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Abstract
Recent research has established that humans can extract the average perceptual feature over briefly presented arrays of visual
elements or the average of a rapid temporal sequence of numbers. Here we compared the extraction of the average over briefly
presented arrays, for a perceptual feature (orientations) and for numerical values (1–9 digits), using an identical experimental design
for the two tasks. We hypothesized that the averaging of numbers, more than of orientations, would be constrained by capacity
limitations. Arrays of Gabor elements or digits were simultaneously presented for 300 ms and observers were required to estimate
the average on a continuous response scale. In each trial the elements were sampled from normal distributions (of various means)
and we varied the set size (4–12). We found that while for orientation the averaging precision remained constant with set size, for
numbers it decreased with set size. Using computational modeling we also extracted capacity parameters (the number of elements
that are pooled in the average extraction). Despite marked heterogeneity between observers, the capacity for orientations (around
eight items) was much larger than for numbers (around four items). The orientation task also had a larger fraction of participants
relying on distributed attention to all elements. Our study thus supports the idea that numbers more than perceptual features are
subject to capacity or attentional limitations when observers need to evaluate the average over an ensemble of stimuli.

Keywords Cognitive neuroscience . Decisionmaking .Mathmodeling

Introduction

Research over the last two decades indicates that human ob-
servers can rapidly extract the average of a perceptual feature
over sets of visual objects, even when they cannot discrimi-
nate if an individual item in the display was presented ( Ariely,
2001; Chong & Treisman, 2003; Chong & Treisman, 2005;
Dakin, 2001; Parkes, Lund, Angelucci, Solomon, & Morgan,
2001; Robitaille & Harris, 2011). For example, humans can
evaluate the average size of a set of circles presented simulta-
neously, with an accuracy that does not decrease as the set
contains more elements (Ariely, 2001; Chong & Treisman,
2005) or is presented for a shorter duration (Chong &

Treisman, 2003). This averaging ability has been demonstrat-
ed even in situations where the discrimination of the presence
of individual elements in the array appears at chance (Ariely,
2001). Moreover this capacity appears to extend from simple
visual attributes – such as size, orientation, and spatial position
– to more complex properties such as emotional expression
(Haberman & Whitney, 2011). Finally, the extraction of the
average appears to take place automatically or, at least, with-
out “intention,” as it occurs in parallel (Chong & Treisman,
2005) and affects judgments of memory, in which the set-
average is task-irrelevant (Khayat & Hochstein, 2018).

Another type of stimulus in which ensemble perception has
been supported is symbolic numbers (Brezis, Bronfman,
Jacoby, Lavidor, & Usher, 2016; Brezis et al., 2015, 2018;
Corbett, Oriet, & Rensink, 2006; Vanunu, Hotaling, &
Newell, 2020; Sato & Motoyoshi, 2020; Van Opstal et al.,
2011; Vandormael, Herce, Balaguer, Li, & Summerfield
(2017); Spietzer et al., 2017). Such stimuli are thought to
automatically activate a set of analog numerosity representa-
tions (Nieder, Freedman, & Miller, 2002; Nieder & Miller,
2003), as indicated by well-known distance and magnitude
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effects (Dehaene, Dupoux, & Mehler, 1990; Moyer &
Landauer, 1967) and numerical Stroop effects (Henik &
Tzelgov, 1982). Studies of numerical averaging have shown
that human observers also have a remarkable ability to
identify and average symbolic numbers even under stringent
processing constraints. For example, Brezis et al. (2015, Exp.
3) presented observers with a sequence of 4 to 16 two-digit
numbers at a rate of ten items/s, and asked participants to
indicate the average on a continuous scale. The results show
that the estimation precision (the RMSD) improved with the
length of the sequence, indicating that observers did not use
only a limited sample of the sequence. These results were
accounted for by a population-pooling mechanism (in which
encoding noise would average out over items).

In a few other studies it has been shown that observers can
extract numerical information from arrays of numerical sym-
bols presented simultaneously. For example, Corbett et al.
(2006) have shown that observers are able to discriminate
between two circular arrays of six digits (comprising 2s and
5s), presented simultaneously (for as short as 80 ms), the one
that had a higher average (more 5s) with an accuracy exceed-
ing 80% (Exp. 1). Critically, this discrimination was faster and
more accurate with arrays made of the 2 and 5 symbols than
with p and q symbols, and this speedup only took place when
the numerical meaning could be used as a basis for the classi-
fication task (Exp. 3). Finally, using a dual-task methodology,
the authors have shown that this ability requires central atten-
tion (Exp. 5). This study thus demonstrates that numerical
information is rapidly extracted from arrays of numbers, at
least when these arrays are relatively simple. However, this
very specific set of stimuli makes it possible for observers to
adopt a strategy that might not involve computing of an aver-
age over all elements.1 Situations involving more complex
arrays remain to be investigated, as they might help uncover
the computational algorithms used by observers to evaluate an
average over items.

Two recent studies have taken this approach, using larger
arrays of two-digit numbers presented simultaneously (for up
to 4–5 s) and asking participants to decide whether the average
was smaller or higher than a reference (Vandormael et al.,
2017; Vanunu et al., 2020). In these studies, the observers’
accuracy improved with presentation time, with the distance
of the average from the reference, and with sets involving
lower variance. The two studies differed, however, in their
conclusion about the algorithm used to carry out the task:
whereas Vandormael et al. (2017) found robust-averaging –

an algorithm that gives less weight to outliers, Vanunu et al.
(2020) found on the contrary that extreme values received
equal or higher weights. Although the reasons for this discrep-
ancy are still unclear, in both cases participants relied on some
items more than on others. This finding relates to the notion of
capacity that has been put forward in early cognitive models
of attention and working memory, and that has also been part
of recent theoretical accounts of ensemble perception (Allik et
al., 2013; Solomon, May, & Tyler, 2016).

