
Incentive value and spatial certainty combine additively
to determine visual priorities

K.G. Garner1,2 & H. Bowman1
& J.E. Raymond1

# The Author(s) 2020

Abstract
How does the brain combine information predictive of the value of a visually guided task (incentive value) with information
predictive of where task-relevant stimuli may occur (spatial certainty)? Human behavioural evidence indicates that these two
predictions may be combined additively to bias visual selection (Additive Hypothesis), whereas neuroeconomic studies posit that
they may be multiplicatively combined (Expected Value Hypothesis). We sought to adjudicate between these two alternatives.
Participants viewed two coloured placeholders that specified the potential value of correctly identifying an imminent letter target
if it appeared in that placeholder. Then, prior to the target’s presentation, an endogenous spatial cue was presented indicating the
target’s more likely location. Spatial cues were parametrically manipulated with regard to the information gained (in bits). Across
two experiments, performance was better for targets appearing in high versus low value placeholders and better when targets
appeared in validly cued locations. Interestingly, as shown with a Bayesian model selection approach, these effects did not
interact, clearly supporting the Additive Hypothesis. Even when conditions were adjusted to increase the optimality of a
multiplicative operation, support for it remained. These findings refute recent theories that expected value computations are
the singular mechanism driving the deployment of endogenous spatial attention. Instead, incentive value and spatial certainty
seem to act independently to influence visual selection.
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Introduction

Humans are good at learning that specific sensory informa-
tion, or cues, can predict subsequent events. For example, we
learn quickly that hearing a siren on the left predicts a speed-
ing emergency vehicle appearing from that direction, or that
seeing a smile predicts a likely future opportunity to gain
social approval. Knowledge about where and when new, im-
portant sensory information may appear or new reward oppor-
tunities may arise is only useful, however, if such knowledge
can influence how cognitive mechanisms prioritise informa-
tion representation for the eventual control of behaviour. Yet,
our understanding of how learning and experience modify
such prioritisation of visual signals, i.e. visual selection,

remains incomplete. Particularly unclear is how multiple con-
current sensory cues, each associated with and therefore pre-
dictive of specific consequent outcomes, are combined to in-
fluence visual selection. A central tenet of many cognitive,
computational, and neurobiological theories of visual selec-
tion (Buschman & Kastner, 2015; see Itti & Koch, 2001;
Moore & Zirnsak, 2017, for reviews), is that competition for
high-level neural representation of external objects is flexibly
biased by information pertaining to goal-directed outcomes.
Indeed, multiple endogenous sources appear to exert parallel
influences on visual selection (see Hutchinson & Turk-
Browne, 2012, for a review), even when learned information
is antithetical to the current goals as defined by the task-set
(see Awh et al., 2012, for a review). In the current study, we
specifically seek to understand how selection biases that stem
from learned associations between sensory cues and reward
outcomes (incentive value) are combined with biases driven
by associations between sensory cues and the probable loca-
tion of task-relevant target information (spatial certainty).

Recently, a large number of studies have shown that visual
selection can be biased by the learned predictiveness and in-
centive value signalled by sensory cues (see Le Pelley et al.,
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2016, for a review). Such studies typically present stimuli in a
simple selection task that probabilistically predict the reward
magnitude available for correct performance, allowing those
stimuli to become value associated. Then, in a subsequent
visual selection task, these stimuli are presented as targets or
distractors. The central finding is that visual selection perfor-
mance is better or worse, respectively, compared to when such
stimuli are absent (Anderson et al., 2011; Chelazzi et al., 2014;
Raymond & O’Brien, 2009; although see Sha & Jiang, 2016).
Convergent evidence from the behavioural (Le Pelley et al.,
2016), neuro-cognitive (e.g. Barbaro et al., 2017; Hickey
et al., 2010; Raymond & O’Brien, 2009) and neuro-
economic (e.g. Dorris & Glimcher, 2004; Platt & Glimcher,
1999; Stănişor et al., 2013) literature also provides a convinc-
ing picture that value cues influence visual selection propor-
tionally to their associated reward value, underscoring the role
of prior experience.

Another large body of literature arising much earlier (in the
1980s) showed that sensory signals that predict where task-
relevant information might appear also as bias visual selection
(Posner 1980). When centrally presented, symbolic cues (e.g.,
arrows) are highly predictive of a target’s location (valid
cues), response times (RTs) are faster and accuracy better
compared to when spatial cues predict the wrong location
(invalid cues). Central, symbolic spatial cues are often termed
endogenous due to the assumption that their ability to bias
visual selection largely stems from previously acquired and
internally accessed knowledge. Our interest here is how en-
dogenous (learned) spatial associations interact with other
learned associations, specifically value associations to control
visual selection. Strong evidence that spatial cueing effects
depend on learning is that they scale with the reliability of
the cue (Lanthier et al., 2015; Vossel et al., 2006, 2015), being
stronger when cues are more predictive and weaker when
predictability is low. Indeed, cueing effects appear to be a
linear function of the certainty gained (in bits of information)
by a spatial cue (Prinzmetal et al., 2015).

