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Abstract
The ensemble coding literature suggests the existence of a fast, automatic formation of some ensemble codes. Can statistical
representations, such as memory for the central tendency along a particular visual feature dimension, be extracted from
information held in the sensory register? Furthermore, can knowledge of early, iconic memory processes be used to
determine how central tendency is extracted?We focused on the potential role of visible persistence mechanisms that support
temporal integration. We tested whether mean orientation could be accurately recalled from brief visual displays using the
successive field task. On separate blocks of trials, participants were asked to report the location of a split element (requiring
differentiation of frames), a missing element (requiring integration across frames), and the average orientation of elements
pooled across both frames (central tendency recall). Results replicate the expected tradeoff between differentiation and
integration performance across inter-frame interval (IFI). In contrast, precision of mean estimates was high and invariant
across IFIs. A manipulation of within-frame distributional similarity coupled with simulations using 12 models supported 2-
item subsampling. The results argue against the “strategic” interpretation of subsampling since 2-item readout was predicted
by information theoretic estimates of STM encoding rate: the 2 items were not from a superset in STM. Most crucially, the
results argue against the various early “preattentive/parallel/global pooling” accounts and instead suggest that non-selective
readout of information from iconic memory supplies a relatively small amount of item information to STM, and it is only at
this point that the computation of ensemble averages begins.

Keywords Attention: Interactions with Memory · Visual working memory · Short term memory

Introduction

In the introduction to his classic 1960 monograph, George
Sperling writes that when arrays of stimuli are presented
tachistoscopically “observers enigmatically insist that they
have seen more than they can remember afterwards, that
is, report afterwards,” (p. 1). Sperling took this as an
initial clue that there may be a brief form of visual
storage preceding short-term memory in the processing
stream. What is particularly interesting about this statement
today, however, is what it reveals about the representational
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layers or components that survive iconic decay. Specifically,
participants appear to have statistical information about the
items that occupied the icon even when those items can
no longer be remembered, the statistical information in this
case being the sample size.

The following year, another now-classic paper on iconic
memory was published, this time by Averbach and Coriell.
Reaching conclusions similar to those of Sperling (1960)
regarding the capacity and timecourse of iconic memory,
the authors also demonstrated the important role of masking
stimuli in controlling readout from the sensory store. They
documented an effect whereby a circular mask “erases” the
visual percept of a preceding stimulus falling at its center
when target-mask SOAs were below the estimated lifetime
of the icon. These results inspired many subsequent studies
which used masking manipulations to determine in detail
the kind of information retained from brief displays. Equally
interesting, however, is the conclusion Averbach and Coriell
(1961) reached with respect to near-simultaneous target-
mask onset conditions with the circular mask: “High
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performance when the circle follows immediately after
the array is due to simple temporal averaging in the
visual system. This results in array and circle being
effectively superimposed, which does not significantly
affect legibility,” (p. 321). A second experiment comparing
iconic memory performance following the circular mask to
performance following a grid mask showed a large decrease
in partial report performance for the grid mask, consistent
with the authors’ interpretation.

The idea put forth by Averbach and Coriell was
essentially that items falling within a temporal window
contained within the lifetime of iconic memory are summed,
superimposed, or averaged together, while those that
straddle contiguous “windows” will interact, leading to
erasure of percepts formed or initiated in the earlier window
by those of the later window. In other words, mechanisms
of integration and differentiation operate on iconic memory
contents. Items falling at greater temporal distances from
one another produce typical perception of succession. Once
again, statistical information appears to be necessary, and
this time the statistic in question is a sum or average.

In what follows, we evaluate the notion that at least some
forms of central tendency representation in visual short-
term memory may be extracted pre-attentively, rapidly,
and/or automatically. We conclude that this suggests central
tendency information may be extracted directly from
iconic memory. Second, we identify a particular iconic
memory subprocess, temporal integration, that appears to
be a plausible candidate mechanism for carrying out or
contributing to the early extraction. Finally, we report an
experimental test of both of these notions.

Rapid, pre-attentive averaging?

There is now a vast and growing literature on ensemble
coding in visual perception and short-term memory
(VSTM). This literature suggests that participants can
extract statistical summaries such as the central tendency
of feature values over ensembles of similar stimuli. In
particular, the literature contains evidence that central
tendency representation may occur rapidly, pre-attentively,
and/or automatically (Alvarez & Oliva, 2007, 2008, 2009;
Chong & Treisman, 2003, 2005a, b, 2008; Emmanouil &
Treisman, 2008; Oriet & Brand, 2013); but see De Fockert
and Marchant (2008), Myczek and Simons (2008), and
Whiting and Oriet (2011).

For instance, Alvarez and Oliva (2008) used a motion
tracking task to investigate participants’ abilities to report
their memory for the mean location of distractors. The
display consisted of eight moving circles, four of which
were designated as targets. The participant’s task was to
track and report the number of instances in which the

targets crossed boundary lines in the display. Following this,
a subset of the distractors was presented in rest at their
final positions from the trial. The participant was asked to
report the center of mass corresponding to the remembered
position of the missing distractors. Participants were as
accurate in this judgment as they were in control trials
in which the same centroid judgment task was applied to
targets. The authors interpreted these results as showing
statistical extraction for items that were unattended. Further
work by Alvarez and colleagues, using similar tasks, has
provided support for this initial conclusion (see, e.g.,
Alvarez & Oliva, 2009).

“Unattended”, of course, is not necessarily equivalent
to “pre-attentive.” Chong and Treisman (2003) provided
evidence of an early, parallel, automatic, and pre-attentive
extraction of central tendency. In their view, the pre-
attentive state involves “distributed” or diffuse attention
Chong & Treisman (2005a, b), a state existing prior to
attentional selection or “focused” attention.1 The extraction
of central tendency, which the authors described as
“automatic”, may be aided by this state.

Participants were shown left/right displays of circles
varying in size according to a fixed distributional form.
Experimental conditions included ensembles of heteroge-
neous size, homogeneous size, and single items (one item on
each side of the display). The authors varied stimulus dura-
tion (from 50 to 1000ms, with no backward mask) as well
as whether the left and right displays were simultaneous or
successively shown, and the ISI between displays in the lat-
ter condition. Participants were asked to report which side
contained a larger mean size (or circle size if there was one
item). Performance was measured in terms of the thresh-
old level of difference in mean size across the left and right
displays necessary to maintain 75% correct performance.

The key finding from the experiments by Chong and
Treisman is that mean discrimination performance for
simultaneous conditions was highly accurate at the earliest,
50ms stimulus duration and accuracy did not change with
duration. An experiment varying the distributional form
from which sizes were sampled as well as the combination
of distributions across the left and right displays showed
only a 2% increase in thresholds for the most dissimilar
distributions. The authors concluded that the results rule
out mental arithmetic and subsampling as alternative
explanations, and concluded that mean representation

1Note that this definition of “pre-attentive,” while consistent with
that of Treisman and Gormican (1988), appears to differ from other
definitions of the term in the literature. For instance, Treisman
(1985) writes “Some discriminations appear to be made automatically,
without attention and spatially in parallel across the visual field. Other
visual operations require focused attention and can be performed only
serially.” See also Treisman et al. (1992).
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occurs automatically and in parallel across the display (see
also Chong and Treisman, 2005a, b, 2008).

In a more recent study, Whiting and Oriet (2011) pointed
out that the arrays used in Chong and Treisman’s work
were unmasked. Using a size averaging task, Whiting and
Oriet found that when the arrays were masked at short
SOAs, performance on the task declined and began to
show dependence on estimates from prior trials. Unlike the
earlier study (Chong & Treisman, 2003), the presence of
a backward mask limited the duration of iconic memory.
Without a mask, information from iconic memory would
continue to persist and be stored in VSTM. Since backward
pattern masking is known to disrupt iconic memory transfer
to STM (the amount of information that can be non-
selectively read out) but has little to no effect on information
already in VSTM storage (Coltheart, 1980; Gegenfurtner &
Sperling, 1993), these results argue against the pre-attentive
view and in favor of one in which averages are computed
on the basis of VSTM contents. Put another way, if in
fact means were extracted directly from the iconic store, a
subsequent mask would have no effect on mean estimates,
all else (e.g. lags) being equal, since the full iconic store
would have contributed to the estimate, not just the few
items surviving the readout process (which is disrupted by
the mask). Our work, reported later, further examines this
hypothesis about the processing locus of averaging.

The results from Chong and Treisman suggest an
early mechanism operating on information in iconic
memory, one which could integrate information within each
display separately to allow a subsequent “differencing” or
discrimination mechanism to compare them. In contrast,
the effect of the SOA when stimuli were masked (Whiting
& Oriet, 2011) is indicative of ensemble computations
on the contents of VSTM, rather than iconic memory.
This suggests a consideration of the rather extensive early
literature on integration and segregation operations on the
contents of sensory memory. We turn to this next.

