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Abstract
Classical theories of attention posit that integration of features into object representation (or feature binding) requires
engagement of focused attention. Studies challenging this idea have demonstrated that feature binding can happen outside of
the focus of attention for familiar objects, as well as for arbitrary color-orientation conjunctions. Detection performance for
arbitrary feature conjunction improves with training, suggesting a potential role of perceptual learning mechanisms in the
integration of features, a process called “binding-learning”. In the present study, we investigate whether stimulus variability
and task relevance, two critical determinants of visual perceptual learning, also modulate binding-learning. Transfer of
learning in a visual search task to a pre-exposed color-orientation conjunction was assessed under conditions of varying
stimulus variability and task relevance. We found transfer of learning for the pre-exposed feature conjunctions that were
trained with high variability (Experiment 1). Transfer of learning was not observed when the conjunction was rendered task-
irrelevant during training due to pop-out targets (Experiment 2). Our findings show that feature binding is determined by
principles of perceptual learning, and they support the idea that functions traditionally attributed to goal-driven attention can
be grounded in the learning of the statistical structure of the environment.

Keywords Feature binding · Perceptual learning · Habitual attention · Visual search · Variability

Introduction

The visual system is organized hierarchically. Lower lev-
els of the hierarchy are tuned to respond to basic stim-
ulus attributes, such as orientation, color opponency, and
motion direction. Higher levels of the hierarchy are involved
in the recognition of complex, multi-feature objects. This
hierarchical architecture necessitates the binding of individ-
ual features (such as shape and color) into an object rep-
resentation. In spite of a long history of empirical research
into feature binding in human visual cognition, typically
in the context of visual search experiments, the underly-
ing mechanisms remain debated. The field has moved from
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a preoccupation with the role of attention in feature bind-
ing (e.g., Treisman & Gelade, 1980) to granting a key role
to perceptual learning mechanisms in mediating efficient
search for conjunctive features (e.g., Yashar & Carrasco,
2016). In the present study, we aimed to advance our under-
standing of the underlying mechanisms of this learning
process by testing novel predictions for the learning of
feature conjunctions derived from a prominent perceptual
learning model (Yashar & Carrasco, 2016; Ahissar, Nahum,
Nelken, & Hochstein, 2009). We begin with a brief review
of the relevant background literature.

Feature binding and attention

The historically most influential account of feature bind-
ing is feature integration theory, which is grounded in a
two-stage model of perception (Schneider & Shiffrin, 1977;
Treisman & Gelade, 1980). According to this theory, prim-
itive stimulus features like color and shape are processed
in parallel in an initial “pre-attentive stage”, whereas the
subsequent “attentive stage” binds features together to
mediate object perception. The main contention of this
model is that the deployment of attention is necessary for
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feature binding (e.g., to combine color and shape informa-
tion to perceive a green triangle). In the seminal study by
Treisman and Schmidt (1982), participants performed an
identification task on a briefly presented display of objects
defined by a conjunction of features (colored shapes)
and a concurrent digit recognition task. Performing the
attentionally demanding digit recognition task resulted in
binding errors in the object recognition task, with partici-
pants reporting feature combinations that were not actually
present in the display. Binding errors during an attentionally
challenging task support the claim that attention is required
for feature binding (Treisman & Schmidt, 1982). Lesions to
brain areas associated with attention have also been shown
to impair feature binding. For example, a Bálint’s syndrome
patient with bilateral parietal lobe lesions committed errors
in binding shapes and colors, even though the recognition of
individual shapes and letters was not impaired (Robertson,
Treisman, Friedman-Hill, & Grabowecky, 1997; Robertson,
Treisman, et al. 1995). Similarly, in patients with visual
hemineglect, target detection in the contralesional hemi-
field is much more severely impaired when the target is
differentiated from distractors by a conjunction of features
compared to a single feature (Eglin, Robertson, & Knight,
1989; Esterman, 2000).

However, other data suggest that even very complex
feature combinations present in more natural or familiar
stimuli can be integrated in the absence of attention. For
instance, it has been shown that an attentionally engag-
ing concurrent letter discrimination task does not inter-
fere with visual search performance when the targets are
faces (Reddy, Reddy, & Koch, 2006; Reddy, Wilken, &
Koch, 2004) or vehicles (Li, VanRullen, Koch, & Perona,
2002). The identification speed of familiar conjunctions,
but not novel ones, has also been shown to be unaffected
by transcranial magnetic stimulation (TMS) to right pari-
etal cortex (implicated in hemineglect; Walsh et al., 1998).
These findings suggest that feature binding for familiar
objects, as opposed to say arbitrary shape–color combina-
tions, can operate in the absence of focal attention. Our
ability to combine features into object representations in
very briefly presented natural scenes supports this claim.
The deployment of focal spatial attention takes around 300
ms (Carrasco, 2011); however, observers have the ability to
categorize complex natural scenes in 150 ms (Thorpe, Fize,
& Marlot, 1996), faces in 100 ms (Crouzet, Kirchner, &
Thorpe, 2010), and animals in 120 ms (Kirchner & Thorpe,
2006). Finally, task-irrelevant, unattended objects in a nat-
ural scene have been shown to be decodable from neural
activity in object-selective areas in visual cortex (Peelen,
Fei-Fei, & Kastner, 2009), suggesting that common, com-
plex, multi-feature object information is present in the visual
brain even when attention is occupied elsewhere.

Feature binding and perceptual learning

One way to reconcile these findings is to assume two distinct
“modes” of binding, one being a “hardwired”, automatic
(and thus, fast) integration of features in frequently encoun-
tered objects, and the other being a slow and attention-
requiring “on-demand” binding process that can be applied
to arbitrary feature conjunctions (VanRullen, 2009). How-
ever, a strong version of this dual-process view seems
untenable in light of recent findings by Yashar and Carrasco
(2016), who demonstrated that even a relatively short period
of repeated exposure to arbitrary object feature conjunctions
in very briefly presented search arrays (117 ms) can greatly
enhance subsequent search performance for those objects.
Participants performed a visual search task to report the
presence/absence of a target defined by a color-orientation
conjunction (e.g., a 50◦ titled red line). During the training
phase, one set of participants was pre-exposed to an alter-
nate color-orientation conjunction (e.g., an 80◦ titled blue
line) that served as a distractor, while another set of par-
ticipants was not pre-exposed to the alternate conjunction.
The pre-exposed conjunction then served as the target in a
subsequent test phase for both groups. The results showed
a significant transfer of learning in the pre-exposed group,
with perceptual sensitivity (d’) for the former distractor in
the test phase being comparable to the sensitivity for the
prior target in the final block of the training.

