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Abstract
It has been established that objects sharing color in a visual display can boost working memory. The capacity to encode
singletons particularly benefits from the repetition of colors encoded as perceptual groups. We manipulated the algorithmic
complexity of visual displays to test whether compressibility of information could account for the color-sharing bonus.
This study used a free recall working memory task in which the participants were shown displays of 2 to 8 color items.
We examined the influence of set size, complexity, number of same-color clusters and amount of color redundancy. The
results showed that the probability of correct recall of the pattern and the proportion of similarity between the pattern and
the response decreased with an increase of each manipulated variable, except for color redundancy in terms of probability
of correct recall. The model performance of complexity did not differ from that of clusters, but complexity was found
more accurate than either set size or color redundancy. The results also showed that similar items were more often recalled
adjacently, and complexity correlated strongly with the number of extra color repetitions in the response, suggesting that
more complex patterns encouraged the use of information compression. Moreover, color repetitions were more often recalled
first and the probability of correct recall for singletons and sub-patterns could be predicted by the compressibility measure.
We discuss the potential advantage of using compressibility measures to capture the effects of regularities in visual patterns,
in particular to refine analysis of the color-sharing bonus.
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Estimates of working memory capacity vary substantially
depending on the type of tasks (Cowan, 2001), type of mate-
rial (Alvarez & Cavanagh, 2004; Jones & Macken, 2015),
number of features (Hardman & Cowan, 2015; Oberauer &
Eichenberger, 2013), and training and familiarity with the
material (Reder et al., 2016; Simmering et al., 2015). The
comprehension of these factors is of paramount importance
for determining how objects are encoded in working mem-
ory, either as single objects represented in separate slots or
depending on a common resource distributed across objects
(Awh et al., 2007; Bays et al., 2009; Donkin et al., 2014).
For instance, Quinlan and Cohen (2012) concluded that
grouping by similarity benefits do not naturally derive from
either the simple slot-based account or the resource-limited
account.
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To better understand how objects are encoded in working
memory, there has been an increased interest in investigating
how relational information can be structured in working
memory (e.g., see Brady et al., 2011b; Gao et al., 2016,
Jiang et al., 2000; Jiang et al., 2004) instead of simply
focusing on how many basic items can be remembered
independently (Miller, 1956). Effectively, another source of
variation when estimating capacity comes from the ability to
chunk information (Cowan, 2001; Orbán et al., 2008; Norris
& Kalm, 2019), for instance when correlated features are
introduced over the long term (Brady et al., 2009), when
groups form spontaneously (Brady & Tenenbaum, 2013;
Mathy & Feldman, 2012), and from the ability to extract
a statistical summary of an entire visual display (Brady &
Alvarez, 2011a).

One example of how redundant information affects the
span is a study by Morey et al. (2015), who showed a
boost of working memory capacity when objects shared
colors in visual displays. The authors found that the capacity
to encode non-duplicate colors benefited from duplicate
colors. An idea is that information compression processes
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(Brady et al., 2009; Norris et al., 2020; Mathy & Feldman,
2012) could potentially account for the results of Morey
et al. (2015) For instance, Chekaf et al. (2018) showed that
complexity of the memoranda is a clear indicator of how
working memory can succeed in optimizing storage on the
spot. We also know that a signature of the compressibility
account benefits on singletons (Brady et al., 2009; Norris
et al., 2020). The to-be-tested idea initiated by these
authors is that more compressed representations in working
memory can leave room for remembering extra material.
Therefore, it seems crucial to measure concurrently how
many duplicates and how many singletons can be recalled
by experimentally designing the duplicates (see Benchmark
1.3 in Oberauer et al., 2018).

Morey et al. (2015) tested two accounts of the color-
sharing bonus: i) the boost is determined by a reduction
of information load due to the shared colors that can be
grouped together or ii) automatic attentional capture is
induced by the duplicates and this facilitates encoding of
the visual display. The authors found that duplicate objects
first effectively captured attention, and that this initial
step was followed by a greater focus on unique colors.
Our general hypothesis is that the observation of Morey
et al. (2015) seems in line with a compression account
positing that redundant information (i.e., clusters) could
be first compressed to leave room for less compressible
information (i.e., singletons). Following a compression
account, redundant information in display sets containing
repeated colors could be compressed in working memory
(Chekaf et al., 2016; Mathy et al., 2016). By analogy to what
Morey et al. (2015) found, the to-be-compressed objects
could first capture attention, and this initial step could be
followed by a greater focus on unique colors. If a processing
component in working memory can effectively compress
information on the spot, it means that optimization of
information might prevail over attentional and grouping
processes combined to account for the color-sharing bonus
phenomenon. The rationale is that a compression account
could explain the color-sharing bonus as the result of
individuals’ attempts to reduce information load in stimulus
sets, and this would account for why attentional processes
in working memory are first directed towards redundant
information (i.e., to best optimize redundant information
first). As a result of the compression process, the
compressed information could leave room in memory for
encoding less compressible information such as singletons.
For instance, for the stimulus display blue-blue-blue-red,
the newly encoded chunk ‘blue-blue-blue’ should make the
stimulus display easy to recall, with no particular benefit
on ‘red’. Correct recall of ‘blue-blue-blue’ should have
no influence on the recall of the last color. However, if

‘blue-blue-blue’ could be compressed as ‘3blue’, the shorter
description should benefit the singleton ‘red’ because
‘3blue’ supposedly would require less storage space. A
last advantage of testing the compression account is that
compressibility measures are versatile and can capture
diverse effects of redundant information on memory (e.g.,
symmetries, alternating patterns, and clusters).

The present study The purpose of this study was to test
whether compressibility of information can offer a potential
account of the color-sharing bonus in visual working
memory. With this goal in mind, we decided to switch
paradigms. Previous studies have largely employed the
change detection paradigm (Luck & Vogel, 1997; Rouder
et al., 2011). This paradigm uses either single-probe display
tests or whole display tests to assess whether participants
can detect a change in a set of objects (see Rouder
et al., 2008, 2011), but these tests do not properly enable to
examine how sets or subsets of items are recalled. In this
study, we used a free recall procedure to assess not only the
probability of correct recall, but also how groups of items
are being formed.