Integration and segregationmechanisms
in iconic memory

The early notions regarding the aggregation, interaction,
and separation or differentiation of stimuli in time are
the result of decades of earlier research stretching back at
least to Wundt (1900). As discussed in Sperling (1960),
Wundt’s question was whether the true duration of a
sensation or percept (controlling for retinal after-images)
was coterminous with the physical stimulus. Wundt cited
early “two-flash” flicker fusion research conducted by
Weyer (1899) as evidence in favor of persistence of vision
beyond the physical stimulus duration and distinct from
retinal afterimages.

Modern cognitive psychology, starting at least as early
as Sperling (1960), detailed the existence of a second,
informational component. Informational persistence may
be thought of as a non-visual, symbolic or “coded”
representation of the stimuli in an array. Decades of
work establishes this fundamental visible/informational
difference in underlying variables, showing that, unlike in
partial report tasks, tasks (such as temporal integration
tasks) that are believed to rely on visible persistence are
disrupted when the eyes move between frames (Irwin,
1991), that memory for stimulus location decays more
quickly than memory for the identity of the stimulus
(Dick, 1969; Mewhort et al., 1981), and, most strikingly,
that tasks thought to measure visible persistence show
an “inverse duration effect” (persistence decreases with
stimulus duration) while the partial report task does not
(performance increases with duration; Coltheart, 1980;
Sperling, 1967). Hence, visible persistence, along with the
“informational persistence” which partial-report techniques
are intended to measure, is considered today to be one of
two key components of iconic memory (see Colthear 1980
for an early, but comprehensive, review).

Visible persistence research in the 1950s and 1960s
directed a great deal of effort toward the measurement of
a hypothesized basic unit of duration for simple percepts.
This hypothetical unit was referred to as the “perceptual
moment” (Stroud, 1956). A variety of techniques were
adopted, including persistence of form (Haber & Stand-
ing, 1969), temporal numerosity judgments (White, 1963),
judgments of synchrony and duration (Efron, 1970), and
successive-field techniques (Eriksen & Collins, 1967; Hog-
ben & Lollo, 1974). Though many of these studies suffer
from confounds related to possible response criterion arti-
facts (Long, 1980), they nonetheless show a respectable
level of consistency in their estimation of visible per-
sistence’s duration. This value, usually in the range of
80-200ms, is reasonably close to the estimates of “iconic
memory” lifespan derived from the partial-report and delay-
of-masking techniques inspired by Sperling’s work.

Of these tasks, the successive-field procedure is of
particular interest to our current work. The procedure,
pioneered by Eriksen and Collins (1967), involves the
presentation of two stimulus frames in rapid succession
and separated by a blank frame. When superimposed, a
coherent image is produced. By varying the duration of
each frame and the inter-frame interval (IFI, duration of the
blank screen) and measuring performance in detecting the
composite image, one can in principle measure the duration
of perceptual integration windows or “moments.”

In an interesting twist on the original procedure,
Hogben and Lollo (1974) presented participants with frames
containing dots arranged in matrices. Superimposed, the
frames share one empty cell. The participant’s task was
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to report the position of the missing element (circle).
Successful performance in the task therefore requires
integration of the information presented in the two displays.
In line with prior work, Hogben and DiLollo found that
participants’ accuracy in the task was high for short IFIs
and fell off rapidly with increasing IFI. An important result
was that participants reported becoming aware of distinct
percepts around an IFI of 30-50ms. Manipulations of the
number of frames and distribution of IFI levels within
trials led the authors to conclude that two mechanisms
operate within the timescale of iconic memory to i) integrate
information within a brief window of approximately 120ms
and ii) to segregate information falling within adjacent
windows of time.

A recent study by Wutz et al. (2016) used a variant
of the successive field procedure that contained both a
missing element and a split element in which one element
in the display was split across the two frames (shown one
half at a time). On integration trials, participants reported
the location of the missing element, as in Hogben and
Lollo (1974). On segregation trials, participants reported
the location of the split element. In line with much prior
research, they found a clear crossover interaction between
task and IFI: integration performance decreased linearly
with IFI and segregation performance increased with IFI.

Next, we report an experiment using a variation of the
successive-field task, building on the task used by Wutz
and colleagues. Perhaps the most important addition we
make is the addition, on some trials, of a requirement for
participants to report the average orientation of the stimuli
pooled across the two frames. As the trials are identical
across the integration and averaging tasks with the exception
of the judgment required, the design allows us to determine
whether central tendency can be extracted from the iconic
store or instead involves operations on VSTM. We also
investigate whether temporal integration mechanisms may
be involved.

In detail, our design uses an array of 16 items distributed
across two very briefly presented frames. Since this
number is beyond the putative capacity of VSTM (Cowan,
2001) to store, accurate performance on the averaging
task would support an iconic memory contribution. This,
of course, assumes that participants do not engage in
a strategy of “subsampling” the displays (Myczek &
Simons, 2008; De Fockert & Marchant, 2008). So, we
also include a parametric manipulation of within-frame
variance in order to test for subsampling. Due to the rapid
temporal characteristics of the design, intentional/strategic
subsampling would be improbable as saccades during
presentation of the frames produce the perception of a
“blur” of items and there is very limited time to move
visual fixation. If, on the other hand, central tendency
representations are generated from VSTM, a necessary

“subsampling” of items would be expected due to normal
limits on transfer of information to VSTM. Finally, if
iconic contributions operate through temporal integration
mechanisms, we should see parallel decreases in accuracy of
both integration and averaging performance with increases
in the interval between frames.

Methods

Participants

Ten University of South Florida undergraduate students
were recruited from the university subject pool, ranging in
age from 18-22 years old (eight female, mean age = 19
years, SD = 1.34 years.) All had normal or corrected-to-
normal vision. A sample of 20 was originally planned, but
we closed the lab midway through data collection on March
2, 2020 in response to reports of the COVID-19 outbreak.
Subjects completed the experiment in one session and
received course credit as compensation for their time. All
experimental procedures were approved by the University
of South Florida IRB.

Apparatus and stimuli

Stimuli were created using the Matlab Psychophysics
Toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007),
and were presented on a 1920 x 1080 pixel resolution 25”
LCD monitor with a 240 Hz refresh rate. The monitor
was tied to a PC that was custom built to optimize
timing and processing speed, and to minimize lags. The
PC’s frame rate was 125 fps, and was benchmarked in
FRAPS (frame rate benchmarking software; (Beepa, 2013))
during test runs of the experiment to verify observed frame
durations matched those specified in Matlab. Participants
were seated approximately 100 cm from the screen, making
each pixel of the screen approximately 0.02◦ of visual angle.
Responses were recorded via mouse movement and button
clicks that corresponded to the current task.

The stimuli consisted of black annuli (each subtending
0.5◦ of visual angle in diameter) presented within an
invisible 4x4 grid of equally-spaced possible presentation
locations. The invisible grid was positioned centrally on
the screen. There were 3.5◦ of visual angle in horizontal
and vertical size and 0.5◦ of space between grid element
locations, measured center to center.

The 16 possible stimulus locations within the grid were
randomly divided into two frame presentations, split by a
blank frame, each consisting of 8 positions designated to
each frame. Each annulus contained a 45◦ gap in its ring,
and the gaps were presented at either a 0◦, 45◦, 90◦, or 135◦
orientation. All stimuli were presented against a uniform
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gray background, set at 50 percent of the monitor’s RGB
range (i.e. at Weber contrast). While the current stimuli are
not common in psychophysical orientation research, work
in visual acuity has found that contrast acuity for Landolt C
is about double that of sinusoidal gratings and well above
the limit of acuity for the eye (see Bondarko & Danilova,
1997; McAnany & Alexander, 2008), and that orientation
discrimination is relatively high (Harrison & Bex, 2015),
which suggests that these stimuli and arrangement should
be more than optimal for use in the current study.

For the target stimulus of the segregation blocks, one
randomly selected location of the 16 presentation locations
was occupied by an annulus that was bisected into two
halves, dividing the gap in the ring centrally; one piece of
this annulus was presented in the first frame, and one half
was presented in the second frame, such that overlaying the
two halves would create a full annulus object. Identification
of this stimulus from the distractors requires the participant
to represent each frame distinctly within time, and to
identify the odd element.

For the target stimulus of the integration blocks, one
randomly selected position out of the remaining 15 stimulus
presentation grid locations consisted of no annulus on either
frame, and was therefore missing an element in the position.
Identification of this missing element from the distractor
stimuli requires the participant to represent an integrated
percept of both frames to identify the location where no
information was presented on either frame.

Of the 16 possible stimulus locations in the integration
and segregation task blocks, 14 locations consisted of full
annuli (each with a 45◦ gap in the ring), 1 location consisted
of an annulus segmented across the two frames, and one
location where no annulus was presented, equating to 7.5
annuli being presented per frame in these tasks.

In the orientation averaging task, all 16 locations across
both frames (8 locations per frame) were occupied by an
annulus object with a 45◦ gap cut out of the ring. Annuli
in the orientation averaging and integration trials contained
only one 45◦ gap missing from the ring, but within the
segregation blocks a second 45◦ gap 180◦ from the first
was added. This extra gap was added for these trials due
to motion cues of the edges of the ring making the split
element too easy to identify, relative to the distractors. As
compared to more conventional Gabor patch stimuli, this
stimulus design eliminates the ambiguity of the direction of
the orientation versus its 180◦ reflection by having a single
orientation angle denoting gap. Therefore, subjects should
not need to resolve whether the stimuli was oriented at, for
example, 90◦ or 270◦.