In the context of extracting a set-average, capacity can
be defined as the number of items pooled together in the
estimation (Allik, Toom, Raidvee, Averin, & Kreegipuu,
2013; Dakin, 2001; Solomon, May, & Tyler, 2016).
Whereas this definition assumes an all-or-none selection
of some items and not others, an alternative view involv-
ing distributed attention can be also considered. In this
view, all the elements contribute to the estimation of the
average, each element receiving a fraction of the atten-
tional resources available, which becomes smaller when
there are more elements in the array (Eriksen & St James,
1986; Baek & Chong, 2020a, b; Chong & Treisman,
2005). As shown by Baek and Chong (2020a), a signature
of this model is an improved precision with set size (see
also Brezis et al., 2015, for the case of sequential
presentation).

The appeal of the notion of capacity or distributed attentional
resources is that these notions are domain general, and can be
compared across observers and across tasks. Surprisingly,
however, and despite the fact that many studies have
demonstrated that observers form ensemble representations
over various dimensions, how these dimensions compare, for
example in terms of capacity, is not clear. In a recent study,
Haberman, Brady, and Alvarez (2015) found that individual
differences in performances (mean absolute errors when iden-
tifying the average over a set) were correlated between two low-
level features such as orientation and color, but uncorrelated
when comparing a low-level feature to a higher-level feature
such as facial expression. This suggests that ensemble represen-
tations for different features might operate with different levels
of performance, although capacity or distributed attention was
not specifically assessed in this study.

Here, we hypothesize that the capacity with which ob-
servers build an average representation might depend on
how much attentional and visual working memory resources
are involved in extracting and manipulating the task-relevant
feature. For instance, we expect that limitations in distributed
attention or visual working memory capacity (Cowan, 2001;
Luck & Vogel, 1997) will affect the averaging of symbolic
numbers (as suggested by Corbett et al., 2006) more than of
simple visual properties like orientation, which can be proc-
essed pre-attentively (Braun & Sagi, 1991; Treisman &

1 One alternative is that the observers estimate if there are more 2s than 5s, but
not by how much (which would allow to decide that the average is higher or
lower that 3.5, but not by how much). Alternatively, observers may estimate
the average, but this could be based on a VWM capacity sample of about four
items.
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Gelade, 1980) and which engage grouping and the formation
of a holistic Gestalt (Hess & Field, 1999; Kovács & Julesz,
1993). While there is some debate on the capacity with which
orientation can be averaged in a brief array (Baek & Chong,
2020a; Dakin, 2001; Robitaille & Harris, 2011; Solomon,
May, & Tyler, 2016; see review in Baek & Chong, 2020b),
we expect that capacity would be reduced for numerical stim-
uli, which are likely to require more attentional resources due
to their higher visual complexity.

The aim of our study was to contrast averaging of numer-
ical and visual oriented elements, within the same observers,
and using an identical experimental design (with the same
visual display and response procedure for these two dimen-
sions). By manipulating the size of the item-set across trials,
we aimed to evaluate how performance changes with set size,
and reveal the capacity of the integration process. For both
domains (numbers vs. orientations) we asked participants to
report an estimation of the average on a continuous scale, in
order to encourage the integration of all items, and minimize
the use of non-averaging heuristics that might arise in tasks
based on a comparison to a reference. We expect that in the
numerical averaging task, participants will be more accurate
with smaller arrays (the larger the array, the larger the devia-
tion between the true average and the sample estimate). By
contrast, in the orientation averaging task we expect either a
fixed (or improved) precision with the set size of the array, as a
result of averaging the encoding noise. To validate these con-
clusions, we used computational modeling to fit the data with
two models, namely (1) the limited-capacity (subsampling)
model (Allik et al., 2013; Solomon, May, & Tyler, 2016)
and (2) the distributed attention or ‘zoom lens’ model (Baek
& Chong, 2020a), and extracted the capacity or attention pa-
rameters for the two tasks. Finally, we examined the weights
given to the mid-range and extreme values and compared
them across the tasks (Vandormael et al., 2017; Vanunu
et al., 2020).

Experiment

The experiment briefly presented arrays of numbers (digits
1–9) or oriented elements (Gabors) of various set sizes (from
4 to 12) and required participants to estimate the numerical or
orientation average on a continuous scale. We used an estima-
tion on a continuous scale rather than a binary decision rela-
tive to a reference, as this minimizes the reliance on some
heuristics, such as counting the number of elements higher
than the reference, or even the number of extreme (high- vs.
low-value) elements. Our main focus is the dependency of the
estimation precision on set size in the two tasks.

Methods

Participants

Eighteen healthy adult volunteers with normal or corrected-to-
normal vision participated in this study. All volunteers gave
written informed consent to participate in this study. All pro-
cedures and experimental protocols were approved by the
ethics committee of the Psychology Department of Tel Aviv
University (Application 743/12). All experiments were carried
out in accordance with the approved guidelines. Due to the
COVID-situation, testing conditions were restricted. We of-
fered our participants the option to be tested (for an equivalent
of $15) in the lab under special safety COVID19 guidelines,
or to run the experiment at home (same pay) from their own
computer (to do this they needed to have Matlab installed on
their computer). Ten participants were tested in the lab and
eight were tested at home.

Stimuli

In the lab, displays were generated by an Intel I7 personal
computer attached to a 24-in. Asus 248qe monitor with a
144-Hz refresh rate, using 1,920 × 1,080 resolution graphics
mode. Due to the Covid19 situation, eight participants were
tested at home using their own personal computers, but the
experimental code was designed so as to detect the monitor’s
resolution and present the stimuli with the same relative size.
All participants were approximately at a distance of 60 cm
from the screen.

