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Abstract
Data compression in memory is a cognitive process allowing participants to cope with complexity to reduce information load.
However, previous studies have not yet considered the hypothesis that this process could also lead to over-simplifying informa-
tion due to haphazard amplification of the compression process itself. For instance, we could expect that the over-regularized
features of a visual scene could produce false recognition of patterns, not because of storage capacity limits but because of an
errant compression process. To prompt memory compression in our participants, we used multielement visual displays for which
the underlying information varied in compressibility. The compressibility of our material could vary depending on the number of
common features between the multi-dimensional objects in the displays. We measured both accuracy and response times by
probing memory representations with probes that we hypothesized could modify the participants’ representations. We confirm
that more compressible information facilitates performance, but a more novel finding is that compression can produce both
typical memory errors and lengthened response times. Our findings provide clearer evidence of the forms of compression that
participants carry out.
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Introduction

Working memory is known to be limited in both the amount
of detail that can be retained in a visual scene (Bays et al.,
2009; Brady&Alvarez, 2015;Ma et al., 2014; Schurgin et al.,
2020) and the total number of objects that can be recalled
regardless of how these objects can be detailed (Cowan,
2001; Luck & Vogel, 1997; Zhang & Luck, 2008). These
two types of limitation are generally predicted by competing
models such as those based on shared-resource or discrete-
slots, respectively (Bays & Husain, 2008; Rouder et al.,
2008). However, the memory benefit caused by shared fea-
tures in visual working memory does not seem to be
accounted for easily by these two main classes of working
memory models (Quinlan & Cohen, 2012), and other studies
have shown that both types of limitations should be accounted

for concurrently to fit data (Awh et al., 2007; Cowan et al.,
2013; Hardman & Cowan, 2015; Oberauer & Eichenberger,
2013; Xu & Chun, 2006). An approach taken in the present
study is to consider that models of capacity limits should bet-
ter account for how shared features are processed in working
memory, in particular when those features allow some room to
be preserved in memory.

There are a few known factors that can help individuals
recode information in a more efficient way, in particular when
the visual scenes offer the possibility of associating features
with one another during the task at hand (Gao et al., 2016;
Jiang et al., 2000, 2004; Peterson & Berryhill, 2013;
Woodman et al., 2003). For instance, the phenomenon of
binding has been shown to allow objects to be integrated
based on multiple features (Alvarez & Cavanagh, 2004;
Bays et al., 2011; Fougnie & Alvarez, 2011; Saiki, 2019;
Wheeler & Treisman, 2002; Xu, 2002). In the case of binding,
let’s imagine that one participant is presented with an array of
four novel objects eachmade of three features, thus totaling 12
different features. Being able to recognize one of the multi-
feature objects does not mean that the participant would be
able to recall precisely the three constituent features of each
object. With a working memory capacity of four items, for
instance, one could encode just two features of two different
objects, or any other combinations such as three features for
one object and only one feature for another object, but always
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totaling four features. In this case, a capacity of four items
does not allow a given individual to retain the 12 features of
the whole scene. However, multi-feature objects can be better
memorized when features occur repeatedly over time and can
be recoded as chunks. Once formed in long-term memory,
those chunks can allow participants to hold a greater amount
of information in working memory (Brady et al., 2009; Ngiam
et al., 2019; Orbán et al., 2008). Provided that each multi-
feature object chunk counts as one item, a participant with a
capacity limit of four items could therefore perfectly recall an
array of four recognized objects, each made of three features,
thus recalling 12 different features.

In other cases, objects are not necessarily already encoded
in long-term memory. For instance, previous studies have
shown that bottom-up stimulus characteristics (e.g., Gestalt
cues) can help participants group information to better recall
stimulus items in visual scenes (Woodman et al., 2003). This
is for instance the case with spatial information (De Lillo,
2004; Dry et al., 2012; Feldman, 1999; Haladjian & Mathy,
2015; Korjoukov et al., 2012; Sargent et al., 2010). Capacity
in working memory can also be easily exceeded by perceptual
organization when items share the same colors in a visual
scene (Brady & Tenenbaum, 2013). Morey et al. (2015), for
instance, showed that there is an advantage for singletons in
displays containing repetitions (compared to displays contain-
ing no repetitions). Their interpretation was that grouping of
repeated colors on the spot can leave room in working mem-
ory. One explanation of how grouping or chunking functions
is that compression of information could be at work whenever
room is being preserved in memory, particularly when indi-
viduals can find a way to efficiently recode information
(Brady et al., 2009).

The compression account

Compression of information involves recoding informa-
tion into a more compact form. Although there is a con-
troversy regarding whether visual working memory ca-
pacity is fixed regardless of information content
(Alvarez & Cavanagh, 2004; Awh et al., 2007), the com-
pression account predicts that storage is particularly effi-
cient when information contains regularities. During the
last decade, compression has been put forward to account
for intelligence (Chekaf et al., 2018; Hutter, 2004), mem-
ory (Brady et al., 2009; Chekaf et al., 2016; Mathy &
Feldman, 2012), language (Christiansen & Chater, 2016;
Ferrer-i-Cancho et al., 2013; Kirby et al., 2015), and per-
ception (Haladjian & Mathy, 2015; Nassar et al., 2018;
Ramzaoui & Mathy, 2021) . Compression is an
information-theoretic concept based on algorithmic com-
plexity. Algorithmic complexity corresponds to the
shortest possible representation of an object (Li &

Vitányi, 2008). The gain offered by the shortest represen-
tation of an object (in comparison to the length of the
original object) allows one to estimate the compressibility
of the given object. Regarding the computational aspects
of the theory, the shortest representation usually takes the
form of the shortest program in a Turing machine.
Although it is not computable (because one can never
know whether maximal compression has been reached
by a given recoding process), estimates can be obtained,
see http://www.complexitycalculator (Gauvrit et al., 2016;
Soler-Toscano et al., 2014). However, because different
languages can be used interchangeably in place of
Turing machines, indirect approaches can be taken by
developing more practical metrics in a given domain.
For instance, a compressibility metric has been developed
in categorization to describe multi-feature objects
(Feldman, 2003), and this metric (or very similar ones,
see Kemp, 2012; Vigo, 2006) have proven useful to ac-
count for subjective complexity during learning
(Bradmetz & Mathy, 2008; Feldman, 2000; Lafond et al.
, 2007; Mathy & Bradmetz, 2004), so we decided to use
this practical implementation in the present study to build
our visual displays. The next section presents the metric
and introduces the idea that a compression process can
include pitfalls as well as benefits.

The good and bad aspects of compression
in working memory

To better understand how compression functions in work-
ing memory more globally, both advantages (optimization
of information) and disadvantages (loss of information)
should be studied together. Although the present work
involves arrays of multifeatured objects to be recognized,
for the sake of easy visualization we first present the over-
compression idea in the context of sequential stimuli. For
instance, if participants make use of a compression pro-
cess to recode information, capacity should be increased
in situations where patterns exist (for instance, for
retaining a display set such as ■☐■☐ sequentially as
shown, as the compact description "2■☐"). This descrip-
tion would be sufficient to recognize the same sequence
reproduced as a probe display or reject a sequence in
which something has changed from the studied sequence.
However, the putative compression process could also
lead to specific errors when patterns are badly (or overly)
compressed. If a participant studied the display set ■☐♦☐
it might be recoded as the rule: "2■☐, but rotate second
dark square.” However, the qualification about rotating
the second dark square could be lost from working mem-
ory, so, if the test display were ■☐■☐, the participant
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would incorrectly find a perfect match to the now over-
compressed or lossy representation 2■☐.

We presume that a poorly managed compression process
could distort perceptual organization instead of producing
benefits. The above-mentioned studies have mostly insisted
on the benefits of compressibility. Our hypothesis in the pres-
ent study is that compression in working memory could also
be detrimental to the recall process. The reason is that we can
expect the memory content to be over-simplified if memori-
zation is driven by a compression process that seeks to reduce
information load. Also, simplification errors should depend on
compressibility levels, as less random errors should be expect-
ed when stimulus sets are more structured. We should thus
expect a greater number of compression errors with greater
compressibility.