This transfer of learning through brief pre-exposure of
a (non-target) feature conjunction suggests that even the
binding of arbitrary features can be learned quite rapidly
without contributions from top-down attention. This form
of perceptual learning—or “binding-learning”—may thus
mediate our ability to quickly and effortlessly integrate
features into objects that are encountered repeatedly (Yashar
& Carrasco, 2016). This view, when applied to the divergent
findings on the need for attention in feature binding
reviewed above, suggests that participants in classic studies
using arbitrary stimuli would have had little benefit from
perceptual learning, whereas search for naturalistic stimuli
(faces, natural scenes) would have benefited from vast prior
perceptual learning experience (see Frank et al., 2014). In
the current study, we strove to connect this new, perceptual
learning perspective on feature integration directly to an
integrative model of how perceptual learning takes place, by
generating and testing novel predictions of that model for
the manner in which feature conjunctions may be learned.

According to the reverse hierarchy theory (RHT; Ahissar
et al., 2009), perceptual learning in tasks that recruit higher-
order association areas is expedited by stimulus variability
(or precision) and task relevance of the trained stimulus.
RHT posits that perceptual learning always begins in higher-
level areas, but can progress gradually to lower-level areas,
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depending on task demands. This basic pattern of reverse
progression of learning from higher-level to lower-level
areas has been corroborated by a number of behavioral
(Sowden, Davies, & Roling, 2000) and neuroimaging
studies (Furmanski, Schluppeck, & Engel, 2004; Schwartz,
Maquet, & Frith, 2002; Sigman et al., 2005). RHT holds
that the transition of learning-induced plasticity from
higher to lower areas in supporting perceptual learning
depends on the variability of the stimulus features that
people are exposed to during perceptual learning; in
particular, high stimulus variability deters the reverse
progression of learning from higher- to lower-level areas,
whereas low variability promotes that progression. The
reverse progression from generalizable learning in high-
level areas to stimulus-specific learning in low-level area
also necessitates task relevance of the trained stimulus.

The underlying assumption is that when trial-by-trial
stimulus variability is high, for instance, when using a
wide range of orientations in an orientation-discrimination
task, the low-level neuronal populations that code for
a specific stimulus orientation cannot be consistently
tracked. Consequently, performance will depend primarily
on adaptation of higher-level factors, such as decision
criterion. By contrast, if training exemplars span a smaller
range, learning can be achieved by fine-tuning responses
in the more reliably involved lower-level populations. The
critical empirical prediction from RHT is that perceptual
learning should differ in the level of generalizability, or
transfer, which should be high when learning takes place
under high stimulus variability (promoting learning at a
more abstract, generalizable level) but low when stimulus
variability is small (promoting learning via changes in
specific low-level populations). Additionally, learning at the
abstract, generalizable level requires the trained stimulus
be task-relevant. In the present study, we applied these
predictions to the context of the learning of feature
conjunctions in visual search.

The present study

The present study applied the above logic of RHT to
the process of feature integration, by testing whether
stimulus variability and task relevance modulate binding-
learning. Feature binding is assumed to involve the
recruitment of higher-level sensory areas that integrate
information from the lower-level ones. We can therefore
derive from RHT the prediction that binding-learning under
high stimulus variability should enhance the transfer of
learning compared to low stimulus variability conditions.
To test this hypothesis, we manipulated the variability
of the relationship between individual stimulus features
in a feature conjunction. In Experiment 1, participants
performed an adapted version of the task in Yashar and

Carrasco (2016), involving the detection of a target defined
by a color-orientation conjunction (e.g., a left-tilted red
line). As in Yashar and Carrasco (2016), one color-
orientation conjunction was pre-exposed as a distractor
during the training phase, and participants were tested on
the pre-exposed item in the subsequent test phase. Crucially,
the variability associated with that feature conjunction was
manipulated across two groups. For the low-variability
group, the trial-by-trial orientation values for the pre-
exposed item was sampled from a (Gaussian) distribution
with low variance, and for the high-variability group,
the orientation values were sampled from a distribution
with high variance. After training, participants performed
a detection task where the pre-exposed item (previously
serving as a distractor) was now employed as the target.
Importantly, variability was not manipulated in the test
phase, and all lines were presented at a fixed clockwise
(CW) or counter-clockwise (CCW) orientation. That is, in
the test phase, the visual statistics of the search display
were identical for both high and low-variability groups.
If the target detection sensitivity (d’) in the test phase
were the same as the final block of the training phase, it
would indicate transfer of learning. On the other hand, if
the sensitivity dropped in the test phase as compared to
the sensitivity in the final training block, it would indicate
a lack of transfer (or, conversely, a high specificity of
learning). Experiment 2 tested if the task relevance of a pre-
exposed distractor during training determines the transfer of
learning.

Experiment 1

Experiment 1 investigated the role of variability associated
with the conjunction of features on binding-learning. In the
initial training phase, participants searched for a target (line
segment) defined by a conjunction of two features (color
and orientation) among distractors. They performed four
blocks of trials in this phase, where they reported whether
the training target (e.g., a CW tilted red line) was present
or absent in the search display. A training distractor that did
not share any feature with the target was also displayed (pre-
exposure). This pre-exposed item (e.g., CCW tilted green
line) was then employed as the test target that participants
searched for in the subsequent test phase. Participants were
randomly assigned to one of two groups, where the training
distractor had either high or low variability. Importantly,
the test phase was identical across the two groups, and
there was zero variability in the orientation of any item
in the test phase search display. Based on the assumptions
that feature binding requires the involvement of higher-
level visual areas, and that perceptual learning in those
areas is promoted by high stimulus variability, we predicted
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that the high-variability group’s (but not the low-variability
group’s) performance in the test phase would be comparable
to their performance in the last block of the training phase,
indicating a transfer of binding-learning. A reduction in
performance in the test phase, by contrast, would imply
specificity.

