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Abstract
While temporal expectations (TE) generally improve reactions to temporally predictable events, it remains unknown how the
learning of temporal regularities (one time point more likely than another time point) and explicit knowledge about temporal
regularities contribute to performance improvements; and whether any contributions generalise across modalities. Here, partic-
ipants discriminated the frequency of diverging auditory, visual or audio-visual targets embedded in auditory, visual or audio-
visual distractor sequences. Temporal regularities were manipulated run-wise (early vs. late target within sequence). Behavioural
performance (accuracy, RT) plus measures from a computational learning model all suggest that learning of temporal regularities
occurred but did not generalise across modalities, and that dynamics of learning (size of TE effect across runs) and explicit
knowledge have little to no effect on the strength of TE. Remarkably, explicit knowledge affects performance—if at all—in a
context-dependent manner: Only under complex task regimes (here, unknown target modality) might it partially help to resolve
response conflict while it is lowering performance in less complex environments.
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Introduction

Gathering temporal information is an essential aspect of our
life. Every day, we use temporal information to determine
when it is most likely we will catch the bus, or, in sports, we
estimate when and where a ball has to be kicked, hit, or
caught. Temporal regularities can be extracted from our sur-
rounding, for example, by means of statistical learning
(Hannula & Greene, 2012; Henke, 2010; Turk-Browne
et al., 2009; Turk-Browne et al., 2010) and perceptual learning
(Seitz, 2017; Seitz & Watanabe, 2009). The learning of tem-
poral regularities typically results in temporal expectations
(TE), expectations for specific moments in time (irrespective

of target’s identity) that can improve performance (TE effect:
faster and more accurate responses for targets expected in
time). Computations resulting in TEs have been studied in
various different experimental paradigms and different
unisensory contexts (for review, see Nobre & Rohenkohl,
2014). However, most studies so far do not directly address
the generalisability of TE effects, the related underlying learn-
ing mechanisms, as well as the impact of participants’ poten-
tial knowledge1 about temporal regularities on performance
across different sensory systems. (Please note that we included
a brief description of these relevant topics as well as a list of
abbreviations in the Supplement to help readers unfamiliar
with the presented concepts.)

Most previous studies on TE (for review, see Nobre &
Rohenkohl, 2014) restricted tests to only one specific context
(mostly unisensory visual events) and only one performance

1 Note that we, like others, operationalise implicit knowledge as being un-
aware of the learned experimental manipulation (here, manipulations of tem-
poral regularities) while participants with explicit knowledge either become
aware of the manipulation during the experiment or were informed about the
manipulation beforehand (Ball et al., 2020; Batterink et al., 2015; Droit-Volet
& Coull, 2016; Ellis, 2009; Frensch & Rünger, 2003; Reber, 1976; Turk-
Browne et al., 2010).
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measure (mostly response times), which limited possible con-
clusions one can derive from the results. In particular, a focus
on response times (RTs) makes it difficult to distinguish re-
sponse preparation effects from TE-induced perceptual facili-
tations, with the latter having sometimes been reported in
studies using accuracy measures for the auditory and visual
modalities (Ball, Fuehrmann, et al., 2018; Ball, Michels, et al.,
2018; Cravo et al., 2013; Rohenkohl et al., 2012). Also,
changes in RTs might sometimes be due to shifts in decision
criteria rather than response preparation and perceptual pro-
cessing (Ball et al., 2020), an issue typically not addressed in
previous RT-focussed studies. In addition, focussing on one
modality comes at the cost that the successful manipulation of
TE in laboratory settings does not always extend to real-life
situations, which often comprise multisensory information.
Further, it has been shown that multisensory stimulation often
results in performance improvements relative to unisensory
stimulation, for example, by means of stimulus interactions
(called multisensory interplay/interaction; see, e.g., Alais &
Burr, 2004; Ball, Fuehrmann, et al., 2018; Ball, Michels,
et al., 2018; Driver & Noesselt, 2008; Noesselt et al., 2007;
Noesselt et al., 2010; Parise et al., 2012; Starke et al., 2020;
Werner & Noppeney, 2010) and that different sensory sys-
tems (e.g., auditory vs. visual) have different temporal prop-
erties (Burr et al., 2009; Fendrich & Corballis, 2001;
Recanzone, 2003; Repp & Penel, 2002). Hence, the chosen
stimulus modality potentially determines the presence or ab-
sence as well as the size of TE effects. Additionally,
unisensory designs do not unequivocally support conclusions
about potential cross-modal differences in TE. For instance,
even if experiments with unisensory auditory and visual stim-
ulations are compared, any difference between experiments
might be simply driven by differences in groups or differences
in experimental design (including differences in task difficulty
based on, e.g., nonmatched stimulus intensities across exper-
iments). Thus, within-subject designs, simultaneously manip-
ulating TE in different sensory contexts, can help to minimize
these confounds and to test for generalisability of TE across
modalities.

Our previous work (Ball, Fuehrmann, et al., 2018; Ball,
Michels, et al., 2018) established that TE can be observed
for different modalities (auditory, visual, audio-visual)
and improve perceptual sensitivity and response times
for targets presented at expected moments in time.
However, our results also suggest that the size of TE
effects was enhanced and more robust in the multisensory
as compared with the unisensory conditions. These con-
clusions derived from observed differences in average
performance scores and led us to put forward the assump-
tion that information about temporal regularities (during
the learning process) is not generalised and thus might not
be transferred across modalities. However, analyses of
average scores simply ignore the fact that learning of

certain features (here, temporal regularities) is a highly
dynamic process. For instance, data can be largely depen-
dent or independent on a trial-by-trial level, irrespective
of presence or absence in average difference scores.2 To
capture the dynamics of learning processes, the use of
state-spaced learning models (Smith et al., 2004; Smith
& Brown, 2003) has been proposed. These models esti-
mate a learning curve based on single-trial accuracy data
which can be used to determine not only the strength but
also the speed of learning (defined by the identification of
the first learning trial; Hargreaves et al., 2012; Smith
et al., 2004). This type of modelling has been successfully
applied to experiments with memory-association tasks,
visuo-motor associative learning tasks, location-scene as-
sociation and T-maze tasks (Clarke et al., 2018;
Hargreaves et al., 2012; Smith et al., 2004; Wirth et al.,
2003). However, to our knowledge the modelling of
learning curves has not been applied to learning of tem-
poral regularities so far, although it would allow for test-
ing critical concepts about how temporal information is
processed over time and whether temporal information is
generalised across sensory systems. For instance, in mul-
tisensory paradigms (Ball, Fuehrmann, et al., 2018; Ball,
Michels, et al., 2018) information about temporal regular-
ities might either be transferred between modalities or
learned independently for each modality. Hence, depend-
ing on whether the data are best described by a single
learning curve (information transfer) or modality-specific
learning curves (individual regularity learning) one could
infer which learning form is the most likely for a given
dataset/task. Further, experiments are mostly subdivided
in runs (sequence of trials) with short breaks in-between.
Hence, learning might be run-dependent (i.e., would be
reset during runs, resulting in multiple learning curves)
or there might be information transfer between runs

2 To illustrate the potential limits of conclusions derived from average scores
versus trial dynamics, imagine a trial sequence in which Conditions A and B
are always presented alternatingly (A-B-A-B-…). Now, imagine that a correct/
incorrect response for B is 100% dependent on the preceding response for A
(Scenario 1). In contrast, now imaginewe simply shuffle the scores of B across
B’s trials (increasing trial-by-trial independence; Scenario 2). In both scenarios
the sequence (A-B-A-B-…) as well as the average performance of conditions
are identical. Importantly, however, the underlying learning mechanism is
either dependent (information transfer; Scenario 1) or independent (no infor-
mation transfer; Scenario 2). Now, imagine, for example, that in only 80% of
successive trials, responses are identical in A and B (new Scenario 1); hence,
their average performance scores potentially differ. Again, imagine that we
shuffle the scores of Condition B (new Scenario 2). In both scenarios, we have
again the same condition sequence and average performance scores—now
different betweenA andB—but the underlying learningmechanisms are again
either dependent (information transfer; Scenario 1) or independent (no infor-
mation transfer across trials; Scenario 2). These examples clearly illustrate why
additional analyses and models are required to make conclusions about, for
example, whether learning is generalised across sensory systems, while aver-
age scores are insufficient to draw conclusions about underlying learning
mechanisms.
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(leading to one learning curve)3. Additionally, learning
curves can be utilized to identify the onset of learning
and whether this onset differs across experimental condi-
tions and tasks (Clarke et al., 2018; Hargreaves et al.,
2012; Smith et al., 2004; Wirth et al., 2003).

Turning to the potential effects of explicit knowledge of
temporal information, differences between implicit and ex-
plicit knowledge about temporal regularities are often studied
by comparing rhythm with cueing paradigms. In rhythm par-
adigms, a stimulus sequence is presented, either with a con-
stant (expected) or varying delay (unexpected) between stim-
uli. In cueing paradigms, the cue determines with a certain
probability (e.g., 80%) whether the target appears after a short
or long cue-target delay period. The processing of rhythms is
usually assumed to be under bottom-up (implicit TE) control
(de la Rosa et al., 2012; Rohenkohl et al., 2011), while the
processing and use of temporal cues is usually assumed to be
under top-down (explicit TE) control (Coull & Nobre, 2008).
This notion is in close resemblance to research on exogenous
vs. endogenous orientation of spatial attention (Giordano
et al., 2009; Kurtz et al., 2017; Müller & Rabbitt, 1989;
Warner et al., 1990). Accordingly, several studies—
independent of the applied paradigm—reported distinctions
between ‘implicit’ and ‘explicit’ TEs on the behavioural and
neural level (Capizzi et al., 2012; Correa et al., 2014; Coull
et al., 2000; Coull & Nobre, 2008; Mento et al., 2013).
Importantly, most previous studies did not directly assess par-
ticipants’ explicit knowledge of the temporal manipulation.
This leaves the possibility that even under supposedly implicit
experimental task regimes, participants might have gained
knowledge about the underlying temporal regularities which
they may have been able to utilize to solve the particular task
(Taylor & Ivry, 2013) rendering the assumed implicit task, a
partially or fully explicit task. More importantly, others used
different tasks and/or paradigms (e.g., cueing vs. rhythm
tasks) for the comparison of implicit and explicit TE.
However, when assessing differences of knowledge types
not within but across experiments, any reported differences
between implicit and explicit knowledge could actually be
driven by differences in stimulation protocols across experi-
ments; this includes the use of different stimulusmaterial (e.g.,
same task but visual vs. audio-visual presentations; see Ball
et al., 2020) or the comparisons of completely different

experimental tasks and paradigms (e.g., entrainment [rhythm]
vs. cueing experiments; see Correa et al., 2014). Thus, studies
are needed that compare the effects of explicit knowledge
within the same paradigm.

