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Abstract
The occupancy model (OM) was proposed to explain how the spatial arrangement of dots in sparse random patterns affects their
perceived numerosity. The model’s central thesis maintained that each dot seemingly fills or occupies its surrounding area within
a fixed radius ro and the total area collectively occupied by all the dots determines their apparent number. Because the perceptual
system is not adapted for the precise estimation of area, it looks likely that the OM is just a convenient computational algorithm
that does not necessarily correspond to the processes that actually take place in the perceptual system. As an alternative, the
proximity model (PM) was proposed, which instead relies on a binomial function with the probability β characterizing the
perceptual salience with which each element can be registered by the perceptual system. It was also assumed that the magnitude
of β is proportional to the distance between a dot and its nearest neighbor. A simulation experiment demonstrated that the
occupancy area computed according to the OM can almost perfectly be replicated by the mean nearest neighbor distance. It was
concluded that proximity between elements is a critical factor in determining their perceived numerosity, but the exact algorithm
that is used for the measure of proximities is yet to be established.

Keywords Perceivednumber .Numerosity illusions .Theoccupancymodel .Spatial statistics .Nearestneighbordistance .Visual
crowding

Introduction

Stanley Jevons, one of the founders of neoclassical econom-
ics, ran one of the most elegant experiments in the history of
psychology, using only a round paper box and a handful of
black beans. He observed that he had the ability to estimate,
with sufficient accuracy, the number of randomly scattered
black beans even if there was no time or opportunity for them
to be counted exactly (Jevons, 1871). He made no mistakes
when the number of beans was less than five, and even with
higher quantities of beans, errors were mainly towards under-
estimation. However, this method of identifying the exact
number of displayed elements presumes that the subjects are
familiar with the concept of numerals. There are languages
with a very small lexicon of numbers, such as Munduruku
or Pirahã, whose speakers can nevertheless compare large
approximate numbers far beyond their naming range

(Gordon, 2004; Pica, Lemer, Izard, & Dehaene, 2004).
Additionally, small children have a number sense, which al-
lows them to work with numbers before they have acquired
the semantics of numerals (Halberda & Feigenson, 2008).

One way that enables us to avoid using numerals is to
instead ask to determine which of two sets of elements is more
numerous (Allik & Tuulmets, 1991; Burgess & Barlow, 1983;
Raphael, Dillenburger, & Morgan, 2013; Van Oeffelen &
Vos, 1982b). This simple task bypasses verbal or symbolic
coding, making this protocol more functional for not only
young children but also for various animal species, including
pigeons (Honig & Matheson, 1995), treefrogs (Lucon-
Xiccato, Gatto, & Bisazza, 2018), angelfishes (Gomez-
Laplaza & Gerlai, 2020), and of course chimpanzees
(Woodruff & Premack, 1981). Although the number of ele-
ments does not change if their order or spatial arrangement is
changed, like young children, our perceptual system can be
fooled by a different spatial configuration of elements. Many
so-called numerosity illusions, which arise from differing ar-
rangements of elements, have been observed and described.
For instance, Christopher and Uta Frith described the solitaire
illusion, which creates the impression that one large cluster of
dots appears to contain more elements than several small clus-
ters (Frith & Frith, 1972). It was also observed that a regular or
even arrangement of elements appeared to have a different
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number of elements than the same number of randomly posi-
tioned elements (Burgess & Barlow, 1983; Ginsburg, 1976;
Taves, 1941). One factor that is known to affect this perceived
number is the grouping of elements into clusters (Bertamini,
Zito, Scott-Samuel, & Hulleman, 2016; Chakravarthi &
Bertamini, 2020; Ginsburg & Goldstein, 1987; Van Oeffelen
& Vos, 1982a; Vos, Van Oeffelen, Tibosch, & Allik, 1988).
However, an ability to estimate numerosity depends substan-
tially on whether dots were configured in the same pattern
throughout the experiment or randomly generated before each
trial to avoid memorable configurations (Krajcsi, Szabó, &
Mórocz, 2013; Wolters, van Kempen, & Wijlhuizen, 1987).
In order to avoid confusing numerosity estimation with rec-
ognition of already familiar patterns, we need stochastic pro-
cesses that place elements into random positions in the image.
This is a good opportunity to give a reminder of the remark-
able progress made in the study of stereoscopic perception
thanks to the invention of random dot patterns (Julesz, 1971).

