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Abstract

Speech perception, like all perception, takes place in context. Recognition of a given speech sound is influenced by the acoustic
properties of surrounding sounds. When the spectral composition of earlier (context) sounds (e.g., a sentence with more energy at
lower third formant [F3] frequencies) differs from that of a later (target) sound (e.g., consonant with intermediate F; onset
frequency), the auditory system magnifies this difference, biasing target categorization (e.g., towards higher-F;-onset /d/).
Historically, these studies used filters to force context stimuli to possess certain spectral compositions. Recently, these effects
were produced using unfiltered context sounds that already possessed the desired spectral compositions (Stilp & Assgari, 2019,
Attention, Perception, & Psychophysics, 81, 2037-2052). Here, this natural signal statistics approach is extended to consonant
categorization (/g/—/d/). Context sentences were either unfiltered (already possessing the desired spectral composition) or filtered
(to imbue specific spectral characteristics). Long-term spectral characteristics of unfiltered contexts were poor predictors of shifts
in consonant categorization, but short-term characteristics (last 475 ms) were excellent predictors. This diverges from vowel data,
where long-term and shorter-term intervals (last 1,000 ms) were equally strong predictors. Thus, time scale plays a critical role in

how listeners attune to signal statistics in the acoustic environment.
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Fred Attneave (1954) elegantly declared, “The world as we
know it is lawful” (p. 183). Objects and events in the sensory
environment are highly structured in their compositions and
across time. If sensory and perceptual processing are to be
considered efficient, they ought to capitalize on this structure.
These are the core tenets of the Efficient Coding Hypothesis
(Attneave, 1954; Barlow, 1961).

Public significance statement

Perception of speech sounds depends critically on the sounds that precede
them. This study extends our understanding of these context effects by
revealing the timecourse of how earlier sounds shape the categorization of
later consonant sounds. Notably, this timecourse is shorter than the one
previously reported to shape vowel categorization, revealing important
flexibility in how perception attunes to sounds in the listening
environment. These results illuminate the ways in which preceding
sounds affect everyday speech perception.
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The strongest empirical support for the Efficient Coding
Hypothesis has been in the visual system. A wide range of
studies has documented the statistical structure of natural im-
ages (e.g., Bell & Sejnowski, 1997; Field, 1987; Olshausen &
Field, 1996; Simoncelli, 2003). This structure has been linked
to neural response properties in the visual system (e.g., Field,
1987; Ruderman et al., 1998; Simoncelli & Olshausen, 2001;
van Hateren & van der Schaaf, 1998) as well as informed
observer performance in visual perception tasks (e.g., Burge
et al., 2010; Geisler, 2008; Geisler et al., 2001; Tkadik et al.,
2010). These connections have informed theories of sensory
coding of natural stimuli (Field, 1994; Vinje & Gallant, 2000).

While comparatively nascent to work in the visual system,
support for efficient coding in audition is growing. Much of this
work can be broadly organized into two areas: sensitivity to the
statistics of stimulus presentation and sensitivity to the statistics
of stimulus composition. Changes in the probability and/or
variance of stimulus presentation can alter neural responsive-
ness (through stimulus-specific adaptation; e.g., Malmierca
et al., 2009; Ulanovsky et al., 2003) and tuning (Dean et al.,
2005; Dean et al., 2008). Similarly, changes in the probability
density and variance of speech sound presentation alters
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listeners’ categorization behavior (Clayards et al., 2008; Holt &
Lotto, 2006; Maye et al., 2002; Newman et al., 2001; Theodore
& Monto, 2019; Toscano & McMurray, 2010).

With regard to the statistics of stimulus composition, reports
suggest the statistical structure (independent components) of
natural sounds reflects neural tuning in the auditory nerve and
cochlear nucleus (Lewicki, 2002; Stilp & Lewicki, 2014).
Additionally, neural activity in auditory cortex reflects patterns
of covariance between sound properties (Lu et al., 2019).
Auditory textures can be both synthesized and recognized by
the statistical regularities in their respective compositions
(McDermott et al., 2013; McDermott & Simoncelli, 2011;
McWalter & McDermott, 2018). Finally, patterns of covari-
ance among the acoustic properties of heavily edited musical
instrument sounds can be so influential that perception aban-
dons physical acoustics and instead represents and discrimi-
nates sounds according to these statistical properties (Stilp &
Kluender, 2011, 2012, 2016; Stilp, Rogers, & Kluender, 2010).

The present experiments investigate efficient coding of the
statistical composition of acoustic context. It is well
established that preceding sounds (i.e., context) can influence
recognition of subsequent sounds. For example, Ladefoged
and Broadbent (1957) examined perception of vowels that
followed an introductory sentence. Listeners reported whether
the vowel was /1/ (as in “bit”; lower first formant frequency
[Fq]) or /e/ (as in “bet”; higher F;). When the sentence was
edited to make lower F; frequencies more prominent, listeners
labeled the subsequent target vowel as the higher-F; /€/ more
often; when the sentence was edited to make higher-F; fre-
quencies more prominent, listeners labeled the target vowel as
the lower-F /1/ more often. Subsequent work has revealed that
these spectral contrast effects (SCEs) are quite general,
influencing perception of a wide range of speech sounds
(see Stilp, 2020a, for review) and nonspeech sounds as well
(Kingston et al., 2014; Lanning & Stilp, 2020; Stilp,
Alexander, Kiefte, & Kluender, 2010).

The vast majority of these studies utilized context stimuli
that were filtered to possess the spectral characteristics neces-
sary to produce the SCE. A particular token (e.g., a context
sentence) would be filtered two slightly different ways; for
example, a lower-frequency region or a higher-frequency re-
gion would be amplified. This filtering would differentially
bias perception of the target sound (toward the higher-
frequency vs. lower-frequency response option, respectively).
Thus, trials in these experiments presented context stimuli that
differed only in certain spectral properties consequent to fil-
tering. While this approach affords high acoustic control and
likely maximizes the probability of observing an SCE, it vast-
ly underrepresents the pervasive and extreme acoustic vari-
ability in sounds encountered in everyday perception.
Additionally, it ignores the fact that other sounds may inher-
ently possess those spectral properties without any filtering
necessary (i.e., natural signal statistics).

Stilp and Assgari (2019) addressed these shortcomings by
expanding the experimental paradigm used to measure SCEs.
They developed a simple metric, Mean Spectral Difference
(MSD), to quantify the balance of energy across two frequen-
cy regions in a stimulus. Stimuli with relatively equal energy
across low-F; (100-400 Hz) and high-F, frequency regions
(550-850 Hz) had MSD values at or near zero; sentences with
more energy in one frequency region than the other had larger
MSD values. They used this metric to identify potential stim-
uli that already possessed more energy in either the low-F,;
region or the high-F; region. In their experiments, half of the
blocks presented these unfiltered sentences as context stimuli.
The remaining blocks presented filtered renditions of a single
context stimulus (consistent with the methods of previous
studies) processed to match the magnitudes of the spectral
prominences in the unfiltered contexts. All trials presented a
context sentence followed by a target vowel (varying from /1/
to /€/ in F; frequency). Unfiltered and filtered contexts were
both successful in producing SCEs that biased categorization
of the target vowels, but SCEs magnitudes produced by unfil-
tered contexts were smaller and more variable than their fil-
tered counterparts. These discrepancies were attributed in part
to the greater acoustic variability in unfiltered sentences, as
stimuli presented in a given block were different sentences
often spoken by different talkers. Nevertheless, sensitivity to
the natural signal statistics in unfiltered contexts offered keen
insight as to how these context effects may be influencing
everyday speech perception. These patterns of results were
replicated when filtered and unfiltered musical passages bi-
ased categorization of musical instrument sounds (Lanning
& Stilp, 2020), promoting the generality of this approach
and supporting efficient coding in audition at large.