Previous non-TE-focussed studies investigating the influ-
ence of explicit knowledge—within the same paradigm—
have reported divergent effects: While very few have ob-
served an increase in performance (as measured by accuracies
or response times), others have found no or even detrimental
effects, or changes in confidence rather than performance
(Batterink et al., 2015; Fairhurst et al., 2018; Green &
Flowers, 2003; Mancini et al., 2016; Preston & Gabrieli,
2008; Sanchez & Reber, 2013; Van den Bussche et al.,
2013). Recently, we were able to demonstrate that visual TE
effects were not enhanced by explicit temporal knowledge in a
simple visual TE task (Ball et al., 2020). Here, participants had
to discriminate a target stimulus after an expected or unexpect-
ed cue–target delay (with the cue and delay being uninforma-
tive of target’s identity). The task was simple in the sense that
targets were easily identifiable (cue was only followed by
target display), accuracy was almost at ceiling (response times
were mainly affected), and explicitly provided trial-specific
temporal information was (at least in one explicit group)
100% valid (on each trial participants were informed about
the upcoming cue–target delay). Together with reports from
other fields, our previous findings suggest that explicit
knowledge—when tested in the same experimental
context—might not as readily affect performance compared
with implicit statistical learning. However, it has yet to be
tested whether the absence of explicit knowledge effects on
TE is generalisable across the time course of the experiment
(i.e., the learning process), different sensory contexts as well
as different, more complex experimental paradigms.4 Most

3 Note that information transfer between runs might be driven by the experi-
mental design. If temporal regularities do not change across runs, information
might always be transferred from one run to the next. However, changing
probabilities of target’s temporal positions across runs (Ball, Fuehrmann,
et al., 2018; Ball, Michels, et al., 2018; Jaramillo & Zador, 2011) might either
result in information transfer and potential reversal learning (new probable
position has to be learned and the old one discounted) or in a complete reset
of learning at the beginning of each run due to an unstable environment (i.e.,
constant change of temporal regularities). Note that information transfer or
learning reset could also happen within one run, when, for example, the first
run-half incorporates different temporal regularities than the second half.

4 Most TE tasks are rather simple, and findings are mainly based on reaction
times (see Nobre & Rohenkohl, 2014). For instance, the target in rhythm tasks
is often highlighted (e.g., by colour changes of placeholders) and in cueing
tasks, the target is the only stimulus following the cue. Thus, participants
always know which stimulus to respond to. This is often not the case for
real-life situations, where important information is embedded among irrelevant
information. Making the aforementioned tasks more difficult, requires, for
example, to change the stimulus contrast. However, this might add more con-
ditions (different contrast values), require a lengthy threshold adjustment
(which, if the task is too easy, might not result in stable performance), or it
might be impossible to adjust thresholds if they are below the limits of the
presentation equipment. This might also be the reason for the prevalent anal-
yses of RTs in the TE literature. One way to shift accuracy below ceiling is to
make the paradigm more complex by adding distracting information (S. C. Y.
Schroeder et al., 2018). In turn, task difficulty is constantly increased due to a
reduction of target’s identifiability, thus rendering perception of its temporal
position also less reliable. Additionally, if the experiment is too simple, par-
ticipants might easily become aware of the temporal manipulation (for
discussion, see Ball et al., 2020). Hence, distractors can also be used to ‘mask
conscious access’ to temporal regularities, thereby increasing the chance to
find participants with implicit knowledge. To this end, we adapted the design
introduced by Jaramillo and Zador (2011), originally used to test TE in rats,
which met all the abovementioned requirements for analysing RT, accuracy,
and potential differences between participants with implicit and explicit
knowledge.

2553Atten Percept Psychophys (2021) 83:2551–2573



importantly, explicit knowledge might have important impli-
cations for the transfer of temporal information between mo-
dalities. Recognizing, for example, in one modality that tar-
gets appear at certain temporal position might motivate par-
ticipants to attend the same temporal position in other modal-
ities. Thus, explicit knowledge might ease the transfer of tem-
poral information between modalities and thus, might also
change the learning pattern.

In this study, we therefore tested the influence of continu-
ous learning and explicit knowledge about task structure on
performance and TEs—within the same paradigm—but under
more complex task regimes (multisensory task with distractor
stimuli). Here, we present a large-scale data set (n = 200)
based on four different complex multisensory experimental
designs in which we presented sequences of unisensory (au-
ditory [A] or visual [V]) or multisensory (audio-visual [AV]
stimuli with synchronous onsets) stimuli (all designs derived
from Jaramillo & Zador, 2011; for a rationale of using this
specific design, see Footnote 4). In Designs 1 and 2 (“easy”
task), modality-specific uncertainty was low, meaning that
with sequence onset, participants knew target’s modality (A
sequence with A target, V sequence with V target, AV se-
quence with AV target). In Designs 3 and 4 (“difficult” task),
modality-specific uncertainty was high—that is, with se-
quence onset, participants did not know target’s modality
(AV sequence with A target, AV sequence with V target,
AV sequence with AV target). Target stimuli (A, V, or redun-
dant AV) appeared with a certain probability early or late
within the stimulus sequence (11 stimuli presented succes-
sively, with one target embedded among 10 distractors).
Likelihood of target occurrence within the sequence (at third
or ninth position) was manipulated run-wise, with runs in
which early or late targets were more likely.

Based on our previous reports (Ball, Fuehrmann, et al.,
2018; Ball, Michels, et al., 2018), which only took into ac-
count average performance scores, we hypothesize that per-
formance should be best explained by individual, modality-
specific learning curves (modality-specific temporal regularity
learning). Given that the TE effects were overall more robust
in the audio-visual condition, we expected earlier learning
trials (i.e., learning curve exceeding chance level) for the
audio-visual compared with the unisensory target trials.
Additionally, given learning effects—such as in contextual
cueing experiments—one might expect that with repeated ex-
posure, TE effects might be more pronounced. However, if
information is transferred between expected and unexpected
runs, TE effects might be rather stable across the experiment,
as the TE effect solely depends on relearning the new target
position in each run. Based on our previous publication and
participants’ reports, we expected that explicit knowledge
might be ineffective to modulate performance and the strength
of TE. However, if explicit knowledge eases the transfer of
information acrossmodalities, we should find that the learning

model best describing the data differs between participants
with explicit and implicit temporal knowledge (one learning
curve for all modalities vs. modality-specific learning curves).
Furthermore, explicit knowledge might be associated with
earlier learning onsets. Finally, if explicit knowledge modu-
lates behaviour, we should find larger TE effects for partici-
pants with explicit knowledge, especially under complex ex-
perimental manipulations, which can make extraction of tem-
poral regularities more difficult.

Methods

Here, we addressed the novel research questions whether and
how explicit knowledge and learning of temporal regularities
affect the strength of TEs across different sensory contexts,
and we focused on estimates derived from a learning model.
Note that parts of the data set used here (Exps. 1–4, n = 120)
were used in previous publications (Ball, Fuehrmann, et al.,
2018; Ball, Michels, et al., 2018). However, here we extended
(n = 80) the previous data set with data based on the same
experimental designs, but belonging to so-far unpublished da-
ta sets. Thus, besides adding novel research questions and
analyses, almost half of the data sets used here have not been
analysed previously. In turn, these data sets help to increase
the robustness of statistical estimations and to inform about
the robustness of our previous results as well as test whether
effects generalise to new populations of participants.

Participants

In all experiments, participants were tested after giving signed
informed consent. Volunteers who reported any neurological
or psychiatric disorders or reduced and uncorrected visual
acuity were excluded from the study.

Here, we used the same exclusion criteria as in our
previous reports (Ball, Fuehrmann, et al., 2018; Ball,
Michels, et al., 2018): Participants were excluded if they
expressed a severe response bias (one response option
used in more than 65% of all trials) and/or performance
was well below chance level in one or more conditions
(accuracy below 25%). This study was approved by the
local ethics committee of the Otto-von-Guericke-
Univers i ty Magdeburg. In a l l exper iments ( for
demographical data, see Table 1), we used an independent
sample of naïve participants, except for Experiments 6_1
and 6_2 (experiment with two sessions per participant).
Note that for Experiments 6_1 and 6_2, each participant
could have been excluded (based on our exclusion
criteria) for Exp. 6_1 but not Exp. 6_2 and vice versa
(hence, samples were only almost identical).
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Apparatus

The experiments were programmed using the Psychophysics
Toolbox (Brainard, 1997) and MATLAB 2012b (The
MathWorks Inc., Natick, MA). Stimuli were presented on an
LCD screen (22-in., 120 Hz, SAMSUNG 2233RZ) with op-
timal timing and luminance accuracy for vision researches
(Wang & Nikolić, 2011). Resolution was set to 1,650 ×
1,080 pixels, and the refresh rate to 60 Hz. Participants were
seated in front of the monitor at a distance of 102 cm (eyes to
fixation point). Responses were collected with a wireless
mouse (Logitech M325). Accurate timing of stimuli (≤1 ms)
was confirmed with a BioSemi Active-Two EEG amplifier
system connected with a microphone and photodiode.