Our stimulus displays were made of objects comprising
a variable number of conjunctions of features, to manip-
ulate the complexity of the display. Complexity was ma-
nipulated to allow recoding of information based on the
compressibility metric defined by Feldman (2003), which
is adapted to Boolean dimensions (i.e., dimensions made
of two discrete features). Feldman (2003) described com-
plexity by using spatial dimensions represented by hyper-
cubes, also as Hasse diagrams. A hypercube is just an
extension of a square representing four two-dimensional
objects or a cube representing eight three-dimensional ob-
jects. These diagrams are useful to represent the similari-
ties between objects. In a cube, two objects related by an
edge share only one feature. The number of edges that
one needs to follow to join two objects represent the num-
ber of dissimilarities between two objects. A four-
dimensional hypercube represents two joined three-
dimensional cubes, so one needs to follow three edges
and then switch cubes to find the object differing in four
features from one object. By representing the locations of
some objects using black dots in a hypercube allows one
to represent the relational structure between objects.
Figure 1 shows the similarity structure of the stimulus
items (both with and without the probe) for each of our
experimental conditions. To represent how this similarity
structure can be best represented using a minimal number
of features, the compressibility metric of Feldman is
based on the minimal disjunctive normal forms corre-
sponding to the selected features for a given structure in
a hypercube (Table 1). In Fig. 1 the complexity number
indicates the minimal number of features that describe the
chosen subset of stimuli, the stimuli are marked with a dot
in each of the hypercubes, and the structure column al-
ways contains a new dot in the hypercube, which repre-
sents the chosen probe. For instance, the hypercube in the
first row and third column of Fig. 1 can be summarized by
the spatial rule “any object that is on the left and at the
bottom.” When using the reference set of features at the

top of Fig. 1, this spatial rule corresponds to the feature
rule “any object that has a left-disc and that is square.”
Because the rule mentions two literals (i.e., the two fea-
tures just mentioned), the complexity of the rule sums to
2. Another example is the hypercube in the first row and
first column of Fig. 1 can be summarized by the spatial
rule “any object on the left and at the bottom (except the
object in the back of the right-cube).” Because the rule
mentions four literals (i.e., the four traits just written in
italics), the complexity of the rule sums to 4. Using the
specific dimensions we used in our experiment, the rule
would be exemplified as: “any object that is on the left-
disc and square (except the hatched and red one)” (but
note that the experiment actually used rotations of the
dimensions, so the features for a given trial would be
randomized, although obeying the specific structure).
One more complex example would be the last row of
the first column, summarized by “any object on the left
and at the bottom (either on the front of the left-cube or at
the back of the right-cube), plus the object on the top
right corner on the front of the right-cube.” The sum of
the traits in italics is here 10. One implementation would
be: “square with left-disc (either the plain and blue or the
red and hatched), plus the plain red circle with a right-
disc.”

In the present study we aimed at predicting accuracy and
response times (RTs) in a comprehensive way as a function of
stimulus-set complexity. Our experiments allowed us to study
memory for diverse study sets of three objects presented si-
multaneously, followed by a test object that participants were
asked to categorize as new (absent from the array) or old
(present in the array), as exemplified in Fig. 2. Our general
method consisted of displaying arrays of three objects that
were designed to allow associations to be formed. The objects
were four-dimensional stimuli varying in shape, color, texture
(plain vs. hatched), and direction of a white dot within the
shape (left vs. right).

This method allowed us to study how introduction of a
lure could modify the participants’ representation.
Consider, for example, the array to be studied in Fig. 2.
Given that two of three discs appear on the left of the
objects (i.e., for the two squares), an over-compressed rep-
resentation might include the disc on the left in all three
object representations. In that case, a probe item that was a
blue circle with the disc on the left would be incorrectly
judged to be present in the array. As another example
based on Fig. 2, the probe item shown – a red circle with
the disc on the right – could be incorrectly identified based
on an over-regularized representation in which blue was
assigned to all squares, and red to all circles. However,
the latter representation is less plausible than the former
because both “red” and “dot on the right” are statistically
under-represented in the study display. By studying
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various conditions similar to this example, we discuss the
advantage of the present method, which we believe goes
beyond previous research that mostly focused on the ben-
efits of compression processes. Also, the present study
goes a step further by investigating how both errors and
RTs could result from the putative compression process.

Experiment 1

Overview

The aim of Experiment 1 was to study immediate memory for
visual scenes made of arrays of three multi-dimensional ob-
jects presented simultaneously. Each array was followed by a
probe and the task consisted of deciding as quickly as possible
whether the probe was new or old. The design for a given trial
is exemplified in Fig. 2. Based on a compressibility metric we
develop in this section, our goal was to assess the quality of
the participants’ representations using probes that, depending
on the conditions, could completely or partially match the
three stimulus objects of the memory array. We recorded
RTs and accuracy to measure the effect of the compressibility
of the memory sets. Interestingly, our method also consisted
of characterizing the effect of the probe interacting with the
memory set, by describing whether introduction of the probe
could fool the participants. The to-be-tested idea was that the

participants’ representations could be prone to be modified
upon introduction of the probe.

Method

Participants

Thirty French participants (Mage = 31.8 years; SD = 10.6)
volunteered to take part in the experiment. The sample includ-
ed 24 females and six males, having completed between 0 and
8 years of higher education. The experiment was approved by
the local ethics committee (CERNI) of the Université Côte
d'Azur and the experiment was conducted with the informed
consent of the participants. To estimate our minimal sample
size, we referred to the study by Feldman (2000) in which 45
subjects were asked to memorize similar sets of three four-
dimensional Boolean objects. Feldman achieved sufficient
power to show a relationship between complexity and propor-
tion of correct recall (R2 = .37; a similar positive relationship
was shown with three three-dimensional objects using 22 par-
ticipants, R2 = .98). In the study by Feldman though, the par-
ticipants had to observe for 20 s the 16 four-dimensional ob-
jects (the four to-be-memorized objects called “positive exam-
ples” appeared in the upper half and all other objects appeared
in the lower half). The participants were then asked to catego-
rize all 16 objects presented randomly as positive or negative
during a block called the “categorization task.” This

Table 1 Minimal formulae for conditions used in Experiment 1 and
Experiment 2 based on the catalog of Feldman (2003). For instance, the
features a-a’, b-b’, c-c’, and d-d’ represent the features Blue-Red, Square-

Circle, Plain-Hatched, and Left-disc-Right-disc, respectively, as shown in
Fig. 1. Correspondence between letters and features was randomly
assigned in each trial

IFS
Code

Initial
complexity

Minimal formula Final
complexity

Minimal formula Change in
complexity

Sum of shared
features

Exp.

4-2-8 4 a’b’(cd)’ 2 a’b’ -2 8 2

4-7-7 7 a’(b’(cd)’+bc’d’) +3 7 2

4-8-2 8 a’b’(cd)’+abcd +4 2 1

4-8-4 8 a’b’(cd)’+abc’d’ +4 4 1 and 2

6-5-9 6 a’(b’c’+bcd’) 5 a’(bc+b’c’) -1 9 2

6-6-4 6 bcd’+a’b’c’ 0 4 1

6-9-3 9 bc(a’d’+ad)+a’b’c’ +3 3 1 and 2

6-9-5 9 cd’(a’b+ab’)+a’b’c’ +3 5 1

6-10-4 10 a’(b’c’+bcd’)+ab’cd +4 4 1 and 2

7-6-4 7 a’b’c’+abcd’ 6 abc+a’b’c’ -1 4 1

10-8-4 10 a’b’(c’d’ + cd)+
abc’d’

8 (c’d’+cd)(ab+a’b’) -2 4 1 and 2

10-12-4 10 a’b’(c’d’+cd)abc’d 12 ab(c’d+cd’)+a’b’(c’d’+
cd)

+2 4 1 and 2

Note. IFS = Initial-Final-Sum of shared features. All conditions are displayed visually in the Online Supplementary Material
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Fig. 1 Initial structures and complexity estimates, with and without the
probe. Change in Complexity corresponds to the evolution of the
complexity between Initial structure and Final structure. The sum of

shared features represents the number of features that a probe (lure) shares
with the stimuli of the initial set
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categorization task seemed more demanding than our memo-
rization task, so we estimated roughly that a sample of 30
subjects would at least allow us to observe the Initial com-
plexity effect.