Although the issue of how multiple endogenous influences
act on goal-directed visual selection has been previously ad-
dressed (Awh et al. 2012; Klink et al. 2014), it remains unclear
how incentive value and spatial-certainty information provid-
ed by pre-target cues are combined. One possibility, the
Expected Value Hypothesis, is that visual selection is biased
by the relative expected value, i.e. incentive value multiplied
by spatial certainty for each outcome. Derived from economic
theory (Morgenstern & Von Neumann, 1953), expected value
is conventionally defined as reward magnitude multiplied by
reward probability; in the context of selective attention in re-
sponse to pre-target cues, such a computation would be the
product of cue incentive value and spatial certainty. It is likely
to be normalised across potential outcomes given the trial
context (Padoa-Schioppa & Assad, 2008). Evidence for such
an operation would suggest that incentive value and spatial

certainty are combined by a common, perhaps singular, mech-
anism to exert influence on visual selection. Support for this
theory comes from the finding that human saccadic initiation
times are more tightly correlated with the relative expected
value of potential upcoming target locations than with either
the spatial certainty for the target location or its incentive value
alone (Milstein & Dorris, 2007). Moreover, close correspon-
dence has been shown between neurons that fire proportion-
ally to the incentive values associated with sensory cues and
those that change their response to correlate with the spatial
certainty introduced by a directional cue, at least in macaque
V1 (Stănişor et al., 2013). Indeed, this latter finding was
interpreted as providing evidence for a singular neural mech-
anism able to re-weight incentive values across the visual
scene on-the-fly by updating computation of expected values,
given post-cue spatial probabilities.

A second alternative is the Additive Hypothesis, which
posits incentive value and spatial certainty exert independent,
as opposed to multiplicative, influences on visual selection.
Origins for this idea stem from computational theories propos-
ing that variation in physical salience within a scene (a salien-
cy map) for different stimulus dimensions (e.g., colour, mo-
tion or orientation) are independently calculated, then weight-
ed and summed to create a visual priority map (Zhao & Koch,
2012). Indeed, empirical investigations support the notion of
additive effects for the combination of salience information
based on different features, and report that nonlinear combi-
nations across feature dimensions arise only when there is
overlap between the underlying saliency mechanisms
(Nothdurft, 2000). Although suggestive of the possibility that
incentive value and spatial certainty might combine additively
to control selection, it remains unclear whether additivity
could apply to non-physical features, such as learned
associations.

However, preliminary support for this possibility has been
reported by Stankevich and Geng (2014). They asked partic-
ipants to detect as quickly and accurately as possible a simple
target that could appear on the left or right within a coloured
placeholder. In their experiment, placeholder colour indicated
the magnitude of response-contingent rewards, as it does in
the experiment we report here. However, they provided no
explicit spatial cues as to target location. Instead, across
blocks and without instruction, the probability of the target
appearing on one side versus the other was varied. Greater
performance benefits were observed when the target appeared
in the more probable location and when that location
corresponded to a high versus a low value placeholder.
Critically, these benefits were additive, suggesting that incen-
tive value and spatial certainty acted independently to influ-
ence visual selection, according to additive-factors logic
(Sternberg, 1998). However, in their experiment, spatial-
certainty was established over many trials, allowing predic-
tions about target location to be generated well before each
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trial began and certainly in advance of location-specific incen-
tive information. This may explain why incentive information
provided an additive “top-up” effect. Such effects might not
occur when location-specific incentive information is avail-
able first and spatial certainty cues providing task relevant
information are presented subsequently. Accordingly, how
two different endogenous cues (incentive and spatial) might
be combined in humans when they are available only via new
sensory information as each trial unfolds remains unknown.

To address this issue, we conducted two experiments that
combined the methods of relevant previous studies to directly
test these two hypotheses. As described in Fig. 2, on each trial,
participants viewed two spatially separated coloured place-
holders that served as incentive cues for 400–500 ms; place-
holder colour signalled the reward value for a subsequently
presented letter target, should it appear in that placeholder and
be correctly identified. Then, a central symbolic spatial cue
was presented that signalled which placeholder would more
likely encircle the upcoming target. Then, 400 ms after spatial
cue onset, one letter briefly appeared in each placeholder. The
taskwas to identify the target (as one of two possible letters) as
fast and accurately as possible. Incentive value for the poten-
tial target location was always either high or low on every
trial; however, the reliability of the spatial cue (spatial certain-
ty) was varied between blocks. The Expected Value
Hypothesis, implicating a multiplicative relationship between

incentive value and spatial certainty, predicts an interaction of
these two variables on performance (see Fig. 1). Specifically,
it predicts a super-additive effect when spatial certainty is high
and a sub-additive influence when it is low. In contrast, the
Additive Hypothesis implies simple additivity of incentive
value and spatial certainty. Evidence for this would be simple
main effects on performance of incentive value and spatial
certainty with no interaction effect. In Experiment 1, we var-
ied spatial certainty over a wide range. In Experiment 2, re-
wards for correct responses diminished as RT lengthened,
creating conditions favouring the use of an expected value
mode of cue combination. Results were evaluated using a
Bayesian model selection approach. To anticipate, we found
in both Experiments that the influence of incentive value and
spatial certainty remains additive across all tested levels of
spatial certainty, arguing against the Expected Value
Hypothesis.

Experiment 1

Five levels of spatial certainty were tested. Although it is
conventional in attention-cueing experiments to use valid spa-
tial cues on 80% and invalid cues on 20% of trials, we includ-
ed conditions wherein the computation of spatial certainty is
trivial, i.e., as the spatial cue approaches 100% validity. We

Fig. 1 Illustration of theoretical predictions. Predicted response times
(RTs) in arbitrary units, plotted by cue validity (columns), spatial certain-
ty (sc, x-axis) and incentive value (iv, colours), according to an additive

bias operation (y ~ -β1sc + -β2iv) or an expected-value model (y ~
-βsc*iv). (Note: The spatial certainties used in this simulation are the
same as those chosen for Experiment 1)
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reasoned that if, as the Expected Value Hypothesis posits, a
single mechanism responds to both incentive value and
spatial-certainty information, then more resources would be
available to respond to value information under high versus
low spatial-certainty conditions, leading to greater versus less-
er effects of incentive value, thereby showing super-additivity.
To test this idea, we more densely sampled valid trial proba-
bilities between .90 and .96 as well as the more conventional
probabilities of .8 and .6.