Since the spatial configuration of elements has an effect on
their apparent number, it clearly indicates that it is not the
number per se but another attribute that is actually estimated
when there is an instruction to judge the number of elements.
This speaks to the constraints that limit visual processing in
situations where observers are instructed to carry out a task the
visual system is not adapted to (Morgan, Hole, & Glennerster,
1990). The French psychologist Alfred Binet was probably
the first to notice that young children, before they acquire an
understanding of the concept of numbers, confuse numbers
with the extent to which elements are stretched in space
(Binet, 1890).

To explain how spatial arrangement of elements affects
their perceived numerosity, the Occupancy Model (OM) was
proposed (Allik & Tuulmets, 1991). The development of this
model was based on the knowledge provided by spatial sta-
tistics (Ripley, 1981), which is a special field of statistics that
describes how objects are distributed in space. For example, if
a plane area A2 is randomly bombarded by N dots – usually
called the Poisson process – then the probability that the
nearest neighbor is in the radius r can be found with the fol-

lowing formula: 1−e−Nπr2 (Schachter & Ahuja, 1979).
However, by deviating from this totally random Poisson pro-
cess, one can force the nearest neighboring dots to be statisti-
cally closer or more distant to each other than in the case of a
random bombardment. In order to shorten the nearest neigh-
boring distance, it is possible to use a satellite process in which
half of all the elements are parents, each having a child or
satellite positioned randomly around the parent within the
specified radius rs (Schachter & Ahuja, 1979). The opposite
process uses the inhibitory radius ri surrounding all already
positioned elements for protection so that no new elements
can be placed closer than a specified critical distance
(Schachter & Ahuja, 1979).

Typically, the Poisson distribution (Fig. 1B) appears less
numerous than the pattern generated by the inhibitory process
(Fig. 1A), which controls that no two dots are more closely
positioned than the inhibitory radius ri, but does seem more
numerous than the satellite process (Fig. 1C), which guaran-
tees that no dot has its nearest neighbor within the satellite
radius rs. It is important to notice, however, that it makes sense
to talk about inhibitory or satellite radii only if the dots’ dis-
tribution is sparse enough to allow identifying dots as individ-
uated single items (Anobile, Cicchini, & Burr, 2016). There is
convincing evidence that with densely packed stimuli, which
look like textures, the proximity between neighbor dots is not
a relevant characteristic (Anobile et al., 2016). This is very
likely because the numerosity of differently colored elements
in densely packed textures is perceived differently from the
number of dots in sparsely distributed patterns (Anobile,
Cicchini, & Burr, 2014; Anobile, Turi, Cicchini, & Burr,
2015; Pomè, Anobile, Cicchini, Scabia, & Burr, 2019).

In order to explain why inhibitory patterns look more nu-
merous than patterns generated by the Poisson process, which,
in turn, are typically judged to be more numerous than satellite
patterns, the OM assumed that each dot (or element) had an
impact upon its neighborhood, which can be depicted as a
spread of influence in the occupancy radius ro. In other words,
each dot appears to fill or occupy an area in its neighborhood
within a fixed radius ro. This idea that numerosity may be
judged on the basis of an apparently filled area was originally
proposed by Piet Vos and colleagues (Vos et al., 1988). They
further proposed that the occupancy areas of each dot may
change size depending on the dot’s distance to its nearest
neighbor. This assumption, however, was incorrect since the
best agreement between the model’s predictions and empirical
data was obtained when the occupancy radius ro was assumed
to have a fixed value (Allik & Tuulmets, 1991). If two occu-
pancy areas overlap, then the total overall area occupied by
these two individual occupancy areas decreases by the size of
their overlap. Thus, if two elements are less than 2ro apart,
then their occupancy areas overlap, which leads to a reduction
of the total occupancy in proportion to the size of overlap.
Although the occupancy radius seems to change as a function
of image size and the density of visual elements (Allik,
Tuulmets, & Vos, 1991), the typical value for the occupancy
radius was around 0.5° of visual angle (Allik & Tuulmets,
1991; Im, Zhong, & Halberda, 2016).