Dimensionality and compressibility of stimulus sets

The task was created using the Python library PsychoPy
(Peirce, 2007). The four-dimensional stimuli of Kibbe and
Kowler (2011) were used to draw the individual stimulus
items based on different shapes (circle vs. square), color (blue
vs. red), texture (plain vs. hatched), and disc position (left vs.
right).

The combinations of features allowed the construction of
16 possible objects. We used these stimuli because our exper-
iment required four-dimensional stimuli not varying in size in
order to have equal distances between stimuli. Also, we chose
to use displays of three objects, because this cardinality facil-
itated equalization of distances within arrays; all objects were
equidistant in the array, as they were arranged as points of an
equilateral triangle. Each trial used three different objects
shown simultaneously on a single display on a white back-
ground (Fig. 2). Table 1 shows all of the combinations that
were used in the task to generate the trials, based on the com-
plexity of the display structure and the complexity of the
structure including the probe. Following introduction of the
probe, our manipulation made the complexity of the four
items altogether (i.e., the three stimuli plus the probe) increase,
decrease, or stay constant.

The second column of Fig. 1 indicates the complexity of
the initial set displayed in the first column (in the first column,
the chosen stimuli are marked with a dot in each of the hyper-
cubes). For instance, the last stimulus set has a complexity of
10 because ten features are necessary to minimally describe

the entire set. The third column indicates the complexity of the
final stimulus set (initial set to which we added the probe/
lure). For instance, the last stimulus case of the table has a
complexity of 12 because the entire set of four stimuli is not
easily compressible, and in that case the adjunction of the
probe makes the entire structure more complex than the initial
structure of the three stimuli. The last column of Fig. 1 also
indicates the sum of shared features between the initial struc-
ture and a lure. For instance, the sum of shared features is
easily visible in Fig. 3a where there are only two shared fea-
tures between the initial structure on the left and the probe on
the right (the feature red, and the feature hatched). In Fig. 3b,
there are, however, four shared features between the initial
structure on the left and the probe on the right. The number
of shared features served as a way to double the number of
observations for each case of interest, by taking advantage of
all of the possible variations that were allowed.

The reason why we restricted the choice of structures and
probes was to manipulate two independent variables indepen-
dently. We used a total of nine possible structures listed in
Table 1. Each case was numbered using the values described
in Fig. 1 for each variable, using a triplet for the three respec-
tive measures (initial complexity, final complexity, and sum
of shared features). For instance, in Fig. 3a and Fig. 3b, the
structures are, respectively, 4-8-2 and 10-8-4. The structures
4-8-2, 4-8-4, 6-6-4, 6-9-3, 6-9-5, 6-10-4, 7-6-4, 10-8-4, 10-12-
4 are shown in Fig. 1 and recapitulated in Table 1. The number
of features between the initial set and the probe was consid-
ered a control variable.

The combinations of different initial structures and differ-
ent probes allowed us to generate two main independent var-
iables: (1) Initial/display set complexity (inversely corre-
sponding to the compressibility of the display set), (2)
Change between Initial Set Complexity and Final set com-
plexity (inversely corresponding to the compressibility of the
stimuli of the display set and the probe combined). For in-
stance, in Fig. 3a, the initial structure presents a complexity
of 4, while the final structure presenting a complexity of 8 led
to an increase of four points in complexity (Change = 4). Also,
note because that there are two features in common between
the initial structure and the probe in the case of Fig. 3a, we
code this case using the triplet 4-8-2 (corresponding to, re-
spectively, Initial Set Complexity, Final set complexity, and
Number of shared features between the initial set and the
probe). Another example is 10-8-4, in which the change in
complexity is equal to 8 − 10 = −2, which reflects the idea
that the probe can decrease the complexity of the initial
structure.

Two predictions follow from the two main factors Initial
Complexity and Change in Complexity:

1) A low complexity of the initial set was hypothesized to
account for greater memory performance in general (bothFig. 2 Timeline of a single trial in the main experiment
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change and no-change trials can be performedmore easily
when the initial set can be potentially compressed, with
faster response times considering that a more compressed
representation could be rapidly decompressed); converse-
ly, performance was expected to be lower when the com-
plexity of the initial set is higher (as participants cannot
find a way to simplify information, information load is
higher, and decompression time takes longer).

2) Introduction of the probe (i.e., a fourth element) should
interact with the initial set of three objects. In particular,
the probe was hypothesized to deceive the participant
when the complexity (of the four elements taken together)
decreases in comparison to that of the initial set (i.e., a
negative Change) because the probe fitted well to the
display set; conversely, it was hypothesized that the par-
ticipant would better detect a change trial when the com-
plexity increases because an increase of complexity as-
sumed a very different probe from the display set. This
second less intuitive prediction is still based on the com-
pression account: participants can be deceived by a lure if
they over-compress information. One simple example
would be a presentation of three colored squares (white,
dark grey, black): if not correctly encoded (for instance
based on a lossy compression such as “all squares” or
“squares from white to dark”), the participant would have
a greater chance to falsely recognize a light grey square,

but probably not a circle that would involve a larger mod-
ification of complexity. We thus expected that a high
increase in complexity due to introduction of the probe
would have a greater chance of not fitting a compressed or
over-compressed representation. The factor Number-of-
shared-features was not of direct interest in the present
study and it was only thought to better generalize our
results. To elaborate on an example based on our material,
let us presume a participant can have trouble encoding the
display set (three first items only) in Fig. 3a as “anything
that is not-right-disc and not-circle (but not hatched and
red in the same time).”Note that it should be assumed that
the participants are not expected to encode the set more
minimally such as using the description “not-right-disc
and not-circle” (or “square and left-disc”) because they
are instructed to perform successive trials in which all
eight potential features can be a determinant for a correct
response. Taking into account this constraint, when trying
to optimize the storage process using the available com-
pressibility, the participant could encode the stimulus set
as “square and left-disc” and leave out the exception. In
that case, the introduction of the probe square with red
hatching would satisfy the over-compressed representa-
tion. A false alarm could therefore be committed when the
participant is required to decide whether the probe was
present or not in the original stimulus set. When the probe

Fig. 3 Sample of initial sets (stimulus triplet on the left side) and probes
(singleton stimulus on the right side). (a) The initial structure presents a
complexity of 4, while the final structure presents a complexity of 8.
There are two features in common between the initial structure and the

probe. This case is coded 4-8-2. (b) Second case: The initial structure
presents a complexity of 10, while the final structure presents a
complexity of 8. There are four features in common between the initial
structure and the probe. We therefore coded this case 10-8-4
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corresponds to one of the three displayed objects, the
probability of an omission would be very low based on
the over-compressed participant's representation.
However, if the probe was a circle, the three squares of
Fig. 3a mixed with the circle would not produce a new
cohesive ensemble. The complexity of the new ensemble
would not fit the one of the initial set of three stimuli, so
rejection of the probe would be facilitated.