Method

All the task and analysis code and data from the current study
are available online.1 The trial sequence of the spatial-
orienting task (Posner, 1980) used to assess the combined
influence of spatial certainty and location-specific incentive
cues, and the key manipulations for Experiments 1 and 2,
are shown in Fig. 2.

Participants

As larger samples protect against spurious findings (Button
et al., 2013; Lorca-Puls et al., 2018), we opted to double the
sample size of previous work correlating human performance
with expected value (N=10) (Milstein & Dorris, 2007), and
recruit a minimum of 20 participants. We calculated the stop-
ping rule for data collection as the number of weeks where
testing at maximum capacity would bring us to at least the
minimum sample size (6 weeks with 4 people per week,
allowing recruitment of > 20 participants in order to protect
against dropouts). Participants were recruited if they were
aged 18 years or over and reported normal or corrected-to-
normal vision, with no history of psychiatric or neurological
illness, injury, or disorder. Participants earned either course
credit or payment (£7 per session), and any additional rewards
accrued during the session (~£10). All procedures were ap-
proved by the University of Birmingham Human Research
Ethics Committee. A total of 23 participants were recruited.
Of these, one was excluded due to technical failure and a
second due to experimenter error. The remaining 21 partici-
pants (19 female, 18 right-handed, mean age = 20.3 years, SD
4.5) completed all the procedures.

Apparatus

All experimental procedures took place in a room with a sin-
gle testing station, under conditions of low ambient light. All
tasks were programmed in Matlab (Mathworks, Natick, MA,
USA, 2013a), using the Psychophysics Toolbox extension
(Brainard, 1997; Pelli, 1997). The tasks were run on a Stone

SOFREP-144 computer with a 23-in. Asus VG278HE moni-
tor (1,920 x 1,080 pixels, 60-Hz refresh rate) viewed from 57
cm.

Stimuli

Two white (RGB: 200, 200, 200) vertical lines were presented
in the centre of the screen. A darkening of one line (50, 50, 50)
served as the endogenous spatial cue. The entire spatial cue
display (i.e. the rectangle comprising both lines and the grey
background displayed between them) was 0.5° w x 1° h.
Comparable cues have been used in previous work examining
the influence of dynamic cue reliabilities on the deployment of
spatial attention (Vossel et al., 2015), and therefore seemed
appropriate for the aims of the current study. Although this
type of central spatial cue had a small lateralised element,
possibly activating exogenous orienting mechanisms to some
extent, they were centrally presented (with 3.75° between the
outer edge of the central cue and the inner edge of the periph-
eral target), and, critically, require some interpretation from
the brain to map the relationship between the cue and target
locations (Berger et al., 2005; Briand & Klein, 1987; Posner,
1980). Thus, the main characteristics of the cues used here
resemble those used by previous researchers to study spatial
certainty effects. Two coloured discs (2.2° in diameter), one in
purple (87, 75, 80), the other in orange (120, 86, 1) (matched
for luminance) served as value cues. They were aligned along
the horizontal meridian and positioned 4.5° from the centre.
Targets (‘H’ or ‘N’) and distractors [‘Z’ or ‘K’] were presented
in light grey (90, 90, 90) Helvetica font, encompassed 1°, and
were centred on the disc’s centre. This distance from the cen-
tre allowed the viewer to discriminate the letters without mak-
ing an eye movement, while remaining just within the locus of
high-acuity vision (~6°). Feedback was presented in green (0,
255, 0) for high-reward values, amber (255, 191, 0) for low-
reward values, and red (255, 0, 0) for errors. All stimuli were
presented on a grey (RGB: 118, 118, 118) background.

Procedure

As shown in Fig. 2, each trial began with the simultaneous
presentation of both incentive value cues and two centrally
presented vertical lines. After a pseudo-randomly chosen du-
ration of 400–500 ms, the left or right fixation line darkened
for 300 ms. After a further 100 ms, the target and distractor
were presented for 100 ms (target identity was equiprobable
for each incentive value x spatial certainty x cue validity con-
dition). Participants pressed the ‘V’ or ‘G’ key on a standard
keyboard to indicate the target identity. After 500 ms, feed-
back was presented for 750 ms; either the central fixation was
replaced with the high-reward value, the low-reward value, an
error signal (fixation lines turned red), or the fixation remained
the same (no reward). Rewards were awarded on 80% of1 https://github.com/kel-github/attention-value-certainty
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correct trials to prevent feedback signals becoming redundant.
The high- and low-incentive value cue locations and the target
location were equally likely to be on the left or right; all con-
ditions (cue value location, target location, and target identity)
were fully crossed within each session. Colour/value pairings
(e.g. purple = 50 points/orange = 1 point) as well as target-
response mappings were counterbalanced across participants.

Across blocks, the likelihood of cue validity was varied to
be either .6 valid/.4 invalid, .8/.2, .9/.1, .92/.08, .96/.04,
resulting in information gains (spatial-certainty) of .029, .29,
.53, .6 and .86 bits. Each block contained 100 trials. At each of
four sessions, participants completed four blocks for each lev-
el of spatial certainty. Participants took between 4 days and
1.5 weeks to complete the experiment (block order was
pseudo-randomised for each session). Participants completed

four sessions so that we could have sufficient trial numbers to
obtain a reliable estimate of performance for the low spatial-
certainty conditions. Target-value contingencies were split
equally within each set of valid and invalid trials for each
cue-likelihood condition.

