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Abstract

Attentional control is a key component of goal-directed behavior. Modulation of this control in response to the statistics of the
environment allows for flexible processing or suppression of relevant and irrelevant items in the environment. Modulation occurs
robustly in compatibility-based attentional tasks, where incompatibility-related slowing is reduced when incompatible events are
likely (i.e., the proportion compatibility effect; PCE). The PCE implicates dynamic changes in the measured compatibility effects
that are central to fields of study such as attention, executive functions, and cognitive control. In these fields, stability in
compatibility effects are generally assumed, which may be problematic if individual or group differences in measured compat-
ibility effects may arise from differences in statistical learning speed or magnitude. Further, the sequential nature of many studies
may lead the learning of certain statistics to be inadvertently applied to future behaviors. Here, we report tests of learning the PCE
across conditions of task statistics and sequential blocks. We then test for the influence of feedback on the development of the
PCE. We find clear evidence for the PCE, but no conclusive evidence for its slow development through experience. Initial
experience with more incompatible trials selectively mitigated performance decreases in a subsequent block. Despite the lack of
behavioral changes associated with patterns of learning, systematic within-task changes in compatibility effects remain an
important possible source of variation in a wide range of attention research.

Keywords Cognitive and attentional control - Attention in learning - Attention: Selective

Introduction

In a seminal paper, B. A. Ericksen and Ericksen (1974) dem-
onstrated the flexibility and ubiquity of response competition
as a window into visual attention. Critically, the tasks that
were developed in this vein of research frequently necessitated
that participants learn arbitrary stimulus—response mappings
(e.g., an S stimulus associated with a right index finger button
press). Accordingly, the associated response competition ef-
fects that were of primary importance as dependent variables
in these tasks were likewise necessarily the products of learn-
ing. Indeed, participants did not enter tasks utilizing arbitrary
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stimulus—response mappings already having reaction times
that were slower when a particular button needed to be pressed
in the context of a particular stimulus, as compared with when
the same button needed to be pressed in the context of some
other stimulus. Instead, these patterns had to emerge as the
participants internalized the relationship between the various
stimuli and button presses (i.e., response competition). An
additional dimension of task demands must be learned as well.
Even in contexts wherein prepotent stimulus—response map-
pings exist (e.g., pressing a right arrow key when a right-
pointing arrow is displayed on a screen), participants must
learn through experience the statistical distributions of the
stimuli and associated responses.

This perspective aligns with the overarching idea that
the behavioral markers of attentional phenomena often
require certain types of experience to be manifested.
This is true, for instance, of the proportion compatibility
effect (PCE), which is observed when participants expe-
rience unequal numbers of trials that include compatible
(response-congruent) or incompatible (response-
incongruent) distractors. More specifically, in the PCE,
experimental conditions that involve more frequent re-
sponse competition (i.e., a greater amount or degree of
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incompatible responses between targets and distractors)
are associated with a reduction in response time (RT)
differences due to compatibility effects (Braem et al.,
2019; Gratton, Coles, & Donchin, 1992; Logan &
Zbrodoff, 1979).

Several potential sources of this pattern have been pro-
posed. One possibility is that repeated experiences with re-
sponse conflict causes an augmentation of attentional control
(Bugg & Crump, 2012; Gratton et al., 1992; Lehle &
Hiibner, 2008). This increase in attentional control would
decrease the influence of interfering distractors and in turn
produce a convergence in reaction times for compatible and
incompatible trials. In the limit, if there was a perfect atten-
tional filtering process, and thus no processing of interfering
distractors, RTs should be the same regardless of whether the
distractors were response-compatible or response-
incompatible (i.e., it would be as if the distractors were
“not there”). A second set of proposals has characterized
the PCE as arising from an interaction between task difficul-
ty and low-level learning processes (Abrahamse, Braem,
Notebaert, & Verguts, 2016; Schmidt, 2016). Broadly, ac-
cording to one version of this perspective, more-frequent
experiences (i.e., incompatible or compatible trials) are
learned most and thus experience a disproportionate de-
crease in RT. However, the underlying difficulty of incom-
patible trials nevertheless causes RTs for these trials to re-
main higher than compatible trials, regardless of experience.
This theory therefore also predicts a convergence in compat-
ible and incompatible RTs when incompatible trials are fre-
quent. Finally, a third possible explanation for the PCE notes
that while experience with multiple trials is clearly necessary
to observe the PCE, this experience does not necessarily
need to be on a time scale over which the statistics of the
task could be adapted to or learned. Instead, short-range trial-
to-trial interactions could cause brief variations in behavior
that compound to demonstrate the PCE (e.g., the congruency
sequence effect; Gratton et al., 1992). Importantly, though,
short-term effects such as priming are not exclusive of
longer-term learning or cognitive control modulation in re-
sponse to task statistics, and in practice the mechanisms are
likely to interact (Davelaar & Stevens, 2009).

While the models above were primarily developed to cap-
ture PCE effects that emerged within a short time scale (e.g.,
within a block of trials or even within pairs of trials), another
implication of a learning-centered perspective on the PCE is
the possibility of even longer-term dependencies. One such
possibility is that earlier experience with an attentionally de-
manding task may implicitly teach certain patterns of atten-
tional modulation, rapid inference regarding stimuli and their
statistical characteristics, expectations regarding motor re-
sponses, or other context-bound information relevant to suc-
cessful task performance (Schmidt & Weissman, 2014).
Longer-term dependencies may not be constrained to just
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stimulus—response mappings or short-term attentional modu-
lations; future learning may itself be altered by the previous
learning environment (Kattner, Cochrane, Cox, Gorman, &
Green, 2017). That is, initial task experience may implicitly
teach participants something about the global context which
has longer-term effects on response times for compatible or
incompatible trials.

Consistent with these ideas, block-to-block carryover ef-
fects have been observed in PCE. For example, using a
Stroop task, Abrahamse, Duthoo, Notebaert, and Risko
(2013) found that majority-compatible blocks were associated
with much larger compatibility effects when they were the
first block experienced than when preceded by a majority-
incompatible block. Meanwhile, the magnitude of compatibil-
ity effects in majority-incompatible blocks was similar regard-
less of prior experience. Abrahamse et al. (2013) attributed
these asymmetrical shifts between low-to-high versus high-
to-low proportions of compatible experiences to attentional
modulation that unfolded over the course of hundreds of trials.
Specifically, when participants’ first experience was with a
majority-incompatible block, this resulted in a change of at-
tentional focus that not only reduced the magnitude of the
compatibility effect within that block (i.e., as would be seen
in the typical PCE), but that persisted into the next block
(thereby reducing the magnitude of the compatibility effect
in that next block as well). Critically, under certain conditions,
it was posited that performance shifted too slowly to be cap-
tured within their experimental time scale (i.e., the 240 or 288
trials that were utilized). Furthermore, averaging across all
RTs within experimental blocks precluded inferences regard-
ing within-block change. These methods and interpretations
stand in contrast with the possibility that statistical learning
and attentional modulations may occur very rapidly (e.g.,
trial-to-trial changes in compatibility effects; Braem et al.,
2019; Gratton et al., 1992). Only by measuring change on
shorter time scales could the possibility of rapid adaptation
and learning be tested.