Method

Participants

Twenty-four students from the Indian Institute of Tech-
nology Gandhinagar participated in the experiment (mean
age = 21.00, SD = 2.34, five females). The number of
participants was preset to 24 (12 in each group). The
sample size was determined through power analysis in R
using the pwr package (Champely et al., 2018). Based on
Yashar and Carrasco’s (2016) data, our sample size would
be appropriate to detect an effect size of 0.5 (Cohen’s d)
with 80 % power (alpha = 0.05; SD = 0.55; one-sample
t test). All participants were naive to the purpose of the
study and reported normal or corrected to normal visual
acuity and normal color vision. All participants were com-
pensated for their time and provided written consent. All
the experiments reported in the study followed guidelines
and regulations approved by the Institutional Ethics Com-
mittee of the Indian Institute of Technology Gandhinagar
(IEC/2018-19/04/MS/019).

Apparatus

Participants were seated in a dimly lit room in front of
a 17-inch LCD monitor connected to a PC controlled by
Windows 7. The monitor resolution was 1366 × 768 with
a refresh rate of 60 Hz. The experimental tasks were coded
and run in MATLAB 2013a (Mathworks Inc., Natick, MA)
using PsychToolbox 3 (Brainard, 1997). Responses were
collected via a standard keyboard.

Stimuli

A sample stimulus display is presented in Fig. 1. The
search display consisted of 24 tilted line segments presented
on a grey background (162 cd/m2). Each line segment
(0.8◦) appeared inside the cells of an imaginary 5 × 5
matrix, except the center cell where a fixation-cross was
presented. The lines were oriented either clockwise (CW;
right-tilt) or counterclockwise (CCW; left-tilt) from ver-
tical and were colored red (255, 0, 0) or green (0, 255,
0). There were four possible feature combinations; CW-
red, CW-green, CCW-red, CCW-green. Prior evidence sug-
gests that color-orientation conjunctions remain unbound
even in the presence of crowding (Yashar, Wu, Chen, &

Carrasco, 2019). Out of the four feature combinations, one
combination was randomly chosen as the training target
(e.g., CW-red). The test target (that was pre-exposed dur-
ing the training phase) did not share color or orientation
with the training target (e.g., CCW-green). In the training
phase, there were two types of distractors: (1) distractors
that shared at least one feature (color or orientation) with the
training target, and (2) distractors that did not share any fea-
ture with the training target, and they subsequently served
as the test target (Fig. 2A).

Procedure

The task consisted of four training blocks of 150 trials (600
trials in total), followed by a test block of 150 trials. At
the beginning of each block, the identity of the target (line
segment) was presented to the participants. The identity
of the target was fixed during the four training blocks.
Participants were instructed to search for this target and
report whether it was present or absent in the search display.
The target was present in half of the trials. At the beginning
of the test block, participants were informed of the change in
the target. The (new) test target was the previous distractor
with non-overlapping features, that is, it had a different
color and orientation from the training target. For example,
if the training target was CW-red, then the test target was
CCW-green.

Each trial began with the presentation of the fixation-
cross (+) at the center of the screen for 500 ms. The fixation
was followed by the presentation of the search display (117
ms). After the offset of the search display, a blank screen
was shown until the participant’s response. Participants
were instructed to press the z key if the target was present
and them key if the target was absent. Participants were told
to respond as accurately as possible without a constraint on
the speed of the response. Participants were also instructed
to fixate their gaze on the central fixation-cross. A 500-
ms error feedback tone followed an incorrect response.
The experimental session lasted 40 minutes. Participants
performed 100 practice trials with black and white lines at
the beginning of the experimental session.

Design

Training phase Participants were randomly assigned to
high/low-variability groups. The mean orientation of each
line segment was 45◦ (CW or CCW). The target (if present)
had an orientation of precisely 45◦. Variability was applied
only to the orientation of the distractors during the training
blocks. The distractors that shared at least one feature with
the target had identical variability (mean = 45◦; SD =
1◦) across the two groups (high/low). The variability of
the other distractor with non-overlapping features (the test
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Fig. 1 Experimental Paradigm. A Trial structure. The search display
consisted of red and green lines. Participants searched for a pre-defined
target. They were instructed to press m key when the target is present
and z key when the target is absent. The target was present in half
of the total trials. A feedback tone followed an incorrect response.
B Block structure Participants performed four training blocks and
one test block. The identity of the training target and test target was

chosen randomly for each participant. The test target was pre-exposed
as a distractor during the training. The variability of the test target
was manipulated during the training. C Schematic of the variability
manipulation. In low-variability condition, the variance of the distri-
bution from which the orientation values were chosen was low (SD
= 1◦). In high-variability condition, the distribution had high variance
(SD = 6◦)

target) was manipulated across the two groups. For the
low-variability group, the orientation of the test target was
chosen from a Gaussian distribution with a mean of 45◦
and a standard deviation of 1◦ (Fig. 1C). For the high-
variability group, the orientation of the test target was
chosen from a Gaussian distribution with a mean of 45◦ and
a standard deviation of 6◦. Orientation was chosen as the
variable dimension due to the convenience it provided in
terms of allowing us to precisely manipulate and quantify
statistical variability. In target-absent trials, eight items of
each (distractor) feature-combination were presented (for a
total of 24 items). In target-present trials, the target replaced
a distractor other than the test target. The identities of search
items (both target and distractors) were not tied to a specific
location.

Test phase The test phase was identical for both high/low-
variability groups. In the test block, all the items were
presented precisely at 45◦ (CW or CCW).

Analysis

Perceptual sensitivity (d’) and response criterion (c) were
estimated for each block [d’ = z(hit rate) - z(false-alarm
rate), C = - 0.5[z(hit rate) + z(false-alarm rate)]. To assess
and contrast learning effects between groups, an ANOVA

was performed on these dependent measures with Group
(high vs. low-variability) as a between-subjects factor and
Block (1, 2, 3, 4, 5) as a within-subjects factor. To quantify
possible transfer effects in each group, a transfer index (T)
was estimated for each participant and tested against zero
at the group level (Ahissar & Hochstein, 1997; Lu, Chu,
Dosher, & Lee, 2005; Jeter, Dosher, Petrov, & Lu, 2009;
Zhang et al., 2010; Hung & Seitz, 2014; Yashar & Carrasco,
2016).

T = 1 − (d ′
4 − d ′

5)

(d ′
4 − d ′

1)

where d ′
4 denotes the sensitivity in the last training block

and d ′
1 denotes sensitivity in the first training block, d ′

5
denotes the sensitivity in the test block. A T of 1 indicates
complete transfer and T of 0 indicates complete specificity
(no transfer at all).