Participants were explicitly instructed how many points
were available should the target appear in the location of the
high- and low-incentive value cues (50 vs. 1 point), and were
instructed that the incentive cues signified that points were
available most but not all of the time. They were also
instructed that the darkened line was a clue to where the target
could appear; however, they were not explicitly informed that
the spatial cue’s reliability might vary. Participants were re-
quested to keep their eyes at fixation, and to respond as accu-
rately and as quickly as possible to the target. Participants

Fig. 2 Study method. Task procedure and feedback conditions for
Experiment 1 and Experiment 2. (a) Trial structure: Participants
monitored two different-coloured circular placeholders (incentive cues).
Colour indicated the magnitude of a performance-contingent reward for
correct target (‘H’ or ‘N’) identification, should the target subsequently
appear within that placeholder. Then, one of two central bars darkened,
indicating the more likely target location (left, right). Note that the trial
depicted is an invalid trial. (b) Reward feedback structure: After response
+ 250 ms, performance feedback and response-contingent rewards were
presented as shown. In Experiment 2, reward feedback was either inde-
pendent of response time (fixed) or decremented exponentially after tar-
get onset until response (decaying). (c) Spatial certainty was parametri-
cally manipulated across blocks by increasing the information gained (in
bits) from the spatial cue. (d) Logic of the decaying reward condition in
Experiment 2. Figure shows reward value available as a function of time
from target onset. As the expected value computation involves a

multiplicative weighting of spatial certainty and incentive value, re-
sponses should be super-additive or sub-additive depending on the spatial
certainty/incentive value combination. As response times should reflect
the inverse of this weighting, responses should be faster in a high-certain-
ty/high-incentive scenario than responses based on an additive operation,
and slower in a low-certainty/low-incentive scenario than an additive
operation. Applying an exponential decay function to the incentive value
at target onset means that the extra rewards accrued by being faster to-
wards high-incentive value cues (change in the high (5,000) value on the
y-axis, while moving leftward on the x-axis) would outweigh the losses
accrued from being slower towards low-incentive value cues (change in
the low (100) value on the y-axis, while moving rightward on the x-axis).
Therefore, any operation that favours this response pattern would accrue
greater total rewards than an additive operation, and therefore may
emerge under such reward conditions
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were also informed that their points would be exchanged for
cash at the end of the session (1,000 = £1). At the start of the
first session, participants practiced until they achieved at least
16/20 correct responses.

Statistical approach

Data pre-processing

All data were analysed using the R programming language
(v3.3.2) (R Core Team, 2013), and R Studio (v1.0.44)
(RStudio Team, 2016). RT data were rejected if they were
greater than ± 2.5 SD from the mean for that participant in
that condition. As participants were not explicitly informed
when there was a change in spatial-certainty, we assumed that
trials immediately subsequent to changes in spatial-certainty
would be contaminated by learning effects. To remove the
contaminated trials for each participant, we collapsed the data
across spatial certainty blocks, and ordered the data according
to trial number. We then fit piecewise linear regressions to
find the break point that minimized the mean square error
(MSE). Trials occurring prior to the breakpoint were removed
(mean = 12.3, SD 8.0). However, when we performed the
analyses without removing these trials, the pattern of results
was the same.

Model specification and selection

The aim of the study was to compare whether an additive
model remained the best, given the data, even under condi-
tions where an additive relationship could be expected to
break down. The key aim of each analysis was to determine
whether a model that included an interaction term between
incentive value and spatial certainty was more probable, given
the data, than one that only included main effects (i.e., an
additive model). To quantify evidence, we used a Bayesian
approach that provides the advantage of offering the ability to
quantify evidence against a specific model, which is not pos-
sible using null hypothesis significance-testing approaches
(Nickerson, 2000; Wagenmakers, 2007). Additionally,
Bayesian approaches protect against the problem of model
complexity: although more complex models may predict with
high likelihood a greater range of values, if these predictions
are uninformative, this will result in a more diffuse marginal
likelihood distribution when integrating across prior distribu-
tions for the parameters, thereby penalising the resulting mod-
el evidence. First, we fit all possible linear mixed models on
the RT data, with the regressors being (a) incentive value of
the target location, (b) cue validity, and (c) spatial certainty
offered by the cue. Spatial certainty was computed in line with
Prinzmetal et al. (2015). Specifically, Shannon’s (1948) mea-
sure of entropy (H) measures the amount of uncertainty in a
probability distribution and is at maximum when the cue is

completely unpredictable with regard to the target location.
Therefore, spatial certainty gained by an informative cue can
be calculated as:

Spatial certainty ¼ Hno information−Hcue ð1Þ
when H is defined in the standard manner:

H ¼ −∑ipilog2pi ð2Þ
and pi is the probability that the target appears at location i,
given the cue. For example, with two locations, and a cue that
is .8/.2 valid/invalid:

Hcue ¼ − :8 log2:8ð Þ− :2 log2:2ð Þ≈:72

AsHno information is 1 (corresponding to complete uncertain-
ty, i.e. .5/.5), then the information gained by the cue is 1 - .72
≈.28 bits.

After fitting all possible models to the RT data obtained in
each experiment, we computed Bayes factors (BFs) to quan-
tify evidence for each linear mixed-effects model against the
null model (intercept plus random effects of participant) using
the Bayes factor package (Morey et al., 2014), and
implementing the default Jeffreys-Zeller-Siow (JZS) prior on
slope estimates (Liang et al., 2008). We then identified the six
best performing models. We report the BF of the winning
model relative to the null model, and the BF ratios between
the best model and the next five best models, to demonstrate
the strength of evidence in favour of the winning model. We
follow the guidelines of Kass and Rafferty (Kass & Raftery,
1995) when interpreting the strength of evidence. This was
sufficient to determine whether the evidence favoured a model
that included only main effects, or an incentive value x spatial
certainty interaction. All BFs are reported along with the pro-
portional error of the estimate. For readers interested in
confirming that a null hypothesis significance testing
(NHST) approach yields the same conclusions, please refer
to the online repository for this study.