Here, this natural signal statistics approach is extended to
context effects in consonant categorization. On each trial, lis-
teners heard a context sentence preceding the target syllable
(ranging from /ga/ to /da/, varying in the onset frequency of
the F; transition). As in Stilp and Assgari (2019), MSDs were
calculated to identify and select unfiltered sentence stimuli
based on their relative amounts of energy in the low-F3 region
(1700-2700 Hz) and high-F5 region (2700-3700 Hz). Filtered
renditions of a single context sentence were created to match
the balances of spectral energy observed in the unfiltered
sentences. Consistent with Stilp and Assgari (2019), both ap-
proaches are predicted to produce SCEs that influence conso-
nant categorization, with the unfiltered blocks producing
smaller and more variable SCE magnitudes than the filtered
blocks owing to their greater acoustic variability.

The present experiments also test the generalizability of this
natural signal statistics approach. The F5 frequency regions being
queried are much higher (1700-3700 Hz) than those investigated
by Stilp and Assgari (2019) (<850 Hz), and as such possess less
overall energy in the long-term average spectrum of speech.
Further, the target stimuli are distinguished by a short-duration
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cue (63-ms formant transitions principally defined by their onset
frequency), as opposed to vowel formants that are more spectral-
ly prominent and of longer duration (246 ms in Stilp & Assgari,
2019). Replication of all results from Stilp and Assgari (2019)
would strongly promote the flexibility and generalizability of this
natural signal statistics approach; any differences in results would
reveal important constraints on perceptual sensitivity to natural
signal statistics in context spectra.

Methods
Participants

Ninety-eight undergraduate students at the University of
Louisville participated in exchange for course credit. All re-
ported being native English speakers with no known hearing
impairments. Five individual experiments were conducted (»
=18, 19, 21, 20, and 20 for Experiments 1-5, respectively),
with no listener participating in more than one experiment.

Stimuli
Unfiltered contexts

Sentences were analyzed and selected according to spectral prop-
erties in the low-F5 (17002700 Hz) and high-F5 (2700-3700
Hz) frequency regions. Amplifying these frequency regions has
been highly successful in producing SCEs in previous studies
(Stilp, 2020b; Stilp & Assgari, 2017, 2018). Each sentence was
analyzed as detailed in Stilp and Assgari (2019) using two sep-
arate bandpass filters. The passband was either 17002700 Hz or
2700-3700 Hz, with 5-Hz transition regions between the pass-
band and stopbands. Filters were created using the fir2 command
in MATLAB (The MathWorks, Inc., Natick, MA) using 1,000
coefficients. The amplitude envelope for each frequency region
was obtained by rectifying the signal and low-pass filtering using
a second-order Butterworth filter with 30-Hz cutoff frequency.
The root-mean-square (RMS) energy for each envelope was
converted into dB. The Mean Spectral Difference (MSD) was
defined as the difference in energy across these two frequency
regions (see Fig. 1). MSDs were always subtracted in one direc-
tion (low-F; energy minus high-F3 energy), with positive MSDs
indicating more energy in the low-F; region and negative MSDs
indicating more energy in the high-F5 region. MSDs are likely to
stem from a number of sources, including but not limited to
phonemic content and talker size (with shorter talkers often
possessing shorter vocal tracts that produce higher formants,
and taller talkers often possessing longer vocal tracts that produce
lower formants).! MSDs were calculated for every sentence in

! These measures are also at the mercy of factors such as recording conditions
and equipment, which were not controlled in the present investigation.
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the TIMIT database (Garofolo et al., 1990) and the 275 unique
sentences in the HINT database (Nilsson et al., 1994). The results
of these ecological surveys are plotted alongside the long-term
average spectra for these databases in Fig. 2.

Sentences were selected from these databases for use as
experimental stimuli. All sentences were spoken by men to
match the sex of the talkers who produced the filtered context
and the target syllables. In Stilp and Assgari (2019), MSDs
were selected to be either relatively large (averages of the
absolute values of MSDs tested in the same block ranged from
11-15 dB) or small (averages of the absolute values of MSDs
tested in the same block spanned 5-8.5 dB). Here, absolute
values of MSDs spanned a broader range (0.03 to 16.23; see
Table 1) to better reflect their variability in natural speech.
Other signal characteristics were allowed to vary freely across
sentences (fundamental frequency, semantic and syntactic
content, duration, etc.). In a given block of an experiment,
one of two unfiltered sentences was presented on each trial.
Generally, one sentence had a positive MSD favoring low-F;
frequencies and the other had a negative MSD favoring high-
F; frequencies (see Table 1).

Filtered contexts

Experiments also tested filtered renditions of a single sen-
tence, a male talker saying “Correct execution of my instruc-
tions is crucial” (2,200 ms). This stimulus has been highly
successful in biasing consonant categorization in previous
studies (Stilp, 2020b; Stilp & Assgari, 2017, 2018). This stim-
ulus served as a control in two ways. First, acoustic variability
was held constant from trial to trial (talker variability, dura-
tion, and all other acoustic properties except for amplified
frequencies described below). Second, given the anticipated
higher variability in SCE magnitudes for unfiltered contexts,
filtered contexts ensured that listeners were responding con-
sistently in conditions where SCEs were most likely to occur.
This stimulus possessed nearly equal energy in low-F; and
high-F; frequency regions before any filtering was conducted
(MSD = 0.08 dB). This stimulus was then processed by the
same filters used to introduce spectral peaks in previous stud-
ies: 1000-Hz-wide finite impulse response filters spanning
either 1700-2700 Hz or 2700-3700 Hz. Filters were created
using the fir2 function in MATLAB with 1,200 coefficients.
Filter gain was determined according to the following proce-
dure. First, the native MSD of the to-be-filtered context
sentences was compared to that of an unfiltered context sen-
tence (e.g., unfiltered sentence MSD = 15.00 dB, a strong bias
toward low-F3 frequencies). Gain for the appropriate filter
(here, amplifying low-F5 frequencies) was set to a value just
below the difference between these two MSDs. The context
sentence was filtered and its MSD was remeasured. If its new
MSD differed from the target MSD by more than 0.10 dB,
filter gain was increased slightly (e.g., adding slightly more
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Fig. 1 Procedure for calculating Mean Spectral Differences (MSDs).
Two frequency regions are excised from the sentence via bandpass
filtering: low F5 (1700-2700 Hz) and high F5 (27003700 Hz). In each
frequency region, the waveform is rectified and low-pass filtered to pro-
duce its amplitude envelope. Energy in each frequency region is

energy to the low-F3 region) and the process repeated. This
continued iteratively until the MSDs for the unfiltered and
filtered contexts were functionally equal (within 0.10 dB of
each other).
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Fig. 2 (Top row) Long-term average spectra for 6,300 sentences in the
TIMIT database (left) and 275 unique sentences in the HINT database
(right). (Bottom row) Histograms showing the distributions of MSDs for
the TIMIT database (left) and HINT database (right). Positive MSDs
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calculated in dB from the root-mean-square amplitude of this envelope.
The MSD is defined as energy in the low-F; region minus energy in the
high-F; region. Here, for the sentence “Don’t ask me to carry an oily rag
like that,” MSD = 12.38 dB