Results

Sensitivity

The Group (high vs. low-variability) by Block (1, 2, 3,
4, 5) ANOVA revealed a significant main effect of Block,
F(4,88) = 13.10, p < 0.001, η2p = 0.37, as sensitivity
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Fig. 2 Search display. Training and test search displays in Experiment 1 and Experiment 2. The target in the test block did not share a feature with
the target in training block in both color and orientation dimension. D - Distractor, T - Target

improved significantly across the blocks (Fig. 3). There was
a marginal interaction between Group and Block, F(4,88)
= 2.37, p = 0.058, η2p = 0.10. The sensitivity in the low-
variability group was lower in the test block (Block 5; mean
= 1.84) as compared to the sensitivity in Block 4 (mean =
2.30; t(22) = 3.08, p = 0.01, r2 = 0.54), whereas there was no
significant difference in sensitivity between Block 4 (mean
= 2.03) and test block (mean = 1.91) in the high-variability
group (p = 0.49). To test whether performance differed
between the two groups in the training blocks, a 2 (Group:
high vs. low-variability) × 4 (Block : 1, 2, 3, 4) ANOVA
was performed. There was a main effect of Block, F (3, 66)
= 21.76, p < 0.001, η2p = 0.50, but no significant main effect
of Group (p = 0.14) or Group by Block interaction was

found (p = 0.28). A linear fit between training blocks and
sensitivity showed significant change in sensitivity across
the four training blocks for both high-variability, F(1,46)
= 12.12, p = 0.001, r2 = 0.21 and low-variability groups
F(1,46) = 5.95, p = 0.018, r2 = 0.11 (Fig. 6A).

Transfer index

To test the significance of the transfer of learning in each
group, the transfer index (T) was estimated for each par-
ticipant. Separate one-sample t tests were performed for
both high and high-variability groups to test the respective
hypotheses of transfer taking place or not in each group
(see Yashar & Carrasco, 2016). A significant difference
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Fig. 3 Results of Experiment 1: Sensitivity and criterion as a function
of blocks. Error bars show standard error. *p < 0.05

from zero would indicate transfer. Significant transfer was
observed in the high-variability group, t(11) = 3.80, p =
0.002. No transfer was observed in low-variability group1,
p = 0.34 (Fig. 4).

1Higher standard deviation was observed for transfer index data in
the low-variability group and the mean of this group could likely be
distorted by outliers. A re-analysis on the low-variability group data
was performed after removing any transfer index exceeding 2.5 SDs
from the mean (mean = -1.52; SD = 5.37; range = -14.95 to 11.90).
One participant with a transfer index of -17.64 was removed based on
this criterion. As in the main analysis reported in the Results section,
a one-sample t test was performed on this data to test if the transfer
index significantly differed from 0. Consistent with the observation in
the main analysis, transfer index did not significantly differ from zero
(mean = 0.062; p = 0.83).

High Variability
Low Variability

Transfer Index

Fig. 4 Results of Experiment 1. Transfer index for high versus low-
variability conditions

Criterion

The Group (high vs. low-variability) by Block (1, 2, 3, 4, 5)
ANOVA revealed a significant main effect of Block, F(4,88)
= 6.77, p < 0.001, η2p = 0.24. No significant main effect of
Group (p = 0.83) or Group by Block interaction (p = 0.65)
was observed. The criterion was highest in the test blocks in
both groups. No significant correlation was found between
criterion and d’, r(23) = 0.26, p = 0.22, thus ruling out an
effect of criterion on the observed d’.

Reaction time

To test if the observed effects on sensitivity were due to
speed-accuracy trade-off, a Group (high vs. low-variability)
by Block (1, 2, 3, 4, 5) ANOVA was performed on mean
RT. Training reduced RT in both groups, as indicated by a
significant main effect of Block, F(3,66) = 16.48, < 0.001,
η2p = 0.43. No significant main effect of Group (p = 0.36) or
Group by Block interaction (p = 0.91) was observed.

Discussion

Experiment 1 investigated whether the variability of a
pre-exposed color-orientation conjunction would influence
feature-binding-learning. We found that the transfer of
binding-learning was in fact dependent on the variability of
the pre-exposed conjunction, thus supporting the notion that
binding-learning is guided by the principles of perceptual
learning proposed in RHT. Specially, the results suggest that
binding-learning is associated with changes in higher-level
areas involved in abstract representation of the stimulus,
and learning is generalized when the participants are
trained in a broad range of stimuli, but not when they are
trained over a narrow range. Participants in both (high and
low-variability) groups showed significant and comparable
learning in the training phase (improved search performance
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over blocks 1–4). In other words, the manipulation of
variability did not influence performance in the training
phase. The transfer of learning to the test target (block 5),
however, was observed only in the high-variability group.
Although overall sensitivity was marginally higher in the
high-variability group, neither the main effect of Group
(variability) nor the Group by Block interaction reached
statistical significance. There was a significant change in
criterion when moving from the training phase to the test
phase for both high and high-variability groups. In the test
phase, participants were more biased towards responding
’target absent’. Importantly, the variability manipulation had
no effect on the criterion values. No significant correlation
between d’ and c was observed, suggesting that the observed
changes in sensitivity were not dependent on the response
strategies.

Although the pre-exposed distractor item was task-
relevant in the sense that its feature conjunction had to
be processed for identifying the search target, the brief
presentation of the search array would have prevented the
deployment of goal-driven attention (Carrasco, 2011). Any
potential effect of attentional guidance after the offset of
the search display (for instance, by an afterimage) is also
unlikely to be driving changes in sensitivity, as effects
of post-stimulus cuing have been found to be restricted
to modulating response-bias (Carrasco, 2011). Thus, the
observed transfer effects under high variability are unlikely
to be attributable to goal-driven attention. Instead, the
feature-binding-learning observed in the present experiment
is likely to be driven by incidental learning. The incidental
learning of the statistical structure of stimuli has been
found to influence target detection (Jiang, Swallow, &
Rosenbaum, 2013; Wang & Theeuwes, 2018a; Wang &
Theeuwes, 2018b) and is proposed have an effect on the
attentional priority map that is qualitatively different from
traditional goal-driven attention (reviewed in Awh et al.,
2012). For instance, Jiang, Swallow, and Rosenbaum (2013)
showed that participants could incidentally extract the
probability of a target being presented at a specific location
and then use this information to guide attention to that
location. This form of attentional biasing is referred to
as a “selection history effect”, reflecting a lingering bias
to the statistical regularities in the stimulus environment
(Awh, Belopolsky, & Theeuwes, 2012). However, studies
that demonstrated selection history effects on attentional
priority have not characterized the precise time-course of
such effects. It is therefore unclear whether attentional
biasing due to incidental learning can be operational in
a briefly presented search display as in Experiment 1. In
Experiment 2 we set out to test whether task relevance, a
critical factor that determine perceptual learning (Ahissar &
Hochstein, 1993), is necessary for binding-learning.