Accuracy data

Accuracy data were analysed to ensure the results were not
due to a speed-accuracy trade-off. For each experiment, we
fitted all possible linear mixed models to the accuracy data,
and selected the winning model. We then reported the fixed
effects estimates for each relevant factor in the winningmodel.

Results

Response time

Group mean RT data (dots) and winning model fit (lines) are
presented in Fig. 3a. The main effect of incentive value was to
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speed RT by approximately 50 ms ± 3 (SE) for high versus
low incentives. Spatial certainty served to increase the effect
of cue validity; the difference between valid and invalid trials
increased by approximately 90 ms ± 29 (SE) across levels of
certainty. Arguing against the Expected Value Hypothesis, the
preferred model included only main effects of each factor
(incentive value, spatial certainty, and cue validity), and a
spatial certainty x cue validity interaction term (BF, relative
to the intercept only null model, = 1.74E+58, ± .87%; see Fig.
3b). Importantly, there was positive evidence that this model
was preferred over the next best model (BF = 3.8, ± 1.45%),
which was identical to the winning model except that it also
included an incentive value x spatial certainty interaction
term. Therefore, the evidence favours a model that does not
include an interaction between incentive value and spatial
certainty.

Accuracy

The probability of an accurate response on invalid trials was
.16 ±.02 (SE) lower than on valid trials and was .05 ±.02 (SE)
less for targets appearing in low- versus high-incentive value

cues. This shows that as participants became slower on invalid
and low-incentive value trials, they also became less accurate,
arguing against the notion that effects were due to a speed
accuracy trade-off (see Fig. 3c). The preferred model for these
data, relative to the null model, included only main effects of
incentive value and cue validity (BF = 8.83E+47, ±.56 %,
relative to the null model).

Discussion

There are two noteworthy findings from Experiment 1. First,
even though the optimal strategy in this experiment would be
to ignore the spatial cues entirely, especially in blocks with
low spatial certainty, clear effects of valid versus invalid cues
were found. Second, models posing an additive influence of
incentive value and spatial certainty outperform those
allowing an interaction between the two. This goes against
the Expected Value Hypothesis and suggests that visual selec-
tion mechanisms do not integrate incentive value and spatial
certainty, even when approaching the limits of certainty.
Nevertheless, the second-best model to account for the RT

Fig. 3 Results from Experiment 1. (a) Observed group mean response
times (RTs) in ms for targets appearing in high- (dark circles) or low-
(light circles) value placeholders plotted as a function of spatial certainty
(x-axis) for valid and invalid spatial cues (panels). Vertical lines indicate
± 1 within-subject SE. Lines represent fit of the winning model. The
winning RT model did not involve any interaction of incentive value
(iv) and spatial certainty (sc) supporting an Additive Hypothesis, al-
though it did indicate an interaction of sc and validity (v). (b) BFs for
the probability of the winning RT model (P[Win]: (v * sc) + AME)
relative to the five next best models (Alternative, P[Alt], models, y-axis).
The larger the BF value, the stronger the evidence for the winning model.

Any values lower than 1 (dotted line) support P[Alt]; BF values between
3 (dashed line) and 10 constitute moderate evidence for the winning
model, values > 10 provide strong evidence. Dark bars indicate P[Alt]
contains only an additive influence of incentive value; light bars indicate
P[Alt] involves a multiplicative influence of incentive value and either
spatial certainty or validity. The Alt RT models were as follows: (1) ~v +
iv, (2) ~AME, (3) ~(v * sc) + (sc * iv) + AME, (4) ~(v * sc) + (v * iv) +
AME, (5) ~(v * sc) + (v * iv) + (sc * iv) + AME. (c) Observed groupmean
accuracy plotted as in panel (a). Importantly, the accuracy data show that
the RT findings were not due to a speed-accuracy trade-off. BF = Bayes
factor, rc = reward condition, AME = all main effects.
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data included an interaction between spatial certainty and in-
centive value, suggesting that this interaction is not entirely
implausible. Perhaps additive effects would fail to provide the
best description of the data if another form of appropriate
pressure was applied to visual selection. Indeed, previous
studies show that learning can direct the sampling of sensory
information to optimise reward accrual (Drugowitsch et al.,
2015; Kiani & Shadlen, 2009; Serences, 2008), allowing the
possibility that a reward structure favouring an expected value
operation may be sufficient to modulate the additive influence
of incentive value and spatial certainty. The aim of
Experiment 2 was to provide this test.

Experiment 2

The aim of Experiment 2 was to test whether the additive
influence found in Experiment 1 would persist even when
the reward structure of the task renders additivity to be sub-
optimal. In Experiment 2, we leveraged the predictions made
by the Additive and Expected Value operations to construct
such a reward structure. As mentioned above, expected value
computations are multiplicative, and should produce super-
additive effects when both incentive values and spatial cer-
tainty are high, and sub-additive effects when incentive value
and spatial certainty are low. Thus, RTs driven by an expected
value operation should be faster than those driven by an addi-
tive operation when spatial certainty and incentive value are
high and slower than an additive operation when spatial cer-
tainty and incentive value are low. Therefore, conditions that
preferentially reward fast RTs on high-incentive, high-
certainty trials and outweigh the costs incurred for slow RTs
on low-incentive/low-certainty trials should favour adoption
of an expected value strategy over an additive strategy (see
Fig. 2d). To produce these reward conditions, in Experiment
2, participants completed the same task as in Experiment 1
(albeit sampling fewer levels of spatial certainty), with an
added condition wherein reward value exponentially decayed
after target onset.2 Of course, the assumption that these reward
conditions favour a multiplicative (i.e. Expected Value) oper-
ation only holds if both spatial and incentive cues are lever-
aged to bias information processing. For example, an alternate
and arguably optimal strategy would be to ignore the spatial
cues entirely and to attend only to the high value location.
However, we know from Experiment 1 that both cues effec-
tively influence performance, making safe the assumption that
decaying reward conditions favour a multiplicative over an
additive operation.