Across experiments, most unfiltered context sentences
were accompanied by filtered context sentences with equiva-
lent MSDs. In Stilp and Assgari (2019), every unfiltered sen-
tence was accompanied by a filtered sentence with an
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indicate more energy in the low-F; region (1700-2700 Hz), and negative
MSDs indicate more energy in the high-F; region (2700-3700 Hz).
Experimental stimuli were selected from these distributions (see Table 1)
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Table 1 Characteristics of sentences presented as unfiltered contexts in the present experiments

Expt.  Block  Sentence Database ~ Duration ~ MSD (entire sentence) ~ MSD (last 475ms)
1 1 We're here to transact business. TIMIT 1,625 16.16 6.02

1 1 Her lips, moist and parted, spoke his name. TIMIT 2,740 —13.93 6.03

1 2 She had your dark suit in greasy wash water all year. TIMIT 2,724 7.04 143

1 2 Spring Street is straight ahead. TIMIT 1,539 —6.70 13.08
1 3 Critical equipment needs proper maintenance. TIMIT 2,579 —0.15 -11.35
1 3 The blue jay flew over the high building. TIMIT 2,156 —-0.03 -1.93
2 1 Don’t ask me to carry an oily rag like that. TIMIT 2,773 15.45 14.69
2 1 The hallway opens into a huge chamber. TIMIT 2,255 —12.46 1.67

2 2 The paper boy bought two apples and three ices. TIMIT 3,075 6.68 1.63

2 2 Shipbuilding is a most fascinating process. TIMIT 2,298 —6.30 —13.92
3 1 Don’t ask me to carry an oily rag like that. TIMIT 2,773 15.45 14.69
3 1 Those who teach values first abolish cheating. TIMIT 2,736 —8.56 3.67

3 2 The paper boy bought two apples and three ices. TIMIT 3,075 6.68 1.63

3 2 Shipbuilding is a most fascinating process. TIMIT 2,298 —6.30 —13.92
4 1 The family bought a house. HINT 1,587 8.37 —10.06
4 1 His father will come home soon. HINT 1,890 -12.62 -1.20
4 2 They painted the wall white. HINT 1,820 4.93 0.54

4 2 She argues with her sister. HINT 1,659 —9.06 -9.08
5 1 Often you’ll get back more than you put in. TIMIT 2,099 13.74 15.19
5 1 Rob sat by the pond and sketched the stray geese. TIMIT 2,860 —9.88 -19.10
5 2 Don’t ask me to carry an oily rag like that. TIMIT 2,811 13.45 18.42
5 2 The prowler wore a ski mask for disguise. TIMIT 2,812 —6.30 —18.31
5 3 Don’t ask me to carry an oily rag like that. TIMIT 2,339 12.38 13.15
5 3 When peeling an orange, it is hard not to spray juice. =~ TIMIT 3,555 -3.32 -13.92

Note. Durations are listed in milliseconds; MSDs are dB differences in energy across low-F and high-F; regions calculated across the entire sentence or

only its last 475 ms. See text for details.

equivalent MSD. Given that the linear relationship between
filter gain and SCE magnitude for /g/—/d/ categorization is
already established (Stilp & Assgari, 2017), equal amounts
of unfiltered and filtered data are not strictly necessary for
the present investigation. As such, two experiments
(Experiments 1 and 5) tested more unfiltered blocks than fil-
tered blocks in order to populate the regression between un-
filtered sentence MSDs and SCE magnitudes.”

Targets

Several reports have demonstrated that categorization of the
/g/—/d/ contrast is influenced by SCEs (e.g., Holt, 2006; Stilp,
2020b ; Stilp & Assgari, 2017, 2018), making them excellent

2 Despite collecting less data in filtered blocks than unfiltered blocks here,
SCE magnitudes produced by filtered sentences in Stilp and Assgari (2017)
have a comparable regression slope (0.07 stimulus steps per additional dB of
filter gain, compared with 0.08) and intercept (0.15, compared with 0.13) to
those observed in the present study. SCE magnitudes from the previous study
fit extremely well on the regression derived from the present results depicted in
Fig. 3 (correlation upon adding results from Stilp & Assgari, 2017: 7= .96, p <
.0001).

@ Springer

candidate stimuli for the present investigation. Target conso-
nants were a series of 10 morphed natural tokens from /ga/ to
/da/ (Stephens & Holt, 2011). F5 onset frequencies varied
from 2338 Hz (/ga/ endpoint) to 2703 Hz (/da/ endpoint) be-
fore converging at/near 2614 Hz for the following /a/. The
duration of the consonant transition was 63 ms, and total syl-
lable duration was 365 ms. Categorization of these targets has
been shown to be influenced by SCEs (Stilp, 2020b; Stilp &
Assgari, 2017, 2018).

All context sentences and vowels were low-pass filtered at
5 kHz and set to equal RMS amplitude. Experimental trials
were then created by concatenating each target vowel to each
context sentence with 50-ms silent interstimulus intervals.

Procedure

All experimental procedures were approved by the
Institutional Review Board of the University of Louisville.
After acquisition of informed consent, participants were
seated in a sound attenuating booth (Acoustic Systems, Inc.,
Austin, TX). Stimuli were D/A converted by RME HDSPe
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AIO sound cards (Audio AG, Haimhausen, Germany) on per-
sonal computers and passed through a programmable attenu-
ator (TDT PA4, Tucker-Davis Technologies, Alachua, FL)
and headphone buffer (TDT HB6). Stimuli were presented
diotically at an average of 70 dB sound pressure level (SPL)
over circumaural headphones (Beyerdynamic DT-150,
Beyerdynamic Inc. USA, Farmingdale, NY). A custom
MATLAB script led the participants through the experiment.
After each trial, participants clicked the mouse to indicate
whether the target syllable sounded more like “ga” or “da.”

Participants first completed 20 practice trials. On each prac-
tice trial, the context was a sentence from the AzBio corpus
(Spahr et al., 2012) and the target was one of the two end-
points from the consonant continuum. Listeners were required
to categorize consonants with at least 80% accuracy in order to
proceed to the main experiment. If they failed to meet this
criterion, they were allowed to repeat the practice session up
to two more times. If participants were still unable to catego-
rize consonants with 80% accuracy after the third practice
session, they did not proceed to the main experiment.