Stimuli

Unisensory or multisensory stimulus sequences (pure tones,
circles filled with chequerboards, or a combination of both)
were presented on each trial. Chequerboards subtended 3.07°
visual angle, and were presented above the fixation cross (cen-
tre to centre distance of 2.31°). Sounds were presented from
one speaker placed on top of the screen (Designs 1 and 3) at a
distance of 7.06° from fixation, 4.76° from chequerboard’s
centre, and 3.22° from chequerboard’s edge or via head-
phones (Sennheiser HD 650; Designs 2 and 4). The speaker
was vertically aligned with the centre of the chequerboard
stimulus. Chequerboards were presented on a dark-grey back-
ground (RGB: 25.5). The fixation cross (white) was presented
2.9° above the screen’s centre.

Chequerboards and pure sounds were used as targets and
distractors. The distractor frequencies were jittered randomly
between 4.6, 4.9, and 5.2 cycles per degree for chequerboards
and between 2975, 3000, and 3025 Hz for sounds. Visual and
auditory target frequencies were individually adjusted to a
75% accuracy level at the beginning of the experiment.
Hence, targets—although the same type of stimulus
(chequerboard/pure sound)—were either lower or higher in

frequency compared with distractor frequencies.
Furthermore, the intensities for both target and distractor
chequerboards and sounds were varied randomly throughout
the stimulus sequences. The nonwhite checkers were jittered
between 63.75, 76.5, and 89.25 RGB (average grey value of
76.5 RGB). The sound intensities were jittered between 20%,
25%, and 30% of the maximum sound intensity (average of
25% = 52 dB[A]). The sound intensity in the experiments with
headphones was adjusted to match the sound intensity used
for speaker experiments.

Procedure

Participants were seated in a dark, sound-attenuated chamber.
For each trial, a sequence consisting of 11 stimuli was pre-
sented (see Fig. 1 for example sequences). Stimulus duration
was 100 ms, and stimuli were separated by a 100-ms gap. All
stimuli within a sequence were either auditory, visual, or com-
bined auditory and visual stimuli (synchronous presentation).
Target stimulus pairs on multisensory trials were always
redundant—that is, targets of both modalities had congruently
either a lower or higher frequency than distractors. For each
trial, we presented one target stimulus or target stimulus pair
(audio-visual sequences) at the third (onset at 400 ms, early
target) or ninth position (onset at 1,600 ms, late target) of the
sequence.5 Participants were instructed to maintain fixation
throughout the experiment and were told that a target was
present in each trial. They were required to discriminate the
frequency (low or high) of the target as quickly and accurately
as possible using a two-alternative forced-choice (2AFC) pro-
cedure. Participants held the mouse with both hands, while
placing their left/right thumbs on the left/right mouse buttons,
respectively. Each button was used for one of the two re-
sponse options (key bindings were counterbalanced across
participants). The response recording started with the onset
of the first stimulus of the sequence and ended 1,500 ms after
sequence’s offset. Only the first button press was recorded.
The end of the response period was then followed by a 200–
400-ms intertrial-interval. In case no button was pressed, the
trial was repeated after each run’s quarter (mean of repeated
trials across participants: 0.7% ± 1.4% SD).

Each experiment contained three sessions: an initial
training session to familiarise participants with the task,

5 Note that we used two positions only, as this is the minimum number of
positions required to induce a TE effect and likely increases the chance to find
TE effects, as variability of possible temporal target positions is reduced to a
minimum. Adding more positions would either (1) increase the time required
to complete the experiment n-fold (n = number of added positions; current
completion time: 2.5–3 h) or (2) reduce the quality of behavioural estimates
when trial numbers are lowered. Further, TE effects at each position would
potentially be reduced and statistical power would be lowered due to adding a
new factor to the analysis (early target position). Moreover, qualitatively sim-
ilar yet smaller TE effects have been found in a similar paradigm when more
than one target position (e.g., 2, 3, 4) was used (Ball, Michels, et al., 2018).

Table 1 Demographical data of each of the experiments

Experiment Design Mean age ± SD Women Left-
handed

Total

Exp. 1 1 24.5 ± 2.7 13 2 30

Exp. 2 2 23.1 ± 3.4 18 0 30

Exp. 3 3 24.3 ± 3.6 21 4 30

Exp. 4 4 23.9 ± 3.7 22 2 30

Exp. 5 2 23.6 ± 2.7 15 3 21

Exp. 6_1 2 23.3 ± 4.7 22 1 30

Exp. 6_2 4 22.9 ± 4.3 22 1 29

Note. See Fig. 1 for a description of all four experimental designs
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a threshold determination session, and the main experi-
mental session. During ‘training’ (24 trials) and ‘threshold
determination’ runs (144 trials), we presented unisensory
sequences only (auditory or visual). Low and high fre-
quency, early and late occurring, and auditory and visual
targets were balanced in these runs. Prior to the experi-
mental sessions, we always conducted two threshold de-
termination runs. After threshold acquisition, visual and
auditory stimuli were individually adjusted to 75% accu-
racy for all the aforementioned conditions. Each ‘main
experimental session’ was separated into six runs (168
trials per run, i.e., 1,008 trials total), and we presented
all stimulus types (unisensory auditory and visual and
multisensory stimuli) and modulated TE by presenting
different numbers of early and late targets within runs.
An 86% likelihood of early target occurrence (always at
the third position) and a 14% likelihood of late targets
(ninth position) within the stimulus sequence was used
for “expect early” runs. In “expect late” runs, early target
occurrence was reduced to 43%. We chose this procedure
instead of a complete reversal of probabilities in order to
obtain a robust estimate of the performance in unexpected
early trials, as early trials were at the focus of our analysis
(see below). Expected and unexpected runs (three runs
each) alternated throughout the experiment, and the type
of the first run was counterbalanced across participants.
Importantly, all participants were naïve with regard to
the changing likelihoods of target position across runs at
the beginning of the experiments. Within each run, the
number of trials was balanced for sequence types, target
types, and target frequencies. Additionally, the number of
auditory, visual, and multisensory stimuli, early and late,

and low and high targets was balanced across each quarter
of runs.

Note that in this manuscript we differentiate between ex-
periments and experimental designs as some of the experi-
ments have the same underlying experimental design but data
collection was based on a new population of participants. The
overall procedure for each experiment (1 to 6_2; for individual
design, see Table 1) was identical with the following excep-
tion: Modality-specific uncertainty was modulated by chang-
ing the type of stimulus sequences across experiments. In one
experimental design (Designs 1 & 2), we presented either
unisensory sequences with unisensory targets or multisensory
sequences with multisensory redundant targets (lowmodality-
specific uncertainty). During high modality-specific uncer-
tainty (Designs 3 & 4), we presented only audio-visual se-
quences, BUT, targets were, as before, either unisensory (au-
ditory or visual) with a concurrent distractor in the second
modality or redundant multisensory targets (high modality-
specific uncertainty). Thus, to perform the task, participants
were forced to equally monitor both modalities on each trial to
be able to detect the target. Furthermore, auditory stimuli were
either delivered over speakers attached in close proximity to
the visual stimulus (Designs 1 & 3; attend front only) or head-
phones (Designs 2 & 4; attend front [visual] and inner of the
head [sound]) to further modulate attention.

Postexperimental assessment of explicit knowledge

To assess whether participants gained explicit knowledge
about temporal structures, we conducted a postexperimental
interview. Note that the classification of explicit and implicit
knowledge based on verbal reports is a common procedure

Fig. 1 Schematic examples for stimulus sequences in Experimental
Designs 1 to 4 (blue = auditory [A], orange = visual [V], blue + orange
= audio-visual [AV]). (Left) Stimulus sequences used in Experimental
Designs 1 and 2. Each bar represents one of 11 stimuli with a specific
stimulus frequency. Bars above or below distractors (auditory distractor
frequency: 2975–3025 Hz, visual distractor frequency: 4.6–5.2 cycles per
degree) depict high or low frequency targets, respectively. Targets were
only presented at Position 3 or 9. The modality of the sequence are
depicted in the upper right corner of each graph, with the modality of

the target in brackets (e.g., AV [AV] = audio-visual sequence with audio-
visual target). (Right) In Experimental Designs 3 and 4, we only present-
ed audio-visual sequences, but targets could be either unimodal (A or V)
or bimodal (AV). Whenever a target was bimodal, both auditory and
visual stimuli were always either higher or lower in frequency compared
with distractors (redundant target). Note that we only show examples but
not all combinations of factors early/late target, higher/lower frequency
target and target modality (A, V, AV) which were completely
counterbalanced in all experiments. (Colour figure online)
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and has successfully been used in previous studies (Ball et al.,
2020; Ewolds et al., 2017; Heuer & Schmidtke, 1996; Nissen
& Bullemer, 1987). We asked the following questions to gain
exhaustive insight into participants’ explicit state of knowl-
edge about temporal regularities. The order of questions was
kept constant. Note that early questions were open to avoid
biasing, but later questions were more specific to encourage
participants to report even vague explicit insights:
& Did you notice any regularities throughout the

experiment?
& Was there something specific about the position of target

appearance within the sequence?
& Could you please guess at which positions the target was

presented?
& Was there a difference between odd and even runs?
& Was there a position pattern throughout the run, or was it

random across trials?
& Could you please guess the difference between runs?

If participants were unsure about the meaning of ‘trial’ and
‘run’, we further elaborated on the meaning of these terms
(trial = one sequence of 11 stimuli for which the frequency
of a target had to be reported, run = all trials between two
breaks). Only if the answers to all questions were negative—
that is, participants reported the target to appear at all positions
or at clearly incorrect positions (e.g., “Target was always pre-
sented at the sixth position”), participants were labelled as
having only implicit knowledge. Whenever they gave a cor-
rect or at least partly correct answer (e.g., “Target was mostly
presented early”), they were labelled as having explicit knowl-
edge. We opted for including partly correct answers because
exact stimulus positions were difficult/impossible to count
given the stimulation frequency (Ball, Fuehrmann, et al.,
2018; Ball, Michels, et al., 2018) and participants were at least
aware that stimuli occurred mostly early in the sequence (i.e.,
not the middle or end).