Surprisingly, the OM with only one free parameter ro has
survived all known attempts at falsification that have been
undertaken in the last 30 years. For example, there was a very
meticulous attempt to explain how perceptual grouping affects
human number estimation in random dot arrays by the prop-
osition of a k-means clustering algorithm (Im et al., 2016). In
addition to their own model, the authors also wrote a code to
implement the OM and compared the predictions of these two
models. They reached the following conclusion:
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“To test whether the occupancy model also generalizes
to our current dataset, and to test whether the occupancy
radius r is a relatively universal parameter across stud-
ies, we exploited the occupancy model to find the best
occupancy radius r for our data. /…/ We also computed
a group average r by fitting the entire dataset as a single
group. These agreed well, and the best-fit occupancy
radius r for our dataset was about 0.34° of visual angle,
which is very close to the occupancy radius r (18–22' arc
corresponding to 0.30–0.37° of visual angle) that was
found in the original paper on the occupancy model by
Allik and Tuulmets (1991), thereby replicating their
study. Although experimental settings and parameters
were different between Experiment 2 and the methods
of Allik and Tuulmets (e.g., the size of the stimuli and
the display areas involved), the human responses during
the dot enumeration task in Experiment 2 can be ex-
plained by an occupancy radius r quite similar to the
original occupancy model. The occupancy model was
designed to generate predictions for human number es-
timation. Using the best-fit value for the occupancy ra-
dius r (0.34°) we next found that the occupancy model
predictions correlated with human number estimations
(R = .485, p < .01). This is somewhat less than the
correlation noted earlier for our cluster model predic-
tions of human number estimation (R = .75, p < .01).
/…/ Rather than claiming that the cluster model is supe-
rior to the occupancy model as a model of number esti-
mation behavior, we would like to highlight the similar-
ity in the approach of these two models – both focus on
the overlap and relationships across elements within a
display.” (Im et al., 2016, pp. 302-303)

The observation that two different algorithms are capable
of providing very similar predictions may suggest that the OM
could be just an elegant technical tool, but not an adequate
description for how the numerosity of random dot arrays is
judged in reality. It should also be noted that the concept of
occupancy area was never tested by asking whether or not the
perceptual system has the necessary mechanisms for the ac-
curate estimation of areas of shapes on the plane.

In one of our previous studies, we spotted that when
an observer was instructed to compare the sizes of a set
of circles, the comparison was never made in terms of
the areas of the circles but instead on the basis of the
size of cross-sections or diameters (Allik, Toom,
Raidvee, Averin, & Kreegipuu, 2014). We also conduct-
ed a study in which the observer was instructed to
compare a set of circles on the basis of mean diameter
or summary area (Raidvee, Toom, Averin, & Allik,
2020). The results clearly demonstrated that the preci-
sion to which a summary area of geometric figures can
be judged was much worse than discriminations based
on radius or diameter. Other studies have also demon-
strated that observers have no direct access to a two-
dimensional area and decisions are instead based on a
variety of one-dimensional cues (Morgan, 2005;
Nachmias, 2008). Ironically, Sverker Runeson proposed
the existence of smart visual mechanisms, which can
directly register complex perceptual variables, illustrat-
ing this proposal with an example of the polar planim-
eter (Runeson, 1977). Thus, the OM presumes a percep-
tual mechanism, for judging the area of plane regions,
for which the visual system may not have developed the
proper tools (Fig. 2).