The base design for a given experiment was to test four
blocks of 160 trials apiece. Two of these blocks presented
unfiltered contexts and the other two blocks presented filtered
contexts with matching MSDs. In each unfiltered block, one
sentence typically had a low-F;-biased MSD and the other
sentence had a high-F3-biased MSD (see Table 1).
Experiments 2, 3, and 4 employed this base design.
Experiment 1 tested three unfiltered blocks each with 200
trials (10 repetitions of each unique context/target pairing in-
stead of eight). Experiment 5 tested three unfiltered blocks and
one filtered block, each consisting of 160 trials. Blocks were
presented in counterbalanced orders across participants, and
trials within each block were randomized. The experiment
was self-paced, with 500 ms separating the listener’s response
on a given trial from the beginning of the next trial.
Participants had the opportunity to take short breaks between
each block as needed. No feedback was provided. The total
experimental session lasted approximately 1 hour.

Results

A performance criterion was implemented such that listeners
were required to achieve at least 80% accuracy identifying
consonant continuum endpoints in a given experimental
block. If listeners exhibited difficulty categorizing consonant
endpoints, that seriously compromised the interpretability of
shifts in their consonant category boundaries due to SCEs.
Seven blocks (out of 373 blocks total) were removed from
further analysis: one listener failed three out of four blocks,
and one listener failed all four blocks in their respective
experiments.

Omnibus analysis

Results were analyzed using mixed-effect models in R (R
Development Core Team, 2016) using the Ime4 package
(Bates et al., 2014). The model architecture matched that test-
ed in Stilp and Assgari (2019). Responses were transformed
using the binomial logit linking function. The dependent var-
iable was modeled as binary (“ga” or “da” responses coded as
0 and 1, respectively). Fixed effects in the model included:
Target (coded as a continuous variable from 1 to 10, then
mean-centered), Spectral Peak (sum coded; high F; = —0.5,
low F5 = +0.5), Condition (sum coded; filtered = —0.5, unfil-
tered = +0.5), and the absolute value of the MSD (whether
naturally occurring [unfiltered sentences] or implemented via
filtering [filtered sentences]; coded as a continuous variable,
then mean-centered). All possible interactions between
Spectral Peak, Condition, and MSD were included in the mod-
el. Random slopes were included for each main fixed effect
and for the Spectral Peak x Condition interaction, and a ran-
dom intercept of listener was also included. All models were
run using bobyqa optimization with a maximum of 800,000
iterations.

Results from this model are shown in Table 2. The model
intercept was significant, indicating more “da” responses than
“ga” responses to the consonant targets. The significant effect
of Target predicts more “da” responses with each rightward
step along the target continuum (toward higher F5 onset fre-
quencies and the /da/ endpoint), as expected. The significant
positive effect of Spectral Peak predicts an increase in “da”
responses when the region of greater spectral energy is
changed from high F5 (the level coded as —0.5) to low F;
(the level coded as +0.5), consistent with the hypothesized
direction of SCEs. The significant positive effect of
Condition indicates that listeners responded “da” more often
in unfiltered blocks than filtered blocks.

Table2  Results from the mixed-effects logistic regression on listeners’
responses

Estimate SEM Z P
(Intercept) 0.511 0.093 5.509  3.6e-8
Target 1.715 0.045 37.889 <2e-16
Spectral Peak 0.838 0.082 10.174 <2e-16
Condition 1.498 0.117 12772 <2e-16
MSD -0.022  0.011 -1.914 0.056
Spectral Peak x Condition -1.239  0.138 -8.955 <2e-16
Spectral Peak x MSD 0.074 0.012 6.360 2.0e-10
Condition x MSD 0.022 0.014 1.655 0.098
Spectral Peak x Condition x MSD —0.125  0.023 —5.474 4.4e-8

Note. See main text for description of factors and the model structure.
SEM indicates the standard error of the mean.
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Interactions including the Spectral Peak term (SCEs) are of
particular importance. First, the significant negative Spectral
Peak x Condition interaction indicates that SCE magnitudes
were smaller following unfiltered sentences than filtered
sentences. This replicates previous studies that compared the
efficacy of filtered and unfiltered contexts in eliciting SCEs
(Lanning & Stilp, 2020; Stilp & Assgari, 2019). Second, the
significant positive Spectral Peak x MSD interaction indicates
that SCE magnitudes increased linearly as MSDs increased. This
replicates the similar significant interaction in Stilp and Assgari
(2019). Finally, the three-way Spectral Peak x Condition x MSD
interaction was significant, indicating that the rate (linear regres-
sion slope) at which SCE magnitudes increased at larger MSDs
significantly differed across filtered and unfiltered conditions.

The omnibus analysis confirms the relationship between
MSDs and SCEs in consonant categorization, but it is model-
ing the probability of responding “da” on a given trial. The
primary phenomenon of interest is the SCE, which occurs
across all trials in a given block. Therefore, as in Stilp and
Assgari (2019), additional analyses are necessary in order to
address this limitation.

Analysis of SCEs
SCEs were calculated for each block of each experiment in the

same manner as Stilp and Assgari (2019). First, listeners’ re-
sponses in each block were fit with a mixed-effects logistic

a MSDs calculated across
entire sentence duration
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Fig. 3 Spectral contrast effect (SCE) magnitudes as calculated by mixed-
effects models fit to each block of each experiment (see Table 3). Icons
that share color indicate results from a given experiment contributed by a
single participant group. SCEs produced by filtered context sentences
(circles) are plotted as a function of filter gain. SCEs produced by
unfiltered context sentences (triangles) are plotted as a function of the
relative spectral prominence (MSD) calculated across the full duration

@ Springer

regression with fixed effects of Target and Spectral Peak, ran-
dom slopes for each of these fixed effects, and a random
intercept for each listener. Model coefficients were used to
quantify the magnitude of the SCE that occurred in that block
following established procedures (Stilp & Assgari, 2017,
2018, 2019; Stilp etal., 2015). The 50% points were identified
on the logistic regression fits to the aggregated responses fol-
lowing low-F;-emphasized contexts and high-F3-emphasized
contexts. These 50% points were then converted into the stim-
ulus step number that listeners would label as /da/ 50% of the
time. Consonants targets were numbered from 1 to 10, so this
stimulus number was interpolated as needed. The SCE mag-
nitude was defined as the distance between these 50% points,
measured in the number of stimulus steps.