Replicating the finding from Experiment 1, evidence sup-
ports the Additive Hypothesis but not the Expected Value
Hypothesis.

Method

Participants

We calculated the stopping rule for data collection as the
number of weeks where testing at maximum capacity would
bring us over the minimal sample size (3 weeks with 10 peo-
ple per week). Of the 28 participants recruited, one was ex-
cluded due to technical difficulties with the eye tracker. A
second participant was excluded as they did not meet the
criterion required to terminate the practice. The remaining
26 (mean age = 19.5 years, SD = 1.03, 24 females, 26 right-
handed) completed all the study procedures. Two of these
participants had also completed Experiment 1.

Apparatus

In addition to that used for Experiment 1, an EyelinkⓇ 1000
desktop-mounted eye-tracker (SR Research Ltd., Ottawa,
Ontario, Canada) recorded movements of the left eye with a
sampling frequency of 500 Hz. This was used to ensure that
eye movements were not contributing to results, even though
participants were clearly instructed not to move their eyes
(replicating instructions used in Experiment 1, which were
not, however, verified for compliance).

Stimuli

The stimuli were the same as in Experiment 1, except that the
value cues were presented at 5.7 . This change was made to
match the exact layout used in previous work (Stankevich &
Geng, 2014).

Procedure

The procedure was the same as Experiment 1 with the follow-
ing exceptions. Participants’ eyes were monitored on every
trial. Calibration and validation were performed every 25 trials
to minimise drift errors. If the participant’s eyes moved more
than 50 pixels (1.5 ) from the fixation at cue-offset, text ap-
peared to notify participants they had been “too fast”. The trial
was then terminated. Terminated trials accounted for ~3% of
all trials.

Cue-values were increased from Experiment 1 to 5,000
versus 100 points, so that participants could gain at least 1
point when a decay was applied to the low incentive val-
ue. Correct responses were rewarded on 80% of trials as
in Experiment 1. Given that there were 200 trials per

2 For a demonstration that participants were exposed to a sufficient range of
the reward decay function to identify the reward structure, we refer the reader
to the Online Supplementary Material: https://github.com/kel-github/
attention-value-certainty/blob/master/code-analysis-and-task/Supplement_
IncentiveValueAndSpatialCertainty.pdf
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condition (see below), and assuming ~85% accuracy, this
provides ~136 rewarded trials per condition. Previous
studies suggest that participants can detect dynamics in
incentive value associations with far fewer trials (N=8,
Ittipuripat et al., 2015) or lower reward-to-non-rewarded
ratios (33:77%, Serences, 2008), and that these detections
influence visual spatial priorities. In the decay reward-
condition, an exponential decay function (reward value
= points*(e-4*RT), RT = Response Time) was applied to
each value at target onset. The monetary value of points
was adjusted so that participants received the same rate of
cash payments as Experiment 1 (100,000 = £1).
Participants were informed at the start of the decay blocks
that the value available to them would begin to run out
upon appearance of the target.

Participants completed 200 trials for each of four spatial
certainty/reward contingency conditions (.29/fixed, .29/decay,
.029/fixed, .029/decay; block order was counterbalanced
across participants). Although trial number per condition
was substantially lower than in Experiment 1, adjustments to
changes in spatial certainty in other cuing studies have shown
clear effects with less than half the trial numbers we used here
(Prinzmetal et al., 2015; Vossel et al., 2015). We included
only these two levels of spatial certainty as we wanted to avoid
any possible floor or ceiling effects when testing the influence
of reward condition.

We also tested the separate hypothesis that individuals may
mentally represent the high- and low-incentive placeholders
differently in terms of their relative value, when their value
can be obtained more reliably (i.e. in the fixed reward-condi-
tion, relative to the decay reward-condition), and that this may
be expressed via physical placement on a linear space. Every
50 trials, participants were instructed to use a mouse to drag
the two placeholders wherever they liked on a single line.
However, we found no evidence that cue-likelihood influ-
enced placement of the placeholders (p = .96), and this sepa-
rate aspect of the study is discussed no further. Participants
also completed a BIS/BAS questionnaire (Carver & White,
1994) that was used to test a hypothesis for a separate study
not reported here.

Statistical approach

We followed the same data-cleaning procedures as in
Experiment 1. Again, piecewise linear functions were fitted
to the data to isolate the trials contaminated by spatial certainty
learning effects. The number of trials removed from the start
of each block were similar to Experiment 1 (mean = 14.7, SD
8.5).

We also used the same model comparison approach, with
the exception that we added the reward condition term to the
linear mixed effects models that were fit to the data.

Results

Response time

Group mean RT data are shown in Fig. 4a. Correct responses
were approximately 21 ms ± 17 (SE) slower for targets
appearing in low- versus high-incentive value placeholders;
valid versus invalid spatial cues speeded RTs on average by
33 ms ±12 (SE); and the decay-reward condition speeded RTs
by 54 ms ±17 (SE) on average compared to the fixed-reward
condition. Unlike Experiment 1, there was no detectable in-
fluence of spatial certainty. (Note: We tested whether this
could be attributed to a reduced sensitivity owing to the fewer
levels of spatial certainty used in Experiment 2 relative to
Experiment 1, by taking the data from Experiment 1 and
extracting only the levels of spatial certainty that were used
in Experiment 2). A repeated-measures ANOVA (incentive
value x spatial certainty x cue validity) showed a significant
spatial certainty x cue interaction (F(1, 20) = 4.84, MSE =
.001, p = .047), suggesting that reducing the levels of spatial
certainty is not sufficient to reduce detectability of such an
interaction). As in Experiment 1, we identified the most likely
model given the data and found that the winning model in-
cluded main effects of cue validity, incentive value, and re-
ward condition (BF = 2.18E+67 ±.69 %, relative to null mod-
el), but did not include an influence of spatial certainty (al-
though see Accuracy data). There was good evidence that this
was the best model for the data, as it was positively preferred
to the next best model, which included an additional incentive
value x cue validity interaction term (BF = 4.65 ±2.43 %, see
Fig. 4b). As spatial certainty was found to interact with cue
validity in Experiment 1, we tested the evidence for the win-
ning model against one that also included a spatial certainty x
cue validity interaction term. Again, there was positive evi-
dence that the winning model provided a better fit to the data
(BF = 8.97 ±1.79%). Collectively, the results show that even
when an additive operation is disadvantageous, an additive
model is still a better account of the data.