Procedure

Participants sat approximately 60 cm from the computer
screen. Participants were required to enter their response for
each trial using two keys of a numeric keypad (keys 4 and 6)
depending on whether they judged the probe had been previ-
ously presented in the stimulus display or not. After receiving
a series of basic instructions to complete the task, participants
started the experiment with a series of 15 trials as a warmup,
including feedback. Next, the participants were administered
540 trials with no feedback. Within each of the nine experi-
mental structures, the probe in the no-change trials
corresponded to one of the three previously presented objects
for 30 trials. There were 30 other change trials with the probe
(i.e., a lure) absent from the stimulus display. Participants
could take a quick break after the first 200 trials, and after
400 trials. The 540 trials were permuted for each participant.

Each trial began with a 2,000-ms fixation cross followed by
a 500-ms blank screen (white). The stimulus displays then
appeared for 1,000 ms, followed by a second 500-ms blank
screen (white). Note that the stimulus display was not follow-
ed by a random mask to allow maximal encoding of the stim-
uli. Then, the probe was shown for 300 ms before a final blank
screen (white) that allowed sufficient time for participants to
enter their responses (see Fig. 2). The next trial was initiated
automatically by the program. We measured the number of
hits (i.e., the participant recognized the probe as one of the
stimulus items of the stimulus display), false alarms (FAs),
omissions, and correct rejects (CRs) and RTs.

Results

The present analysis focuses on two aspects of participants'
performance. For each of the following predictions, we ran a
linear mixed-effects model using participants as a random
variable and allowing different intercepts and slopes across
participants (see Brown, 2020; Singmann & Kellen, 2019).
Each model used only one dependent variable per analysis,
either drift rates or FA rates. Drift rates allowed us to combine
the proportion of correct responses, mean correct RTs, and
their variance. Drift rates is a parameter of the diffusion model
(Ratcliff, 1978) that has been developed for speeded binary
decision processes. This parameter generally described as one

of the most relevant of the model allows one to describe how
fast the decision reaches one of two optional responses. Drift
rates allowed obtaining an overview of correct performance,
instead of using the three dependent variable hit rates, hit RTs,
and correct rejection RTs (see Online Supplementary Material
(OSM), which provides the details for these variables).
Because our data set is rather small and we used a two-
alternative forced-choice task (and to avoid the complex
parameter-fitting procedure of the original Ratcliff diffusion
model), drift rates were estimated at a macroscopic level using
the EZ diffusion model (Wagenmakers et al., 2007) and were
calculated using the R package EZ2. Beforehand, we checked
that RTs were right-skewed, that skewness was more pro-
nounced with increasing complexity, that RTs were compara-
ble for each type of response (correct and incorrect), and that
RTs were comparable for all incorrect responses through sub-
jects and conditions.

Initial Complexity and Change of Complexity were con-
sidered the main independent, manipulated factors. We also
used the number of shared features between the probes and the
display set as a covariate to better control for similarity effects.
We also computed interactions between factors to refine our
analyses but we made sure our models were not overly com-
plex by providing values of the Akaike Information Criterion
(AIC; see Akaike, 1987), which offers a trade-off between the
goodness of fit of the model and its simplicity.

Firstly, we posited that higher complexity of the initial set
should account for lower memory performance. We thus ex-
pected lower drift rates and higher FA rates because of a
failure to encode stimulus features of the highest complexity
sets.

Secondly, an increase in complexity caused by the intro-
duction of a lure probe should account for greater memory
performance (lower FA rates and higher drift rates). The ra-
tionale was that an increase in complexity due to introduction
of the lure probe has a greater chance of not fitting a com-
pressed (or over-compressed) representation of the display set.
The decision (i.e., reject the lure) was thus expected to be
easier with a greater change in complexity. Conversely, we
expected higher FA rates and lower drift rates when introduc-
tion of the lure does not increase complexity, with the idea that
this manipulation can help detect an errant compression
process.

For more detailed descriptive statistics, the OSM shows the
descriptive statistics of the hit rates, FA rates, hit RTs, and
correct rejection RTs across the paired structures.

We only removed 2.5% of the data corresponding to RTs
less than 250 ms and greater than 2,000 ms. We chose to keep
relatively long RTs (skewness = 1.23) to study the potential
effect of complexity.

For each of the two dependent variables, the following
subsections first describe the result of the mixed model ap-
plied to a given dependent variable before presenting the
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statistical tests for each of the paired comparisons. For the
paired comparisons, we applied the Bonferroni correction
for multiple paired comparisons (each correction was applied
within a given dependent variable, therefore never exceeding
two comparisons, thus with a threshold at p = .025). Tables 2
and 3 show the results of the linear mixed models run on drift
rates and FA rates. The paired comparisons across all depen-
dent variables are shown in Fig. 4.

Drift rates

To analyze whether complexity levels affected memorization,
we first ran a linear mixed model to study the influence of
Initial Complexity and Change of complexity on drift rates.
We also use the method of paired comparisons when the factor
Sum of shared features could be maintained constant.

Table 2 shows the results of the linear mixed model run on
drift rates as a function of Initial Set Complexity, Change in
Complexity, and adding Sum of shared features as a control
factor. The Change in Complexity factor could have positive
values (i.e., complexity increased when introducing the lure),
negative values (i.e., complexity decreased when introducing
the lure), or a null value (complexity did not change in spite of
the new structure). See Table 1.

Contrary to our expectations, the mixed model showed no
significant decrease of drift rates as a function of Initial Set
Complexity. We nevertheless observed an increase of drift
rates with a higher change in complexity between the initial
set and the final set (t(2.258) = 2.905, p = .004), as expected,
but this effect was counterbalanced when complexity of the
initial set was the highest (which is captured by the interaction
between the two factors: t(2.258) = - 2.220, p ≤ .027).
Nevertheless, a decrease was observed for the two additional
paired comparisons allowing testing of the effect of Initial set
complexity (Fig. 4a): the drift rates decreased significantly for
both the pairs 4-8-4 versus 10-8-4 (t(29.00) = - 6.48, p < .001)
and 6-6-4 versus 7-6-4 (t(28.95) = −2.56, p = .016). On the
other hand, the analysis based on the comparisons 6-6-4 ver-
sus 6-10-4 (in the condition 6-6-4 the probe did not change the
complexity, contrary to in the condition 6-10-4 in which the
probe increased the complexity by 4 points) and 10-8-4 versus

10-12-4 (respectively a Change of −2 and +2) were conduct-
ed. In Fig. 4c, paired comparisons did not show a significant
effect (6-6-4 vs. 6-10-4, t(2.900) = .59, p = .059 ; 10-8-4 vs.
10-12-4, t(2.900) = - 0.58, p = .565). Drift rates corresponded
to a good answer rate and good answer RTs but these two last
paired comparisons were interested in the effect of the modi-
fication of the complexity by the lure probe; however, the drift
rate seems to be an insufficient measure to capture this effect.
Therefore, it was chosen to observe FA rates independently.

False alarm (FA) rates

The following two analyses concern situations in which a lure
was displayed, allowing us to study both Initial Complexity
and Change of Complexity. For FA rates, we ran a linear
mixed model including an interaction term between the two
factors of interest, and we also ran paired comparisons as a
function of the factor Change of Complexity (by maintaining
the two other factors constant).

Table 3 shows the result of the linear mixed model run on
FA rates as a function of Initial Set Complexity, Change in
Complexity, and adding Sum of shared features as a control
factor. A FA corresponds to an incorrect answer in a change
trial (a false recognition of the lure as part of the initial display
set).