In the ecological surveys (see Fig. 2) and the omnibus
analysis reported above, sentences with positive MSDs pos-
sessed more energy in the low-F; frequency region and
sentences with negative MSDs possessed more energy in the
high-F; frequency region. Each block presented two context
sentences (see Table 1), which produced an SCE of some
magnitude (possibly even zero magnitude, a failure to bias
categorization, or negative magnitude, biasing categorization
in the opposite direction than that predicted by SCEs). To
facilitate comparisons between MSDs and SCEs, MSD for
an experimental block was calculated as the difference be-
tween the two context sentences’ MSDs divided by two.
This calculation is preferable to a straight average, which

b MSDs calculated across
last 475 ms of sentences
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of each context sentence (a) or the last 475 ms of each context sentence
(b). Ordinate values are identical across plots; abscissa values for
unfiltered conditions differ depending on the timecourse of MSDs
being analyzed. Solid lines represent linear regression fits to results in
filtered conditions; dashed lines represent linear regression fits to results
in unfiltered conditions. (Color figure online)
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can produce faulty predictions when both MSDs are positive
or negative (see Stilp & Assgari, 2019, for discussion).

SCEs in each block of each experiment are portrayed in
Fig. 3 and listed in Table 3. Key differences in SCE mag-
nitudes across filtered and unfiltered conditions observed in
Stilp and Assgari (2019) were also observed here. SCEs
following unfiltered contexts were smaller (mean = 0.13
stimulus steps) than those following filtered contexts (mean
= 0.95 stimulus steps), and they were more variable (vari-
ance for unfiltered SCEs = 0.17, variance for filtered SCEs
= 0.09). However, unlike Stilp and Assgari (2019), unfil-
tered sentences were surprisingly ineffective predictors of
performance. SCEs were significantly correlated with sen-
tence MSDs in filtered conditions (» = .95, p < .01) but not
in unfiltered conditions (» = .21, p = .51). The slopes of
linear regression fits to each Condition in these data sets
were also discrepant (as indicated by the significant
Spectral Peak x Condition x MSD interaction in the omni-
bus analysis). SCEs following filtered contexts (slope =
0.08 stimulus steps per addition dB of filter gain) grew at
a markedly faster rate than SCEs following unfiltered con-
texts (slope = 0.02 steps/dB); slopes were comparable

across filtered and unfiltered conditions in Stilp and
Assgari (2019).

Timecourse analysis

Unfiltered sentences were selected according to their MSDs,
which reflect the long-term balance of energy across low-F3
and high-F; frequency regions. Unlike Stilp and Assgari
(2019), these MSDs did not systematically bias consonant
categorization. A mixed-effects model comparable to the
one reported above but limited to responses in unfiltered con-
ditions produced only a trend toward a significant effect of
Spectral Peak (i.e., SCEs; p = .06). The use of long-term
averages to calculate stimulus statistics (MSDs) assumes that
long-term averages are perceptually relevant to speech cate-
gorization; these results challenge that assumption. The cur-
rent instantiation of MSDs does not consider more local
spectrotemporal characteristics of context sentences; it is a
distinct possibility that more local statistics may prove supe-
rior predictors of perceptual performance to more global
(long-term average) ones.

Table 3 Results for each block of each experiment
Unfiltered
MSD: MSD: Unfiltered Filtered
Expt. Block Sentence Last475ms SCE Icon SCE Icon
1 1 15.10 —-0.01 -0.21 A
1 2 6.88 -5.83 —0.04 A
1 3 0.03 -4.71 —0.52 A
2 1 13.98 6.51 0.22 A 1.13 [ ]
2 2 6.49 7.77 0.43 A 0.59 o
3 1 12.06 5.53 -0.12 1.14
3 2 6.49 7.78 0.42 0.70
4 1 10.51 —4.43 —0.33 A 1.13 o
4 2 7.00 4.81 —-0.09 A 0.62 [ )
5 1 11.81 17.14 0.64
5 2 9.70 18.37 0.84
5 3 7.81 13.54 0.36
5 4 15.00 1.36

Note. MSDs in each block (half of the difference between the MSDs in each context sentence) were calculated across the entire sentence duration or
across the last 475 ms of unfiltered context sentences. The resulting SCEs in each block are measured in the stimulus steps separating 50% points on
logistic regressions fit to responses (see text for details). Icons match those illustrated in Fig. 3.
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Following Stilp and Assgari (2019), the predictive
power of MSDs across different timecourses was
assessed. These analyses were akin to reverse correlation:
MSDs were calculated for different durations of the unfil-
tered sentences, then these values were correlated with
SCE magnitudes calculated at the group level (as plotted
in Fig. 3 and listed in Table 3; these were fixed
throughout the analyses). All unfiltered sentences were
aligned at their offsets, making all stimuli uniform in
terms of their temporal proximity to the onset of the con-
sonant targets (separated by the 50-ms ISI). Next, an anal-
ysis window duration was specified (e.g., t = 20 ms). For
a given context sentence, this duration was excised from
the end of the sentence (in effect, its last # ms). To facil-
itate spectral analysis of short-duration signals, 1-ms lin-
ear onset and offset ramps were applied, and one second
of silence was prepended and appended to the excerpt.
The MSD of the excerpt was then calculated for both
context sentences in a given experimental block; the block
MSD value was calculated as the difference in MSD
values divided by two as detailed above. After excising
t-ms excerpts from all context sentences, block MSDs
were correlated with SCE magnitudes and the correlation
coefficient was saved. This process was repeated for all
integer multiples of the analysis window duration (e.g., ¢
=40 ms, 60 ms, 80 ms, efc.) until it approached 1,539 ms,

which was the duration of the shortest sentence tested
(“Spring Street is straight ahead” from Experiment 1).
Exceeding this duration was undesirable because that
would require removing behavioral results from the
timecourse analysis.

The optimal window duration for analyses was not
known a priori, so 10 different window durations were ex-
plored (5 to 50 ms, in 5-ms steps). The results of all analyses
(highly convergent across different window durations) are
superimposed in Fig. 4, with the correlation between
MSDs and SCEs coefficient plotted as a function of tempo-
ral analysis window (the last # ms of every sentence). This
profile has a very different shape than the profile observed
for MSDs influencing vowel categorization (dashed line in
Fig. 4, extending out to 1,089 ms, which was the shortest
context sentence duration tested in that study). In Stilp and
Assgari (2019), MSDs calculated on brief window durations
did a very poor job of predicting SCE magnitudes. Here,
brief window durations were excellent predictors of conso-
nant categorization shifts. Correlation coefficient magnitudes
peaked for windows spanning the last 130 ms to the last
500 ms of sentences (r = .85-.91) at values much higher
than those observed in the vowel categorization timecourse
analysis (maximum 7 = .60 in Stilp & Assgari, 2019). The
largest correlation magnitude in this temporal vicinity of
sentences was 475 ms (r = .90); these MSDs were fantastic
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Fig. 4 Analyses of the timecourse of MSDs for predicting behavioral
results (solid lines for the present results; dashed line for the timecourse
analysis of different sentences tested in Stilp & Assgari, 2019). The ab-
scissa depicts the duration of sentence spectra (relative to sentence offset)
utilized for calculating MSDs. The ordinate depicts the correlation
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coefficient for shorter-duration MSDs with SCEs in the unfiltered condi-
tion. Superimposed lines reflect different window durations utilized in
analyses (5 to 50 ms at a time, in 5-ms steps). The black X on the ordinate
represents the correlation coefficient when full-sentence MSDs were cor-
related with SCEs. See text for details
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predictors of SCE magnitudes (see Fig. 3b).> Beyond this
point, as window duration increased, the magnitude of the
correlation between MSDs and SCEs decreased. This is the
reverse pattern of what was observed in Stilp and Assgari
(2019): there, correlation magnitudes started small and in-
creased as window duration increased; here, correlation
magnitudes started large and decreased as window duration
increased.