To investigate the possibility of sub-sampling strategies,
distributional properties of each frame were independently
manipulated. Table 1 lists the full set of stimulus parameters
to be detailed in this section. Within each block, each

frame was set to one of 4 predetermined levels of variation
in stimulus orientation within the frame (σ 2

c = 0, 0.25,
0.39, 0.46, where σ 2

c denotes the circular variance). The
number of presentations for each of these variance levels
was equivalent within each task and within each frame, and
the order of assignments to a frame was random across
trials. As this random ordering was carried out separately
for each frame, the particular combinations of variances
for frames 1 and 2 were also random (though, again, an
equal number of variance presentations for each variance
was preserved for each frame). Further breakdowns of the
distribution of stimuli parameter permutations is detailed
within the Stimulus Distributions section2 of the Appendix.

Procedure

The procedure is illustrated in Fig. 1. Each stimulus display
was presented centrally. Trials began with a 500ms fixation
cross subtending 1◦ of visual angle in size in the horizontal
and vertical directions. This was followed by a blank screen
whose duration was sampled randomly on each trial from
a uniform distribution with a range between 500ms and
1500ms, in steps of 10ms. Afterwards, the two frames were
presented for 8ms each, divided temporally by a blank
inter-frame interval that ranged in duration between 30ms-
86ms in steps of 8ms. These inter-frame intervals were
presented on equal numbers of trials within each block,
but were presented in a random order. Subjects received a
response screen 500ms after the offset of the second frame,
within which they had unlimited time to respond. Before
beginning the experiment, participants completed sets of
13 practice trials to gain familiarity with each task and to
ensure comprehension of instructions. The first 3 practice
trials were presented with extended frame presentation
durations (200ms each frame) to give the participants a
chance to become familiar with the stimuli and the mode
of their presentation. The following 10 practice trials were
presented with the same frame duration structure as the
actual experimental trials. Participants received feedback
and were monitored by a researcher while completing
these initial tasks to ensure appropriate performance. If a
subject’s performance on the practice trials was too poor
then an additional round of practice trials would have been
performed for said subject, though this was not necessary
for any of the tested subjects.

2It could be argued that the presence of repeated angles in the arrays
leads, functionally, to lower set sizes than the 16 we assume are
subjected to encoding. However, the recent literature on this point
shows that averaging efficiency is comparable for sets containing
repetitions and those that do not, when range confounds are controlled
in the comparison (Marchant et al., 2013; Tiurina & Utochkin, 2014).
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Table 1 Possible stimulus angle configurations for a frame

Angle Sets (in degrees) μc σ 2
c

0 0 0 0 0 0 0 0 0 0

45 45 45 45 45 45 45 45 45 0

90 90 90 90 90 90 90 90 90 0

135 135 135 135 135 135 135 135 135 0

0 0 0 0 45 90 90 90 38 0.25

0 0 0 45 90 90 90 90 52 0.25

45 45 45 45 90 135 135 135 83 0.25

45 45 45 90 135 135 135 135 97 0.25

0 0 0 0 45 45 135 135 35 0.39

0 0 0 45 45 90 135 135 52 0.39

0 0 45 90 90 135 135 135 83 0.39

0 0 90 90 135 135 135 135 100 0.39

0 0 0 0 0 90 135 135 34 0.46

0 0 0 0 90 90 135 135 53 0.46

0 0 45 45 135 135 135 135 82 0.46

0 0 45 135 135 135 135 135 101 0.46

Each row of the table was assigned the same number of times (though in a random order across trials) to the frame in the experimental trials,
and orientations within a given row were randomly assigned to locations within the frame. This logic was followed for each frame, meaning the
specific combination of means (and variances) for frames 1 and 2 were randomly determined on each trial. See Text for further details

Participants completed 4 repetitions of blocks consisting
of each individual task, for a total of 12 blocks in the
experiment. The order of the tasks within each block was
semi-random, with a restriction placed that two of the same
task could not occur in succession. Within each individual
task block, instruction of the current task was given before
the first trial, followed by 60 trials of the instructed task.
After one block of each task was completed, participants
were instructed to take a 2-minute break before beginning
the next set of task blocks. Thus, in total there were 240
experimental trials devoted to each task, and a total of 720
critical trials in the experiment.

Response tasks

There were three tasks, each carried out in separate blocks
of trials, within-subjects: Integration, Segregation, and
Averaging. For each task, participants made the relevant
response via mouse position movement and mouse button
clicking to submit a response. A schematic of the tasks is
shown in Fig. 1. The response screen consisted of a 4x4 grid
of the numbers 1-16 presented in the same locations of the
4x4 grid of possible stimulus positions. The mouse cursor
was analogous in design to a stimulus annulus (black, 0.5◦
visual angle in size, and a 45◦ gap in the perimeter), and
would start at a randomly selected orientation between 0◦
and 180◦, independent of the previously presented stimuli or
correct response. Responses were restricted to the range of
0◦ and 180◦ for the orientation task, as all possible correct

mean values occurred between the endpoints of 0◦ and 180◦.
In the integration and segregation tasks, the cursor was

initialized at a random location within the imaginary 4x4
grid. Participants then moved and clicked the cursor via
the mouse to the number situated in the grid position
that corresponded to the missing or segmented element,
respectively. In the orientation averaging task, the annulus
was fixed to the center of the imaginary grid. Moving the
mouse forward and backwards rotated the annulus, and
participants were instructed to click the mouse when the
probe annulus was oriented to the average orientation of the
16 annuli presented in the preceding 2 stimulus frames.

Results

Integration and segregation tasks

The results of the temporal integration and segregation
tasks are displayed in Fig. 2. A simple linear regression
analysis conducted on the group data in the Figure revealed
that the IFI value accounts for 84.1% of performance
variation within the segregation task (β = 0.0033), and
92.6% of performance variation within the integration task
(β = -0.0066). The same analysis was also applied to each
individual participant’s data. Those results are shown in
Table 2. As can be seen in the Table, although the quality
of the fits is variable, the individual participants are for
the most part consistent with the fits to the group data.
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Fig. 1 Experimental timeline (A) and example stimulus displays for
each task (B,C,D). Each task followed the same timecourse as shown
in (A), with only the goal and response of the subject varying across
tasks. The green and purple colored stimuli in the “Frame 1 + Frame
2” overlay sections of B, C, and D represent the items from frame 1

and frame 2, respectively. The red circles in (B) and (C) represent the
target of the task, to which the participant should move the mouse to
click. The red arrow in (C) represents the rotation of the central probe
for the averaging response

Fig. 2 Performance on the integration and segregation tasks by the
inter-frame interval duration, aggregated across all subjects. The bars
extending from each point represent the point’s 95% confidence
interval, and the probability of guessing is plotted as a black dashed
line. Integration performance is negatively correlated with IFI, whereas
segregation performance is positively correlated with IFI

All participants showed positive slopes in the segregation
condition, and negative slopes in the integration condition,
and the means of those slopes (.0034 and -.0066 for
segregation and integration, respectively) are very similar to
the parameters from the group fits already mentioned.

Table 2 Regression results from fits to individual-participant data
from the Integration and Segregation tasks, and column means

ID Integration Segregation

β0 β1 R2 β0 β1 R2

1 .7138 −.0069 .4672 .7747 .0021 .3311

2 .5638 −.0050 .6409 .6891 .0035 .3934

3 .8558 −.0093 .7813 .6312 .0024 .3207

4 .8199 −.0064 .7149 .5695 .0045 .8490

5 .7969 −.0062 .3756 .4344 .0023 .4999

6 1.2187 −.0064 .8023 .4267 .0008 .0098

7 .6678 −.0038 .3348 .6449 .0033 .6984

8 .9814 −.0088 .7168 .6913 .0032 .5082

9 .9121 −.0057 .5320 .4645 .0052 .7517

10 .8460 −.0079 .8171 .4562 .0062 .6172

Mean .8376 −.0066 .6182 .5782 .0034 .4979
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A two-way repeated measures ANOVA was conducted
to determine the effect of task type and IFI level
on performance (percent correct). The analysis found a
significant interaction between the task and the IFI level,
F(7, 63) = 24.614, p < 0.001, η2p = 0.732), which can be
clearly seen in Fig. 2. Simple main effects analysis showed
that performance on the segregation task was significantly
better than the integration task for the 46ms, 54ms, 62ms,
70ms, 78ms, and 86ms IFI levels (p < 0.05 for each of the
levels), while performance on the 30ms and 38ms levels did
not significantly differ between the tasks (p = 0.519, p =
0.177 respectively).

Comparing these results to those of Wutz et al. (2016
[Figure 1B]), we see that despite very similar design and
task parameters, the crossover point between integration and
segregation performance occurs at a much lower IFI in the
current study (30ms vs.∼60ms inWutz et al.). In pilot work,
we found that segregation performance was affected by the
visual angle subtended by the stimulus display. However,
this did not impact integration or averaging performance,
which showed results similar to those reported here. Most

importantly, however, the basic finding of a tradeoff in task
performance as a function of IFI is very similar to what was
reported byWutz et al. and sensible in light of the prior work
using successive field tasks reviewed earlier.