Contrary to our expectations, the mixed model showed no
significant decrease of FA rates as a function of Initial set. We

Table 2 General effect of Initial set complexity, Change in complexity, and Sum of shared features on drift rates

Estimate Std. error df t value p value

Intercept 8.807 2.11 2.295 4.168 .000 ***

Initial Set Complexity -6.928 4.35 2.269 -1.592 .112

Change in Complexity 4.192 1.44 2.258 2.905 .004 **

Sum of shared features -4.759 5.43 2.258 -0.875 .382

Initial Set Complexity × Change in Complexity -4.319 1.94 2.258 -2.220 .027 *

Initial Set Complexity × Sum of shared features 1.310 1.12 2.258 1.169 .243

Table 3 General effect of Initial set complexity, Change in complexity,
and Sum of shared features on false alarm rates

Estimate Std. error df t value p value

Intercept 2.131 6.99 6.603 3.046 .002 **

Initial Set Complexity -2.073 1.37 7.505 -1.509 .131

Change in Complexity -3.542 4.97 1.862 -7.127 .000 ***

Sum of shared features -2.372 1.70 7.349 -1.400 .162

Initial Set Complexity ×
Change in Complexity

3.729 6.36 7.731 5.865 .000 ***

Initial Set Complexity ×
Sum of shared features

3.865 3.40 7.727 1.139 .255
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nevertheless observed a decrease of FA rates with a higher
change in complexity between the initial set and the final set
(t(1.862) = - 7.127, p < .001), as expected, but this effect was
counterbalanced when complexity of the initial set was the
highest (which is captured by the interaction between the
two factors: t(7.731) = 5.865, p < .001). This result is apparent
in the analysis based on the comparisons 6-6-4 versus 6-10-4
and 10-8-4 versus 10-12-4; in Fig. 4b, paired comparisons
showed a significant increase in FAs with an increased
Initial Set Complexity (4-8-4 vs. 10-8-4, t(1.733) = 3.579, p
< .01 ; 6-6-4 vs. 7-6-4, t(1721) = 3.135, p = .002) and in Fig.
4d, paired comparisons showed asignificant decrease in FAs
with an increased change in complexity when Initial Set
Complexity was low (6-6-4 vs. 6-10-4, t(1.742) = -3.494, p
< .001) but not when Initial Set Complexity was higher (10-8-
4 vs. 10-12-4, t(1.712) = 1.72, p = .086). For the latter com-
parison, the greater complexity of the initial set (i.e., 10) might
not have facilitated memorization whatsoever (we observed
the lowest hit rates for these two structures as shown in the
preceding analysis).

To go further with our analysis on FA rates, we attempted
to control the effect of the number of new features caused by
the introduction of the probe (features in the lure not presented
in the initial set). Indeed, if participants only saw a set of
squares in the initial set before being presented with a circle
in the display test, this new feature “circle” could allow an
easier rejection of the lure (Mewhort & Johns, 2000), which
could account for a decrease in the FA rate. The emergence of
one or two new features in the lure effectively decreased sig-
nificantly the FA rates in comparison to the conditions in
which no new feature appeared (F(1,29.058) = 25.31, p <
.001). Nevertheless, when we only selected the conditions
for which no new feature appeared in the lure, we still found
a significant effect of Initial Set Complexity (F(1,445) =
20.13, p <.001). There was, however, no effect of Change in
complexity (F(1,32) = 1.59, p =.216), but note that the con-
ditions having no new features in the probe were the three
conditions with the highest Initial set Complexity and previ-
ous analyses indicated that no effect of Change in complexity
appeared when the initial complexity was too high. Thus,
effects observed on FA rates were not entirely linked to the
number of new features introduced with the lure.

Comparative analysis of drift rates and FA rates for all
independent variables

Our last analysis was based on the two dependent variables
(drift rates and FA rates), which were both predicted to be
influenced by the twomain factors (Initial Set Complexity and
Change in Complexity). Our goal was to verify whether the
full model including the interaction term was effectively the
most parsimonious model. The two mixed-model analyses
progressively included the two factors of interest and their
interaction, and the additional control factor Shared features.
The successive models were tested to obtain the most parsi-
monious account of the data, by computing the AIC for each
model (see Table 4). A lower AIC corresponds to a more
optimal model (i.e., considering that a parsimonious model
leads to an adequate fit associated with minimal model com-
plexity). In the case of drift rates, the mixed model including
the three factors led to the best AIC (i.e., -2618.618). For the
FA rates, the best model corresponded to the model including
only Sum of shared features (i.e., -1795.354).

Discussion

Our aim was to test whether visual memory capacity is deter-
mined by a process of data compression by studying correct
responses, errors, and RTs. Our compressibility metric was
based on the complexity of the stimulus material, with more
complex material being theoretically less compressible. We
measured accuracy and speed of responses in order to analyse
FA rates and drift rates. The drift rates integrated accuracy and
RTs for correct responses. Our assumption was that individ-
uals can develop on the spot a compressed representation of a
display set obeying regularities (e.g., correlated features), and
this design was thought to test the compression hypothesis
without the need to retrieve pre-existing chunks (as is the
case in the studies by Brady et al., 2009, and Reder et al.,
2016). We also assumed that the compression process is a
trade-off, with the risk of compressing too much information
resulting in lossy representations. We expected that the pres-
ence of compressibility in the display set would enable greater
memory performance and faster performance based on the
idea that shorter compressed representation would take less
time to be decompressed. A more novel prediction was that
the introduction of a lure would interact with the compressed
representation to modify the initial perceived complexity.

For the factor Initial Set Complexity (i.e., the complexity of
the display set), as predicted, our findings showed a decrease
in performance (smaller drift rates) with higher complexity,
indicating a higher cognitive load for less compressible dis-
play sets in pairwise comparisons of the complexity struc-
tures. The effect of complexity on FA rates was not found in
the mixed model, but it was detected in one paired
comparison.

�Fig. 4 Effects of Initial complexity and Change of complexity in
Experiment 1. By panels, effects of the Initial set complexity as
measured by (a) drift rates (×100), and (b) false alarm rates, and effect
of Change in complexity as measured by (c) drift rates (×100), and (d)
false alarm rates. The plots are restricted to the paired comparisons ceteris
paribus. Error bars represent ±1 SE. Note. The triplets of numbers used to
code conditions correspond to, respectively, Initial Set Complexity, Final
set complexity, and Number of shared features between the initial set and
the probe
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When we manipulated a change in complexity with intro-
duction of a lure, our findings showed less pronounced effects.
Within the paired comparisons, we observed a large decrease
of FAs with a higher change in complexity when the complex-
ity of the initial set was initially low (i.e., in the pair 6-6-4 vs.
6-10-4). We did not observe the expected effect when the
complexity of the initial set was initially high (i.e., in the pair
10-8-4 vs. 10-12-4). Our interpretation is that the lure might
not affect the decision process when encoding of the stimulus
set was already too difficult. Analyses on drift rates, however,
showed the expected effect of Change in Complexity in the
mixed model: a higher change in complexity resulted in
higher drift rates, meaning that a probe can easily be identified
as not belonging to the initial set when complexity changes.
Change in Complexity nevertheless interacted with the Initial
Set Complexity factor, again revealing that a Change in
Complexity did not occur when the complexity of the initial
set was initially high (10-8-4 vs. 10-12-4). Aside from the
general effect captured by the mixed model, no significant
direct effect could be isolated from the paired comparisons.

Finally, the effect of new features in the probe was tested
and an effect of Initial Set Complexity on FA rates was still
found even when no new feature was introduced in the probe.

Experiment 2

Experiment 1 suggested an effect of change in complexity
caused by the addition of a probe to the initial stimulus set.
This effect could be due to a modified perception of the initial
complexity of the stimulus set when the probe has to be com-
pared to the memorized stimuli. However, this effect was only
observed in the paired condition 6-6-4 versus 6-10-4, with
lower performance in 6-6-4 as participants seemed to be more
lured by a probe that did not modify the level of complexity;

this difference was not observed in the more complex pair of
conditions 10-8-4 versus 10-12-4. We thus concluded in
Experiment 1 that the effect of change in complexity primarily
depends on initial stimulus set complexity, as participants
might not be able to properly encode information when com-
plexity was too high, but the experimental conditions did not
allow to study intermediate levels of complexity.

