig. 8e). No cluster was de-
tected, and we thus observed no difference between rewarded
and unrewarded trials.

Discussion

The present results show that only motivation by reward can
simultaneously increase response speed and accuracy and is
thus capable of decreasing internal noise (Manohar et al.,
2015). Obtaining task-relevant information increased speed
but decreased accuracy, a pattern consistent with the tradition-
al speed–accuracy trade-off. If successful saccade target selec-
tion resulted in seeing a face on the other hand, neither speed
nor accuracy was affected, suggesting that motivational as-
pects do not contribute to earlier and/or more accurate sac-
cades to faces, which highlights the importance of low-level
information in the oculomotor selection of faces (Crouzet &
Thorpe, 2011; Honey et al., 2008).

To distinguish whether motivation by reward facilitated
target processing or aided with distractor suppression
(Wöstmann et al., 2022), we analyzed saccadic deviation as
an index of suppression (Fig. 7). Moreover, we conducted
Experiment 2, where we randomly interleaved trials with
and without distractor and kept distractor and target spatially
independent. We again analyzed accuracy, latencies, and sac-
cadic deviation. No difference in accuracy time courses be-
tween rewarded and unrewarded was observed, neither when
the target was absent, nor when it was present. In distractor-
absent trials, this can be attributed to a ceiling effect. In
distractor present trials this might be explained by the more
difficult task (compared with Experiment 1) and the decreased
consistency between participants. Hence, accuracy data nei-
ther favored target facilitation nor distractor suppression. For
saccade latencies, we found that a benefit in speed could only

be observed when the distractor was present (Fig. 8a). This is
more consistent with the notion that motivation by reward
aided distractor suppression. The observation that latencies
were shorter when the distractor was present compared with
when it was absent is at odds with various findings comparing
distractor present and absent trials (for review, see Gaspelin &
Luck, 2018). This can most likely be explained the fact that
the distractor preceded the target in our experiment. Hence, in
distractor-absent trials there was uncertainty whether partici-
pants should respond to the onset of a peripheral target, be-
cause they would first have to discriminate whether this is a
distractor or a target. There was no such uncertainty in
distractor present trials: If the distractor was already present,
then participants knew that they could respond the upcoming
stimulus.

Saccade trajectories in both experiments deviated away
from distractor locations (Figs. 7 and 8), suggesting that the
distractor was suppressed. Deviation was stronger in the re-
ward block compared with the other two blocks (Fig. 7), yet
we observed no difference between rewarded and unrewarded
trials in terms of deviation, neither for Experiment 1, nor for
Experiment 2. If the performance difference between
rewarded and unrewarded trials was caused by improved
distractor suppression, we would have expected stronger sac-
cadic deviation in trials with a reward. Even if our results
cannot ultimately distinguish whether reward facilitates target
processing or whether it improves distractor suppression, two
further observations from the main experiment support the
latter: First, most errors were erroneous responses to the
distractor (Figs. 4 and 5) and thus accuracy was mainly deter-
mined by successfully avoiding the distractor. The proportion
of erroneous responses to the distractor was least in rewarded
trials compared with any other condition (Figs. 4 and 5).
Second, a performance benefit was observed for latencies
within the first 100 ms after target onset (Figs. 3, 4 and 5),
which renders it more likely that this performance benefit is
related to the distractor (which precedes the target by 187 ms)
rather than the target. Our previous findings showed that
biases induced by suddenly appearing salient distractors can
be overcome 250–300 ms after distractor onset (Wolf &
Lappe, 2020, 2021a), which is temporally consistent with
the present performance saturation around 100–120 ms after
target onset. Taken together, although we cannot ultimately
distinguish whether reward aids target facilitation or whether
it improves distractor suppression, our results are more con-
sistent with the latter.

We analyzed accuracy and occurrence of specific errors as a
function of response time (Figs. 4 and 5). We found higher
accuracy in rewarded trials within the first 100 ms after target
onset, and a lowered accuracy with a perceptual task for re-
sponses initiated between 201 and 255 ms. Most errors were
caused by premature responses to the distractor rather than an
active gambling behavior (Figs. 4 and 5) and higher accuracy
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was reflected in a lower number of erroneous responses to the
distractor in the respective time windows. However, the lack-
ing difference in strategic errors between relevant and irrele-
vant trials might be caused by the few errors and the few trials
in the time window where these errors mostly occurred.

The common analysis of mean response time and mean
accuracy on the one hand and these time courses on the other
hand indicates whether changes in behavior are caused by a
trade-off between speed and accuracy or by processes that
operate outside this trade-off. Theoretically, if two conditions
differed due to a traditional speed–accuracy trade-off, this
would result in different mean response times and accuracies
without a change in the time courses of these two conditions.
Indeed, if changes in performance are time-locked to stimulus
onset, then the underlying time course should be the same.
Thus, changes in speed and accuracy would only result from
the way that this time course is sampled. For example, imag-
ine overlapping time courses (as in Fig. 3c) with one reaction
time distribution (top panel in Fig. 3c) centered at a time point
where performance is already saturated, but the other distribu-
tion centered at a time when performance is still poor. This
would result in different mean response times and accuracies
despite the same underlying time course. Contrary to that,
differences in the time courses reflect processes beyond the
speed–accuracy trade-off. For example, a shifted time course
might be indicative of reduced internal noise that might result
in better distractor suppression or facilitated target processing.