Aside from its peak, two other aspects of this correlation
function merit discussion. Correlation coefficients are ex-
tremely modest for analysis windows spanning only the last
130 ms of sentences. In “She had your dark suit in greasy
wash water all year” (Experiment 1, Block 2), the “-r”” in
“year” has a large low-F; MSD, but the 370 ms preceding it
(“-1l yea-" in “all year””) has MSD values closer to 0 (all
examples are illustrated in Supplementary Figures).
Similarly, in “She argues with her sister” (Experiment 4,
Block 2), MSD values are small and positive in the last
130 ms (“-r” in “sister”) but large and negative in the
370 ms prior to that (owing to frication noise in “siste-” of
“sister”). Thus, MSDs at sentence offset (the last 130 ms) are
fairly independent of those measured between the last 130-
500 ms (the plateau in Fig. 4).

Correlation coefficient magnitudes decrease at analysis
windows longer than the last 500 ms or so. This reflects cor-
responding abrupt changes in MSD measures in sentences. In
“The hallway opens into a huge chamber” (Experiment 2,
Block 1), affricates rich in high-F5 energy (“-ge ch-" in “huge
chamber”) convey negative MSDs immediately before the last
475 of the sentence (“-amber” in “chamber”) whose strong
low-F5 energy produces a positive MSD. A similar pattern
occurs in “Shipbuilding is a most fascinating process”
(Experiment 2, Block 2; Experiment 3, Block 2), where a
half-second of positive MSD values (“-inating pro-" in “fas-
cinating process”) precedes large negative MSDs in the last
475 ms owing to high-F5 frication noise (“-cess” in “pro-
cess”). This pattern also occurs in the opposite direction, as
“His father will come home soon” (Experiment 4, Block 1)
features a large negative MSD stemming from high-F;
frication energy in the “s-” of “soon” before near-zero
MSDs in the final 475 ms. But, it is important to note that this
correlation function and its characteristics do not prescribe any
specific temporal windows for context effects in speech per-
ception. Unfiltered stimuli were selected without any regard to
local temporal characteristics of MSDs; only their long-term

3 MSD values for the context sentence tested in filtered blocks differ depend-
ing on the timecourse being analyzed (MSD = 0.08 across the whole sentence,
—10.63 across the last 475 ms owing to more high-F; frication energy in
“crucial”). But this analysis utilizes the difference in MSDs across low-Fs-
amplified and high-F;-amplified renditions of the context sentence. This dif-
ference is defined by filter gains utilized and not by initial MSD value. For
example, for +10 dB filter gains, the calculation becomes [(MSD + 10) —
(MSD-10)]/2 = 10. As a result, MSD values for filtered blocks are nearly
identical across Figs. 3a and 3b.

(sentence-length) properties were considered. Future research
using stimuli with more carefully controlled short-term MSDs
(analogous to the generation of pure tone sequences with
different local statistics in Holt, 2006) may shed more light
on context effects in speech categorization at different tempo-
ral windows.

Given the results of the timecourse analysis, a second
mixed-effects model was constructed using the same architec-
ture as the model described at the beginning of the Results
section. The key difference was that MSDs in this second
model were calculated across the last 475 ms of sentences
rather than their entire duration. Results from this analysis
are depicted in Table 4. Key results pertaining to SCEs were
replicated: SCEs occurred (positive main effect of Spectral
Peak), their magnitudes increased as MSDs increased (posi-
tive interaction between Spectral Peak and MSD), and the rate
of this increase was shallower for unfiltered sentences than
filtered sentences (negative three-way interaction between
Spectral Peak, Condition, and MSD). When this model is
restricted to analyze responses in Unfiltered conditions only,
the main effect of Spectral Peak is now significant (z= 5.51, p
< 4e-8) as is its interaction with MSDs (z = 8.64, p < 2e-16).
Neither of these results are statistically significant when
MSDs were calculated across the entire durations of context
sentences.

The predictive power of MSDs in the last 475 of context
sentences (here noted MSD),475ms) and the poor predictive
power of MSDs calculated across entire sentences (here noted
MSDygenience) for SCE magnitudes is evident at the item level.
In Experiment 1, Block 1, the SCE was in the opposite direc-
tion of what was expected based on MSDgcnence-
MSDs)5475ms Were equivalent, which would not be expected
to differentially influence responses (i.e., extinguish the SCE).
The negative SCE might reflect the last 475ms of “We’re here
to transact business” containing a stretch of negative

Table 4 Results from the mixed-effects logistic regression on listeners’
responses

Estimate SEM Z P
(Intercept) 1.031 0.116 8919 <2e-16
Target 1.707 0.044 38560 <2e-16
Spectral Peak 0.377 0.149 2530 0.011
Condition 0.710 0.175 4.066 4.8¢e-5
MSD -0.017  0.007 -2.379 0.017
Spectral Peak x Condition -0.017 0300 -0.058 0.954
Spectral Peak x MSD 0.101 0.010 9.646 <2e-16
Condition x MSD 0.038 0.011 3.468 0.001
Spectral Peak x Condition x MSD —0.102  0.021 —4.896 9.8e-7

Note. Unlike in Table 2, MSDs were calculated across the last 475 ms of
context sentences. See main text for description of factors and the model
structure. SEM indicates the standard error of the mean.
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instantaneous MSDs due to frication energy in “business,”
whereas the last 475 ms of “Her lips, moist and parted, spoke
his name” contains a stretch of lower-F5; formant energy in
“name” (see Supplementary Figures). In Block 2, the SCE
was extinguished altogether. “She had your dark suit in greasy
wash water all year” had an extremely modest MSD)5475ms-
While “Spring Street is straight ahead” had a moderate nega-
tive MSDgentence DUt a strongly positive MSD)u475ms due to
lower-F5; formant energy in “ahead,” this was not enough to
significantly shift responses. In Block 3, a negative SCE oc-
curred despite both sentences having near-zero MSDg.pence-
This is likely due to higher-F; frication energy in “-ance” the
end of “Critical equipment needs proper maintenance” (pro-
ducing a strongly negative MSD,5475ms) promoting “ga” re-
sponses to a greater degree than did the very modest negative
MSD,st475ms at the end of “The blue jay flew over the high
building.”