Experiment 2

The results of Experiment 1 showed that binding-learning
in a serial search task is modulated by the variability
of the pre-exposed conjunction. Even though the feature
conjunction is pre-exposed as a distractor during training in
Experiment 1, the serial nature of the search task renders
both the target and the distractor conjunctions relevant to the
task. That is, the discrimination of the target from distractors
requires an initial binding of orientation and color features
for all items in the search display, and in this sense the
distractors are relevant to the task. Accordingly, Yashar
and Carrasco (2016) proposed that binding-learning in their
protocol reflects “task-based learning”, and it has been
suggested that the transfer of learning is expedited by
the behavioral relevance of the trained stimuli (Ahissar
& Hochstein, 1993). However, perceptual learning effects
can also be found when the trained stimuli are entirely
irrelevant to the task. For example, when participants
were exposed to a task-irrelevant, sub-threshold motion
signal while performing a letter identification task, their
performance in a subsequent motion discrimination task
improved (Watanabe, Náñez, & Sasaki, 2001). Contrary to
RHT, studies that report task-irrelevant learning have led
to the proposal that both task-relevant learning and task-
irrelevant learning share common mechanisms (reviewed in
Seitz & Watanabe, 2005). The two-stage model (Shibata,
Sagi, & Watanabe, 2014) of perceptual learning offered
a reconciliation to these divergent views by proposing
that task-relevant learning involves changes to higher-
level areas and task-irrelevant learning reflects changes
to lower-level, feature-specific areas. Thus, in this view,
learning associated with higher-level, “cognitive” areas
would require the trained stimulus to be task relevant.
Accordingly, the pre-exposure of task-irrelevant stimuli
would be expected to result in transfer of learning if the
stimuli were defined by a single feature, as there would be
no need to bind distractor features for discriminating the
target (e.g., Watanabe et al., 2001). On the other hand, if the
stimuli were defined by a conjunction of features, transfer
should happen only when the pre-exposed stimuli are task
relevant (e.g., Yashar & Carrasco, 2016).

To test whether it is necessary for the pre-exposed
distractor to be task relevant (in the sense of its conjunctive
features having to be identified to discriminate the target)
for this effect to be observed, Experiment 2 had participants
perform the search task in parallel search mode. In this
case, the search is guided by bottom-up activations due
to the perceptual salience of the “pop-out” search target,
and it is not necessary to process the conjunctive features
of the distractors to locate the target (Theeuwes, 1994;
Yantis & Jonides, 1984). The effect of bottom-up activation
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peaks at an earlier time-window (∼ 120 ms after stimulus
onset; Dombrowe et al., 2010) than goal-driven activation
(which takes ∼ 190 ms to peak; Hickey et al., 2010).
Exploiting this difference in time-course, in Experiment 2,
we asked whether binding-learning is transferred when the
search process is driven bottom-up, that is, by a pop-
out target. The experimental design was the same as in
Experiment 1, except that a pop-out feature (size) was
added to one of the items in the search array. That is,
one item in the search display was always presented in a
larger size. The pop-out feature coincided with the target
in all target-present trials and was the “non-pre-exposed”
distractor in target-absent trials, meaning that the pop-
out feature never coincided with the pre-exposed item
throughout the training phase. Thus, participants could
successfully perform the task by selectively focusing on the
pop-out feature alone, through bottom-up activation. This
renders the pre-exposed distractor fully task-irrelevant. We
hypothesized that, if binding-learning were independent of
task relevance, then the results observed in Experiment 1
– transfer effects only in the high-variability group -
would be replicated. On the other hand, if binding-learning
reflected task-based plasticity, as proposed by Yashar and
Carrasco (2016), then no transfer of learning would occur in
either group.

Method

Participants

Twenty-four students from the Indian Institute of Technol-
ogy Gandhinagar participated in the experiment (mean age
= 21.41, SD = 2.99, three females). There was no overlap in
participants between Experiments 1 and 2.

Stimuli, procedure & design

The stimuli, procedure, and design were the same as Exper-
iment 1, except that one of the line segments in the search
array was thicker (the pop-out target). The width of the pop-
out line was 1.5 times the width of other lines in the display.
In target-present trials, the pop-out line was always the tar-
get. In target-absent trials, the pop-out line was a distractor
other than the test target.

Results

Sensitivity

The Group (high vs. low-variability) by Block (1, 2, 3,
4, 5) ANOVA revealed a significant main effect of Block,

F(4,88) = 15.14, p < 0.001, η2p = 0.41. Sensitivity improved
significantly across the blocks (Fig. 5). There was no
significant main effect of Group, p = 0.59. The Group by
Block interaction was also not significant, p = 0.84. A
significant reduction in sensitivity was observed in the test
block as compared to Block 4 in both the low-variability
(t(11) = 3.70, p = 0.003, r2 = 0.68) and the high-variability
(t(11) = 4.35, p = 0.001, r2 = 0.81) group. To test whether
variability affected search performance in the training
blocks, a 2 (high vs. low-variability) by 4 (Blocks: 1, 2, 3, 4)
ANOVA was performed. There was a main effect of Block,
F(3,66) = 10.18, p < 0.001, η2p = 0.32. No significant main
effect of Group (p = 0.52) or Group by Block interaction
was observed (p = 0.90). However, the linear fit did not
reveal a significant change in sensitivity across four training
blocks in both low (p = 0.06) and high-variability (p = 0.15)
groups (Fig. 6B).
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Fig. 5 Results of Experiment 2. Sensitivity and criterion as function
of blocks. Error bars show standard error. *p < 0.05
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Criterion

The Group (high vs. low-variability) by Block (1, 2,
3, 4, 5) ANOVA revealed a significant main effect of
variability, F(1,22) = 4.77, p = 0.04, η2p = 0.18, suggesting
that participants in the low-variability group were more
liberal in reporting a target to be present compared to
the high-variability group. There was also a significant
main effect of Block F(4,88) = 2.74, p = 0.03, η2p = 0.11
reflecting a general shift to a more liberal criterion as the
task progressed. The Group by Block interaction was not
significant (p = 0.51). No significant correlation was found
between criterion and d’, r(23) = 0.35, p = 0.09 (Fig. 5).