The participants were shown displays from 2 to 8 set
sizes with a brief delay, after which they attempted to
recall the color of each stimulus item in the order of their
choice. We varied the compressibility of the displays to
test whether greater compressibility could lead to better
memory performance. To manipulate the compressibility
of our material, we introduced statistical regularities by
clustering parts of the displays using color duplicates.
Our protocol allowed us to examine the influence of set
size, color redundancy, and number of same-color clusters,
but concurrently, we used existing algorithmic complexity
measures to test whether compressing information could
account for the color-sharing bonus in working memory.
The complexity metric is elaborated later in the Method
section after we introduce our material.

Method

Participants

Fifty volunteers (25 females, 25 males) aged between 18
and 29 years old (M = 21.56, SD = 2.47) participated in
the study. The participants were psychology students at
the Université Côte d’Azur, France. All reported normal
or corrected-to-normal visual acuity. None reported having
any color vision problems. Informed written consent was
obtained from all of the participants.
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Apparatus and stimuli

The experiment was coded in HTML and run on a 7.9′′
tablet (iPad Mini 2, Apple Inc.) (17.7 × 10 cm). Responses
were given manually by touching the sensitive screen.

The stimuli consisted of colored squares. There were four
possible colors: blue, red, green, and yellow (see Table 1).
These colors were selected, as they are easily distinguished
from one another and discriminable with a medium-gray
background (RGB value: 50, 50, 50). The size of each
square was 1.00× 1.00 cm, subtending approximately 2◦ ×
2◦ degrees of visual angle. The squares were placed within a
virtual grid made of 12 equally sized columns and 12 rows.
The virtual line of the first column started at 0.25 cm of the
left edge of the screen and the space between two squares
was 0.5 cm. The position of the colored squares on the y-
axis could vary in steps of 0.5 cm from 0.25 cm to 8.75 cm
of the vertical screen.

For simplicity purposes, we built our visual patterns
based on vectors of characters for which we could easily
obtain compressibility measures (see below), in contrast
to using two-dimensional matrices for which algorithmic
complexity cannot be obtained directly (Kempe et al.,
2015), in particular when using four symbols (for which
there is no metric yet in 2D, see https://algorithmicnature.
org). The use of vectors was sufficient to build clusters
the following way. For each item, the program attributed
a random column from left to right on the x-axis. As an
example, for the made-up pattern ‘333111’ (in which the
colored squares are here represented by different numbers),
each of the six items were randomly attributed a single
column, but with the choice of the columns obeying a
left-to-right order of the items (for all of the trials). For
instance, the two first items ‘3’ were placed on the first two
columns, then, one ‘3’ one column away was on the right,
and the three last ‘1’ items appeared every two columns.
A pattern with the dashes representing empty columns was
then ‘33-3-1-1-1- -’. In sum, our design enabled us to focus
on whether duplicate colors were contiguous or not given
a one-dimensional horizontal direction (i.e., to probe the
formation of groups), with vertical exact locations being
randomized across trials and participants.

Complexity measurement

To quantitatively and accurately measure the process of
compressibility, we estimated the complexity of our patterns
using an approximation of algorithmic/Kolmogorov com-
plexity (Li & Vitányi, 2008). Algorithmic complexity is a
notion that was initially developed by Kolmogorov (1965).
The algorithmic complexity of a sequence is the length of
the shortest program allowing to reconstruct the sequence.

The algorithmic complexity of a string s is more formally
defined as the length of the shortest program running on a
given universal Turing machine that will produce s and then
stop. The algorithmic complexity is known to be incom-
putable (Li & Vitányi 2008) but it has been more recently
suggested that an approximation of algorithmic probability
(for short strings in particular) can be obtained1 by run-
ning a large random sample of small deterministic Turing
machines (Soler-Toscano et al., 2013, 2014). To obtain the
approximation of the Kolmogorov complexity of our pat-
terns, we used the Algorithmic Complexity for Short Strings
(ACSS) package (Gauvrit et al., 2015).

The higher the algorithmic complexity (complexity K),
the lower the compressibility of a pattern. In more concrete
terms, this means that if an ideal GIF lossless compression
algorithm existed (this is not the case and this could
not be demonstrated since algorithmic complexity is not
computable), K (the size of the GIF file) would be the
estimate of the best-compressed version of a visual pattern.
Here, K is simply the best approximation of the best-
compressed version of our vectors.

The complexity of our 28 patterns varied from 5.41 to
27.41 (22 levels of complexity in total). See Table 1 for a
sample of patterns and their algorithmic complexity. The
complete list of patterns and their corresponding complexity
is provided in Supplementary Material.

Procedure

The 28 patterns were predefined and remained the same for
all of the participants in order to obtain a satisfying range
of complexity values. The choice of colors was randomized
for a given trial. For example, if the pattern was ‘23111’,
the program randomly assigned a first color such as red to
‘2’, a second color such as blue to ‘3’, and a third color
to ‘1’ different from the two first selected colors, such as
green. The program then generated the following display of
colored squares (from left to right on the screen): red, blue,
green, green, green.

The number of stimulus items varied between 2 and 8
colored squares (set size 2, set size 3, set size 4, set size
5, set size 6, set size 7 and set size 8). We also measured
how items were clustered within patterns based on feature
similarities. Each stimulus display contained one (for set
sizes 3 and 4) or more (for set sizes 5 to 8) groups of
items of the same color. The amount of color redundancy

1Technically, this method is equivalent to running a sample of random
programs on a universal Turing machine, without relying on a specific
choice of machine. It requires a sample of billions of Turing Machines
runs on a super computer to determine a reliable approximation of
algorithmic complexity.
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Table 1 Algorithmic complexity, number of same-color clusters, and amount of color redundancy for a sample of patterns

Number of clusters Amount of redundancy

2

2

3

3

4

4

5

5

6

6

7

7

8

8

within each pattern varied from 2 to 4 items with the same
color. Only the smallest set size (set size 2) contained only
singletons. Set sizes less than 8 could include unique colors
within the display array. As there could be several groups
of items sharing the same color in a given pattern, with
varying amount of redundancy, we then considered the sum
of all redundancies divided per the number of grouped items
sharing the same color. To control the influence of set size,
the amount of redundancy was also scaled to set size. For
example, for the pattern ‘24412’ : the sum of redundancies
is 4 and these redundancies were divided into two groups
of colors (2 and 4). The amount of redundancy was then
(4 ÷ 2) ÷ 5 = 0.4.