The stimulus was an array of four, eight, or 12 elements
(Gabor patches or numbers, depending on the task), randomly
located on a gray background, within an invisible 5 × 6 grid
(each cell was 77 × 96 pixels), with a restriction of no two
horizontally adjacent elements and no element in the cells just
above and below fixation (see Fig. 1a and b). Numbers were
integers between 1 and 9, presented in white in David font size
25. Gabor patches were 200 pixels wide, with a spatial fre-
quency of 0.2 cycles per pixel and standard deviation of 20
pixels. Gabors' orientations varied from 42° to 138° in nine
equidistant steps. Stimuli were generated using Psychtoolbox
for Matlab.

Trial procedure

Each trial began with the onset of a central red fixation dot (1
s) followed by the stimulus array (numbers or Gabors), which
remained on the screen for 300 ms. After the offset of the
array, participants were instructed to report the numbers' av-
erage (number task) or the Gabors' average angle (orientation
task) on a semicircular scale (an arc from 30° to 150°), using
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their mouse. The mouse cursor was initiated on the red fixa-
tion dot which is also the center of the response scale arc, and
thus it had an equal distance from each point of the scale (see
Fig. 1). The scale labels were numbers from 1 to 9 (number
task) or oriented lines from 30° to 150° (orientation task). The
participants had a 5-s deadline to respond by moving the
mouse cursor to the response scale and clicking the left mouse
button.

Design

Each participant completed both the orientation and the num-
ber averaging tasks, in separate blocks of 360 trials each, in an
order counterbalanced across participants. Set sizes (four,
eight, 12 elements) were randomly interleaved across trials.
Numbers were drawn randomly from one of three Gaussian
distributions with means of 3.5, 5, or 6.5 and standard devia-
tion of 1.5. The Gabors’ orientations were drawn from
Gaussian distributions with means of 72°, 90°, and 108° rel-
ative to horizontal, and SD of 18°. The positions of numbers
1–9 on the response scale corresponded to orientations from
42° to 138°. Due to a coding error, in four (of the 18) partic-
ipants the Gaussian distribution of the Gabors were located at
76.6°, 96.6°, and 116.6°, generating a small tilt of the overall
distribution. This coding error was corrected in the other

participants. Since responses are made on a continuous scale
and the actual deviation can be correctly extracted, all partic-
ipants were included in the analysis.

Results

For simplicity and normalization between the two tasks we
computed the different accuracy measurements in the orienta-
tion task after we transformed the orientation angles to num-
bers of 1–9, based on the mappings above.

Averaging precision

We used two measures to quantify participants' precision in
the averaging tasks: First, we looked at the Pearson correlation
across trials between the real and estimated averages of the
array in each trial (see Fig. 2 for an example participant). The
average correlation was high both for the orientation task (av-
erage r = .72, SD = 0.1) and for the number task (average r =
.80, SD = 0.08). Note that in both tasks we observed regres-
sion to the mean, by which responses were biased towards the
center of the scale. Second, we computed the root mean square
deviation (RMSD) between the real averages and the partici-
pants' responses across trials (see Fig. 3a). To obtain a chance-

Fig. 1 Representative trial stimuli of each condition (set size 8). (a)
Numbers condition. (b) Gabors condition. (c) Timeline diagram of a
single trial. Each trial began with a red fixation point in the center of
the display for 1 s (and remained on the screen when the array was

presented), followed by the array and ended with the response scale
display. Trials end when the participant enters a response or after a 5-s
deadline
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level baseline for this measure, we evaluated the RMSD for
randomly shuffled responses across trials, both for the orien-
tation and the number tasks. We found the actual RMSD was
significantly lower (more precise) than the shuffled version
(orientation task: actual RMSD = 1.00, shuffled RMSD =
1.84, t(17) = 16.6, p < .001. number task: actual RMSD =
0.86, shuffled RMSD = 1.87, t(17) = 25.9, p < .001).

In order to test the main effect of set size and its interaction
with task, we carried out a two-way repeated-measures
ANOVA (set size × task) with RMSD as the dependent vari-
able. There was a significant interaction between the effects of
set size and task, F(2,34) = 6.5, p<.01. A separate ANOVA for
each task revealed a significant set size effect for the number
task, F(2,34)=13.8, p < .001, but not for the orientation task;

Fig. 2 (a) Correlation between the real average and the estimated average
of a representative participant in the number task. (b) Correlation between
the real average and the estimated average of a representative participant

in the orientation task. In both panels, each dot corresponds to a single
trial, and the red line represents the regression of the estimated average
against the actual average across trials

Fig. 3 (a) Root mean square deviation as a function of set size. In the
orientation condition (blue) participants were not impacted by set size. In
contrast, the number condition (red) shows that participants' performance
deteriorated as set size increased. (b) Median response time (RT) as a
function of set size. In the orientation task (blue) there was no difference

in RT between the different set sizes. In the number task (red) responses
were slower in the four-items condition compared to the eight- and 12-
items conditions. In both panels, errors bars represent the mean and its
standard error across participants
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F(2,34) = 0.88, p = .68. Post hoc comparison using Holm's test
in the number task showed that RMSD was significantly low-
er (more precise) for four items than for eight and 12 items. In
sum, in the number task participants were less accurate as set
size increased, as opposed to the orientation task in which set
size did not influence precision (see Fig. 3a).