1) ~(rc x iv) + v + iv + rc, 2) ~AME, 3) ~(rc x v) + iv + v +
rc, 4) ~(v x sc) + AME, 5) (v x iv) + v + iv + rc. BF = Bayes
factor, v = cue-validity, sc = spatial certainty, iv = incentive
value, rc = reward condition, AME = all main effects

Accuracy

Differences in accuracy between valid and invalid trials grew
larger as spatial certainty increased (by .15 on average, ±.07
(SE)), suggesting that as participants became slower on inva-
lid trials, they also became less accurate. Furthermore, accu-
racy performance was slightly higher when targets appeared in
high- relative to low-incentive value placeholders (by approx-
imately .0003, ± .0001 (SE)), showing that participants be-
came very modestly less accurate as they slowed their

181Atten Percept Psychophys (2021) 83:173–186



responses to low-value targets. Accuracy was higher for the
fixed relative to the decay reward condition (.05, ± .008 (SE)),
suggesting that as participants became faster in the delayed
reward condition, they also produced a very modest decrease
in accuracy. As in Experiment 1, the accuracy data obtained
here demonstrate that the validity and incentive value results
were not due to a speed-accuracy trade off, whereas the influ-
ence of reward condition may indeed be due to such a trade-
off (see Fig. 5). The best-fitting model to account for these
data contained a cue-validity x spatial certainty interaction,
and main effects of incentive value, spatial certainty and cue
validity.

General discussion

Over two experiments we tested whether the Additive
Hypothesis would outperform the expected value account,
even under conditions expected to challenge the optimality
of additivity. In Experiment 1, we hypothesised that if incen-
tive value and spatial certainty influence a common underly-
ing mechanism, then conditions wherein spatial certainty is

trivial to compute (i.e., very high certainty) might best reveal
non-additive effects, because these conditions should be min-
imally taxing to central resources and thus be more likely to
enable an influence of incentive value on visual selection. We
created this condition by using very high spatial-certainty cues
and then pitted incentive value and spatial certainty against
each other in a spatial-orienting task, where endogenous cues
signalled the likely location of upcoming letter targets.
Interestingly, an additive influence of incentive value and spa-
tial certainty was observed, even under conditions of very
high certainty. Spatial certainty increased the size of the
cueing-effect (i.e. the difference in performance between in-
validly and validly cued trials), whereas incentive value had a
comparable influence on both valid and invalid trial types,
across all levels of spatial certainty.

In Experiment 2, we reasoned that if an expected value
operation can bias visual selection, then a reward structure
that favours a multiplicative weighting of incentive value
and spatial certainty may reveal it. We applied an exponential
decay function to incentive values at target onset; this ensured
that if RTs were driven by multiplicative as opposed to addi-
tive weighting, then reward gains accrued by faster RTs under

Fig. 4 Response time (RT) Experiment 2. (a) Observed group mean RTs
in ms for targets appearing in high- (dark circles) or low- (light circles)
value placeholders plotted as a function of spatial certainty (x-axis) for
valid and invalid spatial cues (panels) for each reward condition. Vertical
lines indicate ± 1 within-subject SE. Lines represent fit of the winning
model. The winning model involved main effects of incentive value, cue
validity and reward condition. (b) BFs for the probability of the winning
RT model (P[Win]: v + rc + iv), relative to the five next best models
(Alternative, P[Alt], models, y-axis). The larger the BF value, the stronger

evidence for the winning model. Any values lower than 1 (dotted line)
support P[Alt]. The larger the BF value, the stronger the evidence for the
winning model. Any values lower than 1 (dotted line) support P[Alt]; BF
values between 3 (dashed line) and 10 constitute moderate evidence for
the winning model, values > 10 provide strong evidence. Dark bars indi-
cate P[Alt] only contains an additive influence of incentive value; light
bars indicate P[Alt] involves a multiplicative influence of incentive value
and either spatial certainty or validity. The Alt RT models were as
follows:
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high-incentive value/high-certainty conditions would out-
weigh losses incurred by slower RTs under low-incentive
value/low-certainty conditions, relative to RTs predicted by
an additive model. Although the influence of spatial certainty
manifested differently to Experiment 1, i.e., by modulating
accuracy, rather than RT, we observed that the effect of incen-
tive value remained additive to spatial certainty and to other
experimental factors. Again, the findings support the Additive
Hypothesis. However, this interpretation depends on the as-
sumption that participants were able to infer the relationship
between RT and rewards. Although participants were both
explicitly informed about the decaying reward and were ex-
posed to a sufficient range of the function to theoretically be
able to infer the relationship between RT and rewards, an
explicit measure of the participant’s understanding of the
RT/reward relationship should be taken in future studies to
verify this assumption.