Importantly, the need to consider the possibility of time-
evolving processes in tasks where response competition effects
are the primary dependent variables of interest reaches far be-
yond theoretical questions regarding statistical learning or ad-
aptation of attention. Response competition measures have
been utilized in studies ranging from individual differences in
cortical anatomy (Westlye, Grydeland, Walhovd, & Fjell,
2011) to cognitive training (Rueda, Rothbart, McCandliss,
Saccomanno, & Posner, 2005) and the effects of psychoactive
substances (Bailey et al., 2016), and similar measures are cen-
tral to influential theories of attentional networks (Fan,
McCandliss, Sommer, Raz, & Posner, 2002; Petersen &
Posner, 2012; Posner & Petersen, 1990) and executive func-
tions (Diamond, 2013; Miyake, 2000). In each of these do-
mains, aggregate measures of response competition have been
used as an index of the effectiveness of low-level control and
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selection processes, yet the extent to which these processes are
being contextually adapted is rarely explicitly examined.

There are several possible, but not well-examined, impli-
cations of the PCE for these broader research domains that
make use of response competition measures. As noted above,
the PCE is a context-dependent change in response competi-
tion measures (i.e., the PCE must necessarily unfold over time
as an interaction between person and environment because
statistical differences in the number of compatible versus in-
compatible trials only emerge through time). It is unclear,
though, the extent to which between-participant variation in
response competition, which is of interest to many areas of
cognitive psychology, arises due to between-participant dif-
ferences in (1) stable trait-like abilities or (2) magnitude or rate
of adaptation to a given context. Further, attentional modula-
tions and statistical learning may influence participants on
time scales reaching beyond single blocks of trials, leading
to complex sequential effects in the measurement of response
competition. Specifically, cognitive theories and empirical re-
sults interpreting flanker-task response competition as a static
quantity may instead be inadvertently observing and
interpreting varying rates of change through time.

One complication in linking the broader literature that
has made use of response competition measures to PCE
research is that one core aspect of the task design—the
presence or absence of feedback—tends to differ across
these domains. Indeed, many research domains have
employed task versions that do not include explicit
feedback (B. A. Eriksen & Eriksen, 1974; Fan et al.,
2002; Miyake, 2000). In many cases, whether implicitly
or explicitly, this methodological decision may arise
from the assumption that behavior is more stable in
the absence of additional signals from the environment
(i.e., it could reduce the extent to which participants
learn via simple experience with the task itself). In con-
trast, PCE effects have most commonly been observed
in situations where participants are provided with infor-
mative feedback (i.e., regarding response time, accuracy,
or both; Gratton et al., 1992; Schmidt & Weissman,
2014; Wenke, De Houwer, De Winne, & Liefooghe,
2015). Even when comparing explicit instruction-based
learning to lower-level statistical learning, Wenke et al.
(2015) included feedback in all experimental conditions.
While PCE effects have been occasionally reported in
the absence of explicit feedback (e.g., Logan &
Zbrodoff, 1979), a time-evolving account of these atten-
tional modulations has not been investigated.

Interactions between feedback and learning or adap-
tation in the PCE may have one of several conse-
quences. Depending on the role of feedback regarding
response times in attentional modulations, feedback may
either increase learning and thus differences between
conditions (i.e., by strengthening the signals participants

use to alter their performance; Seitz & Dinse, 2007) or
decrease learning (and differences between conditions;
i.e., by providing an alternative stimulus, other than
the target, that decreases the influences of response
compatibility stimuli on attentional allocation). As such,
independent tests of learning may provide clarity regard-
ing the role of feedback in enhancing or inhibiting
adaptive attentional modulations.

Here, we examined several issues regarding the possible
time-evolving nature of flanker effects and the PCE. First,
because arrow-based flanker tasks are very common in the
broader literature on attentional control (Bailey et al., 2016;
Davelaar & Stevens, 2009; Fan et al., 2002; Rueda et al.,
2005; Sidarus, Palminteri, & Chambon, 2019), while PCE
effects have typically been primarily investigated in Stroop-
like or Simon-like tasks, we first further confirmed that the
canonical PCE was observed in participants’ initial block of
an arrow-flanker task (with different participants receiving
20%, 50%, or 80% of compatible trials in this first block).
Tasks utilizing arrows are an interesting testbed in this case
as the stimulus-response mappings are likely largely already
in place when individuals come to the lab (i.e., the mapping
between a leftward facing arrow and the left arrow key on a
keyboard is likely very natural for young adults in the United
States), leaving the biased task statistics (more or less
compatible/incompatible distractor trials) the main to-be-
learned aspect of the task.

Second, by modeling RT change as a function of
time, we examined whether we could find explicit evi-
dence of the PCE emerging within this first block of
trials. Then, by having participants complete a second
block of the flanker task with a different proportion of
compatible trials than they had experienced during their
first block, we assessed whether, after controlling for
the second block’s proportion compatible, the change
in RTs evident in the second block is systematically
related to the first block’s proportion compatible (i.e.,
whether there is carryover). Such a manipulation ex-
tends the work of Abrahamse et al. (2013), by examin-
ing the possibility of block-to-block carryover at a much
finer time scale (as well as in a different task; arrow-
based flanker as opposed to Stroop). In this vein, we
also examined the extent to which purely local (i.e.,
trial-to-trial) interactions, rather than long-range (i.e.,
over the course of full blocks of trials) could explain
the RT differences. Finally, given that the PCE is inher-
ently a manifestation of experience, and that the
presence/absence of feedback is likely to modulate the
impact of long-term experience (e.g., learning), in
Experiment 1 we investigated the issues above in the
context of the methodological approach (no feedback)
that is perhaps more common in broader attention and
cognition research. In Experiment 2 we then included
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feedback into our design to more closely align with
typical studies of the PCE.

Overarching methodological approach
across Experiments 1 and 2

Overview of procedures and sample

Participants (Experiment 1: n = 54; Experiment 2: n = 60;
gender: 60.8% female; race: 21.6% Asian; 62.2% White;
16.2% other or multiple) were recruited from an introduction
to psychology participant pool and given course credit for
their participation. All participants provided informed con-
sent, and all procedures were approved by the University of
Wisconsin—-Madison Institutional Review Board.

Details of task

Participants completed two blocks of an arrow-flanker task
(B. A. Eriksen & Eriksen, 1974; Fan et al., 2002; Rueda
et al., 2005). Each block consisted of 400 trials in which each
trial could be compatible (i.e., target facing the same direction
as flankers) or incompatible (i.e., target facing the opposite
direction as flankers; see Fig. S1 in the Supplementary
Information). Each block included one of three possible
predetermined ratios of compatible to incompatible trials:
20-80, 50-50, or 80-20. Participants were pseudorandomly
assigned to conditions such that each participant completed
blocks containing two different compatibility proportions.
The flanker task was run in Python using the PsychoPy
library on a 22-inch Dell monitor in a dimly lit room.
Participants sat approximately 60 cm from the monitor.
Stimuli consisted of arrows overlaid on cartoon fish
(Cochrane, Simmering, & Green, 2019; Rueda et al., 2005)
1.5 degrees of visual angle wide and placed with centers 1.65
degrees apart (i.e., .15 degrees separating stimuli). The center
fish was always presented at the center of the screen. Each
block included stimuli of a single randomly chosen color of
light purple, green, or orange (see Supplemental Information
for stimuli). A 100-millisecond centrally located cross cue was
first presented, after which there was a blank screen for a
random time between 100 and 300 milliseconds prior to stim-
ulus onset. Responses were recorded on a standard keyboard
by pressing the arrow key corresponding to the target stimulus
(i.e., left or right). After response, an 850-ms delay occurred.