Reaction times

To evaluate whether the decrease in performance with set size
for numbers might be related to a potential speed-accuracy
tradeoff, we also looked at response times (Fig. 3b). We re-
peated the same two-way repeated-measures ANOVA (set
size × task) now with median response time (RT) as the de-
pendent variable. There was a significant interaction between
the effects of set size and task on RT, F(2,34) = 7.7, p < .01. A
separate ANOVA for each task revealed a significant set size
effect for the number task, F(2,34) = 10.25, p < .001, but not
for the orientation task, F(2,34) = 2.09, p =.13. Post hoc com-
parison using Holm’s test in the number task showed that
four-items RT was significantly slower than eight- and 12-
items RT (see Fig. 3b).

In order to understand if the slowdown in the number-
averaging task at the set size of four can account for the im-
proved precision in this condition, we computed for every
participant the correlation between absolute errors (RMSD)
and RTs across trials, separately for each set size and task.
We reasoned that if such a speed-accuracy tradeoff occurred,
then longer RTs would be associated with lower errors,
resulting in negative correlations between errors and RTs.
However, no negative correlations were found at the group
level (see Fig. 7 in the Appendix for the distribution of
correlation coefficients across participants). In particular, for
the numerical averaging task, the correlations were close to
zero (for set sizes four, eight, and 12 the mean r values were
-.012, -.004, and .042, respectively, with SDs 0.17, 0.14, and
0.10, across participants). For the orientation averaging task
we found small (but statistically significant) positive correla-
tions at set sizes four (mean r = .092, SD = 0.15, t(17) = 2.59,
p=.019) and set size 12 (mean r = .057, SD = 0.084, t(17) =
2.88, p=.010). To further discard the possibility of a speed-
accuracy tradeoff for the set size of four in the number task, we
eliminated the 20% slowest trials in that condition, so that the
remaining trials had a median RT that was the same as the set
size eight condition, and we examined RMSD in this RT-
equivalent dataset. As expected from the null correlation be-
tween RT and absolute errors, this exclusion of slow trials did
not affect the results regarding RMSD. Critically, the interac-
tion between set size and task in accuracy was maintained
(F(2, 34) = 6.13, p = .011).

Summary and discussion

Whereas the participants were able to carry out both tasks
relatively well (as indicated by correlations between real and
estimated values higher than .70), the precision of their esti-
mation showed a different dependency on the set size of the
array in the two tasks. For orientation-averaging, set size did
not affect either the precision or the mean RT, suggesting a
parallel process (Ariely, 2001; Chong & Treisman, 2005;
Robitaille & Harris, 2011). For the numerical averaging on
the other hand, both the precision and the RT decreased with
set size. One possibility is that for small arrays (four digits),
participants could have attempted to carry out the estimation
by using a slower symbolic computation strategy, a strategy
that they gave up on with larger arrays (Brezis et al., 2015).
The null correlation between RMSD and RT observed in this
condition indicates that this extra time did not help the partic-
ipants to improve their estimation precision.

To conclude, we see that the ability of the participants to
average larger arrays of numbers appears more limited, as the
precision of the estimation is reduced with the size of the
array. This is what would be expected if capacity (i.e., the
number of elements the subjects can pool from) was reduced
in the numerical task. In the next section we apply computa-
tional modeling in order to extract the capacity and attention
parameters of the two tasks, and to examine additional biases,
such as the weight given to in- or outlying elements (de
Gardelle & Summerfield, 2011; Vandormael et al., 2017;
Vanunu, Pachur, & Usher, 2019).

Computational analysis

We used two computational models to account for the data
across all trials and participants, in both tasks. The first model
is a version of the limited-capacity (subsampling) model
(Allik et al., 2013; Dakin, 2001; Solomon, May, & Tyler,
2016). This model assumes that out of N items presented, only
M items are pooled up to generate the average-estimate. There
are three sources of noise in this estimate. The first one is the
sampling noise caused by subsampling (M out of N) elements.
The second is an encoding noise, which is averaged out with
M. The last component is a late-noise (this may include a
motor component), which is not affected by M or N.

MeanEstimated ¼ aþ b
∑M

i¼1xi þ εe
M

� �
þεm; εe∼N 0;σ2

e

� �
and εm∼N 0;σ2

m

� � ð1Þ

The model is summarized by Eq. 1, whereM is the number
of sampled items out of the array, xi is the ith item that was
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sampled, εe is the normal distributed encoding noise, and εm is
the normal distributed motor noise. In this equation, a and b
correspond to the intercept and slope parameters by which the
internal estimation is mapped onto the external response-
scale. Note that b<1 would induce a regression to the mean,
which appears in the data (Fig. 2), and which is adaptive when
observers face uncertainty but have prior knowledge about the
distribution of the stimuli (Jazayeri & Shadlen, 2010; Anobile,
Cicchini, & Burr, 2012).2

The second model is a version of the zoom lens model
(Baek & Chong, 2020a). The model assumes that while all
visual elements contribute to the averaging estimation, they
are subject to distributed attentional resources, which can vary
from a sharp focus (for small arrays) to a broad one (for larger
arrays). The precision of the processing is then in inverse
proportion to the area of focus, similar to the zoom lens of a
camera. As a result, the model assumes that an increase in set
size leads to an increase in encoding noise for each item. There
are also three sources of noise in this model. The first two are
encoding noise and late noise, similar to the previous model.
The third one is the attention parameter (A), which is a noise-
reduction factor multiplied to encoding noise.

MeanEstimated ¼ aþ b
∑n

i¼1xi þ εe
n

� �
þ εm;

εe∼N 0;
n−1þ Að Þ2

n3
σ2
e

 !
; εm∼N 0;σ2

m

� � ð2Þ

This model is summarized by Eqs. 2, where xi is the i
th item

in the array, n is the set size of the array, εe is the encoding
noise, εm is the motor noise, A is the attention parameter, and a
and b correspond to the intercept and slope parameters by
which the internal estimation is mapped onto the external re-
sponse-scale (see equation 6 in Baek & Chong, 2020b).