Another unusual property of the OM is its purely deter-
ministic character: the model’s only parameter, occupancy
radius ro, was assumed to be a constant, not a random,
variable (Allik & Tuulmets, 1991). It was not the authors’
intention to propose a model in which there was no place
for representational sensory noise. However, the pressure
to use random continuously changing patterns also pro-
duced variation in the stimulus attribute that was suppos-
edly used for judgements. Because there was no direct
method of separating representational sensory variation
from purely physical stimulus variation, the sensory noise
remained undisclosed within observable summary noise.
However, it would be realistic to assume the occupancy
radius ro is a random variable, which has a mean value
and standard deviation. If we assume the occupancy radius
ro is a random variable, then we have to conclude the total
area Ao occupied by all dots is also a variable even if the

Fig. 1 Three examples of random pattern generation processes distributingN=30 elements over an observation area: (A) Inhibitory process, (B) Poisson
process and (C) Satellite process
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same fixed pattern is presented repeatedly. In general, a
noisy transmission transforms the number of presented vi-
sual elements stochastically into a continuum of psycho-
logical states representing their apparent number. This also
implies that Thurstone’s law of comparative judgement
(Thurstone, 1927) is the proper theoretical language for
describing how two numerosities can be discriminated.
As expected, Thurstonian analysis becomes standard appa-
ratus for the analysis of numerosity discrimination data
(Burgess & Barlow, 1983; Halberda, Mazzocco, &
Feigenson, 2008; Tokita & Ishiguchi, 2009; Van Oeffelen
& Vos, 1982b).

However, it must be noted that application of the
Thurstonian approach to discrimination of the number of ele-
ments may be problematic (Raidvee, Lember, & Allik, 2017).
Normal, or Gaussian, distribution was chosen to represent the
continuum of internal states primarily because of computational
convenience, not because there was irrefutable empirical evi-
dence in favor of Gaussian distribution. Also, the suitability of a
continuum of internal states for representing a discrete variable,
such as integers, was not discussed seriously. Although the
accurate identification and discrimination of small numbers –
also called subitizing – can be explained by assuming that rep-
resentational noise is fractional (VanOeffelen&Vos, 1982b), it
is still unclear what segments between two integers mean psy-
chologically and how these fractions are experienced by the
observer (Raidvee et al., 2017).

Because representing whole numbers on a continuous scale
looked somewhat unnatural, an alternative binomial model
was proposed (Raidvee et al., 2017). Let us suppose that a
perceptual process transforms each element presented on the

screen into a corresponding perceptual state. Unlike normal
distribution, these states have only two values: zero when the
presence of the element was not recorded, or one when the
element was recorded. This process can be described as a
binomial distribution, where parameter β is the probability
that each stimulus element can be noticed and recorded for
further processing. This allows us to determine how many
elements out of N were registered by the perceptual system
provided that the probability of noticing each of them was β.
If two patterns are compared, then the one in which more
elements were registered is the one that is expected to be
chosen.

Remarkably, within approximation, the proposed binomial
model is formally identical to the more conventional
Thurstonian models, which use normal distribution as a rep-
resentation of internal perceptual states. For every binomial
model with a certain parameter value β there is an approxi-
mately equivalent Thurstonian-Gaussian model with the cor-
responding standard deviation value for the normal distribu-
tion (Raidvee et al., 2017, Appendix 2).

Indeed, the binomial model with the parameter β provided
an excellent explanation for how two random arrays of ele-
ments were discriminated by the number of their elements
(Raidvee et al., 2017). However, since the binomial probabil-
ity β was assumed to be the same for all elements, this model
is incapable of explaining the effect of any arrangement or
configuration on perceived numerosity. In order to make per-
ceiving probability β sensitive to spatial arrangement of ele-
ments, it is necessary to transform this probability β into a
function, where β depends on some spatial statistics charac-
terizing proximity between elements.

The main purpose of this study was to find an attribute in
the spatial distribution of elements, which could control the
binomial parameter β in such a way as to explain how appar-
ent numerosity depends on the configuration of elements. We
call this amendment the ProximityModel (PM), which has the
central thesis that proximity between elements has an impact
on their perceived numerosity. The thesis that needs to be
tested is that the spatial proximity between the nearest neigh-
bors is a coefficient that modulates the probability with which
each visual element can be registered by the perceptual sys-
tem. It is proposed that the probability of noticing a dot is
higher when there are no neighbors in close proximity. If the
distance between an element and its nearest neighbor dimin-
ishes the probability of it being counted, it also reduces the
apparent number as a consequence.