Yet, even if the two time courses differ, performance might
still be prone to a trade-off between speed and accuracy. We
believe that this can account for our results in the reward
condition: At large, our results in the reward condition are
consistent with the findings obtained by Manohar et al.
(2015). We observed that the prospect of reward resulted in
more accurate responses shortly after target onset. However,
this did not show on the aggregated level (mean accuracies,
i.e., averaged across response times). We believe that this is
due to two effects cancelling each other out. The first is an
earlier saturation of accuracy in rewarded compared with un-
rewarded trials (Fig. 3a). This first effect would yield better
performance in rewarded compared with unrewarded trials.
The second effect assumes that behavior in the reward condi-
tion is still prone to the classical trade-off between speed and
accuracy. Response accuracy increased steadily and saturated
at a time point where most responses had not yet occurred. In
turn, this also implies that most responses occurred at a time
point without a benefit for rewarded over unrewarded trials.
Thus, the increased speed in rewarded trials led to a higher
fraction of trials with response times at which performance
was not yet saturated. Whether the performance benefit in
rewarded trials can be observed on the aggregated level will
thus also depend on the fraction of trials that occur in the time
window where performance is enhanced. This might have
been the case if we had decided to use a shorter delay between

distractor and target, for example a time between 40 and
120 ms as in Manohar et al. (2015).

In this line of thought, mean response times and accuracies
in the task-relevance condition indicated a typical speed–
accuracy trade-off: faster, yet less accurate selection in rele-
vant compared with irrelevant trials. This was reflected in a
lowered decision threshold in the diffusion model. Thus, par-
ticipants were less cautious so that theymay see the perceptual
target earlier, accepting potential errors. This pattern did not
only result from the way that the same underlying time course
was sampled, because accuracy time courses differed between
relevant and irrelevant trials (Fig. 3b). The time course in
relevant trials showed a late dip in performance after the initial
distractor suppression had already been saturated. Such lapses
cannot be attributed to a strategic task avoidance to reduce the
overall experimental duration: If participants selected the
wrong target, they still had to perform the perceptual task,
making it impossible to speed up the experiment by strategi-
cally selecting a disc other than the target. Instead, these lapses
might be indicative of a diminished task engagement and a
lack in motivation to perform well in the task.

Postsaccadic vision of an intrinsically relevant face stimu-
lus did neither affect response speed nor accuracy. In this
condition, we used faces of famous people to enable person
recognition. Although participants might not have been famil-
iar with all faces, recognition should have been possible in the
majority of trials. Hence, our data suggest that neither
postsaccadic vision of an intrinsically relevant face stimulus,
nor the possibility to recognize a face have the motivational
ability to affect oculomotor target selection. Given that targets
had only been shown after the saccade, results are essentially
unaffected by low-level properties of a peripheral target that
have been shown to affect eye movement responses towards
faces (Crouzet & Thorpe, 2011; Honey et al., 2008). Even
short peripheral glimpses of the target might suffice to induce
faster saccades towards faces, even if the saccade is carried out
at a later point in time (Xu-Wilson et al., 2009).

We complemented our analysis with a drift-diffusion
modelling approach which showed that motivation by reward
affected information uptake (i.e., drift rate) and decision
threshold (i.e., boundary separation), whereas task-relevance
only affected the latter and image content affected neither
(Fig. 6). According to the selective influence assumption, in-
structing participants to either emphasize speed or accuracy
should only affect decision thresholds, whereas changing the
difficulty of the task should exclusively affect information
uptake. Under this assumption, our results are consistent with
the conclusion that (i) reward and task-relevance affect the
speed–accuracy trade-off, whereas image content does not.
Additionally, (ii) motivation by reward increases the amount
of information per time, effectively making the task easier
when anticipating a reward. This is consistent with the notion
that motivation by reward can decrease noise (Manohar et al.,
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2015). However, this selective influence assumption has re-
cently been challenged (Dutilh et al., 2019; Rae et al., 2014;
Rafiei & Rahnev, 2021)—for example, because accuracy in-
structions that should have exclusively affected the boundary
separation parameter additionally affected drift rates or non-
decision times. Our present results show that the same pattern
that was observed in the boundary separation parameter could
also be found in nondecision times. Nondecision times are
thought to reflect that part of the reaction time that is not
devoted to the decision processes but to other processes such
as the motor response or stimulus encoding. Our measure of
reaction time, saccade latencies, does not include the time
dedicated to the actual movement and there is no reason to
assume any difference in the encoding time of the presaccadic
display. Hence, this result pattern shows that nondecision
times covaried with changes in decision thresholds which ap-
pears inconsistent with the selective influence assumption.
However, we did not explicitly instruct participants to either
emphasize speed or accuracy, but we manipulated the conse-
quences following an accurate response to test whether partic-
ipants implicitly adjust their trade-off in speed and accuracy.
Thus, participants were free to adjust their behavior in any
way and we cannot distinguish whether our results are incon-
sistent with the selective influence assumption or not. In any
case, drift-diffusion modelling revealed differences in the un-
derlying decision processes for reward, task-relevance, and
intrinsically relevant images.

To conclude, although earlier eye movement responses or a
stronger maintenance of saccadic accuracy can be found with
monetary reward, perceptual tasks as well as image content,
we here show that these visual consequences differ in terms of
their motivational abilities. Thus, although these conse-
quences might apparently evoke the same behavior, this is
not for the same reason.
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