Since fitting five parameters is computationally chal-
lenging (from a model recovery perspective), we carried
out the model fits in two steps. First, we conducted a sim-
ple regression predicting the trial-by-trial response of each
participant from the sequence-average, to determine the a
and b parameters for each participant. We then fixed those
parameters and we fitted the three noise parameters, M, εe,
εm, or A, εe, εm. For the zoom lens model, the predicted
distribution of the estimated mean is Gaussian around the
actual average and with a variance analytically computed
by the three noise parameters. For the sampling model, we
resorted to simulations. For each trial we computed the

expected distribution of the estimated mean over the array,
given the parameters of the model. In both models, from
the predicted distribution (in each trial) we obtained the
log-likelihood of the response of the observer in that trial.
These log-likelihoods were accumulated across trials and
the model parameters were optimized to maximize the total
log-likelihood (see Tables 1 and 2 in the Appendix for
parameters AIC/BIC).

Model comparison

We compared the capacity/sampling and the zoom lens model
to test which of them accounts better to the data in each task.
The models have the same number of parameters so we com-
pared directly the log-likelihoods. Figure 4 shows the differ-
ence in log-likelihood (zoom lens minus sampling model,
such that positive values are in favor of the sampling model)
in each task. As shown in the figure, there are very small
differences in the model fits in the orientation task (except
for four subjects out of 18), but there are large differences in

2 We also carried out model fitting without the a,b parameters, but the results
were less good in terms of AIC/BIC measures, and they provide similar con-
clusions. So we only report the model comparisons that include intercept and
slopes parameters.

Fig. 4 The difference in log-likelihood between the zoom lens model and
the sampling model as a function of task (orientation vs. numbers).
Positive values indicate an advantage for the sampling model. Each dot
is an individual observer. Error bars correspond to SEM
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the number task, where the sampling model fares significantly
better (see Tables 1 and 2 in the Appendix for more details).

Interestingly, all the participants for whom the sampling
model wins over the zoom lens model are those for whom
the fitted value of the capacity parameter, k, was very small
(2 or 3; see Tables 1 and 2). Besides, all the participants for
whom the capacity parameter was k = 12 in the orientation
task (maximum value), were those for whom the zoom lens
model won (see Tables 1 and 2). We next focused on how the
capacity parameters vary with the task (see Fig. 5; see Tables 1
and 2 in the Appendix for other parameters). Despite marked
variability across individuals, we observed overall a higher
capacity in the orientation task (M = 7.3, SD = 3.9) than in
the number task (M = 3.6, SD = 1.8). The difference between
the two tasks was statistically significant (t(17) = 3.5, p <
.005). This result confirms our hypothesis that when con-
structing their representation of the average over a set of items,
observers integrate more items in the orientation task than in
the number task.

Weights of inlying versus outlying elements

Finally, we examined the weights that participants gave to the
different elements in the array, depending on their relative
rank (among all elements in the array) and depending on the
task (i.e., number or orientation). In particular, we compared
elements falling in the middle of the sample (hereafter inlying
elements) versus elements at the extreme (hereafter outlying
elements). For example, for an array such as (2, 3, 4 5, 5, 6, 7,
8), we considered that (2, 3, 7, 8) were outlying elements and

that (4, 5, 5, 6) were inlying elements. For each task and set
size, we then extracted the weights given to outlying and to
inlying elements using the following linear regression (Eq. 3):

Response ¼ β0 þ βin
2

n
∑i∈InX i

� �
þ βout

2

n
∑i∈OutX i

� �
ð3Þ

with Xi the ordered samples, and In ¼〚n
4 þ 1; 3n4〛and Out

¼〚1; n4〛⋃〚
3n
4 þ 1; n〛the indices for inlying and outlying ele-

ments, respectively.
We then examined how these weights varied across con-

ditions (Fig. 6). A 2 × 3 × 2 ANOVA (task, set size, in/
outliers) shows a significant triple interaction (F(2, 34) =
4.48, p =.031). We thus conducted separate ANOVAs for
each task, to examine the effect of set size and element
rank. In the number task, there was only a main effect of
rank, F(1, 17) = 11.20, p = .004, in which participants gave
more weights to the outlying elements, in a similar manner
across all set sizes. By contrast, for the orientation task
there was both a main effect of set size, F(2, 34) = 23.82,
p < .001, and an interaction between set size and rank,
F(2,34) = 6.03, p = .011. Further examination of this inter-
action indicated that inlying elements were down-weighted
relative to outlying elements only for the largest sets (size
12: rank effect: F(1,17) = 10.44, p = 0.005) but not for
smaller sets (sizes four and eight: both p > .05).

General discussion

We examined and compared the ability of observers to esti-
mate the average number and the average orientation of

Fig. 5 Capacity-parameter M, for each of the participants in the two tasks
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elements presented simultaneously for a brief (300 ms) dura-
tion. Our experimental procedure required observers to make
a response on a continuous scale, rather than a binary decision,
and our results indicated that in both tasks the observers were
able, despite the presence of a regression to the mean compo-
nent, to make good estimations (see Fig. 2).