Methods

A computer simulation was adopted as the approach for
this study. There is sufficient evidence to indicate that the
OM provides a fairly accurate description of how

Fig. 2 An illustration of the occupancy area surrounding each dot.
Apparent numerosity decreases with the overlapping occupancy areas.
The dot pattern is the same as in the middle panel in Fig. 1(B)
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numerosity in variously distributed random dot patterns is
perceived (Allik & Tuulmets, 1991; Bertamini et al.,
2016; Durgin, 1995; Im et al., 2016). The strategy is to
demonstrate that if the proposed PM will be able to pro-
duce predictions that are sufficiently close to the predic-
tions of the OM then this will be proof of the PM also
being a good fit for the empirical discrimination data that
was collected in previous studies.

Stimulus materials

Random dot patterns were generated and distributed with-
in a virtual observation area of 560 × 560 pixels, which
was surrounded by a 120-pixel wide safety belt that was
needed for computational purposes. In all cases, 30 dots
(N = 30) were stochastically distributed over 313,600
available positions. All patterns were generated using
one of the three processes described in the original paper
(Allik & Tuulmets, 1991) based on the previously de-
scribed principles for the generation of random patterns
(Schachter & Ahuja, 1979).

The Poisson process (Fig. 1B) Two random numbers x and y
were generated ranging from 1 to 560 in order to specify the
coordinates of a dot. To avoid overlap it was checked before
placing a dot that there were no dots already placed in the
inhibitory radius of ri = 4 pixels. If a dot was already in this
area, then new pairs of x and y coordinates were generated
until an empty space was found.

The inhibitory process (Fig. 1A) This process prohibited
any two dots from being closer to each other than
allowed by an inhibitory radius ri. Three different
values for the inhibitory process were used: ri = 20,
40, and 60 pixels.

The satellite process (Fig. 1C)Half of all the dots (N = 15) were
randomly distributed in the plane using the Poisson process.
Each of the remaining 15 satellite dots were assigned to their
respective parent. The satellite dot was randomly positioned
within the satellite radius rs from the parent dot but could not
be closer than the already mentioned distance of 4 pixels.
Three different satellite values were used: rs = 30, 50, and
70 pixels.

In total, there were seven types of random dot patterns: a
completely random Poisson pattern, and three inhibitory and
three satellite patterns.

Occupancy model

The OM, as already mentioned, has only one parameter,
which is that the radius of occupancy ro within which each
dot influences or fills its immediate surrounding (Allik &

Tuulmets, 1991). For our computer experiments, the occupan-
cy radius had a fixed value, ro = 40 pixels. A filled circle was
drawn over each of the 30 dots with the center coinciding with
the dot’s x and y coordinates. After that the number of filled
pixels was counted to determine the total area Ao occupied (or
filled) collectively by all the dots. The total occupancy area
was expressed as the percentage of filled pixels in relation to
the total number of pixels in the observation area.

Proximity model

With the proposed binomial model each dot is counted (or
noticed) with the probability β (Raidvee et al., 2017). One
way how to make this model sensitive to the spatial arrange-
ment of dots is to postulate that the element’s counting prob-
ability β decreases as the distance to its neighbor dots dimin-
ishes. Thus, we assume that for each jth dot there is an indi-
vidual coefficient cj, which diminishes the probability of this
dot being counted.Whereas in the original binomial model the
expected number of noticed elements is E(N) = Nβ, in com-
parison in the PM, the coefficient depending linearly or in
some other form on the distance to the nearest neighbor dnn
is used:

E Nð Þ ¼ c1 β þ c2 β þ…þ cN β ¼ β∑N
j¼1c j:

The way in which the coefficients cj are distributed among
individual elements is irrelevant, since what matters is the sum
of these coefficients. Thus, after summing up binomial func-
tions it becomes irrelevant how individual coefficients cj, are
distributed among individual elements. Assuming that the
nearest neighbor dnn is linearly related to these coefficients
cj, it would allow us to know the mean value of the nearest
neighbor distances.

Thus, our goal was to demonstrate that the occupancy area
Ao can be predicted with sufficient accuracy from the mean
nearest neighbor distance dnn, which was computed on the
same random pattern.