Having established reliable and robust integration effects
across IFI levels, we now turn to our main question:
Does orientation averaging across the two frames show a
systematic decrease in accuracy as IFI is increased? Such a
pattern would suggest that visible persistence and temporal
integration mechanisms are involved in ensemble coding
within the iconic store. If, however, accurate mean estimates
persist unchanged with IFI, this would leave informational
persistence as the sole mechanism responsible for providing
the raw materials for mean extraction via iconic memory.

Orientation averaging task

The distributions of response errors (participant estimate
- true mean) for each level of IFI, aggregated across
participants, are displayed in Fig. 3. The precision
(1/variance) of the response error distributions will be

Fig. 3 Circular histograms of aggregated participant response errors (estimate - true mean) on the orientation averaging task, by the inter-frame
interval duration. Mean error values closer to zero represent responses that did not differ much from the true circular average of the set of stimulus
angles
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the focus of analysis for the orientation task. Increases
in precision are driven by subjects making judgements of
the average orientation that have a similar degree of error
from the true mean of the stimuli set. If subjects were
unable to complete the task correctly or were guessing
often for responses, the variance would be high and
precision would be low. Although it is clear that there is
an overall positive bias in the error distribution means,
we are uncertain of the origin of this bias. We speculate
it may reflect a motor perseveration error, as counter-
clockwise probe movements corresponded to forward
mouse movement. As the present analysis’s interest is the
subjects’ ability to accurately recreate the central tendency
representation, and not the additive effect of the positive
bias displayed by the error distribution means, the precision
of the error distributions give the greatest amount of
pertinent information. Regardless, a Watson-Williams test
for the equivalence of circular means shows no significant
difference of mean error across IFI levels, F(7, 1792) =
1.88, p = 0.070.

Due to the circular nature of the dependent variable
measure, a Rayleigh Z-test for uniformity was performed
on the error distributions at each level of IFI (Fisher, 1993).
Results for each level are shown in Table 3. They indicate
that the distributions are indeed not uniform. This indicates
that participants were rarely, if ever, guessing the response.
A Bartlett’s test for the equality of variances was conducted
to examine the effect of IFI value on orientation averaging
error variance (Zar, 1999). No significant difference was
found in participants’ error variance for the levels of IFIs,
χ2(7) = 6.992, p = 0.430. These results appear to rule out
temporal integration as a key ensemble coding mechanism
within iconic memory.

Subsampling

Studies of ensemble coding raise the question of whether
participants might use control processes to average a small
sample of items from the full displays. For instance,
Myczek and Simons (2008) demonstrated via simulations
that several of the results reported in the literature, such as
those of Chong & Treisman (2003, 2005a, b) and Ariely
(2001), could be reproduced by sampling only one or two
items. A related paper by De Fockert and Marchant (2008)
demonstrated that if an item in a briefly-displayed ensemble

Table 3 Results of Rayleigh Z-tests of uniformity, at each IFI level

IFI (ms) 30 38 46 54 62 70 78 86

Z 118 127 116 139 124 111 111 125

All p < .01

of circles is cued (via its size or color) for a later judgment
regarding the cued feature (e.g. whether the circle was small
or large), subsequent estimates of the average circle size
are biased in the direction of the cued circle’s size. The
authors point out that the results are equally consistent with
a subsampling strategy as well as with a weighted average,
in which weights might be assigned based on the fidelity
of the cued item’s memory representation (see Tong et al.,
2019, for a similar proposal). Finally, a study by Attarha
et al. (2016), using dynamic dot motion and size techniques
pioneered by Albrecht and Scholl (2010), suggested that a
temporal integration window may produce subsamples that
support averaging.

The initial work by Myczek and Simons prompted
a series of replies. Among these was one from Chong
et al. (2008) that provided new data arguing against
the subsampling position (for recent evidence from CDA
amplitudes supporting Chong and Treisman’s position,
see Baijal et al., 2013). In a response to the various
critiques, Simons and Myczek (2008) pointed out that
their claims only applied to object size. In their view, the
idea that participants extract averages of other features
such as orientation (the one used in the present work) is
“uncontroversial” (p. 1335). Additionally, as pointed out
by Whitney and Leib (2018), a subsampling strategy does
not rule out an averaging mechanism so long as more than
one item is sampled. Finally, the current study uses an
array of 16 items, which is beyond the putative VSTM
capacity limit of 4 items (Cowan, 2001). This means that
if in fact control processes were operating, the contents of
VSTM to which they were directed would have to have been
a subsample. Hence, conclusions about subsampling may
entail conclusions about which memory store is involved
in our task (the first of our two research questions). If
participants are not subsampling, they cannot be deriving
their estimates from VSTM storage.

For these reasons, we included an analysis and manip-
ulation to determine whether samples of one item from
one frame could reproduce our results. To accomplish this,
the variance of the set of stimulus orientations within each
frame was independently fixed to one of 4 levels across trials
(see Apparatus and Stimuli). A strategy of sampling only 1
item leads to a clear set of predictions in this design. First, if
participants always sample from frame 1 or frame 2, then we
should see a main effect of either frame 1 or frame 2. Specif-
ically, for a given frame, errors should increase (precision
decrease) with higher intra-frame variance because the sam-
pled item will in general be further from the overall mean
across frames (see Table 1). Assuming, on the other hand,
that participants switch frames across trials or across sub-
jects, main effects of both frames should be evident. Finally,
if participants sample a small proportion of the items from
only one frame, a distinct trade-off can be predicted.
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To understand this, consider a case where participants
only sample 2-3 items from frame 2. Error will of course
increase with the intra-frame variance (IFV) of frame 2.
However, the random combination of IFV between frames
means that, for the highest level of IFV on frame 2, the
IFV of frame 1 cannot exceed IFV of frame 2 and on
average will be lower than IFV of frame 2. This means
that, if participants subsample from frame 2, the error
conditional on frame 1 should decrease with IFV as the error
conditional on frame 2 increases with IFV. The opposite
pattern (increase with IFV on frame 1 and decrease on frame
2) should occur if participants subsample from frame 1.
These predictions thus offer a clear test of recency-based
sampling and integration processes recently proposed by
Tong et al. (2019) and others. We also verify that these
predictions do in fact follow logically from our design,
using subsampling models.

We first turn to an analysis of the participants’ error
variances, shown in Table 4. Several Rao’s tests for
equality of variation were conducted to determine the effect
of intraframe variance level on participants’ variation in
response error. For frame 1, these results show a significant
effect of IFV on participants’ error variance, H(3) =
8.580, p < 0.05. Pairwise comparisons reveal that this
difference is driven by a peak in error variance at the lowest
IFV level. For frame 2, we once again find a significant
effect of IFV on participants’ error variance, H(3) =
78.718, p < 0.05. The variation in response errors increases
with IFV level, until a plateau at the largest IFV levels.

Together, these results show that participants’ error
variance is systematically increasing with frame 2 IFV, but
not with frame 1 IFV, which actually shows a hint of the
opposite pattern. This crossover pattern in error variation
is what one would expect if subjects were subsampling
primarily from frame 2.

Having established that participants do in fact seem to be
subsampling from frame 2, we turn to simulations in order
to i) verify that our predicted (and observed) trade-off

Table 4 Group-level circular error variances (1/precision) of partici-
pants’ estimates of mean orientation as a function of the intra-frame
orientation variance for frames 1 and 2

σ 2
c

0 .25 .39 .46

Frame 1 .29 .25 .24 .28

Frame 2 .17 .27 .31 .32

The results show a tradeoff in error variance with increases in intra-
frame orientation variance (IFV) of the stimuli. Specifically, errors
show a hint of a decrease with IFV for frame 1 but an increase with
IFV for frame 2. This overall pattern is a distinct prediction following
from subsampling from frame 2

does indeed follow from frame 2 subsampling and ii)
determine how many items are being sampled. A separate
set of simulated responses was constructed by replacing
the subject’s response in the experimental data set with
the average of a subset of randomly sampled angles from
the 16 angles used within the experiment trials. The subset
average became the new response, and the difference of the
simulated response and the true mean of the 16 item angles
became the new response error. This method allows for the
preservation of the distributional properties of the original
data set.

The results are shown in Fig. 4. Since the data are
being described by models with zero free parameters, with
all models assuming perfect estimation responses for the
sampled item(s), all variances of the observed data are
generally underestimated in the models by a constant. Since
the patterns of changes with IFV are what are crucial to
tests of these models, we mean centered the data, and
mean centered the model, separately for each frame before
plotting them.

As is clear in Fig. 4, the 2-item models are superior to the
other models. It should be noted that these models assumed
ideal, noiseless encoding, which provides a particularly
stringent criterion for the models to pass. The good fit to the
data by the 2-item models is therefore doubly impressive.
Comparing these best-fitting models, we find that the
Random 2-Item model and frame 2 2-Item model were
essentially tied. The closest competitor, the 4-Item Random
model, differed greatly in fit. The two worst models were
the 1-item models, both of which produced large negative
R2 values due to the residuals being greater than the
variability of the observed data, calling into question the
wisdom of referring to the statistic 1 − SSR

SST
as a squared

value.
Finally, we note that all frame 1 models departed greatly

from the observed data. These models produced the opposite
of the crossover pattern exhibited by the frame 2 models, as
predicted above, and thus have been omitted from further
discussion.