The critical difference between the two tasks was the im-
pact of the set size on the precision with which the average
was estimated. We expected that the perception of numerical
symbols would depend more on attentional and visual work-
ing memory resources, compared with the perception of ori-
ented elements, which can generate a more holistic (texture)
process (Dakin, 2001; Chong & Treisman, 2005; Robitaille &
Haris, 2011).We thus expected to find a higher capacity in the
pooling of orientations compared with the pooling of num-
bers. These predictions were confirmed at the group level,
using estimates of capacity based on a sampling model of
averaging. In addition, we also compared this model to the
(distributed attention) zoom lens model of averaging, which
instead of sampling involved distributed attention over all el-
ements (Baek & Chong, 2020b). While in the orientation task
the zoom lens and the sampling models were about equal in
their fit performance, in the numerical task the sampling mod-
el provided a better fit. Consistent with this, the estimation
precision decreased with set size only in the numerical task
and the extracted capacity parameter M was lower for the
numerical task (average M = 3.7), compared to the orientation
task (average M = 7.3).

In addition to these group differences, we also ob-
served a large heterogeneity in both tasks. While some
participants showed maximal capacity in the sampling
model (M values that approached the maximum set size
of 12) and RMSD decreasing with set size (as a result of
efficient pooling), others showed low capacity (values of
M = 2) and RMSD increasing with set size. This type of
heterogeneity was previously reported for the orientation
averaging (Solomon, May, & Tyler, 2016). One possibil-
ity discussed by Solomon et al. (2016) is that the efficien-
cy may be a function of expertizewith the task.Our finding that
orientation averaging is more efficient than averaging of symbol-
ic numbers is consistent with this possibility: the visual system is
arguably more expert in extracting orientations from Gabor
patches than in extracting the quantity associatedwith a symbolic
number. Could the inter-individual variability in efficiency ob-
served in our data also relate to variations in expertise across
participants? Unfortunately, we cannot address this question di-
rectly with our protocol, but there was room for variations in
expertise across participants, given that the amount of training
our participants received before engaging in themain experiment
was minimal (360 trials per task). In the case of averaging of
symbolic numbers in particular, one could further speculate that
familiarity with mathematics (e.g., due to studies, or to work-
related or other activities involving mental calculus) may affect
the efficiency with which participants compute an average over a
set of visually presented numbers. Future studies are needed to
further investigate this issue.

Fig. 6 Regression weights for inlying and outlying elements within each array, separately for the two tasks and the different set sizes. Error bars
represents the mean and its standard error across participants
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Our capacity estimate for the orientation averaging task
is somewhat higher than reported by Solomon et al. (2016)
as well as in some other studies (see, e.g., Table 1 in
Solomon et al., 2016). While as discussed above there
was marked heterogeneity in both studies, there are two
aspects in the experimental procedure that could account
for potential differences. First, while Solomon et al. (2016)
used stimuli presented on a circular array, in our experi-
ment they were presented in a texture type display, and
random spatial positions, which may enhance texture/
grouping processes. Other studies that used texture dis-
plays have also indicated a capacity that exceeds the
VWM of three to four items (Dakin, 2001; Robitaille &
Harris, 2011). Second, we used a continuous response in-
stead of a binary choice relative to a reference. Doing this
may have eliminated some non-integration strategy to car-
ry out the task, such as counting the elements higher than
the reference. Future work might investigate these aspects.

The main focus of our study was the comparison of the
capacity of the orientation and numerical averaging tasks.
Regarding this comparison, we should acknowledge one
potential limitation of our experimental methodology, in
that we did not equate the visual characteristics of the
stimuli between the number task and the orientation task.
It is possible that the orientation stimuli may have benefit-
ed from a greater precision in terms of visual encoding than
the number stimuli. Indeed, our number stimuli involved
higher spatial frequency content (sharp edges), which may
have been degraded towards the periphery of the stimulus
display. Fortunately, our computational modeling allowed
us to estimate encoding noise for both the number task and
the orientation task, and it appears that irrespective of the
model considered (sampling vs. zoom lens), this early
noise was actually higher for the orientation task than in
the number task (see Tables 1, 2, 3 and 4 in the Appendix
Material), which we argue alleviates the concern. Further
research may, however, better address this issue, by mea-
suring the precision of the representation of single items, in
addition to the averaging task.

The lower capacity in the numerical averaging task indi-
cates that for most participants the estimation is based on
sampling only a few of the elements. Based on previous work
(de Gardelle & Summerfield, 2011; Vandormael et al., 2017;
Vanunu et al., 2020), we sought to investigate which elements
received more weight. The inlying/outlying analysis shown in
Fig. 6 indicates that those elements are more likely to be ex-
treme elements. Note that when a limited number of samples
(say, two) can be used for the averaging process, the precision
of the estimation is higher when the extreme ones are selected,
compared with a random selection. Thus, if these extreme

elements are easier to detect, relying on them could be an
adaptive strategy. This interpretation is consistent with the fact
that in the orientation task, the weight of the extreme samples
exceeds the weight of the midrange samples, only at the larg-
est set size (when the set size exceeds the capacity of the
orientation-averaging estimation). While these results stand
in contrast to those of Vandormael et al. (2017), who reported
robust averaging (lower weights for extreme elements), they
are consistent with those reported byVanunu et al. (2020).We
should note that these two studies used long presentation du-
rations (several seconds in both cases) and a binary compari-
son with a reference, whereas our task involved brief displays
and required an estimation on a continuous scale.

The results for the numerical averaging also stand in con-
trast to those reported in Brezis et al. (2015, 2016, 2018), in
which the precision improved with set size, indicating pooling
across all (or almost all elements, from four to 16). The critical
difference, however, is that while in the present study, the
elements are briefly displayed simultaneously, in Brezis
et al. they were sequentially presented, resulting in less atten-
tional resource competition between the encoding of the ele-
ments. This suggests a framework in which while the estima-
tion mechanism is parallel (e.g., a neural population-coding
model in Brezis et al., 2016, 2018), the encoding of the items
has some serial (capacity limited) component that is lower for
symbols compared to oriented lines.