Reaction time

An ANOVA on RT showed that training reduced RT in both
groups, as reflected in a main effect of Block, F(4,88) =
15.93, p < 0.001, η2p = 0.42. No significant main effect of
Group (p = 0.65) or Group by Block interaction (p = 0.54)
was observed.

Transfer index

No significant transfer was observed in either the high-
variability (p = 0.49) or the low-variability group (p = 0.49).

Discussion

Experiment 2 employed a pop-out (parallel) search design
to probe whether binding-learning, and its modulation
by stimulus variability, could be obtained when the pre-
exposed test target is task-irrelevant, that is, when its
conjunctive features do not have to be processed at all
to discriminate the search target. As in Experiment 1,
search performance in the training phase improved across
blocks and was not modulated by the stimulus variability
manipulation. Crucially, in contrast to Experiment 1,
performance in the test phase was significantly lower than
the final block of the training phase for both high and high-
variability groups. In other words, no transfer was observed
in either group. Thus, in a pop-out search, the pre-exposure
of the test target does not influence the performance in
the test phase, regardless of variability. This result suggests
that binding-learning does not occur under conditions
where the pre-exposed conjunction is task-irrelevant, and
thus presumably unattended. This finding supports the
claim that binding-learning reflects task-based plasticity
and corroborates the distinction made between task-based
versus feature-based plasticity in the two-stage theory of
perceptual learning (Shibata, Sagi, & Watanabe, 2014).
Specifically, the trained stimuli have to be task relevant for
rapid perceptual learning of their feature conjunctions. In
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sum, the incidental learning of feature conjunctions requires
both task relevance and high stimulus variability, and is
absent when the pre-exposed conjunction is task-irrelevant
or exposed with little variability.

The failure to observe transfer of learning for task-
irrelevant conjunction could also be explained by the dif-
ference in the focus of attention between Experiments 1
and 2. In Experiment 1, some attention had to be paid
to the distractors in order to identify the target, whereas
in Experiment 2, attention was likely exclusively allocated
to the pop-out item (target or non-pre-exposed distractor).
This weaker attentional exposure of the pre-exposed distrac-
tors in Experiment 2 might have contributed to reducing the
efficiency of binding during training, as feature binding has
been shown to be more efficient when the focus of atten-
tion is limited to a single location as opposed to multiple
locations (Dowd & Golomb, 2019). However, explicit cue-
ing of attention (as in Dowd & Golomb, 2019) and implicit
learning of statistical regularity could have distinct effects
on perception. For instance, the transfer of attentional bias
to a secondary task and susceptibility to working mem-
ory interference are observed for explicitly cued attention
but not for implicitly cued attention (Salovich, Remington,
& Jiang, 2018; Vickery, Sussman, & Jiang, 2010). Further
investigation into the independent or interactive effects of
the explicit spatial cueing of attention and learning of statis-
tical regularity is necessary to build an integrative account
of feature binding.

The findings of Experiment 2 also suggest that the
(non-significant) difference in training phase performance
between high and low variability groups is not influencing
the pattern of transfer. In both Experiments 1 and 2, there
was a numerical performance difference between the groups
(high versus low variability) during training, specifically
a numerically lower performance for the high variability
group compared to low variability group (Experiment 1:
mean difference = 0.30; Experiment 2: mean difference =
0.20). In spite of this data pattern, Experiment 1 showed
a significant transfer effect in the high-variability group
whereas Experiment 2 did not. This suggests that the
non-significant differences in training performance are not
modulating transfer of learning.

General discussion

Prior research has shown transfer of learning for briefly pre-
sented feature conjunctions after a 40-min training session
(binding-learning; Yashar & Carrasco, 2016). This training-
induced enhancement in feature binding is proposed to be
independent of top-down attentional control. First, we tested
if stimulus variability, a key determinant of learning, mod-
ulates feature binding. Studies on diverse phenomena such

as motor skill learning (Schmidt, 1975; Schmidt & Bjork,
1992) and language acquisition (Banai & Amitay, 2015)
have shown that high-variability training enhances learning.
Consistent with these findings, we found transfer of learn-
ing when the trained feature conjunction had high-variability,
whereas learning did not transfer when the trained feature
conjunction had low-variability (Experiment 1). Second, we
delineated the boundary conditions of binding-learning by
showing that a certain degree of task relevance of the trained
stimulus is necessary for binding-learning (Experiment 2):
transfer occurs when distractors have to be identified to iso-
late the target (in conjunction search, Experiment 1), but not
when the target pops out (Experiment 2), such that distractor
features can be fully ignored.

Previous studies supporting attention-independence of
feature binding have primarily employed categorization of
naturalistic scenes and frequently encountered stimuli, such
as faces and vehicles (Reddy, Wilken, & Koch, 2004;
Reddy, Reddy, & Koch, 2006; Li, VanRullen, Koch, & Per-
ona, 2002). A major criticism of this line of evidence is
that the categorization task on familiar objects/scenes opens
up the possibility that participants could perform the cate-
gorization by detecting disjunctive sets of features without
complete identification (or binding). For instance, partic-
ipants can detect a tiger by detecting the stripes, which
are unique to tigers. Evans and Treisman (2005) tested this
possibility by hypothesizing that, if detection of an ani-
mal image in a briefly flashed stream of images (RSVP)
is driven by the detection of disjunctive sets of animal fea-
tures, then the presence of a human image in the stream
will make the task difficult, as humans and animals share
features. The authors reported that a distracting presence
of a human image reduced the detection accuracy, suggest-
ing that the rapid categorization of the familiar object is
driven by the detection of disjunctive features and not the
enhancement of feature conjunction (Evans & Treisman,
2005). However, detecting a disjunctive feature is not suf-
ficient for target detection in the present study, as most
distractors in the search display shared a feature (color or
orientation) with the target. Instead, the successful detec-
tion of the target in our task requires the binding of both
features. Thus, the change in detection sensitivity in the
present study does not reflect improved detection of a dis-
junctive feature, but an improvement in the conjunctive
representation.