Analysis

In our previous report (Ball, Michels, et al., 2018), we used a
criterion to remove response outliers and confirmed—by ap-
plying multiple criteria—that the removal of outliers did not
affect the results. The present analyses required the same num-
ber of trials across participants and conditions to calculate the
learning curves. To this end, responses faster than 150 ms
were not excluded but rather labelled ‘incorrect’, as they are
unlikely based on processing of perceptual input. Note that
target’s frequency was unpredictable on a trial-by-trial basis
(50% low, 50% high frequencies) and had to be classified
(frequency judgement). Thus, responses prior to target presen-
tation or before the target is sufficiently processed cannot be
linked to effects of TEs, response preparation, or such like and
simply represent a premature response. To confirm that this

labelling does not change our previous results, we reran all our
prior analysis (Ball, Michels, et al., 2018). The results (see
Supplement 1) are virtually identical to the ones in our previ-
ous report. Thus, our previously presented effects appear to be
rather robust to the choice of outlier treatment.

Furthermore, as in our previous publications and publica-
tions by other groups, we test for TE effects by focussing on
early target trials; late targets are always expected and may
thus not require temporal attention (see Ball, Fuehrmann,
et al., 2018; Ball, Michels, et al., 2018, for a demonstration
of the absence of late target TE effects for the present data set;
see also Jaramillo & Zador, 2011; Lange & Röder, 2006;
Lange et al., 2003; Mühlberg et al., 2014, for similar a
approach).

Learning model selection

One part of our analyses was based on utilising an established
learning model algorithm to analyse our data. In short, the
algorithm estimates the learning process by fitting a learning
curve to the single trial accuracy data. Here we used the logis-
tic regression algorithm developed by Smith and colleagues
(Smith et al., 2004; Smith & Brown, 2003). The algorithm
(used in MATLAB 2017b; The MathWorks Inc., Natick,
MA) takes into account the binary responses on each trial
(correct trials: 1, incorrect trials: 0) and fits a learning curve
to the data by using a state-space model of learning, in which a
Bernoulli probability model describes behavioural task re-
sponses and a Gaussian state equation describes the unobserv-
able learning state process (Kakade &Dayan, 2002; Kitagawa
& Gersch, 1996; Smith et al., 2004; Wirth et al., 2003).
Furthermore, the algorithm is based on an expectation maxi-
mization algorithm (Dempster et al., 1977) which computes
the maximum likelihood estimate of the learning curve (in-
cluding the respective confidence intervals).

While the individual learning curves can be used to assess,
for example, when a participant has learned the regular tem-
poral pattern (i.e., on Trial X), the learning model itself can be
used to test different assumptions about whether and how
information is transferred across modalities (AV, A, V) and
runs. To identify which underlying process best describes the
data, we tested three different models by computing the learn-
ing curves on different portions of the trials (see Table 2). For
instance, if participants learn temporal regularities (i.e., target
appears at Position 3) independently for each modality, we
should observe that the best model is based on individual
learning curves for each modality (here, Model 2; see
Table 2). The best model was determined for each participant
by calculating the Akaike information criterion (AIC) for each
model, transforming the AIC into AIC weights and finally
calculating the evidence ratio for each model (see
Wagenmakers & Farrell, 2004, for mathematical equations).
The evidence ratio indicates how likely each model is

2557Atten Percept Psychophys (2021) 83:2551–2573



compared with the best model. Naturally, the best model has
an evidence ratio of 1 (best model score divided by itself = 1).
If the comparison model has a score of, for example, .5 or .33,
it means that this model is 2 or 3 times less likely than the best
model (in close resemblance to the Bayes factor). To foreshad-
ow, Model 2 was on average as well as individually the best
model across all experimental designs.

Data analyses

In addition to the learning curve analysis (see above),
three different performance measures were analysed:
mean percentage correct, mean response times, and the
‘learning trial’. The learning trial was specified as the first
trial for which the lower confidence interval of the learn-
ing curve reliably exceeded chance level (here, .5 due to
the 2AFC) and stayed above threshold till the end of the
experiment (Smith et al., 2004). Learning trials were cal-
culated based on the overall best learning model. For ac-
curacies and RT, we calculated the average scores depen-
dent on factors TE (expected, unexpected), modality (AV,
A, V), and run (Runs 1 & 2, Runs 3 & 4, Runs 5 & 6) to
test for effects of dynamics of learning (change of TE
effect across runs) and modality on TE. Further, we added
the factors spatial uncertainty (low, high) and knowledge
(implicit, explicit). Note that “modality-specific uncertain-
ty” could not function as a direct interaction term due to
the partially crossed design. However, our previous re-
ports revealed that only spatial uncertainty significantly
influenced the interaction of modality and TE (Ball,
Fuehrmann, et al., 2018; Ball, Michels, et al., 2018),
while modality-specific uncertainty contributed the least
to TE effects.

For analyses, we used MATLAB 2017b (the
MathWorks Inc., Natick, MA), R (v. 4.0.0), and
RStudio (v. 1.0.153). For statistical analyses, we used
the ‘afex’ package (v. 0.27-2) in R, as data were par-
tially crossed (for factor modality-specific uncertainty).
To identify which combination of factors affects TE
effects most, we used again a model comparison ap-
proach. To this end, we defined all possible interaction
models of the factors modality, run, spatial uncertainty,

and knowledge with factor TE as well as a pure inter-
cept model (see Supplement 2 for overview). To ac-
count for the partially crossed data structure, each mod-
el also modelled random effects intercepts based on fac-
tors modality-specific uncertainty and participant.
Hence, we used 16 random intercept models for com-
parison based on the AIC evidence ratio. For learning
trials, we formed all interaction models based on factors
modality, knowledge and spatial uncertainty (eight
models) for comparison. After determining the best
model for each performance measure, individual differ-
ences between conditions within the winner model were
analysed by using F-values (calculated with the KR
method) and post hoc t tests (calculated using the
‘emmeans’ package, v. 1.4.7, with asymptotic dF).

Learning curves were analysed in MATLAB by means
of cluster permutation tests (for introduction, see Maris
& Oostenveld, 2007) to identify potential differences be-
tween modalities as well as knowledge groups. In short,
the test identifies consecutive trials with consistently sig-
nificant results (e.g., Trials 4 to 15 = cluster), sums e.g.,
the T statistic across these trials and tests whether such
result would also be observed if the data were random.
To determine differences between conditions, we used a
significance threshold of .05 to identify potential clusters
in time (consecutive time points with significant result)
and a final cluster-threshold of .004 (Bonferroni
corrected to account for multiple testing; note that
false-discovery-rate correction resulted in the same out-
come). Below, we report the corrected cluster-threshold
p values (pcluster). For the comparison of modalities, we
used dependent-sample t tests, and for comparisons of
knowledge groups, we used independent sample t tests
to determine the maximum sum t value of each ‘original
data’ cluster as well as the ‘random permutation’ clusters
which are used to form the null hypothesis. Note that the
cluster test procedure required that learning curves dif-
ferences are tested separately for low and high modality-
specific uncertainty. Hence, we also repeated our model
selection approach for the abovementioned data scores
(now split for modality-specific uncertainty) to compare
it to the outcome of the cluster analyses.

Table 2 Description of individual learning models and the related assumptions

Model Learning curves Assumption

M1 Learning curve for all early target trials • Information generalised across modalities
• Information transferred across runs

M2 Learning curve for each condition (3 curves total) • Information NOT generalised across modalities
• Information transferred across runs

M3 Learning curve for each condition and for each run (18 curves) • Information NOT generalised across modalities
• Information NOT transferred across runs
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Results

Results of postexperimental questionnaire

In 58 cases out of the 200 collected data sets, participants
noticed any position regularity (Exp. 1: 12, Exp. 2: 9, Exp.
3: 10, Exp. 4: 6, Exp. 5: 6, Exp. 6_1: 7, Exp. 6_2: 8). In 15
cases, participants stated regularities immediately. All others
only reported regularities after follow-up questioning. A total
of 41 participants could identify the second or third position as
target position, while the remaining stated that targets “oc-
curred mostly early” or “mostly early and late”. Out of the
58 participants, 11 made their statements specifically for the
auditory but not visual stimulus.

Learning model selection results

The learning model that best described the single-trial data
across all participants (86.5% of participants) was Model 2
(see Table 3): Here, the data were modelled independently
for each modality, while expected and unexpected trials were
not further split up. Thus, the best model suggests that infor-
mation about the most likely temporal position is not general-
ised across modalities, but that information about the temporal
position (early targets) is carried over between runs. Note that
this result was independent of explicit knowledge, experi-
ments, and design types (see Table 3). A depiction of the
model evidence ratios is displayed in Fig. 2.

Average performance scores analyses—Whole data
set

The model selection, based on the AIC evidence ratio, sug-
gested a clear winner model for each of the three performance

measures. For both, the accuracy (Acc) and the RT data, the
winning model consisted of the interaction of TE × Modality.
For the learning trial data, the full model (Modality × Spatial
Uncertainty × Knowledge) accounted best for the data at hand.
Note that the best model for each performance measure was
the same, independent of whether we analysed the whole data
set or only the low or high modality-specific uncertainty data
(see Fig. 3).

Following up on the individual differences in estimated
marginal means, we found a significant main effect of TE,
Acc: F(1, 3442.16) = 70.21, p < .001; RT: F(1, 3442.01) =
274.62, p < .001, a main effect of modality, Acc: F(2,
3442.16) = 241.56, p < .001; RT: F(2, 3442.01) = 264.63, p
< .001, as well as an interaction of both factors, Acc: F(2,
3442.16) = 3.8, p = .022; RT: F(2, 3442.01) = 3.0, p = .05,
for both the accuracy and RT data. Summarized, participants
responded more often correctly and faster in the expected
compared with the unexpected condition, more correctly in
the AV compared with the A and V conditions, and the TE
effect was enhanced in the AV and A conditions as compared
with the V condition (see Fig. 4, top two rows).