Analyses
Incorrect trials were first excluded (5.22% across all partici-
pants). Because error rates were very low, no analysis of errors

was conducted. Trials with RT over 1.5 seconds (0.46%) or
below .2 seconds (0.58%) were then excluded. Where
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appropriate, we used linear mixed-effects models, with
participant-level random intercepts, using the R package
Ime4 (Bates, Machler, Bolker, & Walker, 2015, p. 4) with
degrees-of-freedom approximation using the package pbkrtest
(Halekoh & Hgjsgaard, 2014). Proportion compatible was
treated as a three-level categorical variable, allowing for
asymmetric effects of proportions above or below 50%. In
tests of the overall PCE, the reference proportion was set to
be the 20% condition to simplify our confirmation of the
monotonically increasing flanker effect with increasing pro-
portion of compatible flankers. In all other tests, the reference
proportion was set to be the 50% condition, providing for a
clear interpretation of possible asymmetric effects. Mixed-
effects model coefficients therefore indicated the magnitude
of the RT differences between levels of the predictors. We
reported overall PCE results as interactions between current-
trial block proportion compatible. When testing changes in the
flanker effect we first averaged, the RT for each participant’s
compatible and incompatible trials separately for the first 50
trials and last 50 trials of each block. This provided us with
eight mean RTs per participant for subsequent analyses.
Change in mean RT was next calculated for each participant’s
blocks by subtracting compatible trials from incompatible tri-
als (i.e., flanker effect) and subtracting the final-50-trial flank-
er effect from the first-50-trial flanker effect. Results report
differences in these change scores.

Experiment 1 results
Was the canonical PCE observed?

The PCE is typically observed as an increase in the magnitude
of the flanker effect in conditions with more compatible trials
(or likewise, a decrease in flanker effect in conditions with
more incompatible trials). We first tested for this pattern
across all data to provide estimates averaging over proportions
compatible and block number. We fit a linear mixed-effects
model predicting RT with main effects and the interaction of

Table 1 Entire-block proportion flanker effect on compatible and
incompatible trials
Estimate (s) SE T
Intercept 0.439 0.010 44.095
50% compat —0.012 0.003 —4.161
80%_compat —0.012 0.003 —4.070
IsIncompatible 0.040 0.003 15.269
50% 0.008 0.004 2.344
compat:IsIncompatible
80% 0.018 0.004 4.828

compat:IsIncompatible
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trial incompatibility and proportion compatible in a block,
using 20% compatible as a reference, while controlling for
the random effect of participant-level mean RT (see
Table 1). The predicted PCE would manifest as positive coef-
ficients for the interaction between trial type and higher pro-
portions compatible (i.e., larger incompatibility effects), with
possible faster RT on compatible trials taking the form of
negative main effect coefficients for higher proportions
compatible.

Consistent with the PCE, on average, relative to a block
with 20%-compatible trials, blocks with more compatible tri-
als had reliably lower compatible-trial RTs, by around .012 s,
and similar incompatible-trial RTs, (and thus a larger flanker
effect in the form of reliable interactions; see Fig. 1). In ex-
amining the fit model coefficients, the effect on compatible
trials appeared to have saturated by 50% compatible, while the
effect on incompatible trials continued to increase through
80% compatible.

Does the flanker effect reliably change over the
course of participants’ first 400 trials?

As noted in the Introduction, when stimulus—response pairs are
arbitrary (e.g., if the two possible targets are a square and a
diamond, indicated by pressing the “Z” or the “M” buttons on
the keyboard), the flanker effect would seemingly require some
degree of learning (i.e., to learn that some stimulus—response
pairs are “incompatible” requires an understanding of the task).
Yet, in the case of an arrow-based task with natural key

mappings, it is less clear whether task-based experience is nec-
essary to observe the flanker effect. Indeed, university students
presumably enter such a task with a great deal of experience,
with the idea of left/right arrows as incongruent/opposite one
another. Furthermore, as noted in the introduction, the method-
ological approach used in Experiment 1 (utilizing no feedback)
is often employed with the goal of eliminating, or at least re-
ducing, change through time (e.g., learning has the potential to
be particularly problematic in research that makes use of the
same task across multiple time points).

Despite these caveats, to examine whether we could
detect systematic change over the course of participants’
first 400 trials, we tested change in incompatible and
compatible RTs using a linear mixed-effects model,
predicting change in RT with a fixed effect of trial com-
patibility and a random intercept for each participant. In
this model, participants’ flanker effect within their first
block did change reliably. However, interestingly, this
change was not in the direction that would be expected
from a canonical learning effect (e.g., where RTs become
faster through time and flanker effects decrease). Instead,
the flanker effect reliably increased by .016s rather than
decreased through time (b = 0.016, T = 2.283, p = .027).
When analyzed separately, reliable change was evident in
both incompatible trials (b = 0.05, T = 4.02, p < .001)
and compatible trials (b = 0.034, T = 3.16, p = .003),
with the increase in flanker effect noted above being
indicative of the further significant increase in incompat-
ible RT relative to compatible RT. Therefore, the results
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Between—subject means and bootstrapped 95% CI
Column headers indicate the current block's proportion of compatible flankers.

Fig. 1 Block 1 RT in the absence of feedback, separated by the first 50
and last 50 trials. Column headers indicate current block’s proportion
compatible. Several outcomes are evident in this plot. First, the
expected PCE is seen (i.e., the difference between RTs for compatible
and incompatible trials is smaller in the 20%-compatible condition as

compared with the 80%-compatible condition). Second, RTs through
time generally increase (i.e., the difference between RTs during the first
50 trials and the last 50 trials). Between-subjects means and 95% CI are
indicated. See Fig. S2 in the Supplementary Information for full pattern of
results across both blocks and experiments
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were inconsistent with the proposition that flanker effects
are stable through a block when highly familiar stimuli
(arrows) are utilized without feedback. While we ob-
served reliable changes in the flanker effect in partici-
pants’ first 400 trials, these changes were also not in
the direction that would be expected from task learning
(i.e., becoming faster through time), nor were the flanker
effects clearly optimized over the course of the blocks
through statistical learning and adapted attentional con-
trol (i.e., smaller flanker effects).

Does compatibility proportion influence within-block
changes in response time?

In our first two analyses, we observed canonical PCE effects
in participants’ initial block, with a concurrent increase in RT
and flanker effect across that block. One reason for these pat-
terns may have been that the proportion of compatible trials
differentially affected the change in RT that occurs through
time (e.g., differential increases in RT leading to selectively
larger flanker effects in certain conditions). As such, we next
tested whether differences in RT changes through a block, as a
function of the proportion compatibility in the block, ex-
plained the overall PCE. We fit a linear mixed-effects model
predicting each participant’s change in RT from the first 50 to
the last 50 trials with the main effects of trial compatibility and
block proportion compatible as well as their interaction. The
model also included participant-level random effect inter-
cepts. There were no reliable influences of a high or low pro-
portion of compatible trials, compared to 50% compatible, on
the change in flanker effect (both |T| < 0.62), incompatible
trials (both |T| < 0.69), or compatible trials (both [T| < 0.6).
Despite the clear overall differences between blocks with dif-
ferent proportion of compatible trials (see Fig. 1), this effect
was not explained by comparisons between the flanker effects
in the first 50 trials and last 50 trials. Instead, measured in this
way, the change in flanker effect through time between con-
ditions was indistinguishable. Given that the PCE must arise
in response to experience with the task (i.e., statistical learn-
ing), the present analysis suggests that the changes in RT
associated with the PCE likely occur quickly (e.g., within
the first 50 trials; see Finer Time Scales section below; cf.
Abrahamse et al., 2013).

Does previous experience with one block of the task
affect subsequent within-block change in flanker
effect?