It is also possible that the subsampling behavior may be
dependent on IFI, such that temporal integrationmaymodulate
the recency effect of frame 2 at the lower IFI levels, and
therefore facilitate random subsampling from both frames.
To analyze this possible strategic modulation, the effect
of each frame’s IFV was further broken down by IFI. As
can be seen in Table 5, subject error variance significantly
increases with increases in IFV of frame 2. This effect holds
at nearly every level of IFI, although the effect is smaller and
non-significant for the two shortest IFIs. This is consistent
with the idea that random 2-item sampling may occur at
the point of maximal integration of frames, while a recency
effect (frame 2 subsampling) emerges as the two frames are
perceptually segregated (Fig. 5).
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Fig. 4 Results of subsampling simulations. All data have been mean-
centered in order to focus on the pattern of changes with Intra-Frame
Variance. The panels show the results from two classes of zero-
parameter subsampling models: Random Sampling from all 16 items
(top row) and random sampling from only frame 2 (bottom row).
Columns correspond to 1-item sampling (column 1), 2-item sampling

(column 2), etc. The results show a distinct advantage for 2-item sub-
sampling. Results for subsampling from frame 1 showed the opposite
of the crossover pattern for the frame 2 model, producing systemati-
cally poor fits to data. Thus they are omitted here. See text for more
details and fit statistics

Table 5 Differences in subject error variation by interframe interval
duration and intraframe variation interactions

Frame1xIFI Frame2xIFI

IFI (ms) H(3) p H(3) p

30 6.187 0.103 1.458 0.692

38 2.380 0.497 7.756 0.051

46 4.404 0.221 17.452 0.001*

54 3.502 0.320 13.004 0.005*

62 3.499 0.321 17.631 0.001*

70 2.150 0.542 14.940 0.002*

78 10.801 0.013* 16.655 0.001*

86 1.927 0.588 21.578 < 0.001*

Frame1xFrame2 Frame2xFrame1

IFV H(3) p H(3) p

0 5.299 0.150 19.726 < 0.001*

0.25 1.696 0.640 23.543 < 0.001*

0.39 1.576 0.663 5.061 < 0.001*

0.46 6.320 0.100 13.793 < 0.001*

Results that are significant at α = 0.05 are demarcated with an
asterisk

The effect in frame 2 also is consistent across the levels
of frame 1 IFV (see column denoted Frame2xFrame1 in the
Table). Effects of frame 1 IFV, on the other hand, are weak
to nonexistent and do not appear to depend in any systematic
way on IFI. For a graphical breakdown of the results shown
in Table 5, see Figs. 6 and 7 of the Appendix.

Altogether, it is apparent that, although a full breakdown
of the design by all three factors produces much more
variable results than the aggregate shown in Fig. 4, they are
generally consistent with subsampling of a small number of
items from frame 2. Further support comes from inspection
of the corresponding, detailed figures in the Appendix,
in which it is clear that the bulk of the data show the
monotonic, negatively accelerated changes unique to the
frame 2 model’s predictions, for both frames with the
direction (increase or decrease) determined by the frame.
Looking specifically at the shortest IFI, the ambiguity
in the empirical results helps to explain the results of
the simulations reported earlier, which also showed some
ambiguity between random and frame 2 subsampling with
2 items. This appears to be due to temporal integration:
participants would not be expected to show a recency effect
when they perceive the frames as simultaneous, and would
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instead be reading out “randomly” with respect to the frame
variable. In short, while precision of mean estimation in this
study was independent of temporal integration performance,
it does appear that there is at least one “indirect” effect of
temporal integration. Specifically, while the mechanisms of
integration do not appear to provide a key mechanism of
central tendency representation, they do appear to alter the
source(s) from which individual items that factor into the
average are read into VSTM from iconic memory.

Another possible model is a deterministic selection
across frames: selecting 1 item from frame 1 and 1 item
from frame 2. We find this unlikely, however, because if
participants were systematically carrying out this strategy,
we should not have found better performance for frame
2 sampling over frame 1 sampling (or, for that matter,
over random sampling, which by definition is a noisy
approximation to perfect, deterministic 2-item sampling
across both frames).

Another question is whether participants would perform
in the same manner if only 2 items were present in the
first or second frame. Although we do not empirically test
whether a frame with only 2 items would produce the same
results as what we observe, the modeling shows that the
observer can in principle do this, and we have no reason to
suspect they would not give the same results as the models
predict. Under our interpretation of the results, the two items
sampled are due to the natural limits on information transfer
from the iconic to VSTM store, so we predict that displaying
only two items would only reduce the ambiguity of which
items are sampled into the VSTM store.

In summary, the data are overwhelmingly inconsistent
with the idea that participants were subsampling a single
item. This means that participants were, in fact, averaging
the orientations. However, the modeling suggests that
only 2 items were sampled, and they were most likely
sampled from frame 2 at all but the two shortest IFIs.
These results help to explain why orientation averaging did
not depend on IFI as the temporal integration task did.
They are also consistent with the fidelity-based integration
framework proposed in recent papers (Dubé, 2019; Tong
et al., 2019). Specifically, recent work by Tong et al. (2019)
has demonstrated that ensemble averaging likely involves
a recency- or fidelity-based weighting strategy in which
the most recently-viewed 2-3 items carry the vast majority
of the weight in the averages provided by participants.
Taken together with these prior findings, our results appear
to argue against the “preattentive/parallel/global” theory
of Treisman and colleagues. Instead, the results appear to
support a process in which informational persistence in the
iconic store leads to non-selective readout into VSTM, with
the averaging operation conducted on the resulting VSTM
contents. We elaborate on this in the General Discussion,
which we turn to next.

General discussion

We set out to determine whether central tendency represen-
tations can be extracted from iconic memory, and whether
temporal integration might contribute to the computation.
Using a successive-field task with missing and split element
reports as well as mean judgments, we found accurate mean
estimation that did not vary with inter-frame intervals, over
a total stimulus duration ranging from 46ms to 106ms. This
held even though the two individual frames containing the
to-be-averaged elements had a duration of only 8ms each,
followed by a probe mask.

The design, in which only the type of judgment varied
across trials, allowed a direct comparison of integration,
segregation, and averaging performance. While mean
estimation remained steady over all IFIs, integration and
segregation performance showed a tradeoff, replicating
the findings of Wutz et al. (2016). Taken together, these
results seem to suggest that at least some central tendency
representations are extracted early, from iconic memory,
and that they do not involve classical temporal integration
mechanisms. However, a closer inspection of the data
suggests a quite different conclusion.

In what follows, we elaborate on the key findings and
conclusions from the study, starting with the conclusion
that averaging operates on an informational, rather than
visible, persistence variable. We note that this opens
the door to VSTM, which operates on informational
quantities, as the processing locus of averaging. We then
discuss evidence from our study and the broader literature
that suggests averages are indeed computed later than
global pooling and pre-attentive theories assume, using the
contents of VSTM rather than iconic memory contents. We
conclude by describing a fidelity-based integration account
in which feature information held in VSTM is integrated
with contributions of individual features to the integration
varying based on the fidelity of their VSTM representations.

Averaging operates on an informational
variable

A key finding in our study is that averaging performance
was unaffected by IFI, though integration and segregation
performance were affected by IFI. The importance of
this particular finding is as follows. As detailed in the
Introduction, iconic memory is believed to comprise two
main classes of mechanisms, those underlying visible
persistence and those underlying informational persistence.
Temporal integration is thought to depend on or measure
visible persistence, rather than informational persistence.
This idea follows from the finding of disruption of temporal
integration when the eyes move during the IFI (Irwin,
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1991). Since averaging did not vary with IFI duration in our
study, but temporal integration did, we can exclude visible
persistence representations as the rawmaterials of averaging
in our task.

This leaves information as the key variable upon which
averages are computed. This is an important point as it
opens the door to the possibility of a contribution from
VSTM, since VSTM depends on output from informational
persistence but not from visible persistence (i.e., STM is
strictly information-limited, not item- or meaning-limited;
Kintsch, 1970).

So, are averages computed using iconic memory contents
or VSTM contents? This question is important as the
answer will help adjudicate between “early” and “late”
accounts of averaging. Having established the informational
nature of averaging in our task, we now can approach
this theoretically-important question of processing loci. At
first glance, the averaging performance in the task is quite
good given the extremely short timings used in this iconic
memory task. This appears to support early, parallel, pre-
attentive, or global pooling accounts of averaging. But on
closer inspection, a computation happening later, on VSTM
contents, seems more likely. Furthermore, the answer to
the question has implications for “subsampling” as well as
“early” and “late” classes of theory. We discuss all of this
next.