We considered that a set of items could be grouped
whenever objects with the same color could be placed
next to each other (for example, ‘23111’), but not when
objects were separated by intervening items of other colors
(for example, ‘13241’). For example, the pattern ‘2121224’
contained one redundancy of contiguous items of the same
color (‘22’), five singletons (‘2’, ‘1’, ‘2’, ‘1’ and ‘4’) and
six clusters: ‘2 / 1 / 2 / 1 / 22 / 4’. The number of same-color
clusters and the amount of color redundancy are reported
in Table 1 for a sample of patterns. Note that we consider
clusters as a more limited description than algorithmic
complexity that is supposed to capture a larger number of
regularities such as alternating patterns, symmetries, and
clusters. We also measured the number of repetitions in both
the stimulus displays and the response. A repetition was
considered two adjacent similar items. This will be detailed
later in the Data analysis section.

The experiment was conducted individually in a dimly
illuminated room. Each participant was required to recall as
many colors as possible, by touching the tablet. The tablet
was placed on a table at a distance of approximately 30
cm from each participant. The experiment began after the
experimenter ensured that each participant had understood
the instructions. During the trial, a central fixation cross
appeared for 1000 ms on a medium-gray background before
the study array. The study array was presented briefly for
200 ms on a medium-gray background, followed by a 1000-
ms retention screen. The test screen then displayed the
locations of the colored squares replaced by black question
marks (the question marks matched both the location and
the size of the initial colored squares). The participants were
asked to click on the question marks in the order of their
choice to recall each of the initial colors. When clicked,
one question mark was replaced by a quadrant of four color
possibilities on a dark-gray background. The arrangement
of the colors in the quadrant randomly changed during each
trial to avoid any spatialization strategy during encoding.
The participants were instructed to provide the best guess
whenever they felt unsure of their responses. The next trial
was initiated after the participant clicked on the ‘Next’
button. Rapid feedback was provided after each trial to keep
the participants motivated. A positive feedback ‘Bravo!’
was displayed whenever the participant recalled correctly
all of the items. The feedback ‘Not exactly...’ was displayed
when at least one error was committed. See Fig. 1 for the
timeline of a trial. The 28 patterns were presented in random
order and only once to each participant. The number of trials
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Fig. 1 Example of one trial and procedure. Note. The sequence of
screenshots depicts one trial for set size 6, for which the algorithmic
complexity was k = 19.42. After presenting the stimuli, the partici-
pants were instructed to click on all of the question marks in turn, in
the order they preferred, to recall the colors. For each item, a choice

of colors was displayed in a random quadrant after the question mark
at the item’s location was clicked on. A new trial was initiated after a
feedback was provided to the participant. See the online version of the
paper for a colored version of this figure

was voluntarily not too high to study a spontaneous recoding
process, that is, under conditions that limited any training
effect (the experiment lasted approximately 10 min).

Data analysis

We measured for each trial whether the pattern of response
was correct. Only perfect recall of a pattern was scored
correct and coded 1 (vs. 0) when the participant perfectly
recalled all of the items (i.e., all colors of a pattern correctly
recalled within a trial). Trials with unanswered items were
excluded from analysis (approximately 1.5% of the trials).

A second dependent variable was the proportion of
similarity between the pattern and the response for each
trial. The similarity was calculated using the optimal
string alignment method from the R package StringDist
(van der Loo, 2016). The distance was first calculated
by counting the number of deletions, insertions, and
substitutions necessary to turn the response into the original
pattern of the stimulus display. The distance was then
divided by the maximal possible distance for a given
length. This proportion was finally subtracted from 1 to
obtain a similarity measure between 0 and 1, with 1
corresponding to perfect similarity (distance 0) and 0 to
complete dissimilarity. A last dependent variable was the
response time.

Measures of WM and complexity To analyze the respective
effect of set size, amount of color redundancy, number
of clusters, and complexity K , statistical analyses were

conducted using generalized linear modeling (GLM) as
implemented by the R package lme4 (Bates et al., 2015).
Analyses were performed using R version 3.6.2 (The R
Foundation’s Project for Statistical Computing). Four sets
of separate models were evaluated. A binomial logistic
regression was conducted to investigate the influence of Set
size in predicting the probability of correct recall of the
entire pattern. A separate model was used to investigate the
influence of the amount of color redundancy in predicting
the probability of correct recall of a pattern. Another
separate model was used to investigate the influence of the
number of clusters in predicting the probability of correct
recall of a pattern. A final model was used to investigate the
influence of complexity K in predicting the probability of
correct recall of a pattern. Because complexity K reflects
set size, additional analyses were carried out to investigate
the influence of complexity K for constant set sizes (expect
for set size 2, as the level of complexity K was the same
for all patterns in this condition). To predict the proportion
of similarity between the pattern and the response from our
set of continuous predictor variables, we used quasibinomial
models with the same model structures as for the probability
of correct recall of the patterns. Only p values below the .05
threshold were considered noteworthy. Adjusted R-squared
values were also reported to indicate size effects.

Note that the correlations between complexity K , set
size and number of clusters all significantly correlated
positively (r ≥ .85, p < .001; see Table 2). To refine
the analysis of the respective effect of number of clusters
and complexity K , statistical analyses on response times

Table 2 Correlations between complexity K , set size and number of clusters

Variable n M SD 1 2 3

1. Complexity K 22 15.43 6.88 —

2. Set size 8 4.96 1.99 .99*** —

3. Number of clusters 7 4.08 1.60 .88*** .85*** —

***p < .001
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were conducted using a linear model (LM). Two sets of
separate models were evaluated. A linear regression was
conducted to investigate the influence of number of clusters
on response times for recalling a pattern. A separate model
was used to investigate the influence of complexity K on
response times for recalling a pattern. For this analysis, we
only considered trials in which the participants perfectly
recalled all of the items. Then, we excluded the trials
for which response times were longer than 3 SD above
the mean (these outliers were approximately 1.6% of the
trials). Response times presented skewed distributions and
were thus log-transformed to meet the LM assumptions.
After this selection, it remained 20 levels of complexity
K (initially 22 levels), ranging from 5.41 to 26.31. As for
number of clusters, it remained 5 levels (initially up to 8
clusters), ranging from 2 to 6.