In previous work, Abrahamse et al. (2013) observed asymmet-
ric carryover effects in the PCE using a Stroop task. To assess
whether we also observed similar carryover effects in an
arrow-flanker type task, we examined whether, when com-
pared with first blocks with the same compatibility proportion,

@ Springer

RT changes in subsequent blocks of trials are influenced by
prior task experience. Figure 2 shows the distributions of these
second-block RTs separated by participants’ first blocks. We
predicted that prior experience with a high-compatibility
block would mean that participants would begin their second
block with a relatively large flanker effect, thereby leading to a
disproportionate decrease in flanker effect across the second
block. The opposite pattern was predicted for blocks follow-
ing the low-compatibility first blocks.

We fit a linear mixed-effects model to change in flanker
effect (i.e., mean of flanker effect on last 50 trials minus mean
of flanker effect on first 50 trials) with fixed effects of previous
block compatibility and current block compatibility while in-
cluding by-subject random intercept (see Table 2). The signif-
icant Intercept term in this model indicates an overall increase
in flanker effect over the course of a first block of flanker trials
in blocks with equal numbers of compatible and incompatible
trials. The same pattern is very similar in first blocks with 20%
compatible, but is nonsignificantly attenuated in first blocks
with 80% compatible. Further, the reliable increase in flanker
effect evident in the Infercept effect is significantly attenuated
and fully reversed, when a second block is preceded by a first
block with many incompatible trials.

To clarify these effects, we separately examined within-
block changes in incompatible trials and compatible trials
while controlling for the current block’s compatibility propor-
tion (see Tables 3 and 4). The comparison of interest for these
changes in RT for incompatible or compatible trials was
whether the change is different after certain types of blocks,
as opposed to participants’ first block. That is, the Intercept
parameter indicates first-block change in RT (controlling for
compatibility proportion).

While an increase in incompatible-trial RT was reliable for
the first block Intercept, the associated change of incompatible
RT in the second block was attenuated only when the first
block included relatively few (50% or 20%) compatible trials.

While an increase in compatible-trial RT was reliable for
the first block intercept, the associated change of compatible
RT in the second block was significantly attenuated only
when the first block included an intermediate number (50%)
of compatible trials. This coefficient for this intermediate
block was numerically more like the low-compatibility first
block than the high-compatibility first block.

Experiment 1 discussion

Experiment 1 tested for the presence of learning giving rise to
the PCE in initial and subsequent blocks of an arrow-flanker
task in the absence of feedback. First, consistent with previous
work, in Experiment 1 we found evidence for a PCE. The
magnitude of the flanker effect was smaller in blocks with
larger numbers of incompatible trials. Second, while we ob-
served that the final magnitude of the flanker effect did emerge
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Fig. 2 Block 2 RT in the absence of feedback, separated by the first 50
and last 50 trials. As with participants’ first blocks, RT increases in
several cases. When the first block had 20%-compatible trials, second
block was more likely to show a pattern of converging compatible and

through time, the direction of this change through time was
not consistent with a learning effect. Instead, within the first
block there was a tendency toward ever slower RTs—with
this effect being magnified in incompatible trials.
Furthermore, we found that this drift toward slower RTs was
similar across percent compatible conditions, and thus differ-
ences in a slow drift in RTs across conditions did not appear to
explain the PCE. Finally, we found reliable differences in RT
change in participants’ second blocks as a function of their
experiences in their first blocks. Specifically, while there was
an overall pattern of incompatible RTs increasing over the
course of participants’ blocks, more previous experience with
incompatible trials led to a subsequent attenuation of within-
block RT change in the second block. This, in turn, led to the

Table2 Linear mixed-effects model predicting change in flanker effect
for feedback-absent participants, accounting for subject-level intercepts

incompatible RT. Column headers indicate current block’s proportion
compatible; x-axes indicate prior block’s proportion compatible.
Between-subjects means and 95% CI are indicated

overall within-block increases in flanker effect being signifi-
cantly reversed in blocks following a 20%-compatible block.
More previous experience with incompatible trials also led to
an attenuation of the within-block increase in compatible-trial
RT, but this effect was strongest for participants who complet-
ed 50%-compatible blocks first.

Experiment 2 results

While Experiment 1 replicated several of the core findings in
the PCE literature, the overall pattern of increasing RTs was
inconsistent with the changes in behavior that usually come

Table3 Linear mixed-effects model predicting change in incompatible-
trial RT, accounting for subject-level intercepts

Estimate (s) SE T P Estimate (s) SE T P
Intercept 0.022 0.011 2.104 .038 Intercept 0.054 0.016 3.467 .001
previous_ —0.046 0.017 —2.778 .007 previous_ —0.068 0.024 —2.786 .007
20% 20%
previous_ —0.008 0.015 —0.523 .603 previous_ —0.047 0.022 —2.109 .038
50% 50%
previous_ —0.021 0.017 —1.203 234 previous_ —0.024 0.025 —0.951 346
80% 80%
20%_Compat —0.003 0.015 —0.181 .858 20%_Compat —0.007 0.021 —0.323 749
80%_Compat —0.021 0.015 —1.415 163 80%_Compat —0.006 0.021 —0.290 774

Note. Intercept indicates change in flanker observed on first block on
blocks with equal numbers of compatible and incompatible trials

Note. Fewer compatible trials in the first block systematically led to a
smaller increase in incompatible-trial RT in the second block
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Table 4  Linear mixed-effects model predicting change in compatible-
trial RT, accounting for subject-level intercepts

Table 5  Entire-block proportion flanker effect on compatible and
incompatible trials

Estimate (s) SE T p Estimate (s) SE T

Intercept 0.032 0.013 2377 .020 Intercept 0.380 0.005 76.484
previous_ —0.022 0.021 —1.042 303 50%_compat —-0.009 0.002 —4.692

20% 80% compat -0.015 0.002 ~8.450
o~ 0039 0.019 2050 04 (gincompatible 0.035 0002 20917
previous_ -0.003 0.021 -0.153 879  50%_ 0.005 0.002 2450

80% compat:IsIncompatible
20%_Compat -0.004 0.018 -0.233 817 80%_ 0.020 0.002 8.008
80% Compat 0.014 0018 0.790 435 compat:Isincompatible

with experience (Newell & Rosenbloom, 1981; Schmidt,
2016; Wenke et al., 2015). That is, while participants clearly
were adjusting their behavior in the task through time, these
adjustments did not manifest as a decrease in RT (i.e., as might
be expected from learning). More importantly for the present
work, compatibility effects likewise increased. One possible
reason for the failure to observe a decrease in RTs, and in the
compatibility effect, through time may be a lack of feedback
helping participants to modulate their behaviors. In
Experiment 2, we thus implemented the same methods as in
Experiment 1, with the exception that we provided partici-
pants with both response time and accuracy feedback. After
each trial, participants saw a screen with their response time
on the previous trial. The text was colored red if the response
was incorrect or reaction times were slow (longer than 500
ms). Otherwise, the text was blue. This feedback was present-
ed for the first 750 ms of the total §50-ms intertrial interval
(see Methods). Such by-trial informative feedback is typical of
PCE experiments (e.g., Gratton et al., 1992; Lehle & Hiibner,
2008), and the inclusion of feedback thus better situates the
current work into the broader field of PCE research.

Was the canonical PCE observed?