Averages are computed “late” and strategic
subsampling is just VSTM readout from
iconic decay

At first glance, our data seem to support theories that
assume early, global pooling or even pre-attentive extraction
of averages. However, we also included a manipulation of
the inter-item similarity or “intra-frame variance” within
each of the two frames. This allowed us to test distinct
(and distinctly differing) predictions of various subsampling
models. We found that the variance (1/precision) of
participants’ estimation error distributions increased with
the IFV of frame 2 and showed some evidence for
the opposite pattern, a decrease with IFV, for frame 1.
This pattern follows directly from an account in which
participants only integrate a few of the most recent items. To
determine the number of items being used, we compared the
results of 12 models varying in which frame or frames were
being used and how many items were being sampled. The
results supported an account in which participants sampled
2 items. The results were ambiguous with respect to whether
the 2 items were sampled randomly or from frame 2.
However, a full breakdown of the empirical data suggested
sampling was more likely from the second stimulus array at
all but the two shortest IFIs.

What conclusions, then, can be drawn with respect to the
mechanisms that are involved in supporting mean estimates?
Our results suggest a process by which informational codes
representing a small number of the most recently-presented
items are non-selectively read out (Averbach & Coriell,
1961) from the iconic store. These codes are transferred to
VSTM storage, and it is at this point and with these raw
materials that the averaging operation begins. In the current
paradigm, we estimate the contents of VSTM as only around
2 items, which may be due to the nature of the rapid
presentation of the stimuli. Given the close link between
attention and VSTM, it is likely that ensemble processing in
this task reflected averaging over attended items that were
available in VSTM. As such, our results are inconsistent
with the “parallel/preattentive” account and other early
accounts of ensemble averaging in which items are globally
pooled and averaged prior to attentional selection (Chong &
Treisman, 2005b; Whitney & Leib, 2018). Instead, they are
broadly consistent with a fidelity-based integration account
in which the strongest VSTM memory traces (which will
tend to be the most recently-encountered ones) are given
priority in the integration or averaging process (Tong et al.,
2019).

However, this state of affairs leaves at least one crucial
question unanswered. Specifically, are the resulting mean
estimates due to control processes or are they due to
an implicit mechanism that acts selectively on STM
contents? To answer this question, let us first consider the
diagnosticity of subsampling behavior for inferring strategic
control. That is, subsampling is often referred to as a
“strategy” (Myczek & Simons, 2008), but the fact that
only a few items contribute to mean estimates does not in
and of itself adjudicate between strategic and non-strategic
accounts. For instance, consider the present results showing
a failure to temporally integrate the items across frames.
Even though participants are perfectly able to integrate the
arrays (see Fig. 2), they do not appear to use this ability
when averaging the stimuli from those same arrays. Instead,
the second frame is prioritized. This suggests that what is
sampled does not reflect visible persistence mechanisms,
but informational persistence mechanisms (Sperling, 1960).
In short, what our study suggests is that the limitations on
iconic readout and duration of informational traces, which
limit the contents of VSTM, are what are producing the
“subsample”.

Statistics from information theory provide further evi-
dence in support of this conclusion about the purported
“strategic” nature of subsampling. Specifically, estimates
of STM encoding rate in adults are typically around 15±3
bits/s (Lehrl & Fischer, 1988; Weiss, 1992). For the sim-
ple, 1-dimensional visual stimuli we use in the present work
and the total presentation times which range from 46 to
106ms, this amounts to approximately 1 bit of information

1349Atten Percept Psychophys (2021) 83:1337–1356



on average. So again we see that with the short presentations
in use (which force a single readout from iconic memory)
we would only expect 2 items to reside in VSTM at the
time of responding on each trial, simply from known lim-
itations on STM encoding. Of course, if the participants’
mean estimates were extracted early, on iconic storage, we
would have expected all of the items to contribute to the par-
ticipants’ responses, as Sperling showed that when iconic
memory is directly probed using the partial report proce-
dure, a much larger proportion of items is available than
one finds in subsequent VSTM storage from one readout.
Hence, the fact that the data show evidence for use of only
2 items is not only an argument against the “strategic” inter-
pretation of subsampling, but it also strengthens the case
against a parallel/preattentive account of our results: we find
evidence that only 2 items are used, which is the predicted
number of items encoded into VSTM. Thus the participants
were likely operating on the basis of VSTM contents, not
iconic memory contents.

But could it simply be that participants use control
processes to modify attention to locations in advance of each
array’s presentation? We find this exceedingly unlikely.
That is, even if we entertain the notion that participants
adopted a strategy of ignoring the first frame prior to each
presentation, it is hard to imagine volitional attention shifts
occurring quickly enough to accommodate the extremely
brief IFIs and 8ms frame durations used in this study.
Finally, even if participants strategically ignored the first
frame, the full set of 8 items in frame 2 would not survive
in memory long enough to support VSTM judgments. A
“subsample” is precisely what one would expect, without
necessitating any strategy at all on the part of the subject, as
well as despite any strategy they may try to use. This more
or less reduces the explanatory value of strategic control to
zero.

In short, subsamples can not by themselves adjudicate
between control processes and mechanistic computations.
In particular, our study suggests the subsamples are not due
to control processes but rather to the normal process of
informational readout, which of course results in VSTM for
only a subset of the presented items (Averbach & Coriell,
1961; Sperling, 1960). The ∼ 15 bits/s encoding rate of
STM predicts that if participants use STM contents in
our design, we will find only 2 items contribute to their
estimates, just as we did. As such, our results question the
“strategic” interpretation of subsampling that is frequently
stated in the literature (Myczek & Simons, 2008; Simons
& Myczek, 2008). Of equal importance, they support the
notion that averages are computed “late”, upon VSTM
contents, rather than upon iconic memory contents. This
view is also consistent with the findings of Whiting
and Oriet (2011) described in the Introduction, in which
imposition of a backward mask (which disrupts readout

from iconic memory but not items already in VSTM storage;
(Gegenfurtner & Sperling, 1993)) reduced performance in a
mean size judgment task. A key prediction of this account,
which should be tested in future work, is whether an
increase from 2 to 4 items is observed when encoding time
in the current paradigm is doubled.

An alternative: fidelity-based integration
in VSTM

Having addressed subsampling and the plausibility of
“early” averaging theories, we now seek an alternative view
that is broadly consistent with our data and prior literature.
An analysis of processing stages may be particularly useful
in accomplishing this, as it has been to memory theorists
in the past (Atkinson & Shiffrin, 1968; Broadbent, 1958).
From the point of view of memory processing stages,
our results suggest that once the (subsample of) item
information surviving the iconic readout and decay process
is transferred to VSTM, the averaging process begins.
The process itself uses a mechanism of integration by
fidelity, which may or may not involve explicit knowledge
on the part of the subjects. Specifically, Tong et al.
(2019) have reported that item contributions to ensemble
averages are prioritized on the basis of their representational
fidelity, with more recently-fixated items enjoying a greater
contribution to the average (i.e. roughly equivalent to use of
a weighted, rather than arithmetic, average; see also Hubert-
Wallander and Boynton, 2015). Using a 2-item Sternberg
task, Dubé (2019) showed that a mathematical model
instantiating a similar assumption was able to outperform
the Generalized Context model in accounting for an implicit
central tendency effect in those data (Nosofsky et al., 2011).
Work using simultaneous tasks, which is ongoing in our
lab, can potentially be explained in the same manner, by
examining eye movement records and distance of individual
items from fixation, and the resulting weight they carry in
model-based estimates of integration performance.

In terms of the mechanism and nature of the represen-
tation itself, a further consideration of the limitations of
integration processes may be informative here. Specifically,
as Irwin (1991) pointed out, temporal integration is hindered
when there is a change in retinal position across the suc-
cessive fields. For this reason, Irwin argued that temporal
integration is not responsible for perceived visual conti-
nuity across fixations. Instead, Irwin’s data suggested an
abstract informational form of integration, likely involving
the construction of an “object file” representation of the sort
described subsequently by Kahneman et al. (1992).

The lack of dependence on integration mechanisms in the
current study suggests that, of the known iconic memory
subcomponents, it is the informational, rather than visible,
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persistence component that provides the raw materials for
the mean computation. If this is true, then a more detailed
model of our results immediately follows: informational
persistence provides abstract codes to VSTM. These codes
are then subject to a central, non-retinotopic integration
mechanism which creates an abstract representation akin to
an “object file”, with items factoring into the computation
according to the fidelity of their memory representations.
The resulting representation is either the central tendency
representation itself or may be a concatenation of feature,
context, item, and statistical information.

Assuming, then, that we pursue this fidelity-based
integration view, we must ask: how does it fare with respect
to the “parallel and preattentive” and global pooling theories
that are so frequently encountered in the ensemble coding
literature?

Fidelity-based integration has the advantage of con-
sistency with the broader literature on ensemble coding.
Specifically, it is clear that participants can produce accu-
rate mean estimates in tasks for which iconic memory is
unlikely to contribute. More specifically, several studies of
mean estimation have included sequential presentation of
the to-be-averaged items using long stimulus durations and
ISIs on the order or seconds (Tong et al., 2019). Some of
these investigations used extremely long lags between the
to-be-averaged items and the probe, in tasks in which par-
ticipants were unaware, prior to the probe, that they would
be asked to generate a mean estimate (Oriet & Hozempa,
2016). The accurate performance of the judgments in these
tasks effectively rules out early, automatic iconic integration
as the only mechanism involved.