For the learning trials, only the factor modality was signif-
icant, F(2, 422.99) = 16.41, p < .001, with earlier learning
trials in the AV compared with the A and V conditions (see
Fig. 4, Row 3). Although other factors contributed to
explaining variance of the data, the effects themselves were
nonsignificant (all Fs < 2.5, ps > .115).

Average performance scores analyses—Low
modality-specific uncertainty data (known target
modality)

The model selections for accuracy and RT data, based on low
modality-specific uncertainty only, were in line with the

Table 3 Subject-specific best-fitting model (Models 1–3) separated by participants’ temporal awareness

Implicit group Explicit group

Experiment N Model 1 Model 2 Model 3 N Model 1 Model 2 Model 3

Exp. 1 18 4 14 0 12 1 11 0

Exp. 2 21 2 19 0 9 2 7 0

Exp. 3 20 1 19 0 10 1 9 0

Exp. 4 24 5 19 0 6 0 6 0

Exp. 5 15 3 12 0 6 1 5 0

Exp. 6_1 23 2 21 0 7 1 6 0

Exp. 6_2 21 2 19 0 8 2 6 0

Total 142 19 123 0 58 8 50 0

Note. Rows: Number of participants are listed separately for each experiment as well as summarized across experiments (‘Total’). Columns: Number of
participants’ are listed based on the best-fitting-model and participants’ awareness of temporal regularities (explicit and implicit groups) plus total explicit
and implicit group size (N). Model 1 (single learning curve), Model 2 (modality-specific learning curves), Model 3 (modality-specific and TE specific
learning curves).
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model selection for the whole data set (see Fig. 4, middle). The
best model in both cases was Model 2 (see Fig. 3, Row 2),
which was based on the interaction of TE and modality.
Again, we found significant main effects of TE, Acc: F(1,
1882) = 64.06, p < .001; RT: F(1, 1882) = 229.97, p < .001,
and modality, Acc: F(2, 1882) = 77.67, p < .001; RT: F(2,
1882) = 90.74, p < .001, as well as the interaction of both
terms, Acc: F(2, 1882) = 3.23, p = .04; RT: F(2, 1882) =
4.34, p = .013, with essentially the same results pattern as
already described for the whole data set. Performance was
elevated in the expected condition, in the audio-visual condi-
tion, and TE effects were enhanced in the AV and A compared
with the V condition (see Fig. 4, middle).

For the learning trials, the results were also virtually iden-
tical, with a similar effect of modality on the learning trial,
modality: F(2,214) = 7.64, p < .001 (see Fig. 4, Row 3).
However, here, also, the main effect of knowledge was sig-
nificant, F(1, 107) = 8.4, p = .005 (all other effects F < 2.38, p
> .095), indicating earlier learning trials for the implicit com-
pared with the explicit group (see Fig. 4, Row 4).

The analyses of learning curves mirrored the results for the
accuracy data (note that we did not split data for low and high
spatial uncertainty, based on the outcome of the mixed model
comparison procedure). First of all, there was a clear-cut mo-
dality effect: performance was increased in the AV compared
with the A (1 cluster with pCluster = 0) and V conditions (1
cluster with pCluster = 0). Although, cluster time ranges have to
be interpreted cautiously (Sassenhagen & Draschkow, 2019),
the cluster results suggest that conditions differed across the
whole time range of the experiment. Thus, the constantly
higher probability of responding correctly was clearly driven
by multisensory stimulation, but less driven by learning (es-
pecially for the comparison with the visual modality). No
differences were found between the A and V conditions (all
pCluster > .252). Similarly, we found no significant differences
(all pCluster > .468) for the comparison of participants with
explicit and implicit knowledge. More importantly, even if
the groups would differ, performance would be lower in the
explicit knowledge group—the opposite of the effect one
would expect for the influence of explicit knowledge on

Fig. 2 Evidence ratio for each learning model (based on estimated
learning curves). Each number on the x-axis represents an individual
participant. Top: Participants 1–100 (Exps. 1–4). Bottom: participants
101–200 (Exps. 4–6_2). The top dotted lines indicate the experimental
design (Design 1: low spatial and low modality-specific uncertainty;
Design 2: high spatial and low modality-specific uncertainty; Design 3:
low spatial and high modality-specific uncertainty; Design 4: high spatial
and high modality-specific uncertainty), participants’ knowledge (light
grey = implicit, dark grey = explicit) and the individual best model (blue
= Model 1 [single learning curve], red = Model 2 [modality-specific

learning curves], white = Model 3 [modality-specific and TE specific
learning curves]). Please note that Model 3 was never the best model.
The bar graph below depicts individual evidence ratios for the second and
third best models as compared with the best model. A score of .5, for
example, implies that the second or third best model was 2 times less
likely than the best model. Here, we highlighted the .33 score, as this
value indicates that the individual model was 3 times less likely than the
best model (in close resemblance to Bayes factor analyses). (Colour fig-
ure on line)
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behaviour (see Fig. 5). Additionally, the results in Fig. 5
strongly suggest that after the initial onset, performance varied
only minimally across time.

Average performance scores analyses—High
modality-specific uncertainty data (unknown target
modality)

Again, Model 2 was the best-fitting model for the accuracy
and RT data, and Model 8 was the best-fitting model for the
learning trials (see Fig. 3, Row 3). Note that there were two
differences to the abovementioned results. While the main
effects of TE and modality were still significant (all ps <
.001), the interactions of TE × Modality—for accuracies as
well as response times—did not reach significance under high
modality-specific uncertainty, Acc:F(2, 1508) = 1.39, p = .25;
RT: F(2,1508) = .22, p = .799.

Additionally, the modality effect for the learning trials was
not restricted to the AV condition anymore: learning trials
were not only faster for the AV compared with both
unisensory conditions but also for the A compared with the
V condition, F(2, 170) = 11.26, p < .001 (see Fig. 4, Row 3).
All remaining effects related to the learning trials were non-
significant (Fs < 1.66, ps > .193).

Similar to results from the low uncertainty condition, anal-
yses of the learning curves showed again a significant modal-
ity effect (see Fig. 5), with performance being higher in the
AV condition compared with both unisensory conditions
(pCluster = 0). There were again no significant differences be-
tween the A and V condition (pCluster > .756). However, for
the comparison of participants with explicit and implicit
knowledge, there was a significant difference in the auditory
condition (pCluster = .046). The cluster was spanning the mid to
end trials of the experiment, with higher performance in the

Fig. 3 Comparison of mixed-models for each average performance score
based on AIC evidence ratio. Accuracy (left column), RTs (middle col-
umn), and learning trial (right column). The top line graphs depict the
factors that were included as interaction terms in the respective model
(Sp. Unc. = spatial uncertainty; Know = knowledge group). Bar graphs
below show the evidence ratios for analyses of the whole data set (top
row) and the split into low and high modality-specific uncertainty data

(middle and bottom row). Note that the best model has an evidence ratio
of 1 (best model score divided by itself = 1), and that, for instance, a score
of .333 implies that the comparisonmodel was three times less likely than
the best model. More importantly, the graph shows that all ‘non-best’
models showed evidence ratios close to zero (as indicated by the white
squaremarkers close to the x-axis), indicating that thesemodels are highly
unlikely as compared with the best model
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explicit group. All other differences were nonsignificant (all
pCluster > .78).

Discussion

Learning of regularities—including regularities based on tem-
poral probabilities (most likely time point of target occur-
rence)—and explicit knowledge about temporal regularities
(e.g., due to temporal cueing) are often assumed to maximise
performance by actively preparing for certain moments in
time at which targets are presented (Nobre & Rohenkohl,

2014). However, previous studies typically utilized
unisensory-specific contexts. In this study, we tested whether
explicit knowledge of temporal regularities would affect tem-
poral expectancies (TE) in different unisensory and multisen-
sory contexts. Furthermore, we tested whether dynamic learn-
ing models can be successfully applied to analyse learning of
temporal regularities and the temporal dynamics of TE effects.

We found that TEs—in the present study—were most
likely to be altered by the modality-related context using a
direct model comparison approach. Additional factors
such as the dynamics of learning (change of TE effect
across runs) and explicit knowledge appear to contribute

Fig. 4 Group-mean scores (estimated marginal means) for accuracy
(Row 1), RT (Row 2), and learning trial (Rows 3–4) effects. Averages
and confidence intervals (error bars) are presented for analyses of the
whole data set (left) as well as for the split into low (middle) and high
modality-specific uncertainty data (right). Statistical comparisons
(uncorrected) are labelled as follows: n.s. (p > .1), + (p > .05), * (p >
.01), ** (p > .001), *** (p ≥ 0). Note that in the top two rows, data is split

into expected (dashed line) and unexpected (dotted line) trials. Further,
statistical results displayed in the top two rows are based on testing the
difference between expected and unexpected trials as well as testing
whether this difference was altered by the modality context. Rows 3–4
displays modality-specific and knowledge-specific effects of the learning
trial
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only minimally to the size of TE effects when considering
accuracy and response times. In accord, these findings
were further corroborated by parameters derived from
learning models. In particular, the probability of answer-
ing correctly was relatively stable after an initial spike-
like increase in probability and clearly different across
modalities, but this difference was stable across all trials
(i.e., no modality-specific differences due to learning oc-
curred over time). Further, no consistent overall effect
was found for the differences between knowledge groups.
Explicit knowledge only improved performance for audi-
tory condition under high modality-specific uncertainty
but was also linked to slower learning (shallower learning
curves) under low modality-specific uncertainty. Finally,
the learning model suggested that performance was
modality-dependent; thus, most participants showed no
temporal regularity information transfer across conditions.