As with Experiment 1, we first tested for the overall expected
positive interaction between trial compatibility and proportion
compatible, across blocks and proportions congruent and ac-
counting for participant-level random-effect intercepts. This
predicted PCE should manifest as positive coefficients for
the interaction between trial type (i.e., incompatible RT) and
higher proportions compatible, possibly accompanied by neg-
ative coefficients associated with higher proportions compat-
ible (i.e., faster compatible RT). When compared with a block
with 20%-compatible trials, increasing the proportion of com-
patible trials reliably decreased RT on compatible trials while
increasing RT on incompatible trials (see Table 5). This led to
the PCE, an increase in the flanker effect in conditions with a
larger proportion of compatible trials. Thus, at this broad level
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of analysis we replicated the results of Experiment 1. Unlike
Experiment 1, though, the magnitude of both effects contin-
ued to increase from 50% compatible (.005 s) to 80% com-
patible (.020 s; see “Comparison of Experiments 1 and 2” for
more explicit cross-experiment comparisons).

Does the flanker effect reliably change over the
course of participants’ first 400 trials?

In Experiment 1, we observed a reliable change in both RT
and the flanker effect within the first 400 trials. However, the
direction of this change was such that participants got progres-
sively slower throughout the block (disproportionately so for
incompatible trials, leading to an increased compatibility ef-
fect). We surmised that this may have been due to the lack of
explicit trial-by-trial feedback. We thus predicted that the in-
troduction of feedback would, at a minimum, eliminate the
drift toward slower RTs throughout the first block. We addi-
tionally expected a decrease in RT for both compatible and
incompatible trials in the first block, independently of propor-
tion compatible (as would be expected by learning). Further,
disproportionate learning on incompatible trials should lead to
a reduction in flanker effects from the beginning to the end of
the block. We tested for these overall effects using a linear
mixed-effects model predicting change in RT in participants’
first blocks with the fixed effect of trial type while controlling
for participant-level intercepts.

Participants exhibited no change in flanker effect in their
first block (b = —0.001, T = —0.157, p = .875). There was
likewise no overall reliable change in either incompatible tri-
als (b =-0.009, T =—0.44, p = .658) or compatible trials (b =
—0.009, T =—0.51, p = .614). Thus, while the increases in RT
we observed in Experiment 1 were no longer evident in the
presence of feedback, participants in Experiment 2 did not
demonstrate learning (i.e., reduction of RT; for explicit com-
parisons between experiments see “Comparison of
Experiments 1 and 2”).
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Do block compatibility proportions influence changes
in response time?

One possible reason for a lack of overall change in RT in the
first block may be that certain combinations of compatibility
proportions are more conducive to learning than are others.
Specifically, the overall PCE led us to predict that smaller
proportions of compatible trials may be more associated with
decreases in RT and flanker effect. This would be evident in
conditions with fewer compatible trials having reliably larger
decreases (i.e., more negative coefficients) in RT and flanker
effect from the beginning of blocks to the end. In participants’
first blocks, there was no reliable influence of high or low
proportions compatible trials, compared to 50% compatible,
on the change in flanker effect (both |T| < 0.39), incompatible
trials (both |T| < 0.98), or compatible trials (both |T| < 0.89).
While the numerical patterns of RT increases and decreases
appeared consistent with our predictions (see Fig. 3), these
between-group differences in RT change did not lead to sta-
tistically reliable differences when 80%-compatible or 20%-
compatible blocks were compared to 50%-compatible blocks.
As with Experiment 1, we found reliable between-condition
PCE when testing all trials, but our analyses of the first and
last 50 trials” RT were insensitive to changes in flanker effect
giving rise to the PCE (see Finer Time Scales section for
further tests of these changes).

Does previous experience with a task alter within-
block change in flanker effect?

Despite the lack of evident learning when comparing the first 50
and last 50 trials of participants’ first blocks, it remains possible
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~o~ First_50_trials
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|
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0.36

First_50_trials Last_50_trials First_50_trials Last_50_trials First_50_trials Last_50_trials

Between—subject means and bootstrapped 95% C1
Column headers indicate the current block’s proportion of compatible flankers.

Fig. 3 Block 1 RT in the presence of feedback, separated by the first 50
and last 50 trials. Unlike in Experiment 1, there is no overall trend toward
slower RT on later trials. Because changes for compatible trials were
similar to changes for incompatible trials within blocks of the same
proportion compatible, there was no reliable change in flanker effect.
Column headers indicate current block’s proportion compatible.
Between-subjects means and 95% CI are indicated

that task learning may have carried over and interacted with
performance on the second block. Specifically, if first-block
learning-induced initial compatibility-effect changes in subse-
quent blocks, this may have provided exaggerated or depressed
development of the PCE in the second blocks (see Fig. 4).

We tested for the effects of prior compatibility experience
by predicting the change in flanker effect (i.e., mean on last 50
trials minus mean on first 50 trials) with blocks’ proportion
compatible and the previous proportion compatible (i.e.,
none/Intercept if predicted data were from the first block, or
the first block’s proportion of the predicted data were from the
second block.

Changes in flanker effect were not reliable. We did not find
any systematic differences in changes in flanker effect due to
prior experience or due to current proportion compatible (each
controlling for the other). Next, we separately tested for
within-block changes in incompatible trials and compatible
trials while controlling for the current block’s compatibility
proportion. Note the negative Intercept coefficients, indicating
a trend toward overall improvements during the first block
(see Fig. 3).

Neither compatible nor incompatible RT demonstrated
change that was reliably affected by current or previous pro-
portion compatible trials. The patterns of RT increase or de-
crease, although not statistically reliable, can also be observed
in Fig. 4.

Experiment 2 discussion

Experiment 2 tested for learning-related changes in the PCE in
two blocks of an arrow-flanker task feedback when feedback
was provided. First, as with Experiment 1, in Experiment 2 we
replicated the canonical PCE effect when implementing the
flanker effect with feedback. Yet while the magnitude of
flanker effect was different when comparing blocks with dif-
ferent task statistics, our measurements of change were insen-
sitive to any within-block changes in RT (i.e., comparing the
means of the first vs. last 50 trials). This stands in contrast to
Experiment 1 wherein we found systematic increases in RT
alongside the overall PCE (see the next section, “Comparison
of Experiments 1 and 2”). Experiment 2 instead provided
evidence for relatively stable response time distributions for
both compatible and incompatible trials when participants
were provided with feedback. The fact that the PCE was ob-
served both in an experiment (Experiment 1) where overall
RTs were drifting upward across a block and also where over-
all RTs were reasonably stable across a block (Experiment 2)
means that it remains unclear how condition-level differences
in the PCE arise through time. After direct comparisons of
Experiments 1 and 2, we explore several analyses that are
more sensitive to changes in RT on time scales that the previ-
ous analyses may not have been able to capture.
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Fig. 4 Block 2 RT in the presence of feedback, separated by the first 50
and last 50 trials. There was no reliable trend of learning (i.e., decreasing
RT) observed. Column headers indicate current block’s proportion

Comparison of Experiments 1 and 2

We next included both experiments in combined models. The
first, testing for PCE across all trials (i.e., combining the anal-
yses of Tables 1 and 5), showed the PCE in the form of reli-
able differences between 20%-compatible flanker effects and
both the 50%-compatible and 80%-compatible flanker effects
(both |T| > 3.4). However, there was no interaction with feed-
back condition (both |T| < 0.8), indicating overall similar PCE
regardless of the presence or absence of feedback.