Model performance ROC curves were used to build six
models based on either (1) set size, (2) amount of
redundancy, (3) number of clusters, (4) complexity K , (5)
set size + amount of redundancy and (6) set size + number
of clusters. The area under the roc curve (AUC) value is
a score between 0 and 1. This area represents the model
performance. AUC quantifies how much a model is capable
of separating correct responses from incorrect responses.
The ROC plots are shown in Fig. 4. AUC close to 1 indicates
that the model fully explained the data and a value of .50
indicates a model performance not better than chance level.
The AUC values and confidence intervals were calculated
using the R package pROC (Robin et al., 2011). All of the
AUC values were computed with 95% intervals and were
compared using the Delong method (DeLong et al., 1988)
with the roc.test function.

Memory compression This subsection more specifically
focused on the analyses of sub-patterns, color repetitions
and on how items were ordered in each of the participants’
responses. To refine the effect of information compression
on performance, a quasibinomial logistic regression was
first conducted to investigate the influence of complexity
K on the correct recall for singletons. This analysis aimed
to test whether simpler patterns could leave room in
memory (for instance, for encoding the singletons of a
display) than more complex patterns. We then carried out
another quasibinomial logistic regression with the number
of clusters as a predictor of the correct recall for singletons.
To further assess the compression effects, we analyzed
memory performance for eight-item patterns, with a test of
the influence of complexity K for the first items predicting
the probability of correct recall for the rest of the items. This
analysis targeted whether more compressed representations
of one part of a pattern could leave more room for encoding

the second part of the pattern (thus, it made sense only for
the longest stimuli).

Beforehand, we conducted an analysis to test whether
there was a trend toward a left-to-right recall order in the
participants’ responses. To do this, we analyzed the order
in which participants clicked on the items during the recall
phase. For each pattern, we took all pairs of items from
the participant’s response and we summed the differences
between their x positions (x refers to the column number
in which the item was displayed). A left-right order of
response resulted in a negative value. We then conducted a
one-sample t test (one-tailed) to analyze whether the mean
distance between the recalled items was significantly lesser
than 0, for each set size. The mean distance between recalled
items was significantly lesser than 0 for set sizes 1 to 4, all
t ≤ −3.08, all p < .001, all d ≥ 0.21, but it did not differ
from 0 for set sizes 5 to 8, all t < 1, all p ≤ .347. These
results suggest a tendency to scan and recall items from left
to right when the set size was limited. Beyond set size 4,
more complex grouping processes might have hindered this
tendency. To refine this analysis, we tested whether there
was a trend toward a left-right encoding strategy against
the opposite right encoding strategy, based on the similarity
between the participant’s response and the stimulus pattern.
For this purpose, we first computed the similarity between
the response in the order of item recall (e.g., 4113) and
either the pattern in its left-right order (e.g., 1413), either)
the pattern in its (reverse) right-left order (3141). We then
conducted a two-independent samples t test (one-tailed) to
compare these two similarities, for each set size (only for
trials in which the participant perfectly recalled all items).
The mean similarity between the response and the pattern in
its left-right order was significantly greater for the reverse
order of the pattern for set size 2, set size 3 and set size 7,
t ≤ 6.44, all p < .001, all d ≥ 0.31. However, although
there was a trend, the test did not reach significance for set
size 4, set size 5, set size 6 and set size 8, all t ≤ 1.35, all
p ≥ .096.

Note that the tendency to recall from left to right does not
necessarily strictly corresponds to the tendency to encode
from left to right. Independently, we conducted another
analysis to show that participants who were given the
opportunity to easily encode the first half of the stimulus
(i.e., the left part) performed better for the second half.
One example is a participant who could benefit from a
cluster of two red items in the stimulus pattern ‘red-red-
blue-green’. We predicted better recall of ‘blue-green’ once
‘red-red’ encoded. However, this did not mean that ‘red-red’
should be recalled first by the participant. One possibility
is that some participants choose to recall some of the most
difficult items first, for instance blue and green, followed
by the cluster in-mind ‘red-red’, which might consume less
resource.
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We then estimated the most probable span based on our
compressibility measure. To achieve this, we first computed
the local complexities of 8-item patterns based on the local
complexity() function of the R package ACSS (Gauvrit
et al., 2015), which returns the complexity of sub-patterns.
We computed the local complexity with a sliding window
of sub-patterns with length span ranging from 3 to 8
items. Four symbols were entered (Alphabet = 4), as the
patterns were composed of 3 and 4 colors. For example,
the local complexity of the pattern ‘12232113’ with span =
6 returns K4(122321), K4(223211) and K4(232113), which
equals 19.40, 18.98, and 19.26, respectively. The pattern
‘12232113’ with span 6 gives a mean local complexity of
19.21. The same pattern gives the mean local complexity of
15.57 with span 5. Note that when no indication is given,
for instance in Table 1, it means that K was computed with
a maximum window corresponding to the object’s length.

In order to estimate the span, we built a linear regression
model to predict the similarity between the pattern and the
response based on span 3, span 4, span 5, span 6, span 7,
and span 8 as predictors. We compared the models using the
QAIC function of the R package MuMIn (Barton & Barton,
2015). The criteria for model selection in QAIC (Quasi-
AIC) is a modification of Akaike information criterion
(AIC, Akaike, 1974) for overdispersed count data. The
most parsimonious model is the one that has the lowest
QAIC. The model selection for these subspans (see Table 3)
indicated that the best-fitting model with the lowest QAIC is
the one with span 6 as a predictor of the similarity between
the pattern and the response. The QAICs of the span 4
model and of the span 5 model were nevertheless very close
to those of the span 6 model (QAIC of span 4 = 225.8,
QAIC of span 5 = 225.9 and QAIC of span 6 = 225.9).
We can therefore consider that spans 4, 5, and 6 are the
best predictors of the proportion of similarity between the
patterns and the responses, suggesting that when asked to
recall eight-item patterns, the participants tended to encode
sub-patterns with either six items, five items, or four items.
These results may exceed the suggested capacity limit of
working memory of four chunks (Cowan, 2001), but the

presence of color redundancies in the patterns can simply
explain the capacity to encode more than four items at a
glance.