Results

One thousand realizations for each of the seven different ran-
dom processes were generated. The mean occupancy area Ao

for arrays generated by the Poisson process was 27.8% of the
viewing area. As expected, the inhibitory processes with the
inhibitory radiuses ri = 20, 40, and 60 pixels filled a larger
percentage of the viewing area, covering 28.8%, 31.0%, and
33.3%, respectively. Because the satellite processes created
more overlap between individual occupancy areas, the occu-
pancy areas Ao for the satellite radiuses rs = 30, 50, and 70
pixels were smaller – 19.0%, 21.8%, and 24.2% respectively.
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For each random array of dots, we also computed the dis-
tance dnn from each dot to their nearest neighbor. We sorted
these 30 distances so that the first ranking position was re-
served for the shortest distance, the second ranking position
for the next shortest distance, and so forth until the final 30th
ranking position was allocated to the dot that had the longest
distance to its the nearest neighbor. Figure 3 demonstrates the
distribution of the dnn values for the pattern-generation pro-
cesses used. As expected, for inhibitory processes the mean
nearest neighbor distances are larger (with the exception of the
last two positions) than for the patterns generated purely by
the Poisson process. In arrays generated by the satellite pro-
cess, the nearest neighbors were found to be in close proximity
to another dot.

Next we aggregated the nearest neighbor distance across all
the 30 positions of ranking. Figure 4 demonstrates the rela-
tionship between the average nearest distance dnn and the total
occupancy area Ao that was computed for the same type of
pattern. The regression function of the mean nearest neighbor
distance dnn and the total occupancy area Ao is very close to a
straight line (r = .9996). Although the mean nearest neighbor
distance and the occupancy area for the same pattern are not
necessarily mathematically identical, they for all intents and
purposes seem to be two practically interchangeable mea-
sures. From knowing the mean nearest neighbor distance,
we can almost exactly predict the value of the total occupancy
area for this particular distribution of dots.

Since it may not be initially obvious that the occupancy
area and mean distance to the nearest neighbor are identical
or nearly identical statistics, Fig. 5 demonstrates all the nearest
neighbor distances for the same Poisson pattern, which is

shown on the middle panel of Fig. 1 and for which Fig. 2
illustrates how the total occupancy area is found. In Fig. 5,
all 30 nearest neighbor distances are shown as dipoles
connecting two closest neighbors. The average length of these
30 dipoles can be accurately predicted from the total occupied
area demonstrated in Fig. 2. The equivalence of these two
measures indicates that all predictions that are made on the
basis of the OM can also be made, without any loss of preci-
sion, on the basis of the PM.

Fig. 3 The mean nearest neighbor distances for three different pattern generation processes – inhibitory (i), Poisson, and satellite (s) – as a function of
each element’s distance ranking position

Fig. 4 The relationship between the total occupation area Ao and the
mean distance to the nearest neighbor dnn
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It is possible that not all the nearest neighbor distances
equally influence the relationship between occupation area
and nearest neighbor distance. For example, one possibility
is that the proximity of neighbors starts to diminish perceived
numerosity if they are closer than a critical distance. If this is
true, we can expect the total occupancy area to be predicted
more on the basis of the nearest neighbors that are closest
together and less on the basis of pairs that have the largest
values. This predicts that the first few positions on the distance
rankings contribute more significantly to the correlation than
the latter ones. However, data portrayed a different story. The
strongest correlation around .97 between Ao and the mean dnn
was observed for middle-rank positions, not for either the
shortest or the longest distances between the nearest neigh-
bors. These correlations can be approximated with a negative
quadratic function, with the maximum being between the 15th
and 16th ranking positions. This appears to be further proof of
the mean nearest neighbor distance across all dots being the
best predictor of total occupancy area.