Putting this all together, we see that if we accept
the parallel/preattentive model, we are confronted with
two diametrically opposed lines of evidence regarding
ensemble coding mechanisms. On one hand we have
the evidence described in the Introduction supporting
early, automatic extraction from iconic memory without
downstream contributions, and on the other hand we
have the evidence supporting the contribution of control
processes acting on visual short-term memory contents
without a likely contribution from early, iconic memory
processes. This suggests that either a single, supramodal
mechanism makes contact at multiple points along the
processing stream, or that the various mean judgment tasks
are each tapping into one of two different processes (control
processes acting on VSTM contents, and rapid iconic
extraction processes) and only carry a superficial relation in
the form of a shared overt response requirement.

Further difficulties arise if we include within our scope
the large literature, originating before modern studies of
“ensemble coding”, that shows an implicit bias from
ensemble means in judgments that are nominally unrelated
to the statistics of prior or concurrent stimulus features

(Hollingworth, 1910; Dubé, 2019, 2015). One would then
be compelled to add to the collection of mechanisms an
implicit learning mechanism that integrates information
into a central tendency trace. This is the price to be paid
for retaining the automatic/preattentive account: we must
invent a new mechanism for every kind of ensemble coding
task (simultaneous, sequential, iconic, long-term, implicit,
explicit, etc), even though those tasks produce very similar
kinds of responses (mean judgments and item judgments
biased by the mean).

If we instead accept the view suggested by the current
study, it appears possible that all of the findings can be
subsumed under one fidelity-based integration mechanism
(Tong et al., 2019) operating on STM to create an abstract,
central trace for storage in LTM. This is the advantage of
abandoning the automatic/preattentive account.

Our view is of course not the only conceivable
alternative. Recent work by Baek and Chong (2020a, b) has
advanced an elegant distributed attention account that brings
aspects of the “pre-attentive/automatic” model of Chong
and Treisman (2003) into precise quantitative focus. Using
the well-known engineering framework of Lu and Dosher
(1998), the authors instantiated several models varying in
the loci of internal noise and the contributions of two
separate models of attentional selection. Model selection
was then conducted using new data with the 2-frame mean
comparison task as well as some prior data. Of these various
models, a “Zoom Lens” model provided the best account
of the data. For instance, the model correctly predicted
improved performance with increases in set size.3 Since this
model allows attention to spread dynamically over a surface,
the authors concluded that all items contribute equally to
mean computation.

Although Baek and Chong’s model in our view
represents a significant advance over prior work, it does
not provide us with a clear picture from the perspective
of processing stages. Specifically, stages of encoding and
transfer from the sensory store to short-termmemory are not
specified in the model. For this reason, though the model
is helpful in answering some of the important questions
posed by Baek and Chong, it is less helpful in answering the
questions we are asking in the current work. Specifically, we
are asking “what memory system or systems are involved
in averaging.” Since the Zoom Lens model does not clearly
specify an iconic memory system or quantify the read-out
process to VSTM, the Zoom Lens model in its current form

3We suspect that the longer presentation times used in the cited studies
(e.g. Baek and Chong (2020a), which used around 500ms for each of
two arrays) may be an important factor. These timings allow greater
readout to VSTM because multiple passes through iconic storage are
possible (Averbach & Coriell, 1961; Sperling, 1960). Such designs are
therefore ill-suited to address our current goal: to determine whether
averages can be extracted prior to VSTM storage.
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does not appear equipped to answer the questions we are
asking.

Work using the centroid (center of mass) estimation task
provides additional insights relevant to our conclusions.
Specifically, a series of papers by Chubb, Sperling and
colleagues (Drew et al., 2010; Inverso et al., 2016;
Rodriguez-Cintron et al., 2019; Sun et al., 2016a, b, 2018,
e.g.) has investigated the attentional filtering operations
used by participants to locate the centroid of clouds of
briefly-presented dots, with the dots typically varying in
some target feature such as color. Of particular interest
in this series is the recent paper by Sun et al. (2018)
in which the authors provide evidence that centroids may
be computed “preconsciously”. Most of the experiments
involved a 300ms display of 26 colored dots, in which
roughly half of the dots shared the same color (e.g.
red dots) and the remaining dots were heterogenously-
colored (a green dot, a blue dot, etc). Participants were
asked, in separate blocks of trials, to indicate via mouse-
click the centroid location of either the homogenous or
heterogeneous dots (Exp. 1), both centroids, one click at
a time (Exp. 2), or the centroid over all dots (Exp. 3).
Importantly, the dots were randomly, spatially intermingled
on each trial, forcing participants to rapidly segregate the
items by a group feature (similarity or dissimilarity) prior to
computing the centroid.

The results were striking. The authors found that
participants were highly efficient in all of these tasks.
Estimates of efficiency were obtained in a manner similar
to the subsampling simulations we report, and produced
lower bounds on the number of items necessary to reach
human performance. These efficiencies fell in a range
of lower bounds from 8 to 18 items contributing to
participants’ performance, depending on the task. Analysis
of attention operating characteristics showed further that
the requirement in Exp. 3 to carry out two centroid
computations on the same intermingled dot array produced
little to no drop in performance or efficiency estimates.
Post-exposure masking also had little to no effect on the
results. Finally, in a fourth experiment, the authors measured
change detection ability for the dot stimuli by presenting the
arrays twice: Once for 300ms, followed by a pattern mask,
and then again as a probe stimulus. The probe stimulus,
however, had two dots either missing or added, relative
to the first presentation. Change detection accuracy was
reported to be “shockingly poor” and estimates of efficiency
suggested a single dot, at best, contributed to performance.

The results of Sun et al. (2018) do strongly suggest
that centroids of spatial arrays are computed very rapidly,
perhaps “preconsciously” as the authors suggest. This
indicates that our own conclusions from the present work
may not extend beyond the orientation stimuli we have
used, which is a clear limitation of the current work.

However, the existing evidence suggests that the boundaries
of generalizability may be more tightly circumscribing the
centroid task, rather than the orientation task. For instance,
other work by Chubb, Sperling and colleagues has shown
that size averaging shows much lower efficiency than
centroid estimation (Rodriguez-Cintron et al., 2019), and
that centroid estimation performance degenerates if a fea-
ture other than color (i.e. orientation, which we use in our
work) is used as the target-defining feature (Inverso et al.,
2016). Finally, it is worth considering the relation of the cen-
troid task to classic partial report tasks. The latter have
shown that when a letter row or column is cued either in
advance or concurrently with the display onset, attentional
selection can occur (“selective” as opposed to “non-selec-
tive” readout; Averbach & Coriell, 1961). In other words,
attention can filter iconic readout to VSTM. From this
standpoint, the centroid task used by Sun et al. (2018) may
be viewed as a kind of partial-report task with a concurrent
color homogeneity cue, with the task being essentially to
read out the central row and column of an array. From this
point of view, the results may not be as surprising as they
at first appear. To be certain that the task has anything to do
with central tendency representation, for instance, it would
first be necessary to directly compare the centroid task with
reporting of the location of other “quadrants” of the array.
Nonetheless, the results of the centroid studies do suggest
important limitations to our conclusions.

Conclusions

We have found that orientation averaging does not appear
to depend on temporal integration mechanisms, suggesting
informational persistence provides the raw materials of
averaging. Furthermore, simulations and information theory
statistics, along with known properties of VSTM (e.g.
its information-, rather than item- or meaning-, limited
capacity) suggest that our results reflect an averaging
operation conducted on VSTM contents, rather than pre-
attentive, global pooling, or other “early” mechanisms. We
describe a fidelity-based integration theory that appears to
simplify explanation of our findings with respect to the
broader literature on central tendency estimation. We note
that accepting a pre-attentive or early view entails a less
parsimonious explanation of these various findings. The
current state of affairs is diagrammed using the modal
model (Atkinson & Shiffrin, 1968) in Fig. 5, with the
likely routes by which computations may be transferred
highlighted. Specifically, all routes are necessary once an
early, preattentive, or global pooling account is adopted;
only the dotted routes are necessitated under a fidelity-based
account. We hope that work on ensemble coding, which
has yet to provide a comprehensive mathematical theory,
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Fig. 5 The Atkinson-Shiffrin (1968) model. Potential loci of ensemble
code transfer include two routes from iconic storage. Ensemble codes
may also be created via control processes acting on the contents of
visual short-term memory. The existing literature provides support for
some form of computation acting upon or within the iconic store alone,
as well as for control processes acting on visual short-term memory
contents without any direct involvement of the iconic store, as well as
for implicit learning and LTM storage and retrieval of ensemble codes.
We suggest a single, fidelity-based integration mechanism operating
on VSTM contents is simpler. Possible transfer routes for the resulting
codes in this account are shown as dashed lines

will produce further novel insights into the structural loci
and functional forms underlying the creation, maintenance,
and retrieval of ensemble representations such as mean
representation, which we have focused on here.