Both blocks of Experiment 2 produced SCEs in the predict-
ed directions. In Block 1, F, and F5 peaks in the last word of
“Don’t ask me to carry an oily rag like that” produced large
positive instantaneous MSDs during the last 475 ms. This sen-
tence was likely more effective in promoting “da” responses
than “The hallway opens into a huge chamber,” where the
instantaneous MSD values (and resulting MSD),5475ms) Were
more modest. A similar situation occurred in Block 2. Lower-
F5 and higher-F; energy in “-ces” of “The paper boy bought
two apples and three ices” was relatively well balanced
(resulting in a small MSDy,4475ms), but the frication energy in
“-cess” of “Shipbuilding is a most fascinating process” pro-
duced relatively large high-F5 peaks. This resulted in a large
negative MSD),475ms fOr this sentence, which was sufficient to
shift responses in the predicted directions.

Experiments 3 and 4 were similar to Experiment 2 in that in
each block, one context sentence had a large MSD),41475ms and
the other sentence had a much smaller MSD,41475ms, Which
might have been enough to produce an SCE. Block 1 of
Experiment 3 tested the same token of “Don’t ask me to carry
an oily rag like that” (with its large positive MSD)a5475ms) @S
Block 1 of Experiment 2. This sentence was expected to be
more effective in promoting “da” responses than “Those who
teach values first abolish cheating,” where the raising of F5 for
the /t/ in “-eating” flipped instantaneous MSDs from positive
to strongly negative, lessening the degree to which the
MSD.st475ms 1S positive. However, a small negative SCE
was observed instead. Block 2 presented the same context
sentences as those presented in Experiment 2, Block 2, and
the SCE was replicated almost exactly. In Block 1 of
Experiment 4, “The family bought a house” had a positive
MSDygentence but a strong negative MSD),5475ms due to
frication energy in “house.” The last 475 ms of “His father
will come home soon” exhibited small instantaneous MSD
values owing to relatively balanced energy across low-F3
and high-F5 regions on “-oon” due to F, falling below the
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1700-Hz lower frequency cutoff of the low-F5 region and F;
sitting on the border shared by low-F; and high-F; regions.
Collectively, this produced more “da” responses to “The fam-
ily bought a house,” resulting in a negative SCE. In Block 2,
the higher-F; frication energy in “-ister” at the end of “She
argues with her sister” (negative MSDja5475ms) should have
promoted “ga” responses more effectively than “They painted
the wall white,” whose small MSD) 4475ms 1S due to F5 values
in “white” starting out below and then transitioning into the
low-F3 frequency region. However, the resulting SCE was of
small magnitude. Finally, Experiment 5 was straightforward.
Sentences with positive MSDgepence also had positive
MSD,st475ms (lower-F5 formant peaks in “put in” of “Often
you’ll get back more than you put in” [Block 1], in “that” of
“Don’t ask me to carry an oily rag like that” [Blocks 2 and 3]).
Similarly, sentences with negative MSDgepence also had neg-
ative MSDy,qu75ms (higher-F5 frication energy in “-eese” of
“Rob sat by the pond and sketched the stray geese” [Block
1], in “-ise” of “The prowler wore a ski mask for disguise”
[Block 2], in “-uice” of “When peeling an orange, it is hard not
to spray juice” [Block 3]). By having large MSD),475ms in the
expected directions for both context sentences in each block,
moderate-to-large SCEs were observed.

Discussion

The Efficient Coding Hypothesis (Attneave, 1954; Barlow,
1961) has long been a productive perspective for studying
sensation and perception in vision (see Introduction). While
nascent compared with studies in vision, applications of effi-
cient coding to auditory perception have been fruitful, specif-
ically for speech perception (for reviews, see Gervain &
Geffen, 2019; Kluender et al., 2013; Kluender et al., 2019).
The present approach further supports efficient coding per-
spectives of speech perception by demonstrating sensitivity
to natural signal statistics in context spectra. Context
sentences were selected and presented based on their Mean
Spectral Differences (MSDs), the inherent balance of acoustic
energy across two frequency regions. Spectra toward the ends
of these sentences (particularly the last 475 ms) produced and
predicted context effects that shaped listeners’ consonant cat-
egorization (SCEs). This further supports the perceptual sig-
nificance of this metric and bolsters efforts to link the statisti-
cal structure of the speech signal to its perception.

The present study and Stilp and Assgari (2019) both mea-
sured the efficacy of filtered and unfiltered context sentences to
produce SCEs that influenced speech sound categorization.
While the previous study examined vowel categorization (/I/
-/g/) and its relevant frequency regions (<850 Hz), the present
study examined consonant categorization (/g/-/d/) and its rele-
vant frequency regions (1700-3700 Hz). In both studies, unfil-
tered SCE magnitudes were smaller and more variable than
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filtered SCE magnitudes (see Fig. 3). The differences in results
across studies, however, are more striking than the similarities.
In Stilp and Assgari (2019), MSDs based on long-term average
statistics of unfiltered sentences were significantly correlated
with the resulting SCE magnitudes; here they were not corre-
lated at all (see Fig. 3a). Regression slopes for predicting SCE
magnitudes from MSDs were highly similar across filtered and
unfiltered sentences in the previous study; here regression
slopes markedly differed. In short, full-sentence MSDs were
considerably less effective in biasing consonant categorization
than biasing vowel categorization.

Analyses of MSD timescales offered insight as to why this
was the case. While sentences were selected and presented as
context stimuli owing to their long-term (i.e., full-sentence)
MSDs, variation in phonemic content rapidly changed specif-
ic MSD values throughout the sentence (see Supplementary
Figures). While full-sentence MSDs were poor predictors of
shifts in consonant categorization, MSDs toward the ends of
the context sentences were excellent predictors (see Figs. 3b
and 4). These MSDs were much stronger predictors of conso-
nant SCEs (r =~ .90) than those predicting vowel SCEs (max-
imum r = .60), which were strongest at longer timecourses and
weaker for shorter timecourses. Why do MSDs exhibit such
different timecourses in affecting vowel categorization and
consonant categorization? Several possibilities exist that are
not mutually exclusive. First, context sentences were drawn
from the same databases across studies (TIMIT, HINT), but
the sentences themselves differed, so item-specific factors
cannot be ruled out. Second, F; MSDs were calculated in
lower-frequency regions of the speech spectrum (<850 Hz),
which have higher amplitudes than the higher-frequency re-
gions in which F3 MSDs were calculated (1700-3700 Hz; see
long-term average spectra in Fig. 2). Thus, while specific
MSD values may be similar across studies (particularly
larger MSD values in the distribution tails in Fig. 2), those
occurring in F; regions have higher overall amplitude than
those occurring in F5 regions. Third, MSDs in different fre-
quency regions are driven by different events in the speech
signal. Both low-F; and high-F; MSDs below 850 Hz are
driven primarily by formant (F;) peaks. Low-F; MSDs were
also driven primarily by formant peaks (F, and F3 peaks in the
1700-2700 Hz region), but high-F; MSDs were driven pri-
marily by frication noise (see spectrograms in Supplementary
Figures for examples). The durations of these events in the
speech signal vary, as vowel durations often exceed those for
frication noise (e.g., House, 1961; Jongman et al., 2000). As a
consequence, instantaneous MSD values are generally less
variable in F; regions than in F5 regions.* These factors bear

* This point is supported by calculating the variance on instantaneous MSD
values depicted in the Supplementary Figures. Variances were also calculated
for instantaneous MSDs in stimuli presented in Stilp and Assgari (2019).
Analyses were restricted to the last 1,000 ms or the last 500 ms to account
for differing sentence durations across stimuli.

directly on the neural adaptation processes proposed to under-
lie SCEs (see Stilp, 2020a, 2020b, for discussion). In order to
produce sufficient neural adaptation to result in an SCE, spec-
tral peaks in F5 frequency regions might need to occur closer
to context sentence offset (due to being comparatively lower-
amplitude, shorter-duration, and higher-variance) whereas
spectral peaks in F; frequency regions could occur earlier in
context sentences (due to being higher-amplitude, longer-du-
ration, and lower-variance). Neural responses to speech
sounds following acoustic (sentence-length) context are need-
ed to confirm this mechanistic interpretation of MSD
timecourses and patterns of SCEs across studies.