Relation to previous results

Our previous results (Ball, Fuehrmann, et al., 2018; Ball,
Michels, et al., 2018) suggested that the interaction of TE
and modality can be influenced by spatial uncertainty
(speakers vs. headphones). After extending the data set, our
current results suggest that this additional manipulation by
spatial uncertainty contribute only minimally to explaining
the data. Nevertheless, the crucial interaction of TE and mo-
dality was still supported by the data and noteworthy, when
only including accuracies of the best unisensory versus mul-
tisensory conditions in the analysis (testing for multisensory
interplay), this finding still held true (best model: TE ×
Modality, evidence ratio other models <.0001). There are sev-
eral possibilities to explain the enhanced performance in mul-
tisensory as compared with unisensory target trials. For exam-
ple, presenting two stimuli at the same time allows for target

Fig. 5 Learning curve data comparison for modalities (a) and knowledge
groups (b). Time ranges of significant clusters (consecutive significant
differences across trials between conditions) are highlighted with black
bars. Results are presented for low (top rows) and high (bottom rows)

modality-specific uncertainty. Colours used for conditions: AV–blue, A–
red, V–yellow, Explicit group–dark grey, Implicit group–light red.
(Colour figure online)
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identification in one or bothmodalities. Thus, nomatter which
modality participants dynamically attend to, target perception
would always be possible. While such scenario could explain
the multisensory versus unisensory differences in the high
modality-specific uncertainty designs (targets embedded in
multisensory sequences; thus, unisensory targets might be
missed if the other modality is attended), it would not explain
the same differences found under low modality-specific un-
certainty. Here, unisensory targets were presented in pure
unisensory sequences, and thus were always attended.
Hence, dynamic shifts of attention in the multisensory se-
quence should never increase performance as compared with
the unisensory conditions; potentially, attentional shifts might
rather decrease multisensory performance. Another possibility
is that the performance advantage linked to the multisensory
condition comes about by integrating the redundant target
information (i.e., combining information into a single event).
Note, however, that stimuli were not necessarily fully integrat-
ed as performance in the audio-visual condition did not differ
between the different levels of spatial uncertainty (accuracies:
all Fs < .225, ps > .564; RT: all Fs < 1.63, ps > .198); hence, it
did not differ between the headphones (sound localised with
the head) versus speaker contexts (sound close to visual stim-
ulus). Thus, it is unlikely that auditory and visual stimuli were
always bound together in space (i.e., they were perceived from
the same locations). Nonetheless, the results indicated that
visual and auditory modalities at least interacted in some form
with each other independent of the stimulation context (see
Spence, 2013, for discussion of the necessity of spatial-
alignment in multisensory interactions). These interactions
might be based on bidirectional influences of activity in pri-
mary sensory areas or early low-level interactions in deeper
brain structures (see discussion on neural mechanisms below).
Most importantly, the results indicate that the modality con-
text can individually shape whether and how strong TEs are
formed.

Relation of TE and dynamics of learning

State-based learning models have previously been used to
successfully determine dynamic learning in contexts such as
memory-association tasks, visuo-motor associative learning
tasks, and location-scene association (Clarke et al., 2018;
Hargreaves et al., 2012; Smith et al., 2004; Wirth et al.,
2003). In this study, we evaluated whether they can success-
fully be applied to temporal pattern learning tasks (i.e., the
learning of certain temporal regularities). Our results indicate
that the shape of and differences between the modelled learn-
ing curves closely resemble effects based on measured aver-
age performance. Further, we used the model to formally test
our assumption that information about the most likely tempo-
ral position is not transferred between modalities (Ball,
Michels, et al., 2018). The model supported this claim, even

on the individual level (86.5% of all participants) and further
suggested that explicit knowledge does not ease the transfer of
temporal position knowledge (i.e., the most likely temporal
position) across modalities. Importantly, the learning curves
also indicate that participants learned the temporal pattern
faster in the multisensory compared with unisensory contexts
thereby extending the findings of previous reports showing
increased performance and TE effects in the multisensory
condition (Ball, Fuehrmann, et al., 2018; Ball, Michels,
et al., 2018). Potentially, the higher informational content of
multisensory stimulation—which has been linked tomultisen-
sory performance benefits (e.g., Alais & Burr, 2004; Ball,
Fuehrmann, et al., 2018; Ball, Michels, et al., 2018; Driver
& Noesselt, 2008; Noesselt et al., 2007; Noesselt et al., 2010;
Parise et al., 2012; Starke et al., 2020; Werner & Noppeney,
2010)—also increases speed of extraction of temporal regu-
larities and temporal perceptual learning. Note that the distinc-
tion of ‘information transfer vs. no transfer’ between modali-
ties cannot be derived from average performance scores (see
Introduction), as these do not capture intertrial relations and
dependencies and might be misleading. However, in our
study, average scores and results from the learning model still
go hand in hand. Together, the results suggest that learning
models can provide additional insights into temporal learning,
unravel potentially different learning types (if present; here,
modality-specific learning), and might also be used to identify
the neural origins of temporal regularity learning on a trial-by-
trial basis in future neuroimaging studies, as has previously
been done in other nontemporal research fields (Clarke et al.,
2018; Hargreaves et al., 2012; Smith et al., 2004; Wirth et al.,
2003).

Relation of TE and explicit knowledge

Turning to the differences between explicit and implicit tem-
poral knowledge, previous research suggests that TEs are cre-
ated implicitly from the temporal trial structure (e.g., rhythms)
and from the overall statistical distribution (e.g., increased
likelihood for events with a particular foreperiod in one run)
of likely events in time by means of statistical learning (Ball
et al., 2020; Ball, Fuehrmann, et al., 2018; Ball, Michels, et al.,
2018; Breska & Deouell, 2014; Cravo et al., 2013; Rohenkohl
et al., 2011; Shen & Alain, 2012). Our results support this
assumption as TE effects in our study were largely driven by
implicit knowledge (142 out of 200 participants). Thus, statis-
tics about predictable events—at least in our study—seem to
be automatically extracted in the majority of participants and
to be utilized independently of explicit knowledge about the
temporal manipulation.

To our best knowledge, not many studies have directly
compared the effects of explicit versus implicit knowledge
within the same paradigm. However, a difference in behaviour
or neural activation patterns—when based on different
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experimental paradigms or studies without assessment of par-
ticipants’ explicit knowledge—would be insufficient to con-
clude that explicit knowledge truly affects, for example, per-
formance and learning patterns (Ball et al., 2020). And most
within-study comparisons of explicitly versus implicitly driv-
en behaviour report the absence of modulating effects due to
explicit knowledge. For instance, Max et al. (2015) investigat-
ed the impact of distracting sounds (deviant pitch) within a
sequence of standard sounds on auditory duration judgments.
The authors found no evidence that instructions (explicit vs.
no information) altered behavioural performance related to the
distraction effect, though they observed changes in the EEG
signals (i.e., a lower P3a amplitude when distractors were
expected due to instructions). They suggest that differences
in neural activity index participants’ involuntary shift of atten-
tion to distracting sounds which is altered by prior knowledge
(implicit vs. explicit instruction), yet these neural activity
changes do not necessarily change the behavioural outcome.
In addition, the absence of influences of explicit knowledge
on performance was also reported in priming studies
(Francken et al., 2011; Van den Bussche et al., 2013), contex-
tual cueing studies (Chun & Jiang, 2003; Geyer et al., 2012;
Preston & Gabrieli, 2008; Westerberg et al., 2011) and motor
sequence learning tasks (Sanchez & Reber, 2013).
Remarkably, results from some studies even indicate that ex-
plicit compared with implicit knowledge (1) can be detrimen-
tal (Green & Flowers, 2003; Preston & Gabrieli, 2008; Van
den Bussche et al., 2013); (2) reduces differences between, for
example, cued and uncued trials (Schlagbauer et al., 2012); (3)
might only be beneficial on a long-term but not short-term
basis (Ewolds et al., 2017) or under very specific task con-
straints (Stefaniak et al., 2008); and (4) could in principle
reflect changes of response strategy rather than a perceptual
facilitation (Schlagbauer et al., 2012; Summerfield & Egner,
2009). Recently, we found support for the latter idea of re-
sponse strategy shifts in a simple visual TE paradigm (Ball
et al., 2020). We term this paradigm ‘simple’, as accuracies
were close to ceiling and the cue was only followed by the
target, rendering it easily identifiable as the stimulus that ‘has
to be responded to’. Here, we extent our previous findings to
complex multisensory TEs paradigms (targets hidden among
distractors) by showing that explicit knowledge has only a
marginal effect on performance, which is also not always
favourable.

In general, we only found weak evidence for differences
between participants with explicit and implicit knowledge. In
the experiments with high modality-specific uncertainty, ac-
curacies were enhanced in the explicit group, but only in the
auditory condition as determined by the learning curve anal-
ysis. Note that our previous reports showed that the unimodal
auditory condition, was the preferred condition (i.e., unimodal
condition with best performance across all unimodal condi-
tions) for most of participants (Ball, Fuehrmann, et al., 2018).