Discussion

Although the OM has provided a good fit to a majority of the
numerosity discrimination data that has been collected over
the last 30 years (Allik & Tuulmets, 1991; Durgin, 1995; Im
et al., 2016), it may not offer an adequate description of how
the human observer extracts numerosity information from
sparsely distributed random dot patterns. After considering
the evidence, it seems very unlikely that the central postulate
of the model – the occupied or filled area is what is judged

when observers are instructed to judge numerosity – is valid.
There is a lot of indication that the area of forms (or regions)
cannot be directly coded in the perceptual system, causing the
area to be judged with considerable inaccuracy (Morgan,
2005; Nachmias, 2008; Raidvee et al., 2020). Furthermore,
the idea of judging an occupied area was assumed, yet never
tested with sufficient thoroughness. It seems that while the
OM remains a simple and elegant computational algorithm,
it nevertheless cannot be considered to be an actual descrip-
tion of what really happens in the perceptual system when
impressions about numerosity are formed.

A remarkable coincidence between the occupied area Ao

and the mean nearest neighbor distance dnn demonstrates that
the two different algorithms are able to compute what is es-
sentially the same statistical property characterizing the spatial
distribution of patterns. This is also the main reason for why
the k-mean model and the OM provide very similar predic-
tions (cf. Im et al., 2016). Although the occupied area and the
mean distance to the nearest neighbor may not be mathemat-
ically identical, from a practical point of view, it is difficult to
find any meaningful differences between them. This was the
main reasonwhy no new data were collected: if the occupancy
area Ao accurately predicts numerosity discriminations then
the mean nearest neighbor distance dnn predicts them equally
well.

Nevertheless, there is no question about which of these two
statistical parameters – the occupied area or the nearest neigh-
bor distance – is more fundamental, as the nearest neighbor
distance is one of the key concepts of spatial statistics
(Gelfand, Diggle, Fuentes, & Guttorp, 2010; Ripley, 1981).
For example, nearest neighbor analysis is also a practical
method for discovering patterns in plant ecology (Dixon,
2002; Perry, Miller, & Enright, 2006) and archeology
(Pinder, Shimada, & Gregory, 1979). To confirm, the above-
presented analysis demonstrated how the distribution of
nearest neighbor distances, as well its mean value, is sensitive
to the inhibitory and satellite processes, which both bias dis-
tance distribution in opposite directions from the non-
constrained Poisson distribution (see Fig. 3). Although com-
puting the total occupancy area is easy to imagine, it does
require making some auxiliary assumptions, including about
the size of the occupancy radius.

If the mean nearest distance is judged then we are in fact
talking about extraction of summary statistics or what is often
called ensemble perception (Allik, Toom, Raidvee, Averin, &
Kreegipuu, 2013; Ariely, 2001; Chong & Treisman, 2003;
Whitney& Leib, 2018). Because the perceptual system cannot
count the exact number of elements without support from a
symbolic system, it needs to rely on some sort of summary
statistics characterizing how close or distant on average ele-
ments are from one another. If they are less distant as could
happen in the case of random bombarding then their perceived
number diminishes. If the nearest neighbors are sufficiently

Fig. 5 The nearest neighbor distances shown by dipoles connecting two
dots for the same pattern portrayed in Figs. 1B and 2
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far away then their number seems to increase. Although we
are aware of studies in which the link between perception of
the mean size and numerosity was examined (e.g., Utochkin
& Vostrikov, 2017), there are no studies where perceived
proximity between elements was distinguished from their av-
erage density (cf. Anobile et al., 2014; Dakin, Tibber,
Greenwood, Kingdom, & Morgan, 2011; Durgin, 1995;
Raphael & Morgan, 2016).

It is relevant to note that the nearest neighbor distance is a
rudimentary statistic. In many situations, the knowledge of
distances to at least k-nearest neighbors is more informative
(Dudani, 1976). Based on nearest neighbor distances alone it
is impossible, for instance, to reconstruct even the spatial fre-
quency content of that image, if not picture itself. As early as
1962, Bela Julesz observed that texture pairs with identical
second-order (or dipole) statistics but different third- and
higher-order statistics were usually not discriminable without
scrutiny (Julesz, 1962). Thus, for two textures or patterns to be
discriminated they need to have different second-order or di-
pole statistics (Julesz, 1980). Dipoles connecting the nearest
neighbors form only a tiny fraction of the whole family of
dipoles involving all lengths and orientations. This is the rea-
son why it seems unlikely that numerosity perception can be
explained in the framework of texture perception (cf. Anobile
et al., 2016; Durgin, 1995; Morgan, Raphael, Tibber, &
Dakin, 2014; Raphael & Morgan, 2016; Victor, Conte, &
Chubb, 2017).