We next specifically tested for differences between the
changes in PCE in the presence or absence of feedback. As
in the analyses reported in Tables 2 and 6, we test the possible
feedback-related divergences in beginning-to-ending changes
in the PCE (see Table 9 and Supplemental Information
Fig. S3). Feedback was centered (i.e., feedback-absent =
—.5, feedback-present = .5). We found no reliable effects (all

Table 6 Linear mixed-effects model predicting change in flanker effect
for feedback-present participants, accounting for subject-level intercepts

compatible; x-axes indicate prior block’s proportion compatible.
Between-subjects means and 95% CI are indicated

interactions with feedback |T| < 1.25). In contrast, in a model
predicting changes in RT separated by trial type, only the main
effect of feedback was reliable (b = —0.043, T = -2.39, p =
.022; see Table S1 in the Supplementary Information). That is,
changes in response times were reliably more positive by
.043 s in the absence of feedback than in the presence of
feedback on the baseline (first) blocks, and this effect did
not reliably interact with trial compatibility or current propor-
tion compatible. There were likewise no reliable differences
between this first-block effect and any second blocks (i.e.,
influence of previous proportion compatible did not interact
with feedback in any second-, third-, or fourth-order interac-
tions (Tables 7 and 8)).

The differences between feedback conditions reported
above appears largely to be due to increases in RT within
the first blocks of participants in the feedback-absent condi-
tion (see Figs. S2-S3 in the Supplementary Information).

Table 7 Linear mixed-effects model using prior task compatibility
proportions to predict change in incompatible-trial RT, accounting for
subject-level intercepts

Estimate (s) SE T p
Intercept 0.005 0.009 0.578 .566
previous —-0.001 0.012 -0.114 910
20%
previous 0.005 0.012 0.435 .666
50%
previous 0.003 0.012 0.208 .836
80%
20% Compat -0.014 0.011 -1.277 208
80%_Compat —-0.003 0.011 -0.275 786

Note. Intercept indicates change in flanker observed on first block
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Estimate (s) SE T p
Intercept —-0.009 0.014 —0.608 547
previous_ 0.017 0.019 0.913 367
20%
previous_ 0.032 0.020 1.620 11
50%
previous_ 0.033 0.020 1.682 .098
80%
20%_Compat —0.022 0.018 -1.256 216
80%_Compat 0.014 0.018 0.808 426
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Table 8 Linear mixed-effects model using prior task compatibility
proportion to predict change in compatible-trial RT, accounting for
subject-level intercepts

Estimate (s) SE T p
Intercept —-0.015 0.013 -1.132 262
previous 0.020 0.018 1.126 265
20%
previous 0.025 0.018 1.386 171
50%
previous_ 0.031 0.018 1.734 .088
80%
20%_Compat —0.006 0.016 —0.342 735
80%_Compat 0.017 0.016 1.042 304

Given no learning-based account of diminishing performance
with time (i.e., increased overall RT), we find it more likely
that vigilance was more difficult for participants to maintain in
the absence of feedback (Langner & Eickhoff, 2013).
Learning effects in overall RT may have been generally absent
due to the simple nature of the tasks and the prepotent re-
sponses associated with arrows. We note, however, that our
investigation of possible modulations of the PCE are not nec-
essarily contingent of specific directional changes in RTs of
certain conditions or trial types (e.g., decreases in the compat-
ibility effects could occur through relative slowing of compat-
ible trials or through relative speeding of incompatible trials).
As such, the reliable feedback-related difference in overall
changes in RT is not directly informative to these questions
of PCE. In contrast, there was a reliable change in compati-
bility effect in the absence of feedback (see Intercept term of
Table 2) and a lack of reliable change in compatibility effect in
the absence of feedback (see Intercept term of Table 6). This
difference between conditions was not reliable, however (see
Table 9).

Evaluating how the PCE emerges
over the course of experimental blocks
on finer time scales

In two experiments, we found robust evidence for the influ-
ence of compatibility proportion on overall response times,
with less evidence for systematic within-block changes in re-
sponse times. This is counterintuitive because such an effect
seemingly must be a function of time. In other words, partic-
ipants do not have prior knowledge of the upcoming task
statistics, so their response on the very first trial of a block
cannot be impacted by the distribution of trials to come. Thus,
at a minimum, the effects must evolve after the very first trial.
Yet, despite prior research indicating the continuation of this
development over the course of hundreds of trials (Abrahamse
et al., 2013), our comparisons of blocks’ first 50 trials to the

last 50 trials were insensitive to the development of the PCE.
Furthermore, the presence of the PCE both in Experiment 1,
where within blocks we observed overall slow increases in
RT, and Experiment 2, where no such changes were observed,
suggests the need to look at other time scales. Given this, we
conducted a set of analyses using more time-sensitive mea-
sures of the development of the PCE. We first iteratively test-
ed the trial number on which the flanker effect differs by
proportion compatible when predicting RTs. Due to the noise
inherent in this analysis, we next used a parametric model of
RT change (i.e., assuming monotonic change) in similar anal-
yses. Last, we tested whether our results were accounted for
by contingencies on a trial-to-trial time scale.

To examine RTs at a finer time scale, we first iterative-
ly fit mixed-effects models predicting raw RTs on the first
trial, second trial, and so on. These models included fixed
effects of current block proportion compatible, current
trial proportion compatible, and the interaction between
these two. The models also controlled for previous block
proportion compatible and participant-level intercepts.
Low-compatibility blocks had flanker effects that di-
verged from the high-compatibility block quickly, with
the flanker effect appearing different by block type (i.e.,
interaction between block compatibility and trial compat-
ibility; T > 2) by trial 13 in Experiment 1 and trial 22 in
Experiment 2 (see Fig. 5). This is consistent with the idea
that these effects appear quite quickly in a block. Yet we
note that these estimates also appear to be heavily influ-
enced by sampling noise. The reported test would likely
have a false positive rate of .05, leading to approximately
1 out of 20 tests appearing reliable by chance. We note
here that we did not correct for multiple comparisons be-
cause this set of models was not intended as a statistical
test per se, but rather intended to demonstrate the trials on
which conditions would be interpreted as diverging if on-
ly that data were taken into account (and by our best
estimates, this divergence occurs very quickly in the ex-
periment). If standard multiple comparison corrections
were applied, no trial-wise comparison would remain sig-
nificant (i.e., there is a high likelihood of false positives
across this set of models).

To mitigate noise in this analysis, we conducted the same
iterative tests on nonlinear model predictions of the flanker
effect. We first fit a maximum likelihood exponential learning
model to each participant’s flanker effect for each block using
the R package TEfits (Cochrane, 2020), producing by-trial
estimates of the flanker effect for each participant and block
(see Supplementary Information for model details). As with
the analyses above treating each trial as independent, trial-
level estimates of participants’ performance were noisy, but
averaged model estimates across participants demonstrate a
smooth continuous development of the PCE over time. The
trend in the PCE, however, appears to be an increase over time
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Table9  Linear mixed-effects model using prior task compatibility proportion to predict change in flanker effects on RT, accounting for subject-level

intercepts
Estimate (s) SE T p
Intercept 0.006 0.008 0.804 422
prevTask0.2_com —0.007 0.014 —0.484 .629
prevTask0.5_com —0.008 0.014 —0.530 .597
prevTask0.8_com 0.004 0.014 0.289 772
propConFactor0.2 0.002 0.012 0.184 .853
propConFactor0.8 0.002 0.012 0.151 .879
feedback —0.013 0.016 —0.820 412
prevTask0.5 com:propConFactor(.2 0.003 0.02 0.134 .895
prevTask0.8 com:propConFactor(.2 —0.024 0.021 —1.130 26
prevTask0.2 com:propConFactor(0.8 —0.038 0.021 -1.797 .074
prevTask0.2 com:feedback 0.033 0.028 1.206 229
prevTask0.5 com:feedback 0.026 0.029 0.908 365
prevTask0.8 com:feedback 0.013 0.028 0.456 .649
propConFactor(0.2:feedback -0.017 0.023 —0.704 482
propConFactor0.8:feedback 0.005 0.024 0.209 .834
prevTask0.5 —0.016 0.04 —0.400 .689
com:propConFactor(.2:feedback
prevTask0.8 0.021 0.043 0.491 624
com:propConFactor(.2:feedback
prevTask0.2_ 0.036 0.042 0.852 395

com:propConFactor0.8:feedback

in the presence of feedback and a slight decrease in the ab-
sence of feedback (after an initial increase). This indicates that
feedback may enhance, or at least encourage the maintenance
of, learned patterns of attentional allocation giving rise to the
PCE. These differences do not appear to vary in their time
course of onset.