According to the estimated spans (span 6, span 5, and
span 4), we built three sets of separate models investigating
the influence of complexityK of the first items in predicting
the probability of correct recall for the last items. A
binomial logistic regression was conducted to investigate
the influence of complexity K of the six first items in
predicting the probability of correct recall for the two last
items (same reasoning for 4-4 and 5-3, instead of 6-2). For
example, considering span 6, in the pattern ‘12232113’,
we examined if greater compressibility of the first sub-
pattern of six items (‘122321’) could leave room for a better
retention of the second sub-pattern of the two last items
(‘13’). Following the same reasoning, we built three sets
of separate binomial regression models to investigate the
influence of the number of clusters within the first items
in predicting the probability of correct recall for the last
items. Considering span 6, we analyzed the influence of the
number of clusters within the first six items in predicting
the probability of correct recall of the last two items (same
reasoning for 5-3 and 4-4).

We further examined the mechanisms underlying the
formation of clusters in mind, with the idea that participants
could take profit of regularities to simplify the recall
process. To test whether participants tended to recall similar
items adjacently, we coded the presence of adjacent color
items in both the stimulus pattern and in the response
(trial-by-trial) and we summed the adjacent repetitions of
colors. For instance, for a pattern ‘1121’, we considered
that the pattern included only one repetition because ‘1’ was
repeated once in ‘11’. For a response such as ‘1112’, the
sum of color repetitions was equal to 2. We then computed
the difference between the number of repetitions in the
response and the number of repetitions in the stimulus
pattern. For a pattern ‘11221122’ (four adjacent repeated
items) and a response ‘11112222’ (six adjacent repeated
items), the difference would have been 2. This measure
was used to estimate how many items were regrouped by

Table 3 Model selection for the sub-span analysis

Model K QAIC � QAIC Akaike weight

Span 6 2 225.8 0.00 0.064

Span 4 2 225.9 0.09 0.061

Span 5 2 225.9 0.10 0.061

Span 8 2 226.0 0.24 0.057

Span 7 2 226.1 0.33 0.054

Span 3 2 230.5 4.69 0.006

Note. K refers to the number of parameters in the model
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the participant in comparison to the left-right organization
of the pattern. The hypothesis was that the presence of
extra repetitions in the response would provide window for
clustering. We then conducted an independent samples t

test (two-tailed) to analyze whether the sum of repetitions
in the response was significantly greater than the sum of
repetitions in the stimulus pattern, for each set size (not
counting set size 2, which contained only singletons). We
selected trials in which the participant recalled perfectly all
of the items. In addition, we tested whether more complex
patterns encouraged the use of information compression,
by performing a correlation between complexity K and the
number of extra repetitions in the response.

Finally, we tested the hypothesis that color repetitions
should be more frequently recalled first (than last) in
the response. For this purpose, we also counted the
number of repetitions as a function of their position in
the response: first, middle, and last. We considered a
repetition position as occurring ‘first’ when two adjacent
similar items appeared first in the response, while we
coded ‘last’ two adjacent similar items appearing last in
the response. We coded a repetition position ‘middle’
otherwise. To control the influence of set size, we computed
the proportion of repetitions appearing in the middle
position (for each trial), by dividing the total number of
repetitions in the middle position in the response per the
maximum possible repetitions allowed by the considered
pattern. For example, considering the response ‘133222’,
Nrepetitions−in−First−pos = 0; Nrepetitions−in−Last−pos =
0, and Proprepetitions−in−Middle−pos = 1. We obtained
1 for the middle positions because of the two summed
repetitions in the middle, and based on a maximum of two
repetitions in our patterns of set size 6, hence 2/2 = 1 (note
that our patterns of set size 6 would not allow 3 repetitions
in the middle, which could have been the case if they had
been made of a single color). We then conducted a two
paired samples t test (one-tailed) to analyze whether the
proportion of repetitions in the first position in the response
was significantly greater than those in the last position. We
also conducted two paired samples t tests (one-tailed) to
analyze whether the proportion of repetitions in the first
position or last position in the response was significantly
greater than those in the middle position. Note that this
analysis was restricted to correct response trials only, and
we also excluded set size 3 as this condition only allowed
repetitions in first and last positions.

Results

Measures of WM and complexity Figure 2 shows memory
performance as a function of set size and number of clusters.
As expected, the results showed that memory performance

decreased with increased set size [(β =-0.823, z =
-19.28, p < .001, R2

Adjusted = 0.37) for the probability
of correct recall of the entire pattern and (β =-0.438, t =
-19.31, p < .001, R2

Adjusted = 0.30) for the proportion of
similarity between the pattern and the response]. We also
found that memory performance decreased with increased
number of clusters per pattern [(β =-1.171, z =-19.14, p <

.001, R2
Adjusted = 0.40) for the probability of correct recall

of the entire pattern and (β =-0.558, t =-21.65, p <

.001, R2
Adjusted = 0.35) for the proportion of similarity

between the pattern and the response]. The effect of amount
of color redundancy did not reach significance for the
probability of correct recall of the entire pattern (β =
0.421, z = 1.67, p = .095), but it reached significance
when considering the proportion of similarity between the
pattern and the response (β = 0.738, t = 4.13, p <

.001, R2
Adjusted = 0.01). The results also showed increased

response time with increased number of clusters, β =
0.108, t = 24.81, p < .001, R2

Adjusted = 0.47.
As shown in Fig. 3, our results also revealed that

memory performance decreased with increased complexity
K values [(β =-0.249, z =-19.60, p < .001, R2

Adjusted =
0.39) for correct recall of the entire pattern and (β =
-0.133, t =-20.16, p < .001, R2

Adjusted = 0.33) for
the proportion of similarity between the pattern and the
response]. The results also showed increased response time
with increased complexity K , β = 0.026, t = 32.70, p <

.001, R2
Adjusted = 0.61.

Additional analyses showed that memory performance
decreased with increased complexity K for set size 4, 5, 6,
7, or 8 [(all β ≤-1.323, all z ≤-2.30, all p ≤ .021, all
R2

Adjusted ≥ 0.04) for correct recall of the entire pattern and

(all β ≤-0.332, all t ≤-3.20, all p ≤ .002, all R2
Adjusted ≥

0.04) for the proportion of similarity between the pattern
and the response]. However, the same test did not reached
significance for set size 3 [(β = 1.046, z < 1, p = 0.810)
for the probability of correct recall of the entire pattern and
(β = 0.887, t < 1, p = 0.835) for proportion of similarity
between the pattern and the response]. This absence of a
significant effect for set size 3 was likely due to the close
levels of complexity. Indeed, each of the set size 3 patterns
were characterized by a complexity K of 8.41 or 8.52.