While appealing, these interpretations are accompanied by
three caveats. First, the present experiments tested 24 unfil-
tered context sentences (21 unique) and Stilp and Assgari
(2019) tested 32 unfiltered context sentences (17 unique); this
is not expected to be fully representative of all American
English. Second, these different timecourses were derived in
a post hoc fashion. Future research would be well-served by
targeting specific timecourses in different frequency regions a
priori. A final but nontrivial difference across studies lies in
the target stimuli themselves. Stilp and Assgari (2019) mea-
sured categorization of vowels differentiated principally by F;
frequency (/1/-/€/). This spectral feature was relatively high-
amplitude, highly prominent in the spectrum, and endured
throughout the duration of the target stimulus (246 ms). This
contrasts sharply with characteristics of the /g/—/d/ target con-
sonants tested here, which are principally differentiated by the
onset frequency of the F; transition. The entire formant transi-
tion duration is only 63 ms, of which the first few tens of
milliseconds are most crucial for differentiating /g/ from /d/.
As discussed above, the F; frequency region is considerably
lower in amplitude than the F; frequency region. Differences in
target stimuli may also contribute to discrepant patterns of re-
sults across studies, not just differences in MSD characteristics.

Acoustic context effects in speech perception can occur on
different timecourses (see Stilp, 2020a, for review). Previous
studies have sought to distinguish the relative influences of
proximal context (i.e., temporally adjacent to the target stim-
ulus) and distal context (i.e., temporally nonadjacent to the
target stimulus) on perception of a target speech sound. Holt
(2006) presented contexts comprising three successive 700-
ms pure tone sequences with different local statistics (mean
frequencies of 1800, 2300, or 2800 Hz in counterbalanced
orders). Statistical analyses did not find consistent effects of
these contexts on categorization of /ga/—/da/ targets, leading
Holt (2006) to conclude that the proximal context (immedi-
ately preceding the target consonant) was less perceptually
salient than the global context (grand mean of 2300 Hz across
the entire 2,100-ms sequence). But, direct comparison of the
present results to those from Holt (20006) are difficult. Both
studies explored context spectral peaks in similar frequency
regions and perception of /ga/—/da/ targets, but stimulus
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statistics were tightly controlled using pure tone contexts in
Holt’s study whereas they varied more naturally in sentence
contexts here. While the literature on proximal versus distal
spectral context effects is sparse, a host of studies have exam-
ined this question for temporal context effects (i.e., speaking
rate normalization). Across studies and methodologies, the
speaking rate of proximal context exerts a larger influence
on perception of target speech than does the rate of distal
context (Heffner et al., 2013; Kidd, 1989; Reinisch et al.,
2011; Summerfield, 1981). In the present experiments, prox-
imal and distal contexts were not explicitly pit against each
other in this fashion; stimuli were selected based on their
MSDs calculated across the entire duration of the sentence.
Short-term MSDs in unfiltered sentences (i.¢., those calculated
across the last 475 ms of sentences) were not obligated to
resemble long-term MSDs; they were not even correlated with
each other (» = .27, p = .40). Yet, proximal MSDs were supe-
rior predictors of performance compared to full-sentence
MSDs (see Fig. 3). Future research testing contexts whose
proximal and distal statistical structure make different predic-
tions for speech sound categorization would be highly illumi-
nating. Given the consistent patterns of results observed in the
temporal domain, the statistics of proximal contexts would be
expected to bear greater influence on speech perception than
the statistics of distal contexts.

Perceptual sensitivity to signal statistics on variable timescales
is not limited to spectral context effects. McDermott and col-
leagues (McDermott et al., 2013; McDermott & Simoncelli,
2011; McWalter & McDermott, 2018) synthesized environmen-
tal sounds based on their statistical characteristics in the frequency
and modulation domains. These statistics were imposed on ran-
dom noise samples to create sound textures de novo, which lis-
teners recognized nearly as well as their natural counterparts
(McDermott & Simoncelli, 2011). Critically, perceptual processes
average these statistics across time, as discrimination of different
textures improved with longer durations (as statistics diverged to
different long-term averages) while discrimination of different
exemplars of the same texture worsened at longer durations (as
statistics converged to the same long-term average; McDermott
et al., 2013). Perception accommaodates changes in statistics with-
in a given texture, as the temporal averaging process lengthens for
highly variable statistics but shortens for more consistent statistics
(McWalter & McDermott, 2018). Aggregation of stimulus statis-
tics over minutes of exposure can directly influence lower-level
and higher-level perception. Passive exposure to a few minutes of
nonsense speech is sufficient for infants to extract transitional
probabilities between syllables (Saffran et al., 1996); this finding
was seminal to the field exploring “statistical learning” in lan-
guage development (for a recent review, see Saffran &
Kirkham, 2018). After a few minutes of passive exposure or
active testing, listeners extract patterns of covariance between
acoustic properties in novel sounds that modulates their discrim-
inability (Stilp & Kluender, 2012, 2016; Stilp, Rogers, &

@ Springer

Kluender, 2010). After a few minutes of listening or testing, lis-
teners alter speech sound categorization in response to the prob-
ability density functions of stimulus presentation (e.g., Maye
et al., 2008; McMurray et al., 2009) or changes in the variance
of these distributions (Theodore & Monto, 2019). Other statistical
properties may be aggregated over hours, days, or longer, such as
those that promote sensitivity to the sound contrasts in one’s
native language at the expense of other seldom-heard languages
(e.g., Werker & Tees, 1984). These and other examples exemplify
perception maintaining sensitivity to statistics on different time-
scales in order to make processing more efficient.

In that vein, it might not be surprising that speech perception
is sensitive to stimulus statistics in preceding context. Here, con-
sonant categorization was shaped by the natural statistical struc-
ture of context sentences (MSDs). This relationship was also
observed in Stilp and Assgari (2019), where the MSDs in context
sentences shaped vowel categorization. This sensitivity to natural
stimulus statistics in unfiltered context sentences further supports
the pervasiveness of acoustic context effects in everyday speech
perception (Stilp, 2020a; Stilp & Assgari, 2019). Additionally,
these results provide yet further evidence of efficient coding of
structure in the sensory environment.
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