We used these model estimates in an analysis using the
same iterative by-trial models described above, and again we
found differential flanker effects emerging very quickly in
both experiments (in this analysis, before Trial #4; see

Fig. 5). Thus, in analysis of raw data as well as data fit with
learning models, these time scales are clearly shorter than
what is necessary to effectively learn from task compatibility
proportion (i.e., there is little possibility of learning that a
block has 80%-compatible trials in only four total trials).
Further, when testing for differences between the parameters
themselves of the nonlinear models (i.e., starting flanker ef-
fect, rate of change, or asymptotic flanker effect), no reliable
effects were evident of current or previous proportions com-
patible. This indicates that, like aggregating over the first and

A.RawRT

B. Nonlinear model fit to change in RT
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Fig.5 Time course of change in flanker effect between low-compatibility
and high-compatibility conditions over the first 100 trials, as tested by
linear mixed-effects models fit to each of the first 100 trial numbers. a
When testing differences in raw RT, differences are noisy between high-
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compatibility and low-compatibility blocks. b When testing differences in
RT fit by nonlinear regression, the rapid differences between conditions
are clearer
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last 50 trials, by-trial learning models reported here are unable
to fully capture the time scale of change associated with the
PCE.

As noted in the Introduction, another possible root of the
block-wise PCE is not necessarily based upon learning per se,
but simple trial-to-trial contingencies in behavior. For exam-
ple, flanker effects may be smaller after incompatible trials
(Braem et al., 2019; Davelaar & Stevens, 2009; Gratton
et al., 1992, cf. Duthoo, Abrahamse, Braem, Boehler, &
Notebaert, 2014). The PCE would then emerge because there
are simply more incompatible trials in some blocks. Using
linear mixed-effects models to test the interaction between
current and previous-trial compatibility, we found that this
effect does exist overall in both feedback-absent (b
—0.011, T = —3.96) and feedback-present conditions (b
—0.009, T =-5.21).

Interestingly though, the links between these rapid trial-
wise changes in behavior and longer within-block or cross-
block effects remained unclear. For instance, in mixed-effects
models for each experiment’s first block predicting RT with
previous trial’s compatibility, current trial’s compatibility,
overall proportion compatible, and second-order interactions
between current trial compatibility and the other predictors,
the interactions between block proportion compatible and cur-
rent trial compatibility generally remained reliable even when
controlling for the other effects (with 50% compatible as a
reference; without-feedback 20% T = —1.25, 80% T = 2.56;
with-feedback 20% T = —3.2, 80% T = 3.1). These results
show that decreased (20%-compatible blocks) or increased
(80%-compatible blocks) flanker effects, when compared to
the 50%-compatible block, are not fully accounted for by trial-
to-trial contingencies. Thus, while RTs are reliably influenced
by the previous trial’s compatibility, the PCE was still evident
in our data when controlling for this short-term effect.

General discussion

Here, we tested the time course of adaptation of attentional
control to task statistics. Following Eriksen (C. W. Eriksen,
1995), our findings broadly support a view of visual selective
attention as rapidly contextually modulated via scaling inhibi-
tion. First, we replicated the canonical proportional compati-
bility effect (PCE) across two experiments using an arrow-
flanker task, the first without feedback and the second with
feedback. In each experiment, RTs on incompatible trials
tended to be slower in blocks with fewer incompatible trials.
There was a corresponding effect on compatible trials, where-
in RTs were longer in blocks with fewer compatible trials.
However, some patterns diverged when examining the
temporal dynamics of performance in these two experiments.
In Experiment 1, which did not include explicit performance
feedback, participants’ RTs reliably increased over the course

of the first block of trials. This increase runs contrary both to
the prediction of a low-level learning model (i.e., where RTs
should generally decrease with experience with a task), as well
as one of the primary justifications for omitting feedback in
the broader attention and cognition literature (i.e., that omit-
ting feedback would produce more stable behavior). More
relevant to compatibility effects and the PCE, theories of
learning and adaptive control that address the PCE each pre-
dict optimization of performance in the form of reduced re-
sponse times (Braem et al., 2019). In contrast to these perspec-
tives, our results showed that participants’ first feedback-
absent blocks were associated with significant increases in
incompatible-trial RT and in compatible-trial RT, leading to
a significant increase in flanker effect over time. When feed-
back was present, no changes in RT or flanker effect were
reliably evident when comparing the first 50 trials to the last
50. In direct comparisons of the two experiments, however,
only the overall RT changes were reliably influenced by the
presence of feedback, with the changes of flanker effect lack-
ing any reliable difference between the two experiments. The
drift toward slower RTs in the absence of feedback could be
caused by a number of mechanisms, including issues related
to sustained attention, fatigue, or an attempt to find a stable
compromise between speed and accuracy—as any of these
could be countered by trial-by-trial feedback, as in
Experiment 2. While the extent to which such drifts toward
slower RTs are seen in the literature (where typical analysis
approaches average over all trials within a block and thus
would not detect such a drift) may be of interest, for the per-
spective of this current work, it is more relevant to consider
the fact that the key measures of interest in the task (PCE,
flanker compatibility effect) are observed in two situations
where the global pattern of results are quite different from
one another (i.e., Experiment 1, where global RTs become
slower through time; Experiment 2, where global RTs are
reasonably stable through time).

Further, in Experiment 1, patterns of RT change in sequen-
tial blocks showed that experience with more incompatible
trials in an initial block led to a reliable attenuation of
flanker-effect increase in subsequent blocks. That is, when
participants completed an initial block with only 20%-com-
patible trials, their second block’s flanker effect was likely to
decrease over time rather than increase. This effect was largely
due to RTs in incompatible trials; within-block increases in
incompatible-trial RTs were significantly attenuated when
blocks were preceded by 20% or 50% compatible blocks.
The magnitude of this attenuation was approximately linear
across 20%, 50%, and 80% compatible blocks. Compatible-
trial attenuation of RT increase follows a different and
nonmonotonic pattern in which only the effect of being pre-
ceded by a 50%-compatible block is significant.

In all, the results of Experiment 1 indicate global (i.e.,
above and beyond local statistics) learning from experience
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with incompatible trials such that second blocks’ incompatible
trials are improved with, but not without, majority-
incompatible initial blocks. This learning cannot be wholly
explained by carryover from Block 1 to Block 2—if second
blocks simply demonstrated initially lowered RT for incom-
patible trials due to previous experience with many incompat-
ible trials, RT would not be expected to decrease even further
within these second blocks. In other words, second-block de-
creases in incompatible RT seem to attenuate the PCE rather
than being a result of the PCE. However, each of these inter-
pretations is clouded by the overall increases in compatibility
effects observed in Experiment 1. In RT measures, learning is
typically considered to be manifested in the form of decreased
RT. There is no necessity in this relationship, though, and it is
clearly possible that any task may be associated with learning,
which does not influence the measured behavior (i.e., mea-
surements may be inadequate indicators of internal states). By
testing sequential learning, we were able to observe learning
effects that were not evident in within-block measures.