Finally, in addition to capacity, we also examined re-
sponse times for the two tasks. One interesting aspect
was that RTs markedly increased when participants had
to average four numbers, in comparison to eight or 12
numbers. Such an increase for four elements was specific
to the number task, and did not occur in the orientation
task. Thus, it might indicate that participants approached
the number averaging task differently with four items com-
pared to eight or 12 items, for instance by trying to calcu-
late the average rather than by relying on an intuitive esti-
mation. We note, however, that these longer response
times did not lead to better responses. Whether this change
in strategy was deliberate or not and whether it may reflect
an adaptive strategy or not, however, remains to be ad-
dressed. Future studies may investigate, in particular,
whether participants have a good insight or not about their
own cognitive processes in the averaging task.

Appendix
Model fitting

Optimization procedure. The free parameters of the sampling
and zoom lens models were fitted to the data of each partici-
pant separately, using maximum likelihood estimation. We
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carried out the model fits in two steps. First, we carried out a
simple regression predicting the trial by trial estimate of each
subject from the sequence-average, to determine the a and b
parameters for each subject. We then fixed those parameters
and we constructed an n-dimensional grid (n is the number of
free parameters for each model), with the four noise parame-
ters (in total for the two models), M, εe, εm,A. M ranging from
1 to 12 with increments of 1, A ranging from 0 to 1 with
increments of .0101, εe ranging from 0 to 1.9 with increments
of 0.126 for the numbers task and ranging from 0 to 3 with
increments of 0.2 for the orientation task and εm ranging from
0 to 1 with increments of 0.06 for the numbers task and rang-
ing from 0 to 2 with increments of 0.13 for the orientation
task. This grid was searched exhaustively, and for each set
of parameters, θj, the likelihood was calculated based on a
Gaussian probability distribution function:

L θ j
� � ¼ ∏N

i¼1

1

σ
ffiffiffiffiffiffi
2π

p e
−1
2

xi−μi
σð Þ2

where N is the number of trials, xi is the subject’s estimated
average in each trial, μi is the predicted average by the model

excluding noise, and σ is the standard deviation such that σ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
e þ σ2

m þ σ2
M

p
for the efficiency model and

σ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n−1þ Að Þp 2

n3σ2eþσ2m
for the Zoom lens model. We

also carried out model fitting without the a,b parameters and
compared the two fits.

Model selection. In order to evaluate the quantitative fits of
the models, we used two methods: (1) Akaike Information
Criterion (AIC; Akaike, 1973), and (2) Bayesian
Information Criterion (BIC; Schwarz, 1978; Raftery, 1995).
These selection criteria implement a trade-off between model
goodness of fit and complexity by penalizing additional free
parameters according to the following formulas:

AIC = -2∙LL+2∙k
BIC = -2∙LL + k∙log(N)
where LL is the log-likelihood for the best fitting parame-

ters, k is the number of free parameters and N is the number of
trials. AIC/BIC differences exceeding 10 are considered deci-
sive evidence in favor of the model with the lower numerical
values (Burnham & Anderson, 2002; Raftery, 1995; see
Tables 1 and 2 for parameters and BIC/AIC values).

Fig. 7

Table 1 Comparison between the log-likelihood of the sampling model
compared to the zoom lens model in the orientation task. The other col-
umns show the parameters’ value in each fit

Subject Sampling model Zoom lens model

LL a b M Ɛe Ɛm LL A Ɛe Ɛm

1 422.9 1.19 0.84 12 2.2 0.80 422.8 0.31 3.0 0.6

2 263.9 2.24 0.62 10 1.6 0.13 265.2 0.61 1.6 0.3

3 442.6 1.28 0.75 6 2.6 0.40 442.7 0.30 2.2 1.0

4 375.0 1.71 0.71 7 1.6 0.67 375.3 0.93 1.5 0.8

5 350.4 1.2 0.78 6 1.2 0.27 352.6 0.00 0.7 0.6

6 361.2 -0.03 0.98 6 1.4 0.00 361.3 0.00 1.6 0.4

7 537.8 -0.02 1.1 5 2.2 0.00 538.6 0.00 1.8 0.9

8 287.8 2.22 0.55 6 1 0.13 289.6 0.00 0.7 0.5

9 271.5 2.74 0.46 12 0 0.53 271.1 0.00 0.3 0.5

10 446.5 -0.3 1.07 3 1 0.13 456.3 0.00 0.9 0.8

11 538.6 2.32 0.56 3 1.6 0.00 539.8 0.00 0.1 1.1

12 563.4 -0.8 1.16 12 1.2 1.07 563.2 0.02 2.2 0.9

13 438.5 1.82 0.62 12 1.2 0.67 438.2 0.01 2.0 0.5

14 260.0 2.03 0.62 12 0.8 0.40 259.0 0.00 1.5 0.2

15 390.6 3.23 0.38 12 1.8 0.27 389.9 0.16 2.2 0.0

16 433.9 2.28 0.57 3 1 0.00 440.2 0.00 0.7 0.8

17 544.2 1.57 0.65 2 1 0.00 555.4 0.00 0.5 1.1

18 491.8 1.09 0.77 3 1.2 0.27 500.1 0.00 0.1 1.0

Table 2 Comparison between the log-likelihood of the sampling model
compared to the zoom lens model in the numbers task