In Experiment 2, new conditions were tested to study a
larger and better controlled range of complexity effects. The
new conditions were thought to better observe the two oppo-
site effects of change in complexity (i.e., Increase in complex-
ity with introduction of the probe vs. Decrease in complexity
with introduction of the probe) for different levels of initial set
complexity (Low vs. Medium vs. High, corresponding to ini-
tial stimulus set complexity equal to 4, 6, and 10,
respectively).

Method

Participants

Forty French participants (Mage = 25.9 years; SD = 6)
volunteered to take part in this experiment. The sample includ-
ed 25 females and 15 males, having completed between 0 and
5 years of higher education, who were recruited at Université
Côte d’Azur or from the Alpes-Maritimes county through ad-
vertisements. We targeted a sample roughly equivalent to that
of Experiment 1, but our recruitment efforts yielded some
additional participants who registered.

Procedure and materials

The procedure of Experiment 2 was similar to Experiment1,
except that we focused on a more comprehensive ensemble of
complexity levels. Three levels of initial set complexity were

Table 4 Comparisons of mixed model based on the AIC criterion for Drift rates and False alarm (FA) rates

Model Variables AIC

Drift rates FA rates

M1 Initial Set Complexity -2712.978 -1823.150

M2 Change in Complexity -2692.762 -1844.364

M3 Sum of shared features -2670.019 -1795.354

M4 Initial Set Complexity -2678.066 -1866.230
Change in Complexity

M5 Initial Set Complexity -2675.376 -1802.032
Sum of shared features

M6 Initial Set Complexity Change in Complexity
Sum of shared features

-2618.618 -1844.089

The numbers in bold and underlined correspond to the most optimal model for each dependent variable (lowest AIC), i.e., M6 (including the three
variables studied) for Drift rates and M3 (including only the variable Sum of Shared Features) for FA rates
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selected: low (4), medium (6), and high (10). For each level,
the probe could either decrease or increase the complexity of
the initial set (see Table 1).

Results

As in Experiment 1, the analysis first focused on the effect of
Initial Set Complexity on drift rates, which were hypothesized
to reflect better memory performance with lower initial com-
plexity. As in Experiment 1, we checked that RTs were right-
skewed and the skew became more pronounced with the in-
crease of complexity, that RTs were comparable for each type
of response (correct and incorrect), and that RTs were compa-
rable for all incorrect responses through subjects and condi-
tions. The second hypothesis again posited that a decrease in
complexity caused by the introduction of the lure probe
should account for lower memory performance (higher FA
rates). Again, the rationale of this last prediction is that if
participants over-compress information of the initial stimulus
set, there is a greater chance that the participant can be lured
by a probe that makes the complexity of the four objects
decrease.

To use a range of RTs similar to Experiment 1, we removed
7% of the data corresponding to RTs less than 250 ms and
greater than 2,000 ms. The Appendix shows the descriptive
statistics of the hit rates, FA rates, hit RTs (i.e., the time taken
to recognize the probe as being part of the stimulus items), and
correct rejection RTs across the conditions (classed by level of
initial complexity). As in Experiment 1, all linear mixed-
effects models were run using participants as a random effect
with individual intercepts and slopes.

Drift rates

Figure 5a shows the result of the drift rates as a function of the
Initial Set Complexity. As in Experiment 1, the linear mixed
models testing the unique effect of the factor Initial Set
Complexity showed a significant decrease of drift rates
(F(1,235) = 12.031, p < .001) with a higher complexity.

Figure 5b shows the drift rates as a function of Complexity
of the initial set and Change of Complexity. Again, as in
Experimenet 1, the expected increase of performance with
the highest initial complexity was not observed when com-
plexity increased with the introduction of the probe. A striking
result was the effect of the type of probes on drift rates when
complexity of the initial set was low. In this case, performance
was the weakest when introduction of a lure decreased the
complexity of an already simple initial display set, whereas
performance was the highest when presentation of the lure
increased complexity. Paired comparisons also showed a de-
crease of drift rates with an increase of Initial Set Complexity
for both paired conditions (4-8-4 vs. 10-8-4, t(3.900) = - 6.04,
p < .001 ; 10-8-4 vs. 10-12-4, t(3.900) = - 2.12, p = .041) .

Table 5 shows the results of the linear mixed model run on
drift rates for the factors Initial Set Complexity and Change in
Complexity (adding Sum of shared features as a control fac-
tor), confirming all main effects and interactions.

Figure 5d shows the combined effect of both Initial Set
Complexity and Change in Complexity on memory perfor-
mance. The combined effect was independent of the factor
Shared features, which suggests that complexity effects were
not based solely on similarity effects between the probe and
the stimulus set.

FA rates

Like in Experiment 1, the following analysis on FA rates
concern situations in which a lure was displayed, allowing
us to study the combined effect of Initial Complexity and
Change of Complexity and their interaction.

Figure 5c shows the effect of Change in Complexity ac-
cording on the factor Initial Set Complexity on FA rates.
Consistent with our assumptions, the participants correctly
rejected the probe when it increased the complexity of the
initial stimulus set, with no effect of the initial stimulus set
complexity. On the contrary, the participants faced difficulty
in rejecting the probe as a function of the level of Initial Set
Complexity when complexity decreased with the probe.
Table 6 shows the result of the linear mixed model run on
FA rates as a function of Initial Set Complexity and Change
in Complexity (again, adding Sum of shared features as a
control factor). The results are similar to those of
Experiment 1, as the mixed model showed an interaction in-
dicating a different effect of Change in Complexity as a func-
tion of Initial Set Complexity. The analysis also indicated a
significant interaction between Initial Set Complexity and
Shared features. Nevertheless, Fig. 5e shows a combined ef-
fect of both Initial Set Complexity and Change in Complexity
on performance independent of the factor Shared features,
which suggests that complexity effects are not based solely
on similarity effects between the probe and the stimulus set.
Also, it is interesting to see that the case 10-8-4 for which
Initial Complexity was the highest (thus making the initial
set difficult to memorize) and the factor Change in
Complexity the lowest (i.e., minus two, thus making the lure
deceitful in case of an over-compression process) produced
the highest FA rate. But overall, the clearest decreasing trend
was observed from 6-10-4 to 4-8-4, and because the Change
in Complexity is similar in these two cases, initial complexity
seems to take precedence in accounting for the decreasing
trend. Moreover, paired comparisons also indicate an effect
of Initial Set Complexity on FA rates with the increase of FA
rates with the increase of Initial Complexity (4-8-4 vs. 10-8-4,
t(2.230) = 5.57, p < .001) but no effect of change in complex-
ity when the Initial Set Complexity was too high (10-8-4 vs.
10-12-4, t(2.199) = −1.11, p = .269).
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To refine these results on FA rates, we controlled the effect
of the number of new features with introduction of the probe
(i.e., the features in the lure that were not part of the initial set)
as in Experiment 1. The apparition of one or two new features
in the lure effectively decreased significantly the FA rates
compared to the conditions in which no new feature appeared
(F(1,38.597) = 28.60, p < .001). Nevertheless, when we only
selected the conditions for which no new feature appeared in
the lure, we found both a significant effect of Change in
Complexity (F(1,119) = 21.17, p < .001) and an interaction
between Initial Set Complexity and Change in Complexity
(F(1,112) = 20.14, p < .001). Thus, effects observed on FA
rates were not entirely linked to the number of new features
introduced with the lure.

Also, the case of the condition 4-2-8 deserves attention,
as it is the only condition presenting a low initial com-
plexity and a decreased change in complexity, but more
importantly, the FA rate for this condition was the highest
observed in our experiments. To refine the analysis of this
condition, we split the data according to block number in
the task. We only included the conditions with zero new
features introduced with the probe, as well as conditions
in which complexity decreased. The data were split as a
function of the first block (first decile of trials) versus the
rest of the blocks collapsed, for simplicity purposes.
Figure 6 shows that FA rates were the highest in the first
block for the condition 4-2-8 in comparison to the rest of

the blocks (while still remaining higher than in the other
conditions). This decreasing pattern, which did not appear
for other conditions and seemed to be specific to the con-
dition 4-2-8, may indicate that participants were mostly
deceived by this condition at the beginning of the task,
but could adapt progressively to the task at hand to en-
code features better.