Model performance Figure 4 shows the AUC values for
six different models predicting the probability of correct
recall of the entire pattern. The six models were a logistic
regression based on (1) set size, (2) amount of redundancy,
(3) number of clusters, (4) complexity K , and a multiple
linear regression based on (5) set size and amount of
redundancy and (6) set size and number of clusters.
DeLong’s test was used for comparing AUC of their ROC
curves.
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Fig. 2 Correct recall of the entire pattern for a given trial and propor-
tion of similarity between the pattern and the response as a function of
set size (1a & 1b) and number of (color) clusters (2a & 2b). The blue

regression line is fitted to all of the data points and the light blue area
depicts 95% confidence intervals

Fig. 3 Correct recall of the entire pattern for a given trial (a) and pro-
portion of similarity between the pattern and the response (b) as a
function of complexity K . The blue regression line is fitted to all of

the data points and the light blue area depicts 95% confidence inter-
vals. The black ticks on the x-axis depict the 22 levels of complexity.
See the online version of the paper for a colored version of this figure
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Fig. 4 Receiver operating curves for six models predicting the
participants’ responses: complexity K model, set size model, number
of (color) clusters model, amount of (color) redundancy model, set
size + amount of redundancy model, and set size + number of clusters
model. Note. AUC of complexity K model: 0.862. AUC of set size
model: 0.847. AUC of amount of redundancy model: 0.657. AUC
of number of clusters model: 0.857. AUC of set size + amount of
redundancy model: 0.863. AUC of set size + number of clusters model:
0.863. See the online version of the paper for a colored version of this
figure

The result was that complexity K (Model 4), set size and
amount of redundancy (Model 5) and set size and number
of clusters (Model 6) equally accurately separated correct
from incorrect participants’ responses, with no significant
difference between their AUCs (AUC of 0.862 vs. AUC
of 0.863 vs. AUC of 0.863, respectively), all z < 1, p ≥
.396. The model based on amount of redundancy alone
(Model 2) poorly predicted the participants’ responses
(AUC of 0.657), and its AUC differed significantly from
that of complexity K (AUC of 0.657 vs. AUC of 0.862,
respectively, z=12.73, p < .001) and number of clusters
alone (AUC of 0.657 vs. AUC of 0.857, respectively, z =
12.93, p < .001). There was no significant difference
between set size (Model 1) and number of clusters (Model
3) in their AUCs (AUC of 0.847 vs. AUC of 0.857,
respectively), z=1.43, p=0.152, but there was a significant
difference between set size (Model 1) and amount of
redundancy (Model 2) in their AUCs (AUC of 0.847 vs.
AUC of 0.657, respectively, z=11.59, p < .001). Finally,
the model based on complexity K alone did not differ from
the model based on number of clusters alone (AUC of 0.862
vs. AUC of 0.857, respectively), z < 1, p = 0.324, but
it was found more accurate than the model based on set
size alone (AUC of 0.862 vs. AUC of 0.847, respectively),
z = 9.25, p < .001.

Memory compression We now more specifically focus
on the effect of sub-patterns and color repetitions. The
previous analysis based on AUC values let appear that
several predictors can offer good predictions of memory
performance. We then test the more specific hypothesis
that simpler patterns should leave more room in memory
for singletons. The results showed that correct recall for
singletons decreased with increased complexity K , β =
-0.140, t = -17.66, p < .001, R2

Adjusted = 0.26. Figure 5
shows memory performance for singletons as a function
of complexity K . A similar test based on the number of
clusters offered a similar pattern of significance, β =
-0.554, t = -16.77, p < .001, R2

Adjusted = 0.24.
Regarding the hypothesis that greater compressibility of

the sub-patterns should leave room in memory for the rest
of the patterns within trials, our analyses of the eight-item
long patterns showed that the probability of correct recall
for the last items increased significantly with decreased
complexity K of the first items, and this considering all
estimated spans (span 6, span 5, and span 4). Indeed, the
probability of correct recall for the last two items increased
significantly with decreased complexity K of the first six
items, β = -2.735, z = -6.06, p < .001, R2

Adjusted =
0.23. Similarly, the probability of correct recall for the
last three items increased also significantly with decreased
complexity K of the first five items, β = -4.682, z =
-4.21, p < .001, R2

Adjusted = 0.14. Finally, the probability
of correct recall for the last four items also increased
significantly with decreased complexity K of the first four
items, β = -3.718, z = -4.00, p < .001, R2

Adjusted = 0.08.
Figure 5 shows memory performance for the last two items
as a function of complexity K of the first six items.

Similar analyses based on the number of clusters instead
of complexity K showed that the probability of correct
recall for the last two items increased significantly with
decreased number of clusters within the six first items, β =
-1.298, z =-5.09, p < .001, R2

Adjusted = 0.15, and also
that the probability of correct recall for the last three items
increased significantly with decreased number of clusters
within the five first items, β = -0.729, z = -2.99, p <

.01, R2
Adjusted = 0.04. However, the analysis considering

the number of clusters within the first four items as a
predictor of probability of correct recall for last four items
resulted in a non-significant result, β = -0.013, z < 1, p =
.968.

Also, we found that the sum of repetitions in the response
was significantly greater than those in the stimulus pattern
for each set size, all t ≤ 6.23, all p < .001, all d ≥ 1.23.
Moreover, complexity K and the number of extra similar
adjacent items in the response (i.e., the difference between
the repetitions in the response and those in the stimulus
pattern) were found to be strongly positively correlated,
r(495) = .65, p < .001. Concerning the hypothesis that
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Fig. 5 Left: Correct recall for singletons as a function of complexity
K . The black ticks on the x-axis depict the 22 levels of complexity.
Right: Correct recall for the last two items as a function of complexity

K of the first six items. Note that in both plots, the blue regression line
was fitted to all of the data points and the light blue area depicts 95%
confidence intervals

repetitions should be most often observed first in the
response, our analyses showed that the mean proportion of
repetitions in first position in the response was significantly
greater than those in middle position in the response, t ≤
5.02, p < .001, d = 0.38, as well as greater than those
in last position in the response, t ≤ 5.21, p < .001,
d = 0.37. In addition, the mean proportion of repetitions in
last position in the response was significantly greater than
those in middle position in the response, t ≤ -2.20, p < .05,
d = 0.29. Figure 6 shows the distribution of the average
proportion of repetitions in the responses (by participant and
by pattern) for the first, middle, and last positions in trials
with repetitions.