The ease and simplicity with which the OM could be re-
written in terms of mean nearest neighbor distances inclines
one to think that neither can be considered to be an empirically
falsifiable model (cf. Im et al., 2016). For example, the ob-
served accuracy with which the mean size of an array of ele-
ments can be perceived may be explained by an assumption
that a small number of elements was taken into account for
averaging (Myczek& Simons, 2008). The distinction between
universal theoretical languages and empirically falsifiable
models was thoroughly explained by Jones and Dzhafarov
(2014). The proposed binomial version of psychophysical
analysis (Raidvee et al., 2017) is a universal language for
describing results when two random arrays of dots are re-
quired to be discriminated by their numbers. Themodel’s only
parameter β is open to many plausible psychological or neu-
ronal interpretations. However, as was conjectured, this pa-
rameter may change its value depending on the proximity of
the closest elements. It was surprising that the degree of over-
lap between different individual occupancy areas corresponds
almost perfectly to the mean nearest neighbor distance across
all dipoles. This implies the existence of a perceptual mecha-
nism that is capable of effortlessly and accurately estimating
the mean proximity between all or a sample of the nearest
neighbor pairs. However, upon reviewing Fig. 5 nothing
seems to tell us that the perceptual system has a machinery

that is capable of extracting dipoles connecting nearest neigh-
bors and estimating their mean length.

One plausible mechanism capable of taking proximity be-
tween elements into account is crowding. Crowding is usually
defined as the deleterious influence of nearby elements on
visual discrimination (Levi, 2008; Pelli, 2008; Whitney &
Levi, 2011). This definition seems to embrace the fact that
shortening the mean distance to the nearest neighbor decreases
perceived numerosity. This decrease signifies how the prox-
imity between neighbor dots exerts a deleterious impact which
results in reduced visibility or salience of the dots. Several
studies have scrutinized a possible link between crowding
and perceived numerosity (Anobile et al., 2015; Balas, 2016;
Chakravarthi & Bertamini, 2020; Valsecchi, Toscani, &
Gegenfurtner, 2013). For example, it was noticed that the
perceived numerosity of a peripheral cloud of dots was judged
to be less numerous in comparison to a central cloud of dots,
particularly when the dots were highly clustered (Balas, 2016;
Valsecchi et al., 2013). On the other hand, it was found that
these results were incompatible with a crowding account of
numerosity underestimation and instead point to separate
mechanisms for object identification and number estimation
(Chakravarthi & Bertamini, 2020). In another study, the au-
thors reached the conclusion that perception of numerosity
was not mediated by crowding (Anobile et al., 2015).
However, the largest amount of skepticism over associating
a proximity effect with crowding arose from the fact that
crowding only operates over a limited distance. When separa-
tion between visual elements exceeds a certain critical dis-
tance then the effect of crowding vanishes (Whitney & Levi,
2011). It was proposed that this critical spacing between two
visual elements corresponds to a fixed cortical distance (Pelli,
2008). Since our modelling results demonstrated that very
short nearest neighbor distances contributed to the predictions
of the OM even less than intermediate distances, they are not
compatible with the observation that the effect of crowding
disappears beyond a critical distance. We can conclude this
discussion with the notion that there are not enough data to
decide whether the proximity effects that have been observed
are based on an entirely different mechanism or due to a new
category of crowding.

Without new critical experiments, the PM remains a uni-
versal language of description that is compatible with many
specific mechanisms for implementing the idea of proximity.
In this respect the PM is not very different from its predecessor
the OM, which has survived critical testing for nearly 30
years. Following the admission that there are multiple ways
to operationalize the concept of proximity between elements
in random arrays of dots (Im et al., 2016), the next task is to
invent an experimental protocol, which is capable of identify-
ing the perceptual attribute that is actually used in forming
impressions about numerosity.
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