Open Practices Statement The data and materials for the experiments
reported here are available upon request. None of the experiments were
preregistered.

Appendix: Stimulus distributions

The set of angles that comprised each stimulus frame was
defined by one of 16 unique circular mean and variance
combinations (see Table 1). The mean values for the frames
with σ 2

c = 0, by definition, took the mean value of the
singular shared individual stimulus orientation (0◦, 45◦,
90◦, or 135◦). The mean values that make up each of
the 3 non-zero variance level combinations were kept as
approximately close to one another as possible, such that
they may be considered categorically grouped into 4 levels
of comparable mean values.

As there were four unique approximations of μc for
σ 2

c > 0 this amounts to
(4
2

)
= 6 plus 4 self-pairings for a

total of 10 unique combinations of means (ignoring order)
across frames 1 and 2, for σ 2

c > 0. To this are added the 10
combinations (

(4
2

) = 6, plus 4 self-pairings) for angle sets
with σ 2

c = 0, and 16 more for combinations between the
σ 2

c = 0 and σ 2
c > 0 classes of angle sets. The combination

of means on each trial was thus a random draw from this full
set of 36 unique combinations. However, the probabilities
are biased in favor of the σ 2

c > 0 class of combinations, with
the odds being 9

1 in favor of seeing the σ 2
c > 0 combination

class rather than the σ 2
c = 0 combination class, and 3

1
against the cross-set combination class.

Finally, as noted in Procedure, there was a total of 240
mean estimation trials, and 4 non-contiguous repetitions
of that task block in the experiment. Thus, within a given
mean estimation block, if each mean combination were
represented equally often there would be 7 presentations
of the entire class of 36 unique combinations. However,
because of the repeated set of four approximations to the
mean across the four nonzero variance conditions, the total
number of combinations (including non-unique, repeated
combinations), is 148 (10 for the zero class, 3 presentations
of 16 for the cross-class, and 9 presentations of 10 for the >

0 class).

Intra-frame variance, intra-frame interval,
and frame number

We investigated 12 subsampling models, with zero free
parameters (as described in Subsampling). The models
differed in the number of items that were sampled, crossed
with the sampling pool (all 16 items, frame 1 only, or frame
2 only). We simulated datasets with all possible set sizes,
but found consistently poor performance across all models
for set sizes beyond 4 items subsampled.

As shown earlier in Fig. 4, the 2-item frame 2 model
provided as good a fit as the random 2-item model.
However, the frame 2 model appeared to provide a better
description of the form of the data. That is, the data appeared
to show a negatively-accelerated increase in error variance
as a function of frame 2 IFV, but when plotted against frame
1 IFV the model showed a negatively-accelerated decrease
in error variance while the data suggested a non-monotonic
“U” shape.

In this section, we provide a more detailed look at the
empirical data, which suggest that the frame 2 model was
making the correct prediction for the bulk of the frame 1
data.

Graphical depictions of the interaction between the
interframe interval (IFI), and frame 1 and frame 2 intra-
frame variance (IFV) are included below. The figures
display a great deal of apparent variability in the data;
however, it does appear that reproduction error variance
generally increases with frame 2 IFV and this trend does not
appear to depend systematically on IFI, with the exception
of the shortest IFI of 30ms. Here, there is an increase in error
variance when frame 1 has a high IFV, but no consistent
pattern for Frame 2 with IFV. As described previously, the
most consistent effect is the increase in error variance with
increases in IFV of frame 2, with a recency effect appearing
based on the temporal segregation of the two frames at
post-threshold IFI.
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Intra-Frame Variance of Frame 2 (F2V)
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Fig. 6 Observed reproduction error variance as a function of frame 1
and 2 intra-frame variance (IFV) and duration of the interval between
frames (IFI). The labels “F1VX” refer to frame 1 IFV levels, where X
denotes the level (1 for σ 2

c = 0, 2 for σ 2
c = .25, etc.). The results show

an increase in error variance with the intra-frame variance of frame 2
which does not depend systematically on inter-frame interval. The pat-
terns in error variance with increases in frame 1 intra-frame variance

are less stable or clear. For the IFI = 30ms condition, however, there
is no obvious pattern for frame 2 although a trend is apparent show-
ing higher error at the highest level of intra-frame variance of frame
1. Overall, the results are consistent with the those reported in Fig. 4,
which collapsed over conditions to reduce noise in the data, although
they do suggest that calculation based on readout from frame 1 may be
slightly more likely at the shortest IFI

The trends are broadly consistent with the results of the
simulations from the 2-item frame 2 model. Specifically, it
is clear that the one departure from the model, the apparent
“U” shape across frame 1 IFV (see Fig. 4), is the result of
a single large departure from the general trend, which is the

increase in error for the 30ms IFI condition when frame 1
has a large IFV (IFV = .46).

In short, closer inspection of the data reveals even
stronger support for the 2-item, frame 2 model than was
apparent in the earlier analysis.

Fig. 7 The data from Fig. 6, collapsed over frame 1 (left panel) or frame 2 (right panel). Shortest and longest IFIs are shown with dotted lines.
The data again show that response error increases with frame 2 IFV and shows a slight decrease for frame 1 IFV. The data do not show a clear
pattern at the shortest IFI, however. Across the longer IFIs, there is no apparent change in the observed increases or decreases. In other words,
these results, which aggregate over frame 1 or 2, are nonetheless consistent with those of Fig. 6

1354 Atten Percept Psychophys (2021) 83:1337–1356



References

Albrecht, A. R., & Scholl, B. J. (2010). Perceptually averaging
in a continuous visual world: Extracting statistical summary
representations over time. Psychological Science, 21(4), 560–567.

Alvarez, G. A., & Oliva, A. (2007). The representation of ensemble
visual features outside the focus of attention. Journal of Vision,
7(9), 129–129.

Alvarez, G. A., & Oliva, A. (2008). The representation of simple
ensemble visual features outside the focus of attention. Psycholog-
ical Science, 19(4), 392–398.

Alvarez, G. A., & Oliva, A. (2009). Spatial ensemble statistics are
efficient codes that can be represented with reduced attention.
Proceedings of the National Academy of Sciences, 106(18),
7345–7350.

Ariely, D. (2001). Seeing sets: Representation by statistical properties,
12(2), 157–162. Retrieved from http://pss.sagepub.com/content/
12/2/157.

Atkinson, R., & Shiffrin, R. (1968). Human memory: A proposed
system and its control processes. In Psychology of learning and
motivation (Vol. 2, pp. 89–195). Elsevier.

Attarha, M., Moore, C. M., & Vecera, S. P. (2016). The time–limited
visual statistician. Journal of experimental psychology: Human
Perception and Performance, 42(10), 1497.

Averbach, E., & Coriell, A. S. (1961). Short–term memory in vision.
The Bell System Technical Journal, 40(1), 309–328.

Baek, J., & Chong, S. C. (2020a). Distributed attention model of
perceptual averaging. Attention, Perception, Psychophysics, 82(1),
63–79.

Baek, J., & Chong, S. C. (2020b). Ensemble perception and focused
attention: Two different modes of visual processing to cope with
limited capacity. Psychonomic Bulletin Review, 1–5.

Baijal, S., Nakatani, C., Leeuwen, C., & van Srinivasan, N. (2013).
Processing statistics: An examination of focused and distributed
attention using event related potentials. Vision Research, 85,
20–25.

Beepa (2013). FRAPS [Computer Software] Version 3.5.99. Beepa Pty
Ltd. Retrieved from https://fraps.com/.

Bondarko, V. M., & Danilova, M. V. (1997). What spatial frequency
do we use to detect the orientation of a landolt c? Vision Research,
37(15), 2153–2156.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial vision,
10(4), 433–436.

Broadbent, D. (1958). Perception and communication. Elmsford:
Pergamon Press.

Chong, S. C., & Treisman, A. (2003). Representation of statistical
properties. Vision Research, 43(4), 393–404.

Chong, S. C., & Treisman, A. (2005a). Attentional spread in the
statistical processing of visual displays. Perception Psychophysics,
67(1), 1–13.

Chong, S. C., & Treisman, A. (2005b). Statistical processing:
Computing the average size in perceptual groups. Vision Research,
45(7), 891–900.

Chong, S. C., Joo, S. J., Emmmanouil, T.-A., & Treisman, A. (2008).
Statistical processing: Not so implausible after all. Perception
Psychophysics, 70(7), 1327–1334.

Coltheart, M. (1980). Iconic memory and visible persistence.
Perception Psychophysics, 27(3), 183–228.

Cowan, N. (2001). The magical number 4 in short–term memory:
A reconsideration of mental storage capacity, 24(1), 87–114;
discussion 114–185.

De Fockert, J. W., & Marchant, A. P. (2008). Attention modulates set
representation by statistical properties. Perception Psychophysics,
70(5), 789–794.

Dick, A. (1969). Relations between the sensory register and short–term
storage in tachistoscopic recognition. Journal of Experimental
Psychology, 82(2), 279.

Drew, S. A., Chubb, C. F., & Sperling, G. (2010). Precise attention
filters for weber contrast derived from centroid estimations.
Journal of vision, 10(10), 20–20.
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