Discussion

It is well established that the presence of objects sharing
the same color in a visual display boosts memory capacity
(Morey et al., 2015; Morey, 2019; Peterson & Berryhill,
2013; Quinlan & Cohen, 2012). The purpose of this study
was to use existing objective (algorithmic/Kolmogorov)
complexity measures to test a compression account of the
color-sharing bonus in visual working memory (Pothos &
Chater, 2002). The novelty was that this method can be
automated to avoid any assumptions regarding clustering
techniques or similarity-based metrics.

The compression account involves that the representation
of memoranda is modified to gain storage space. A lossless
compression process is theoretically expected to eventually
redescribe an object in a shorter way. On the contrary,
grouping or chunking processes do not imply that the

pieces of information they integrate have a different nature
than in the original object. The main hypothesis was thus
that compressed information should leave room in working
memory. But beyond that, the presumed conceptual link
between compression and memory optimization was that
the presence of different forms of regularity (clusters,
alternating patterns, symmetries) in the material can help
minimize the code length of information in memory. To
manipulate the compressibility of patterns of items, we

Fig. 6 Distribution of the average proportion of repetitions in the
responses (by participant and by pattern) for the first, middle, and last
positions of the items in the response. The black diamonds indicate
the means. The data points are jittered. Note that a repetition was
considered two adjacent similar items. See the online version of the
paper for a colored version of this figure
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introduced statistical regularities in the stimulus displays
by clustering the items horizontally based on feature
(color) similarity. We therefore expected the algorithmic
complexity factor K to be more predictive than the sole
number of clusters in the material. Our results overall only
showed a small advantage of K, which seemed to be more
sensitive than the number of clusters, for instance to predict
that the probability of correct recall for the last four items
increase with decreased complexityK of the first four items.
The factors are not incompatible, and our results tend to
show that if compression occurs, it could mainly be linked
to the detection of clusters.

More specifically, we found that memory performance
decreased with an increase in number of clusters. This
finding suggests that items are not treated (encoded)
independently and that observers can easily extract sub-
patterns in a visual display. This is in line with behavioral
evidence showing that perceptual organization influences
the storage of information in visual working memory (e.g.,
Peterson and Berryhill (2013), Quinlan and Cohen (2012),
Woodman et al. (2003), and Xu (2006), Xu and Chun,
2007). This finding also supports a recent study suggesting
that clusters of similar colors help increase precision in
visual working memory (Son et al., 2020).

Memory compression

We tested whether the capacity to encode uniquely col-
ored objects (singletons) could benefit from the repetition of
colors in a visual display, as it has been suggested that atten-
tion is particularly engaged in recovering the singletons in
the presence of duplicates by reducing the memory load
(Morey et al., 2015; Morey, 2019). For instance, Morey
et al. (2015) found that attention was initially captured by
redundant objects, and then was more focused on single-
ton objects during retention. Our hypothesis was that these
previous observations could be in line with a compression
account positing that redundant information (e.g., clusters)
could be first compressed to leave room for less compress-
ible information (i.e., singletons). Consistently, we found
that similar items were more often recalled adjacently in the
response than in their original form in the pattern and that
these color repetitions were more often recalled first than
last. Interestingly, complexity K and the number of extra
similar adjacent items in the response correlated strongly,
suggesting that more complex patterns encouraged the use
of information compression (i.e., the participants tended to
group more items when the stimulus pattern was more com-
plex). Our findings also show that memory performance
for both the singletons within the visual displays and the
whole visual displays increased with the compressibility of
the patterns (estimated by their underlying algorithmic com-
plexity). Moreover, the compressibility effect was present

across set sizes (from 4 to 8). These results suggest that
lower compressibility led to greater memory performance
overall, in accordance with previous studies on working
memory capacity based on other types of material such as
digits (Mathy & Feldman, 2012), multi-dimensional shapes
(Chekaf et al., 2016), or previous studies on categorization
showing higher categorization performance when informa-
tion could be minimized (Feldman, 2000; Lafond et al.,
2007).

We show that compression can potentially account
for the color-sharing bonus in visual working memory,
with a strong link to clustering effects. Still, it is not
clear how compression processes operate cognitively or
perceptually in our task, even though we know that
complexity minimization plays a central role in human
perceptual organization (Feldman, 2003, 1999; Pothos &
Chater, 2002). A few recent models that have proven useful
to fit human data in the visual working memory domain
(Brady & Tenenbaum, 2013; Orbán et al., 2008; Orhan &
Jacobs, 2013; Son et al., 2020) could offer an account of
the mechanisms at play, but those formal models do not
directly consider the compression hypothesis. In the present
study, algorithmic complexity alone revealed to be a more
direct predictor of performance than set size and number of
clusters together (which still offered good fit of our data).
This algorithmic complexity metric conveniently captures
many kinds of regularities. Aside exploiting repetitions
and symmetries, the algorithmic complexity metric presents
global properties, such as being sensitive to set size and
number of different features (here, colors) within a set.
The logic is that both smaller set sizes and smaller
number of different colors increase chance to achieve
shorter description of the original object. The capacity of
algorithmic complexity to extract many types of structures
present in a visual display to express them as the shortest
expression may account for our findings.

The algorithmic complexity approach can still appear
elusive as remains uncertain how information can be
compressed at a psychological or neuronal level, but the
metric has been described as universal (e.g., general enough
to reflect different languages attempting to compress
information). Following Feldman (2003), a fundamental
idea is the principle of parsimony stating that simpler ideas
are more truthful. Effectively, the simplest representation
is more likely to be correct because it offers the right
amount of complexity. It is a very old idea developed
by William of Occam and later developed mathematically
by Rissanen (1978) and Jeffreys (1939) who respectively
developed the minimum description length approach and
Bayesian inference by penalizing complexity. A basic idea
is that a too simple description of an object might lack
capturing its essence while a too complex description might
rather capture noise in the data (Pitt & Myung, 2002). The
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simplicity principle in psychology thus posit that individuals
are better off drawing the simplest interpretations to
interpret their environment.