Perceptual learningmechanism underlie feature
binding

The hypothesis that both stimulus variability and task
relevance are critical to visual perceptual learning was
drawn from the reverse hierarchy theory (RHT). Regarding
stimulus variability, RHTwould predict that high-variability
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training enhances perceptual learning in tasks that recruit
higher-level, association areas (Clopper & Pisoni, 2004),
whereas low-variability training would improve learning
when tasks recruit lower-level, feature specific areas
(Amitay, Hawkey, & Moore, 2005). Our prediction that
binding-learning would be expedited by high-variability
training was borne out by reports that conjunctive codes are
represented in the higher-level areas in the temporal cortex
(e.g., Cowell et al., 2017). Findings from Experiment 1
corroborate this RHT prediction that high-variability
training expedites learning, and demonstrate the modulatory
effect of stimulus variability on binding-learning. With
respect to task relevance, there is a lack of consensus in
the literature on whether this is a necessary condition for
transfer of (perceptual) learning (see Seitz & Watanabe,
2009, also see Huang et al., 2007). Shibata, Sagi,
and Watanabe (2014) attempted to reconcile conflicting
proposals about the influence of task relevance in perceptual
learning by proposing that learning that involves changes
to higher-level areas necessitates task relevance of the
trained stimulus, whereas learning that involves low-
level areas can progress even when the stimulus is
task-irrelevant. Critically, this model would predict that
feature binding, which recruits higher-order areas, would
necessitate task relevance. Consistent with this proposed
dissociation, we show that task relevance of the trained
stimuli is necessary for binding-learning. Taken together,
our findings corroborate the idea that feature binding
underlies integration of features into object representation
through the principles of perceptual learning.

Prior studies that demonstrated “ultra-rapid” object
categorization in briefly presented stimuli have suggested
that attention-independent detection is limited to naturalistic
images and familiar real-world objects, and the detection of
arbitrary stimuli is impaired under attentionally-demanding
dual-task conditions (Li et al., 2002). However, we
observed an increase in visual sensitivity to arbitrary (color-
orientation) conjunctions over only four blocks of training;
thus, learning emerged within a relatively short training
session (30 min). Regression analysis showed that this
increase in sensitivity was significant in Experiment 1 and
was observed in both low and low-variability groups. In
Experiment 2, where the target was always defined by
a pop-out feature, the improvement in sensitivity during
training did not reach significance. However, this is likely
due to the fact that search performance reached asymptotic
levels very early into the task. Taken together, these
results suggest that even arbitrary conjunctions, through
sufficient exposure, can be bound without strongly focused
attention. This learning-based improvement, however, is not
independent of the focus of attention - which enhances
feature binding in novel contexts. Furthermore, the failure to
observe binding learning in Experiment 2, where there was

a relatively weaker focus of attention on the pre-exposed
distractors, suggests that spatial focus of attention interacts
with binding learning.

There are two possible alternative explanations for the
improvement in sensitivity we observe. First, the improve-
ment could reflect task familiarity or generic practice
effects; second, the perceptual learning could be feature-
specific rather than binding learning.With respect to general
task practice, we believe that this is unlikely to have driven
results, because participants performed 100 practice trials
where the search items (lines) were presented in black and
white. We would thus expect non-feature-specific perfor-
mance improvement due to practice at line orientation judg-
ments to have saturated by the end of this practice session.
The second possibility of whether performance improve-
ments in the present paradigm reflect feature-specific learn-
ing was addressed in Yashar and Carrasco (2016). These
authors hypothesized that, if learning were feature-specific,
then transfer of learning should be observed both when the
pre-exposed item coincided with the test target in a single
dimension (color or orientation) or both dimension (color
and orientation). Alternatively, if learning were conjunction-
specific, transfer of learning should be observed only when
the pre-exposed item coincided with the test target in both
dimension. That study observed transfer of learning only
when the pre-exposed item coincided with test target in both
dimension and not when it coincided with single feature,
corroborating the hypothesis that leaning was conjunction-
specific (binding learning). In sum, findings of present
study and Yashar and Carrasco (2016) study suggests that
learning observed in the present paradigm reflects bind-
ing learning and not general performance improvement or
feature-specific perceptual learning.

The proposal that perceptual learning mechanisms under-
lie feature integration is consistent with the findings of
Humphreys and colleagues (Anderson & Humphreys, 2015;
Rappaport, Humphreys, & Riddoch, 2013; Rappaport, Rid-
doch, Chechlacz, & Humphreys, 2016; Wildegger, Riddoch,
& Humphreys, 2015), who in a series of studies doc-
umented familiarity-based facilitation in feature binding.
These authors showed that detection of feature conjunc-
tions that are more likely to be encountered in real life
is faster and more efficient than less probable conjunc-
tions. For instance, object identification is improved when
it is presented in its diagnostic color (e.g., yellow corn
versus purple corn). Based on these findings, it was pro-
posed that the facilitatory effect of familiarity on feature
binding is driven by experience-dependent Bayesian inte-
gration of constituent features into conjunctive codes. The
present study extends this idea by showing that two key fac-
tors that are known to drive perceptual learning, stimulus
variability and task relevance, modulate the learning-based
improvement in feature binding.
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Binding-learning reflects unitization, not re-entrant
consolidation

There are two contrasting hypotheses on the mechanism
underlying object learning. One view is that training leads
to the formation of conjunction/category-specific functional
units that are independent of top-down, re-entrant process-
ing (unitization hypothesis; Goldstone, 1998). According
to this view, the training-induced plasticity is restricted to
category-specific areas, such as the Fusiform Face Area
(FFA), and the “non-specific” parietal association cortex does
not affect post-training performance. In line with this view,
it has been shown that disruption (by TMS) of parietal cor-
tex impairs performance in a conjunction search only when
applied during training, and not once perceptual learning
had taken place (Lobley & Walsh, 1998). This suggests that
although parietal cortex, implicated in top-down attentional
feature weighting (Egner et al., 2008), is necessary during
the training phase, post-training performance is determined
by the training-induced plasticity at category-specific areas.
A recent neuroimaging study also showed that familiar con-
junctions are unitized in the posterior ventral visual stream
(Liang, Erez, Zhang, Cusack, & Barense, 2020).