Comparison between Experiment 1 and Experiment 2

Finally, we wanted to verify whether memory performance
between Experiment 1 and Experiment 2 yielded compara-
ble results for variables that were similar in the two

�Fig. 5 Effects of Initial complexity and Change in complexity in
Experiment 2. By panel, (a) Initial Set Complexity measured by the
drift rates (×100), (b) Initial Set Complexity and change in complexity
measured by drift rates (×100), (c) Initial Set Complexity and change in
complexitymeasured by false alarm (FA) rates, (d) Initial Set Complexity
measured by drift rates (×100) with fixed Shared Features, and (e) Initial
Set Complexity measured by FA rates with fixed Shared Features. Error
bars represent ±1 SE. Note. For figures d and e, the triplets of number
used to code conditions correspond to, respectively, Initial Set
Complexity, Final set complexity, and Number of shared features be-
tween the initial set and the probe

Table 5 General effect of Initial Set Complexity, Change in
Complexity, and Sum of shared features on drift rates shown in Fig. 5b

Estimate Std. error df t value p value

Intercept 8.97 1.05 2112 8.112 .000 ***

Initial Set Complexity -5.23 1.50 2109 -3.484 .000 ***

Change in Complexity 4.88 9.76 2313 4.997 .000 ***

Sum of shared features -6.45 1.82 2120 -3.544 .000 ***

Initial Set Complexity ×
Change in Complexity

-6.03 1.26 2064 -4.801 .000 ***

Initial Set Complexity ×
Sum of shared features

9.54 2.92 2064 3.261 .001 **

Table 6 General effect of Initial Set Complexity, Change in
Complexity, and Sum of shared features on false alarm rates shown in
Fig. 5c

Estimate Std. error df t value p value

Intercept 6.31 4.78 6355 1.320 .187

Initial Set Complexity 9.21 6.02 8625 1.530 .126

Change in Complexity -5.07 8.08 3731 -6.279 .000 ***

Sum of shared features 3.22 8.03 8351 4.006 .000 ***

Initial Set Complexity ×
Change in Complexity

4.96 0.94 3625 5.550 .000 ***

Initial Set Complexity ×
Sum of shared features

-5.86 1.33 4788 -4.407 .000 ***

Fig. 6 False alarm rates for conditions with zero new features and where
complexity decreased with the lure between the first blocks and the other
blocks. Error bars represent ±1 SE. Note. The triplets of numbers used to
code conditions correspond to, respectively, Initial Set Complexity, Final
set complexity, and Number of shared features between the initial set and
the probe
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experiments. To test the robustness of our results the sim-
plest way, we only focused on the single effect of the factor
Initial set complexity. The reason is that the two experi-
ments used the same levels of Initial Set Complexity (i.e.,
4, 6, and 10). The two other factors were globally not
comparable and were left out (simply because the changes
in complexity that were manipulated were not necessarily
the same between the two experiments). Because we could
not systematically focus on comparable conditions be-
tween the two experiments that involved a change in com-
plexity, the present analysis only focused on hits, for which
there was no change.

To analyze the effect of the factor Initial Set Complexity on
hits, the hit rates and hit RTs were each converted to z scores.
The z scores were computed by aggregating performance per
participant and transforming and computing their z scores
based on the mean and SD values computed for each experi-
ment. This transformation was thought to reduce cohort ef-
fects between experiments. As can be seen in Fig. 7, we ob-
served better performance with lower complexity in both ex-
periments, and memory performance was very close between
the two experiments.

For both dependent variables, the Bayesian repeated-
measures ANOVA suggests that the model that only in-
cluded the factor Initial Complexity showed evidence
against the null hypothesis (BF10 > 1 e+10). This model
was also considered better than the null model that did not
include the factor Initial Complexity, both dependent var-
iables (BFm > 1 e+14). However, for both variables, in-
cluding the factor Experiment or the interaction term did
not increase the model probability (BFm < 3). See
Table 7. We can thus conclude that the effect of

complexity was quite robust across experiments (i.e., the
effect was constant under a variety of conditions).

Discussion

In agreement with our findings in Experiment 1, the re-
sults of Experiment 2 indicate an effect of stimulus set
complexity with higher Initial Set Complexity corre-
sponding to lower memory performance, and this effect
cannot be solely explained by similarity effects (measured
by the number of shared features between the probe and
the stimuli). For the factor Change of Complexity (i.e.,
the change of complexity hypothesized to occur consider-
ing that the probe mixes with the stimuli), the results
showed variable effects depending on Initial Set
Complexity like in Experiment 1. When initial complexity
is low, a large decrease in FAs following an increase in
complexity with the probe can be observed. This corre-
sponds to the greater ability of the participants to detect a
change when the stimuli can be more easily encoded.
However, with moderate initial complexity this decrease
in FAs is less pronounced, and no decrease is detectable
when the stimulus set complexity is initially high.
Overall, because the rate of FAs is comparably low when
complexity increase with introduction of the lure, we con-
clude that the FAs are essentially provoked by a decrease
in complexity, which was predicted by the over-
compression hypothesis. Participants seem to encode
stimuli with lossy representations, which eventually lure
them when a lure that does not modify the complexity
level much is introduced. We also observed overall lower
performance in this case, indicating that the decision was

Fig. 7 Effects of Initial Set Complexity in Experiment 1 and Experiment 2 measured by (a) hit rates converted to Z scores, and (b) hit response times
(RTs) converted to Z scores. Error bars represent ±1 SE
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difficult even though the decision did not result in FAs.
These results are in accordance with Experiment 1, which
only showed an effect of change in complexity with a
moderate complexity of the initial set. Thus, Experiment
2 extends the results of Experiment 1 by indicating a
clearer interact ion between Init ial St imulus Set
Complexity and Change of Complexity produced by a
lure.

General discussion

Previous studies have not yet considered the hypothesis
that a cognitive compression process could also lead to
over-simplified information due to limitations of the com-
pression process itself. We thus hypothesized that the over-
regularization of features of a visual scene could produce
false recognition of patterns, not because of storage capac-
ity limits but because of compression limits. In two exper-
iments, we prompted a compression process by using a
material for which the underlying information varied in
compressibility, and our analysis targeted how much com-
pression could take place successfully for a given complex
stimulus. In Experiment 1, we used a diverse set of patterns
allowing a great number of haphazard variations of fea-
tures to study different associations of stimulus sets and
probes, whereas Experiment 2 targeted a better-controlled
set of stimuli to separate the complexity of the visual scene
from the complexity of the probe.

Our findings summarized in Table 8 confirm previous
results that working memory performance is higher when

regular patterns are present in visual material, confirming
that data compression can occur on the spot for newly
encountered visual material (Chekaf et al., 2016). This
result can help understand why chunking processes seem
to reduce the load in working memory (Cowan et al.,
2012; Norris & Kalm, 2018; Thalmann et al., 2019). A
potential role of working memory might be to compress
information to form chunks in long-term memory, which
would allow freeing up capacity for subsequent encoded
material. The question for future research is whether a
chunk is initially encoded into WM or if long-term mem-
ory is sufficiently autonomous to compact diverse ele-
ments to form progressively a compact chunk. We also
observed higher performance for more compressible sets,
which can be attributed to the idea that shorter com-
pressed representations take less time to be decompressed.
This was observed in a previous research that showed that
the RTs taken to categorize learned stimuli depend on
their compressibility (Bradmetz & Mathy, 2008), or based
on simple logical rules and exception looking like a com-
pressibility metric (see Fific et al., 2010; Nosofsky et al.,
1994). Our results thus confirm that perceptual grouping
can help observers summarize information to take deci-
sions that can be faster when data compression is
achieved.