Our results also showed that both increased number of
clusters and increased complexity K slowed down the recall
process (i.e., we observed higher response times on average
for reconstructing the entire display set). These findings
could suggest that a decompression process could be at
play (positing a compression process). Effectively, we could
interpret faster responses as reflecting faster decompression
of a shorter compressed representation, but a more classic
explanation could be that lower memory load produced by
simpler displays produces faster response times.

Regarding memory benefits of simpler patterns, analyses
of compression effects concerning eight-item long patterns
showed better memory performance for the last items when
the first items were more compressible. This result suggests
that more compressed representations of one part of a visual
pattern could have left more room for the encoding of
subsequent items (confirming Brady et al., 2009; Reder
et al., 2016). This finding is in line with a strategic allocation
of attention in memory displays containing repetition of
colors, and provides further support for our hypothesis that
compressibility may account for the color-sharing bonus in
working memory.

However, our analysis may be limited in that our simple
design was based on one-dimensional clusters because there
is no complexity calculator available yet for 2-D matrices of
non-binary symbols (see http://www.complexitycalculator.
com). This design let us assume that observers could
be influenced by a left-to-right encoding of the items.
This assumption was nevertheless motivated by previous
studies suggesting that individuals show a spatial leftward
bias for visual features in short-term memory (Della Sala
et al., 2010), and a leftward bias direction of the first eye
movement when encoding visual scenes (e.g., Nuthmann &
Matthias, 2014; Dickinson & Intraub, 2009). We did not
use an eyetracker to assess this bias as we cannot posit the
hypothesis that such a bias would be systematic enough
across trials within and between participants. We therefore
admit that our metric is only an approximation of the
regularity of the spatial configurations of the displays, and
as such it cannot be thought to reflect sequential encoding
processes. This might explain why the effect size of the
analyses concerning the “eight-item long patterns was weak.
We believe our metric could help detect trends in the data,
but cannot offer a priori perfect fit of all possible encoding
strategies.

Model performance

In the visual working memory domain, previous studies
have indicated that performance was higher for grouped

items than for ungrouped items (e.g., Woodman et al., 2003;
Xu, 2006, 2002). In particular, Peterson and Berryhill (2013)
reached this conclusion by manipulating the spatial prox-
imity between items sharing the same color, as we did in
our study. Our results showing that cluster-based measures
perform better than redundancy values are consistent with
this literature, suggesting that perceptual grouping per sim-
ilarity alone is not as powerful as similarity and proximity
combined. Interestingly, we found no significant differ-
ence between the complexity/compressibility model and the
number of clusters model, both models being similarly pre-
dictive of memory performance overall. This might be due
in part to a non-systematic left-to-right serial encoding bias
mentioned above. However, we believe that the good fit
of the complexity model is due to its capacity to consider
both redundancy and regularity in the visual patterns, which
might globally account for the color-sharing bonus in mem-
ory in our study. Moreover, even if the stimulus items were
not perfectly aligned in the visual display (as we allowed
some randomness in the vertical position of each item of a
pattern), the complexity/compressibility model was power-
ful enough to predict memory performance and could make
a more powerful prediction than the number of clusters to
predict performance for the last four items based on the
description of the first four items in eight-item patterns.
Our findings therefore indicate that algorithmic complexity
alone can be a relevant account of visual working memory
online processes. They also suggest that algorithmic com-
plexity can serve as a quantitative and objective measure of
the perceptual organization of patterns based on both feature
similarity and proximity. Proximity, compared to similarity,
has been found to facilitate discrimination (e.g., Quinlan &
Wilton 1998; Han et al., 1999, Ben-Av & Sagi,1995), and
the combination of similarity and proximity has also been
found to boost even more memory performance (Kubovy
& Van Den Berg, 2008), but algorithmic complexity alone
could help represent different forms of regularities from
which observers benefit strongly in discrimination tasks.

In our study, the effect of amount of color redundancy
was not found to be the best predictive factor. One
explanation can be based on the specificity of our
experimental design. For example, Morey (2019) used
displays of set size four to six items with either only unique
items, either two color duplicates or three color duplicates.
In our study, as we varied the set size of our patterns from 2
to 8, we had only one condition with unique singletons. This
choice of stimulus displays may have reduced the influence
of color redundancy on the probability of correct recall.
Future studies should use a larger variety of patterns to
investigate this issue.

Another reason to test a larger variety of patterns
is that our metric could potentially account for the
fact that color-similarity boosts can occur regardless of
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distance between the repeated items (Morey et al., 2015;
Morey, 2019). Algorithmic complexity could account for
gradual effects depending on the distance between repeated
items. Typically, based on an alphabet of four symbols,
the algorithmic complexity for short strings predicts
increasing complexities for blue-red-blue-green, blue-blue-
red-green, blue-red-green-yellow, and blue-red-green-blue,
respectively. Therefore, the alternating pattern blue-red-
blue is estimated simpler than blue-blue-red when mixed
with a third color (here, green), but a too large distance
between the two repeated symbols like in blue-red-green-
blue is estimated less compressible than blue-red-green-
yellow. Future studies should therefore benefit from a larger
sample of patterns which for instance include these types of
patterns.

Conclusions

In summary, we examined whether the compression of
information account could offer a general explanation of
the color-sharing bonus in visual working memory, using
objective algorithmic (Kolmogorov) complexity measures
of visual displays. Our findings indicate that compression
of information is a good candidate to account for our data,
but an alternative explanation remains that the number of
clusters could play a central role in the regularities that,
we believe, algorithmic complexity can detect. Effectively,
the two accounts offer quite similar fit of the data (one
exception was that the compressibility factor resulted into a
more precise explanation of the memory for four-item sub-
patterns based on the complexity of the other four items).
Either way, the compressibility factor and the number of
clusters factor can both capture the effect of duplicates in
visual displays on working memory optimization. This adds
to the literature dedicated to understanding how improved
memory may rely on specific computational processes
aiming at detecting relational information on the spot. In
sum, the superiority of the compressibility factor remains to
be proven or else, more precise metrics should be developed
in the future for two-dimensional displays to achieve better
predictions. It also has to be noted that we only considered
a lossless compressibility metric, but more complex lossy
compression processes could be at play as well, as it seems
to be the case for spatial locations (Haladjian & Mathy,
2015). This path might help increase the fit offer by the
present compression account.

Supplementary Information The online version contains supplemen-
tary material available at (10.3758/s13414-020-02231-8).
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