Thus, explicit knowledge might potentially help to overcome
response conflicts by identifying and discriminating the
unisensory target in a multisensory stimulus sequence, but
only for the preferred unisensory modality. In accord, 19%
of the explicit participants made their statement specifically
about the auditory condition lending further support to the
notion that learning occurred modality-specific. Given our
results, it is possible that explicit knowledge is ineffective
whenever there is no conflict (audio-visual target) or the
unisensory temporal position is less known or even unknown
(visual target). Another possibility is that explicit knowledge
enhances processing of the stimulus, but only in sensory sys-
tems with high temporal acuity (i.e., the auditory system; see
e.g., Ball, Michels, et al., 2018; Nobre & Rohenkohl, 2014,
for discussion of thie issue). However, if this would be true,
we would expect to find similar results for the auditory targets
under low modality-specific uncertainty, which was not the
case. In contrast, the learning curves for the low modality-
specific uncertainty experiments even showed a trend for low-
er performance in the explicit knowledge group. Following up
on this pattern of results, it might be that explicit knowledge
does mainly help to detect the target more reliably in time—
thereby increasing the confidence about target presence at
certain points in time—while explicit knowledge does (on
average) not help to finally discriminate the target more reli-
ably. However, such increase in confidence might not always
be beneficial and result in premature responses, thereby
sacrificing accuracy in discrimination tasks, especially under
easy task regimes; an interpretation which would be in line
with our previous report (Ball et al., 2020) and other findings
(Schlagbauer et al., 2012; Summerfield & Egner, 2009).
Under more difficult task regimes, explicit knowledge might
help to better cope with the task, at least for specific
unisensory conditions and independently of the run-wise ma-
nipulation of temporal regularities.

Finally, it is worth discussing three potential reasons why
explicit knowledge was ineffective to sufficiently alter perfor-
mance. First, explicit knowledge (without prior instructions
by the experimenter) is a continuum. Thus, while some par-
ticipants might exhibit ‘strong’ explicit knowledge (“The tar-
get appears after 400 ms”), others might exhibit only ‘vague’
explicit knowledge (“The target occurs more likely early in
the sequence”). The overall strength of explicit knowledge
within the group might determine whether performance dif-
fers from the implicit group. However, 41 out of the 58 par-
ticipants with explicit knowledge, had strong explicit knowl-
edge rendering it less likely that the absence of differences
between the explicit and implicit groups is driven by the
strength of explicit knowledge. Still, direct manipulations of
explicit knowledge (by informing participants about temporal
regularities) might maximise differences between implicit and
explicit knowledge groups (although even this manipulation
might be ineffective; see Ball et al., 2020). Second, as
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participants build and update their explicit knowledge
throughout the experiment, effects of explicit knowledge
might be stronger at the end than the beginning. However,
our analyses (which took this factor into account) did not
provide evidence for this suggestion either. Finally, it might
be that learning in the implicit and explicit group partially or
even fully overlaps in the sense that learning of temporal reg-
ularities is always based on automatic, incidental learning and
automatic deployment of attention. Hence, explicit knowledge
might only imply that participants became aware of the
learned entity (here, temporal regularities) without being able
to use this information to actively shift temporal attention (see
also our discussion on potential underlying neural mecha-
nisms below).

Optimally, future tasks would incorporate a measure of
detection as well as discrimination performance (without
priming the temporal task component) and potentially also
confidence ratings to further elucidate the interplay of confi-
dence, detection, discrimination, and explicit knowledge in
TE tasks. Additionally, the differences between groups appear
to be context sensitive—they depend on the modality context
as well as task difficulty or rather task design. Thus, future
studies should also systematically study the influence of these
factors to allow forming theories about how TE, modality,
distraction and explicit knowledge holistically affect
performance.

Relation of TE, dynamics of learning, and explicit
knowledge

We hypothesized that temporal regularity learning might ele-
vate performance with repeated exposure to temporal regular-
ities (change of the size of TE across runs); this assumption
was based on results from contextual cueing, perceptual, and
motor sequence learning studies (Bueti & Buonomano, 2014;
Chun & Jiang, 1998; Clegg et al., 1998). They reported im-
proved performance for repeated (i.e., expected) compared
with new (i.e., unexpected) layouts and sequences.
However, TE effects were not sufficiently modulated by re-
peated exposure, neither for response times nor accuracies, as
indexed by the model comparison. This might be due to an
information transfer across runs. Hence, when participants
learned to attend the early position in one run, they slowly
shifted their attention away from the early position in the next
run, resulting in similar TE effect sizes across runs. Moreover,
learning curves only showed minimal accuracy fluctuations
over time (see learning curve results). Most importantly, the
largest effect we found—the performance difference between
modalities—was present in each trial; hence, this difference
between modalities did not require to learn, for example, a
certain moment in time to facilitate performance. We further
hypothesised that explicit knowledge might be based on or
related to faster learning; however, as mentioned above,

learning speed was similar in the explicit and implicit group.
Thus, it appears that effects of explicit knowledge on learning
and vice versa as well as TE effects (based on shifts of atten-
tion due to run-wise probability manipulations) are not affect-
ed by run-wise dynamics of learning over the course of an
experiment. At this point it remains open whether learning
effects on TEs are, for example, more pronounced in long-
term studies (experiments over several weeks). Nevertheless,
based on our data, we conclude that short-term exposure to
temporal regularities within one experiment (here, less than 3
hours) has little effect on the size of TEs in complex task
designs.

Possible limitations

A possible limitation of the current study is the assessment of
implicit and explicit knowledge of temporal regularities. In
other research fields like contextual cueing (Chun & Jiang,
1998), explicit knowledge is typically tested by comparing
recognition accuracy of old versus new scenes. However, it
is currently debated whether these post hoc detection tests
truly supports the null hypothesis (i.e., implicit knowledge)
or whether the assessments of implicit versus explicit knowl-
edge by means of recognition tests in previous studies were
underpowered (Vadillo et al., 2016). Furthermore, it is diffi-
cult to design a perceptual post hoc test for recognising certain
temporal delays. While deciding whether a certain stimulus
(e.g., a car or house) has been presented before (is old or new)
results in either correct or incorrect responses; deciding
whether a duration has been presented before results in ‘more
or less correct’ responses. For instance, our targets were al-
ways presented after 400 ms and 1,600 ms. Presenting a
450 ms stimulus (a dot, square, sound, etc.) and asking partic-
ipants whether the presented duration matched the time inter-
val after which targets were presented might result in a ‘yes’
response. While it is incorrect that targets were presented after
450 ms, such judgement would also not be far of the truth.
Thus, it is unclear how to handle such responses. Furthermore,
there might be trial-dependencies additionally influencing par-
ticipants duration judgement (Wehrman et al., 2020), the stim-
ulus material used for the post hoc test might influence how
precise duration judgments are (Ball, Michels, et al., 2018)
and even for the auditory modality, duration judgements are
never perfect (namely, above-chance performance requires
duration difference of tens of milliseconds and ceiling perfor-
mance requires differences of hundreds of milliseconds; see
Morrongiello & Trehub, 1987). Hence, all these factors would
affect participant’s judgement, rendering the responses an un-
reliable test of explicit knowledge. More importantly, every
condition can only be presented once in postexperimental
awareness tests to avoid response biases (presenting old stim-
uli repeatedly could result in priming participants to respond
to these stimuli as “old”), leaving two trials (early and late
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temporal position) in the “old” condition for statistical analy-
ses which is insufficient. The same problems apply when
using our employed paradigm and test for old versus new
temporal target positions as, for example, individual temporal
positions (e.g., third vs. fifth position in stimulus stream) are
hardly distinguishable due to the fast presentation frequency
(Ball, Michels, et al., 2018); and again, the trial number for
testing recognition of the old temporal positions would be
insufficient.

Instead, we opted for using an exhaustive post hoc ques-
tionnaire (Ball et al., 2020; Ewolds et al., 2017; Heuer &
Schmidtke, 1996; Nissen & Bullemer, 1987) and motivated
participants to even guess the most likely target positions.
Nonetheless, this procedure still does not allow to pinpoint
the exact time when participants gathered explicit knowledge.
To quantify the onset of learning, we chose a computational
model which was specifically designed to have higher sensi-
tivity in capturing the ‘true’ learning onset and to test for
difference across conditions (Smith et al., 2004); further, the
model was successfully applied in previous nontemporal stud-
ies (Clarke et al., 2018; Hargreaves et al., 2012; Smith et al.,
2004;Wirth et al., 2003). However, assuming that the learning
trial represents the speed of learning, we did not find evidence
for earlier learning onsets in the explicit group. Thus, if the
learning onset in the explicit group represents participants
becoming aware of the temporal position, this did not happen
faster than implicit learning of temporal position in the implic-
it group. Hence, this finding might imply that learning onsets
in both groups were rather based on implicit statistical learn-
ing and that participants noticed the temporal regularity later
on in the experiment.

Another limitation might be based on our choice of exper-
imental designs. As the time point of target occurrence is
always based on a certain position within the stimulus se-
quence, participants might not create interval scaled TEs (es-
timates of time) but rather ordinally scaled expectations (esti-
mates of position, e.g., by counting). It is under debate, wheth-
er estimates due to counting and time are principally mediated
by different, overlapping, or even the same neural mechanism
(Balci & Gallistel, 2006; Fetterman & Killeen, 2010; Meck
et al., 1985; Meck & Church, 1983; Whalen et al., 1999).
Noteworthy, most theories about timing assume that e.g., an
internal clock (be it modality specific or amodal) accumulates
beats (e.g., firing of neurons) to estimate durations (Gibbon,
1991; Gibbon et al., 1984; Treisman, 1963), or that our envi-
ronment, including temporal regularities, are sampled period-
ically or discretely (for recent review, see Nobre & van Ede,
2017). Thus, one could argue that processing of temporal in-
formation is always based on counting, irrespective of the type
of stimulation (for more indepth discussion of counting vs.
timing, see Ball, Michels, et al., 2018). However, we recently
showed that the effects presented here hold true and were
virtually identical under higher stimulation frequencies

(10 Hz and 15 Hz instead of 5 Hz stimulus streams; see
Ball, Nentwich, & Noesselt, 2021). As these higher stimula-
tion frequencies render stimuli virtually uncountable, it is rath-
er likely that even in the present design, participants form
expectation about points in time and not positions.

Possible relevance for time-based expectations

In this last part, on helpful anonymous reviewers’ requests, we
would like to discuss how our results relate to two important
topics: (1) time-based event expectations and (2) neural mech-
anisms of TEs.