We believe that our results bring additional outcomes.
Our results show that by attempting to benefit from re-
dundant information in a display set, participants can
make errors typical of a compression process. False rec-
ognition could be due to interference when the display set
and the target shared similar features (Oberauer & Lin,

Table 7 Model comparison for the factors Initial Set Complexity and Experiment based on (a) hit rates converted to Z scores, and (b) hit response times
(RTs) converted to Z scores shown in Fig. 7

Model comparison

Models P(M) P(M|data) BF M BF 10 error %

a)

Null model (incl. subject) 0.200 3.945e-16 1.578e-15 1

Initial Set Complexity 0.200 0.722 10.375 1.829e+15 0.548

Initial Set Complexity + Experiment 0.200 0.253 1.357 6.420e+14 3.179

Initial Set Complexity + Experiment + Initial Set Complexity ✻ Experiment 0.200 0.025 0.102 6.327e+13 4.739

Experiment 0.200 1.065e-16 4.259e-16 0.270 0.584

b)

Null model (incl. subject) 0.200 1.662e-15 6.648e-15 1

Initial Set Complexity 0.200 0.567 5.238 3.412e+14 1.343

Initial Set Complexity + Experiment 0.200 0.389 2.545 2.340e+14 5.222

Initial Set Complexity + Experiment + Initial Set Complexity ✻ Experiment 0.200 0.044 0.185 2.655e+13 7.866

Experiment 0.200 9.681e-16 3.873e-15 0.583 3.662
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2017), but this aspect was controlled. We can only infer
from our observation that different patterns of errors oc-
curred with different experimental conditions based on the
compressibility metric that participants tended to over-
compress information, which caused a false recognition
of a lure, in particular when introduction of the probe
decreased the complexity of the initial set (the design here
simulating extra compression of information). These find-
ings can contribute to better understanding why some
memory errors seem less costly than others (Sims,
2015). Effectively, there are two ways of benefiting from
structured information using data compression: partici-
pants can encode information based on a lossless com-
pression process (i.e., the initial object is faithfully repre-
sented), or participants attempt to compress information
more maximally, which can results in a lossy compressed
representations (i.e., the initial object might not be

faithfully compressed; see Haladjian and Mathy (2015),
who studied memory precision for spatial information).

As in Mewhort and Johns (2000) we observed an
effect of the lure that contained features not presented
on the display set on the FA rate in both experiments.
However, when the lure was entirely made of features
presented on the display set, we still observed an effect
of Initial Set Complexity (Exp. 1 and Exp. 2) and an
effect of interaction between Initial Set Complexity and
Change in Complexity in Experiment 2. This interaction
was not observed in Experiment 1 because these condi-
tions where the most complex, therefore limiting the
effect of Change in Complexity.

From a theoretical stand point, the hypothetical slots in
working memory could integrate chunks formed by a
lossy compression process, which would explain why
some data are in favor of both discrete capacity limit
memory models and models based on shared resource,

Table 8 Summary of main results for each dependant variable (DV; i.e., False alarm rate (FA rates) and Drift rates) across Experiments

DV Effect of Exp. Significant effect Main result Benefit or drawback
of compression

Drift Rates Initial Set Complexity 1 NO main effect, but sig. paired
comparisons and an interaction
with Change in Complexity

Decrease with increase of
Initial Set Complexity

Benefit

2 YES
and an interaction with Change
in Complexity

Decrease with increase of
Initial Set Complexity

Benefit

Change in Complexity 1 YES
and sig. paired comparisons and
one interaction with
Initial Set Complexity

Increase when
Change in Complexity increases

Drawback

2 YES
and one interaction with
Initial Set Complexity

Increase when
Change in Complexity increases
for low or medium Initial Set Complexity

Drawback

FA Rates Initial Set Complexity 1 NO main effect, but sig. paired
comparisons and an interaction
with Change in Complexity

Increase when
Initial Set Complexity increases
When Initial Complexity is low,
Change in Complexity has an effect

Benefit
and
Drawback

2 NO main effect, but sig. paired
comparisons and an interaction
with Change in Complexity

Increase when
Initial Set Complexity increases
When Initial Complexity is low,
Change in Complexity has an effect

Benefit
and
Drawback

Change in Complexity 1 NO main effect,
But one sig paired comparison:
6-6-4 vs 6-10-4

Decrease when
the lure increases complexity

Drawback

2 YES
and one interaction with
Initial Set Complexity

Decrease when
Change in Complexity increases
for low or medium Initial Set Complexity

Drawback

Each row indicates if the result suggests a benefit of compression (a facilitation of memorization with a lower complexity) or a drawback (a typical error
of recognition when the lure does not increase complexity)
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which predict variation in resolution in working memory.
Lossy compression could also relate to effects of memory
distortion that have been found in studies in which ensem-
ble statistics can bias memory for individual items (Brady
& Alvarez, 2011). Our results seem to indicate that a
lossy compression can occur on the spot, which confirms
a study by Nassar et al. (2018), who showed that partic-
ipants can implement a lossy form of data compression to
improve working memory performance with reinforce-
ment learning. Following Nassar et al., we believe that
lossy compression effects could help reconcile theories
of working memory capacity based on either discrete lim-
itation (i.e., a series of slots) or continuous limitations
(i.e., a divisible resource). Compression in our study took
place based on conjunction of features, instead of simply
being driven by the mean of different values of a single
continuous dimension as in Brady and Alvarez (2011).
Our data, however, contrast with those of Nassar et al.
because we observed in an additional analysis that perfor-
mance (a greater number of hits and a lower number of
FAs) significantly increased as a function of trial number
(additional mixed models showed a significant effect of
trial number on these two dependent variables, with both
p < .0003). In our case, this can mean that the sum of
information in our material was adequate to fit the pro-
cessing ability of participants, who could progressively
adopt a lossless compression strategy rather than a lossy
compression strategy. In sum, our particular material
might have induced specific compression processes by
letting participants adapt to the task at hand, and the spe-
cific range of complexity in our material could also ex-
plain why our findings diverge from those of Nassar.

Our main conclusion is that memory performance for
visually presented material depends on compressibility.
For each visual display, memory was successful to the de-
gree that the set of stimuli could be faithfully compressed,
and memory seemed to be unsuccessful for the inverse rea-
son that some of the most compressible sets of stimuli could
not be faithfully compressed and appeared to be over-com-
pressed. Although we used a metric based on the logical
structure of information, it does not mean that we consider
that compression exclusively operates by converting visual
information into logical descriptions. We do not assume
that stimuli are encoded into a verbal format or are strictly
represented qua Boolean functions, rather than into a visual
format. There seems to be an ease with which a display can
be stored depending on the internal structure of information
that specifies how features are distributed among objects,
thus allowing a certain degree of compression. Encoding of
the features could be either verbal or visual information

stored more minimally, because both types of information
were likely to be encoded (as we intentionally used a pro-
cedure letting participants encode the stimuli freely). In
what exact format participants encoded information re-
mains uncertain and needs further study. Unfortunately, it
is difficult to consider that the subjective reports can pro-
vide clues to which modality was preferred to encode infor-
mation, as introspection can only reveal partial aspects of
the encoding process, not mentioning that introspection can
be misleading (e.g., the participant can have the impression
that verbalizing the features helped them whereas it is most-
ly how visual information was implicitly encoded that
drove memory performance) and maybe their verbalization
interferes with this process. Further studies should therefore
more simply consider using stimuli followed by masks and
articulatory suppression during the process.

To conclude, our study shows that data compression can
occur in the short-term memorization of stimulus sets made of
discrete features. This phenomenon can be detected in perfor-
mance correlated with complexity and by studying typical
memory errors that seem to derive from a lossy compression
process.
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Appendix

Example of display and probe for each condition of
Experiment 1 and Experiment 2

Structure Display Probe

4-2-8

4-7-7

4-8-2

4-8-4

6-5-9

6-6-4

6-9-3

6-9-5

6-10-4
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