Subject Sampling model Zoom lens model

LL A b M Ɛe Ɛm LL A Ɛe Ɛm

1 239.7 0.3 0.9 3 0.1 0.2 271.0 0.00 0.1 0.7

2 337.8 1.3 0.8 6 1.8 0.1 340.5 0.62 0.8 0.8

3 332.5 -0.1 1.0 2 0.3 0.3 344.7 0.00 0.1 0.9

4 325.3 0.6 0.9 2 0.1 0.3 340.3 0.00 0.8 0.8

5 427.8 1.0 0.8 5 0.5 0.7 431.6 0.00 0.1 0.8

6 343.2 1.1 0.8 6 1.3 0.0 344.5 0.07 0.6 0.6

7 422.4 0.9 0.8 2 0.4 0.1 440.2 0.00 0.3 0.8

8 361.6 1.3 0.7 6 1.3 0.2 362.0 0.21 0.8 0.6

9 494.0 1.0 0.8 2 0.6 0.3 509.5 0.00 0.1 1.0

10 276.0 0.3 1.0 3 0.1 0.1 301.9 0.00 0.1 0.6

11 523.2 0.5 1.0 2 0.3 0.7 532.8 0.41 1.2 1.0

12 443.6 0.6 0.9 3 0.8 0.4 448.9 0.00 0.6 0.8

13 438.8 1.0 0.8 2 0.4 0.1 449.8 0.00 0.7 0.8

14 305.5 1.1 0.8 3 0.4 0.1 307.8 0.00 0.8 0.5

15 305.9 1.1 0.9 5 0.9 0.2 316.3 0.00 0.1 0.6

16 399.0 0.9 0.8 5 0.5 0.6 407.3 0.00 0.7 0.7

17 562.0 1.6 0.7 2 0.8 0.6 567.0 0.00 0.1 1.2

18 475.6 1.7 0.6 7 1.1 0.7 476.1 1.00 0.3 0.9

The other columns show the parameters’ value in each fit
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Table 3 Comparison between the AIC and BIC parameters for the sampling model with the mapping parameters compared to without the mapping
parameters in the orientation task. The other columns show the parameters’ value in each fit

Subject Model with mapping parameters Model without mapping parameters

BIC AIC a b M Ɛe Ɛm BIC AIC M Ɛe Ɛm

1 875 856 1.19 0.84 12 2.2 0.80 902 890 12 2.6 0.80

2 557 538 2.24 0.62 10 1.6 0.13 735 724 7 1.4 0.67

3 915 895 1.28 0.75 6 2.6 0.40 919 907 2 1.2 0.53

4 779 760 1.71 0.71 7 1.6 0.67 820 809 6 1 0.93

5 730 711 1.2 0.78 6 1.2 0.27 784 773 5 1.2 0.27

6 752 732 -0.03 0.98 6 1.4 0.00 750 739 6 1.4 0.00

7 1,105 1,086 -0.02 1.1 5 2.2 0.00 1166 1155 2 1 0.53

8 605 586 2.22 0.55 6 1 0.13 851 839 6 1.6 0.13

9 572 553 2.74 0.46 12 0 0.53 926 914 6 0 0.80

10 922 903 -0.3 1.07 3 1 0.13 920 908 3 0.8 0.40

11 1,107 1,087 2.32 0.56 3 1.6 0.00 1175 1163 3 1.6 0.53

12 1,156 1,137 -0.8 1.16 12 1.2 1.07 1,155 1,143 12 1.8 0.93

13 906 887 1.82 0.62 12 1.2 0.67 1003 991 11 0.4 0.93

14 549 530 2.03 0.62 12 0.8 0.40 796 784 6 1.2 0.40

15 811 791 3.23 0.38 12 1.8 0.27 1,084 1,073 12 0 1.07

16 897 878 2.28 0.57 3 1 0.00 1,028 1,017 2 0.4 0.53

17 1,118 1,098 1.57 0.65 2 1 0.00 1,161 1,149 2 1 0.40

18 1,013 994 1.09 0.77 3 1.2 0.27 1,038 1,026 3 1.2 0.40

Table 4 Comparison between the AIC and BIC parameters for the sampling model with the mapping parameters compared to without the mapping
parameters in the numbers task

Subject Model with mapping parameters Model without mapping parameters

BIC AIC a b M Ɛe Ɛm BIC AIC M Ɛe Ɛm

1 509 489 0.30 0.92 3 0.13 0.20 506 494 3 0.38 0.00

2 705 686 1.25 0.78 6 1.77 0.13 730 718 5 1.65 0.33

3 694 675 -0.11 1.03 2 0.25 0.27 684 672 2 0.25 0.27

4 680 661 0.55 0.94 2 0.13 0.27 681 669 2 0.38 0.07

5 885 866 0.95 0.80 5 0.51 0.67 911 899 5 1.52 0.27

6 716 696 1.13 0.79 6 1.27 0.00 775 763 5 1.27 0.13

7 874 855 0.94 0.83 2 0.38 0.07 868 857 2 0.13 0.00

8 753 733 1.34 0.69 6 1.27 0.20 862 851 11 1.01 0.67

9 1,018 998 1.03 0.82 2 0.63 0.27 1,031 1019 2 0.25 0.53

10 581 562 0.31 0.95 3 0.13 0.07 572 560 3 0.00 0.00

11 1,076 1,056 0.54 0.99 2 0.25 0.67 1,112 1100 1 0.00 0.07

12 917 897 0.60 0.89 3 0.76 0.40 917 905 3 0.89 0.33

13 907 888 1.02 0.84 2 0.38 0.13 921 909 2 0.00 0.27

14 640 621 1.08 0.83 3 0.38 0.13 713 701 3 0.00 0.33

15 641 622 1.06 0.85 5 0.89 0.20 751 740 3 0.25 0.33

16 827 808 0.88 0.78 5 0.51 0.60 872 861 3 0.38 0.53

17 1,153 1,134 1.62 0.65 2 0.76 0.60 1,192 1180 2 1.27 0.13

18 981 961 1.72 0.63 7 1.14 0.73 1,053 1042 5 0.51 0.93

The other columns show the parameters’ value in each fit
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