Firstly, our results might indicate that participants created
‘time-based event expectations’ (TBEE) instead of TEs. TEs
are solely based on temporal features (which time point is
more likely) and in principle should facilitate performance
irrespective of target’s identity. However, TBEEs are expec-
tations for certain features/events conditioned upon specific
points in time. For example, after hearing a knock on the door,
it is likely that someone enters the room, but the longer the
door stays closed, we start to expect that they did not hear us
inviting them in. TBEEs have mainly been investigated with
simple visual shapes, coloured numbers, and affective infor-
mation (Aufschnaiter, Kiesel, Dreisbach, et al., 2018;
Aufschnaiter, Kiesel, & Thomaschke, 2018; Kunchulia
et al., 2017; Thomaschke et al., 2018; Thomaschke &
Dreisbach, 2015; Thomaschke et al., 2011; Volberg &
Thomaschke, 2017), by, for example, presenting a circle with
80% probability after a short cue–target delay (e.g., 600 ms),
while a presentation of a square is 80% probable after a long
cue–target delay (e.g., 1400 ms). Note that in these experi-
ments each time point of target occurrence typically has the
same likelihood (while they are unevenly distributed in TE
studies). Like in TE studies, this line of research shows that,
mainly, response times improve—but here for likely com-
pared with unlikely time-event couplings—and that these
time-event couplings can be learned implicitly.

Given our results, the question arises, whether TE and
TBEE are actually different processes. Here, we employed a
‘true’ TE design, in the sense that—given our design—event
types (AV, A, V) were distributed equally across time-points,
while the time points of target occurrence themselves were
unevenly distributed (e.g., more early than late trials). Thus,
there was no time-event contingency in our paradigm. Still,
we observed differences in TE effect sizes across modalities
and our learning models suggest that information is not trans-
ferred across modalities and that learning was faster in the AV
condition. Hence, our results might imply that participants
created TBEEs—they started to expect targets not only to
occur at a certain time point but this expectation was also
context driven; expectations were stronger for some modali-
ties and weaker for other depending on the paradigm.
However, if the strength of expecting a certain modality at a
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certain point in time implies the presence of TBEEs, then
unisensory TE paradigms are a special case of TBEEs
(100% modality expectation). To investigate behavioural pat-
terns of true multisensory TBEE (i.e., each foreperiod was
equally likely), we recently conducted a study in which we
only manipulated target-foreperiod contingencies (hence,
TBEE) of auditory and visual targets (Ball, Andreca, &
Noesselt, 2021). TBEEs were quantified as the performance
difference between the primary and secondary targets (e.g.,
short foreperiod 80% auditory [primary] and 20% visual tar-
gets [secondary]) at each foreperiod. Importantly, we found
that even audio-visual TBEEs—similarly to multisensory
TEs—are context-specific. Not only were the effects (higher
performance for primary modality after short or long
foreperiod) stronger for the auditory compared with the visual
modality, the direction of the effect after each foreperiod was
mainly driven by expectations for the early auditory target.
Whenever the expectations matched with the context (audito-
ry early, visual late), primary target performance was facilitat-
ed. Whenever there was a mismatch with the context (visual
early, auditory late), participants created expectations in the
opposite direction (towards the secondary target after each
foreperiod), which strengthened over time. As we argued in
our recent paper, depending on whether stimuli compete for
interest, the one better suited for the task (e.g., auditory stimuli
in temporal tasks and visual stimuli in spatial tasks) potentially
wins the race. Given the similarity of results across our studies
(for further discussion, see Ball, Andreca, & Noesselt, 2021),
TE and TBEE might be a single process (namely, always
TBEE), in which the context simply determines for which
target class temporal regularities are learned and how strong
TEs are formed (e.g., unisensory visual paradigm: TE effect
for visual; mixed paradigm with auditory and visual: TE(A) >
TE(V)).

Possible relevance for underlying neural mechanisms

Another way to interpret our results only in the context of TEs
is related to the neural implementation of TE. Let us first start
with the assumption of one single internal pacemaker
(Gibbon, 1991; Gibbon et al., 1984; Treisman, 1963), a cen-
tral clock, a dedicated time network that orchestrates and di-
rects temporal attention and TEs. One could put forward a
bottom-up/top-down mechanism in which perception of tar-
gets at certain points in time (bottom-up) establishes TEs (due
to statistical learning) in a parietal control structure or the basal
ganglia (for review, see Coull et al., 2011), which in turn
modulates (top-down; e.g., low-level) unisensory (Jaramillo
& Zador, 2011; Kikuchi et al., 2017; Lima et al., 2011;
Turk-Browne et al., 2010) and motor areas. Such interplay
of hierarchically higher and lower level areas might result,
for instance, in different states of entrainment in primary vi-
sual and auditory cortices (Cravo et al., 2013; Lakatos et al.,

2008; Lakatos et al., 2009; C. E. Schroeder et al., 2008) and in
motor areas which potentially improve target discrimination
and/or might affect response preparation (Coull & Nobre,
1998).

However, it is possible that modality-specific timing net-
works rather than a central control structure mediate the ef-
fects presented in our study. Accordingly, implicit learning as
well as TEs have been linked to activity in primary auditory
and visual cortex (Jaramillo & Zador, 2011; Kikuchi et al.,
2017; Lima et al., 2011; Turk-Browne et al., 2010) in different
mammals. Hence, it is possible that low-level sensory-specific
areas serve as modality-specific temporal networks without
central control. As mentioned before, the auditory domain
has a higher temporal precision and dominates in temporal
tasks (Burr et al., 2009; Fendrich & Corballis, 2001;
Hromádka & Zador, 2009; Recanzone, 2003; Repp & Penel,
2002; Welch et al., 1986), which would be in accord with the
finding that TE effects were less pronounced in the visual
condition (high modality-specific uncertainty).

Differences between unisensory and multisensory target
conditions can be explained in two ways without relying on
a central clock. One could assume that precision for target
discrimination is improved by direct connections between pri-
mary cortices (Driver & Noesselt, 2008). Whenever auditory
and visual cortex receive input, entrainment in one area might
directly interact with entrainment in the other area, thereby
increasing the reliability/robustness of processed stimulus in-
formation and facilitating the extraction of temporal regulari-
ties. Another possibility is that multisensory performance im-
provements are mediated by areas implicated in the processing
of multisensory but also temporal information which would
ease potential interaction of these factors. Possible candidate
areas for multisensory interplay would be, for example, the
posterior parietal cortex (Coull et al., 2011; Rohe &
Noppeney, 2016) as well as the posterior superior temporal
sulcus (Driver & Noesselt, 2008; Marchant et al., 2012;
Noesselt et al., 2007; Noesselt et al., 2010); areas which have
been linked to enhanced processing of synchronous audio-
visual stimuli and have also been implicated in perceptual
and implicit learning (Powers et al., 2012; Tzvi et al., 2016).
Given that all aforementioned areas are implicated in implicit
learning, it is possible that the processing of temporal infor-
mation in these areas is not only modality-specific but also
automatic. This would be in line with a large part of the liter-
ature indicating that TEs are created automatically/implicitly
(for review, see Nobre & Rohenkohl, 2014), including our
own results presented here (see also Ball et al., 2020; Ball,
Fuehrmann, et al., 2018; Ball, Michels, et al., 2018). However,
please note that here we did not collect neuroimaging data,
and additional experiments are required to test the
abovementioned alternatives.

To close, if temporal information is mainly processed auto-
matically, this could explain why differences between
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participants with explicit and implicit perception are largely ab-
sent in this and in our previous study (Ball et al., 2020). In such
scenario, the processing would be the same for both groups,
resulting in similar performance, while only their awareness of
the manipulation is different. This would also imply that low-
level processing mechanisms and stimulus perception might be
impenetrable by explicit knowledge and cognition (Firestone &
Scholl, 2015). In this sense, explicit knowledge could not be used
to actively shift attention to 400 ms after stimulus onset. Rather,
explicit knowledge might be used to utilize individual strategies:
under high modality-specific uncertainty one could, for example,
attend more to one than the other stimulus stream, which would
explain the increased auditory performance for participants with
explicit knowledge. Under low modality-specific uncertainty,
participants with explicit knowledge might not be willing to wait
till the end of the sequence to confirm their initial percept of the
target stimulus (as the target stimulus was likely already present-
ed), thus potentially sacrificing performance which would fit the
observed pattern of results. Additionally, our previous report
suggested that providing explicit information about the temporal
manipulation resulted in a speed–accuracy trade-off rather than
perceptual facilitation (Ball et al., 2020), which would be in line
with the ineffectiveness of explicit knowledge to manipulate low
level neural processing in our experiments.

Conclusion

Here we show—using a computational learning model—that
temporal regularities were learned separately for each modal-
ity and that explicit knowledge did not ease the transfer of
information across modalities. Thus, knowing when a target
is likely to occur is not automatically generalised. Further, it is
often suggested that explicit knowledge changes the recruit-
ment of cognitive resources. However, our results suggest that
top-downmodulations of behaviour due to explicit knowledge
appear to be detrimental under low task difficulty (in line with
previous reports) and only facilitated unisensory auditory tar-
get performance when the target modality in a given trial was
unpredictable (high task difficulty). Thus, explicit knowledge
might partially help to resolve response conflicts under high
uncertainty but might render participants overconfident (while
sacrificing accuracy) when targets are more easily detectable.
Additionally, audio-visual stimulation resulted initially in
faster and better learning. However, the size of TE effects
did not significantly change across runs, most likely due to
reversal learning at the beginning of each run. Hence, dynam-
ics of temporal learning throughout the whole experiment on-
ly contributed little to the observed TE effects (i.e., no contin-
uous increase in TE effect size across runs). Together, the
results suggest that learning of temporal regularity might be
more reliable in multisensory than unisensory context and that
explicit knowledge as well as dynamics of learning have little

to no beneficial effect on TE. Given our sample size and the
comparatively small effects, our results also stress the impor-
tance to carefully interpret changes in behaviour due to explic-
it knowledge when assessed by across-study designs.
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