The alternative view is that training-induced plastic-
ity is specific to early, feature-specific areas, and that
the learning-based improvement in a conjunction search
task reflects the consolidation by top-down re-entrant pro-
cessing through the mechanism of feature-based atten-
tion (attentional-enhancement hypothesis; Andersen et al.,
2008). Su et al. (2014) attempted to pit the unitization
account against the attentional-enhancement account by
hypothesizing that, if perceptual learning in conjunction
search tasks reflects feature-based attentional enhancement,
then learning should transfer to a target that shares at
least one feature from the trained conjunction (e.g., train-
ing target—right-tilted red line; test target—left-tilted red
line). On the other hand, if unitization underlies training-
induced plasticity, then the learning should not transfer if
the target shares only one feature with the trained conjunc-
tion, as unitization is specific to the trained conjunction.
Consistent with the attentional-enhancement hypothesis, Su
et al. (2014) observed transfer only when the target in the
test phase matched the training target in at least one dimen-
sion (color or orientation), but not when both the features
changed. Accordingly, the authors argued that perceptual
learning in a conjunction search leads to feature-based
attentional enhancement of a specific dimension (color,
orientation, shape) rather than of the conjunction/object.

This contrasts with the findings in Experiment 1 (as
well as those of Yashar and Carrasco, 2016), where
transfer was observed when both features of the conjunction
were switched. However, there are two simple but critical
differences between Su et al. (2014) and our design. First,

we pre-exposed the test target (as a distractor) during
training, whereas Su et al. (2014) did not pre-expose the
test target. Second, the search display was presented for
300 ms in Su et al. (2014)’s experiment, which would have
allowed feature-based attention to influence performance,
whereas search displays in our experiment lasted only
117 ms, thus precluding top-down shifts of attention. Our
results suggest that learning can transfer even when both
features of the conjunction are changed, as long as the
test target is pre-exposed as a distractor, and the search
display is short enough to restrict feature-based attentional
processes. The difference between the present findings and
Su et al. (2014)’s findings can thus be reconciled by a
dual-process account of feature binding. That is, the feature-
specific transfer observed by Su et al. (2014) could be
determined by later-stage binding, as the duration of the
search display enabled top-down, re-entrant processing to
influence performance. On the other hand, our results are
likely determined by an earlier stage that is not dependent
on re-entrant processing. Additionally, we also would not
expect binding-learning to transfer if the search display is
presented for more than 200 ms, as under those conditions
the attentional mechanism of distractor suppression might
hinder the formation of the conjunctive unit (Andersen &
Müller, 2010).

We interpret the improvement in target detection sensitiv-
ity in our study to reflect the formation of conjunctive cod-
ing that facilitates detection. Furthermore, this fast binding
of features is independent of top-down attentional control
and could underlie segmentation and integration of features
during the initial feed forward sweep (VanRullen, 2007).
However, findings from Experiment 2 seem to contradict
the claim that binding-learning in brief stimulus displays is
independent of top-down attentional processing.

Goal-driven versus habitual attention

The failure to observe transfer of learning when the pre-
exposed conjunction was task-irrelevant (i.e., in pop-out
search, Experiment 2) could suggest that some degree
of top-down (re-entrant) processing is influencing feature
binding even during very brief stimulus presentation. This
possibility stems from the traditional two-stage conception
of information processing, where re-entrant processing is
characterized in terms of the single-trial time-course of
stimulus processing (Braet & Humphreys, 2009). That is,
at longer stimulus durations, re-entrant attentional control
is assumed to influence perception, whereas at shorter
stimulus duration, it is not. Similar arguments have also
been put forward in favor of the dissociation between
bottom-up and top-down attentional control (for a review,
see Carrasco, 2011). According to this view, re-entrant
processing is characterized within the narrow definition of
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goal-driven attention. On the other hand, in the perceptual
learning literature, re-entrant processing is defined in terms
of the task relevance of the trained stimulus (Ahissar
& Hochstein, 1993; for an opposing view, see Seitz &
Watanabe, 2009), which is mechanistically different from
goal-driven attention (Paffen, Gayet, Heilbron, & Van der
Stigchel, 2018). Our finding that task relevance is necessary
for binding-learning in very brief search displays suggests
that attention-dependence cannot be inferred based on
differences in the time-course of stimulus presentation. This
suggests that a dichotomous classification of feature binding
processes into hardwired and on-demand processing as
proposed in the dual-process account (VanRullen, 2009,
also see Humphreys, 2001) is untenable. However, some
recent reports (see below) have provided an alternative
account of attention based on studies that show statistical
learning effects on attentional tuning.

The alternative characterization of attention, referred to
as habitual attention (see Jiang, 2018) or as reflecting effects
of “selection history” (Awh, Belopolsky, & Theeuwes,
2012), attempts to move our conceptualization of attention
beyond traditional dichotomies (Awh et al., 2012; Jiang,
2018; see also Egner, 2014), such as the one proposed
in the dual-process account of binding. Habitual attention
is driven by the incidental learning of the probabilistic
associations in the environment. Evidence supporting habit-
ual attention have primarily been restricted to mechanisms
such distractor suppression (Wang & Theeuwes, 2018a;
2018b), target activation (Geng & Behrmann, 2006) and
covert orienting (Jiang, Swallow, & Rosenbaum, 2013). In
the present study, we demonstrate that altering the statistical
relationship between dimensions influences feature binding—
a phenomenon that is traditionally thought to be functionally
achieved by focused attention (Treisman, 1998).

Conclusions

In sum, the present study aimed to ground feature binding
in the principles of perceptual learning. We demonstrate
that feature binding, traditionally thought to require focused
attention, can happen with relatively little attention and
improve with experience. The formation of this type of
habitual feature binding is mediated by a variability-
dependent learning mechanism that forms higher-order
conjunctive representations, which subsequently aid object
detection. Our findings support the claim that some form
of feature binding happens during the initial feedforward
sweep of sensory processing and is independent of
re-entrant processing (VanRullen, 2007). Furthermore,
variability-dependent learning might also underlie the
perceptual dominance enjoyed by familiar categories such
as faces and vehicles. Our finding that feature binding is

determined by principles of perceptual learning calls for
future inquiries on how other traditional effects of attention
are determined by principles of perceptual learning.
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