Despite replicating the canonical PCE effect, the patterns of
change in Experiment 1 were unexpected, given standard the-
ories of learning (i.e., increasing overall RTs, with a dispro-
portionate increase in incompatible trials resulting in increas-
ing flanker effects). As such, despite observing results that
would be considered consistent with the PCE, it may be pos-
sible that our pattern of results in Experiment 1 arose from
processes of change that are not typical of PCE results. One
reason for the differences may have been that Experiment 1,
unlike most PCE research, involved the use of flanker tasks
without feedback. PCE is most often studied in Simon-like or
Stroop-like tasks (e.g., Hutchison, 2011; Spinelli et al., 2019;
Wiihr, Duthoo, & Notebaert, 2015) and/or using feedback
(e.g., Lehle & Hiibner, 2008; Wendt, Kluwe, & Vietze,
2008). It is possible that the error signals regarding incorrect
or slow trials, whether explicit or self-monitoring, that partic-
ipants receive in a no-feedback flanker task are weaker than
the more commonly studied paradigms and are therefore un-
able to drive learning in the form of overall decreases in RT. In
this context, error would be any noncompliance with the in-
structions to complete the task quickly and accurately. The
mechanism by which the error signal would act (e.g.,
narrowed scope of attention, increased engagement) is not
specifically of interest here. Instead, we simply wanted to
align Experiment 2 with a set of theories that assumes that
participants receive strong feedback signals. To investigate
the possibility that increased error signal would lead to more
canonical patterns of RT change over time, we tested the sen-
sitivity of the observed learning to the inclusion of by-trial
feedback.

In Experiment 2 we found that, unlike in Experiment 1, RT
on compatible trials as well as RT on incompatible trials de-
creased over the course of each block, although neither of
these effects was statistically reliable. Compatible RT
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decreased more than incompatible RT, leading to a
nonreliable increase in flanker effect. Apart from the overall
PCE, no statistically reliable effects were observed in any of
the Experiment 2 data. This lack of reliable effects is remark-
able, given the robustness of the PCE; proportion-flanker ef-
fects must necessarily develop over time with accumulated
experience with task statistics, yet the measures used here
are insensitive to these changes. We next used by-trial nonlin-
ear regressions of the flanker effect fit to each block of each
participant. In comparing the coefficients and predictions from
these models, we still found no reliable condition differences
in changes over the course of blocks. This indicates that the
evident change in RT distributions must have occurred rapidly
enough that even by-trial learning models are unable to effec-
tively capture the change. The PCE remains reliable even
when controlling for adjacent-trial effects, however, indicat-
ing that the PCE we observed has a source above and beyond
single-trial fluctuations. Unlike previous reports demonstrat-
ing carryover of attentional changes between adjacent blocks
of a response competition task (Abrahamse et al., 2013), we
found inconsistent evidence for persistent changes on the time
scale of blocks (i.e., hundreds of trials). Instead, the mecha-
nisms of attentional modulation were likely to be occurring on
short time scales that did not lead to consistent cross-block
influences.

Many of the results reported here have been null effects
which preclude strong inferences. Statistical evidence for the
null hypotheses tended to be strong (i.e., Bayes factors, ap-
proximated using Bayesian information criterion (BIC) com-
parisons, with over 10 times as much evidence for the null
hypothesis than the alternative hypothesis; Wagenmakers,
2007). Nonetheless, a lack of a clear interpretation of null
effects remains due to underspecified causes for a lack of
difference between beginning and ending PCE (e.g.,
adjacent-trial effects do not explain our results).

While the bias in task statistics (i.e., that there are more
compatible trials or more incompatible trials in a given block)
can necessarily only emerge through time, our by-trial learn-
ing models indicated that the PCE appears to emerge very
early. While such a result obviously does not rule out
longer-term phenomena, it does provide support for theories
that have suggested a driving role for more short-range effects
(e.g., at the level of trial-to-trial effects). Indeed, our results do
suggest that such short-range effects cannot explain the entire-
ty of the PCE (i.e., that there is variance explained by task
statistics that is uncaptured by such short-range effects). To
better differentiate possible processes (e.g., longer-range
learning of statistics versus trial-to-trial effects) it may be valu-
able for future work to manipulate either the difficulty of
learning task statistics (i.e., to slow the long-range processes,
thus making them more distinct from short-range processes)
or to implement manipulations that should reduce the short-
range (trial-to-trial) effects. One method for inhibiting the rate
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of statistical learning may be to reduce the contrast between
blocks’ biases (e.g., contrasting 65% congruent to 35% con-
gruent rather than 80% and 20%). While this method would
likely slow down learning, differences between such a study
and the current results would be confounded by the possibility
of reduced magnitudes of PCE due to smaller contrasts.
Another method may be to insert pauses or distracting tasks
at occasional intervals (e.g., every 20 trials) to make learning
the long-range statistics more difficult. In terms of inhibiting
short-range (e.g., trial-to-trial) effects, possibilities would be
to include distracting stimuli or dual task demands fully inter-
leaved with the primary response competition task (i.e., after
every trial; although it is not clear whether it is possible to
disrupt the short-range interactions without, at the same time,
disrupting the ability to learn the long-range statistics). We
note that the feedback introduced in Experiment 2 could have
had such an effect (i.e., of introducing a visual stimulus not
drawn from the task-relevant stimulus set), although we did
not find that visual feedback served to inhibit the magnitude of
the PCE nor its rate of onset. Other stronger manipulations,
either passive (e.g., masking stimuli with an enforced intertrial
interval) or active (e.g., an auditory discrimination task) may
be more effective at slowing altering the magnitude or range
of PCE onset.

Here, we have taken an approach to the study of atten-
tion that is quite different than most PCE studies. In two
experiments, we replicated the PCE effect when averaged
across all trials as well as within-trial pairs (i.e., smaller
flanker effects on trials following incompatible trials).
However, given the overall goal of integrating the PCE
effect into a learning framework that would be applicable
to broader fields of attention and cognition, our results are
mixed. As with PCE results more generally, the system-
atic changes in flanker effect we observed should act as a
contextualizing caution to researchers putting a large
stake on single measures of response competition. Our
reported divergence between feedback-present and
feedback-absent experiments should provide a basis for
future research to consider the combination of feedback
and compatibility best suited to answer questions of re-
sponse competition, individual differences, learning, or
fatigue. In addition, the possible influence of sequential
task demands cannot be dismissed even in this fairly sim-
ple task.

Conclusion

Our work corroborates the broader PCE literature in providing
unequivocal evidence for interacting bottom-up (i.e., stimu-
lus-driven) and top-down (e.g., learning, attentional modula-
tion) processes in response competition. Despite our goals of
identifying sources of variation in the magnitude and time
scale of PCE modulations, our measures were insensitive to

the time course of learning. In contrast with previous work
positing the development of the PCE over hundreds of trials
(Abrahamse et al., 2013), we found the presence of the PCE
very early when using by-trial modeling of response times.
This indirectly supports a time scale of modulation as small
as single trials. Nonetheless, future work would benefit from
methodological innovations facilitating an identification of
the interacting time scales giving rise to sequential PCE
effects.
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