What kind of mechanism or computation could result in a
robust additive influence between incentive value and spatial
certainty? In concert with recent theoretical and empirical de-
velopments suggesting that cognitive control processes are off-
set by subjective and computational costs of effortful control
(Braver, 2012; Yee & Braver, 2018), we believe the current
data can be interpreted as reflecting trial-by-trial adaptations
aimed at the conservation of effort. If we assume that the main-
tenance of the task set, i.e., a priori preparedness to identify a
data-limited target at two locations, requires energetic resources
from the underlying selection mechanism, it is of benefit to the
brain to predict conditions where effort can be relaxed, in order
to conserve energy expenditure. For example, by learning the
energetic range over which target identification mechanisms
can be adjusted, to ensure good enough target detection, given
the task parameters. According to this view, a cost-benefit anal-
ysis could inform how much energy could be saved, given an
acceptable decrement to accuracy and RT.

Applied to the current context, after the onset of the incen-
tive value cues, selection mechanisms should maintain a

steady level of task preparation favouring the high-value lo-
cation, for example, by increasing the excitability of neuronal
assemblies whose collective receptive fields correspond to
detecting lines or edges at that location (Carrasco, 2011;
Desimone & Duncan, 1995; Roelfsema et al., 2000; Schmitz
& Duncan, 2018), thereby biasing the system towards a stron-
ger response to the upcoming stimulus (Buschman &Kastner,
2015). Concurrently, the excitability of neuronal assemblies
directed towards encoding information from the low-value
location should be relaxed, as the cost of sometimes missing
the target at that location, given the energy needed to detect it,
should become negligible. Similarly, upon spatial cue onset,
preparation of such target detection mechanisms could be fur-
ther relaxed for the unlikely location, proportionally to how
unlikely that location is to possess a target. Importantly, this is
performed incrementally to the previous adjustment. This in-
terpretation suggests that the system incrementally updates
cost-efficient sensory encoding on the basis of incoming in-
formation. This interpretation predicts that the degree to which
incentive value or spatial certainty can influence performance
is dependent upon the range over which preparatory processes
can be titrated and still yield acceptable performances. This
would account for why, in Experiment 2, under a context with
greater pressure on RT performance, we observed an influ-
ence of cue validity but not spatial certainty. Presumably, it
had become too costly to modulate RT performance by spatial
certainty and meet the perceived demands of the task.

The current findings shed further insights into the previous-
ly proposed unitary selection mechanism that biases competi-
tion between cortical representations of stimuli, in the pres-
ence of both incentive and explicit spatial cues (Stănişor et al.,
2013). These authors showed that overlapping clusters of ma-
caque V1 neurons were sensitive to both incentive value cues
and 100% valid spatial cues. The authors proposed that the
explicit spatial cue served to re-weight the relative value be-
tween the target and distractor, and that this re-weighting was
instantiated by a unitary selection mechanism that computes

Fig. 5 Accuracy data for Experiment 2. Accuracy (Acc) for targets
appearing in high- (dark circles) or low- (light circles) value placeholders
plotted as a function of spatial certainty (x-axis) for valid and invalid

spatial cues (panels) for each reward condition. Vertical lines indicate ±
1 within-subject SE. Lines represent fit of the winning model
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the relative expected value between targets. The current study
shows that the spatial certainty derived from explicit cues does
not contribute to an expected value operation with the previ-
ous incentive values to re-weight the relative value between
the two items. Rather, an additive influence points to the re-
peated invocation of a selection mechanism on the basis of
updates from separable information sources. As incentive val-
ue and spatial certainty appear to have been added, rather than
multiplied, to the existing output of the selection mechanism,
the two sources of information may be transformed into a
common representational space, or unit, prior to the enactment
of their influence.3

An alternate, but not mutually exclusive, reason for the
independence of incentive value and spatial certainty may be
that the two are governed by different learning systems; for
example, recent investigations measuring overt eye move-
ments, rather than covert attention shifts, found that incentive
values induce associative behaviours (Kim & Anderson,
2019; i.e. participants look at the value cue even when paid
not to; Le Pelley et al., 2015), whereas spatial cues may be
learned via instrumental conditioning (i.e. participants are
more likely to repeat an orienting behaviour that has been
reinforced; Kim & Anderson, 2019). Indeed, evidence that
visual selection biases remain present when explicit spatial
cues (i.e. arrows or words) are non-predictive suggests that
these behaviours may be under the control of the habitual
learning system (Jiang, 2018; Yin & Knowlton, 2006), which
governs learned stimulus-response contingencies. Moreover,
in the current experiments, we have taken a snapshot of the
relationship between incentive value and spatial certainty at
one time point (400 ms stimulus-onset asynchrony (SOA)),
potentially when the system is still in a state of updating. It is
possible that a multiplicative relationship between spatial cer-
tainty and incentive value emerges later in time, once the

information from each cue has undergone further processing.
This is a possible avenue of further investigation in future
studies.

An additive influence of incentive value on visual selection
was also observed by Stankevich and Geng (2014), when
value was pitted against the varying probability that a target
would appear on one side versus the other, in the absence of
explicit spatial cues. A visual comparison of the current data
and the data from Stankevich and Geng (2014) also yields
some interesting points of difference concerning the influence
of spatial certainty in the presence or absence of explicit spa-
tial cues. With the current explicit cues, we observe RTs that
are comparable across spatial-certainty conditions for valid
cues, whereas RTs on invalid trials increase as spatial certainty
decreases. We inspected the previous literature and observed
that this is a consistent finding across other studies that varied
the probabilities of explicit spatial cues in comparable tasks
(Lanthier et al., 2015; Vossel et al., 2006), suggesting that this
is a replicable phenomenon, rather than the consequence of a
ceiling effect or something similar. In contrast, Stankevich
and Geng (2014) observed the opposite: RTs decreased as
target location became more likely (analogous to valid trials)
but remained invariant when directed towards increasingly
less likely (invalid) locations. Therefore, our results suggest
that the explicit spatial cue we used resulted in preparation
towards the cued location that did not vary with the certainty
offered by the cue, coupled with a relaxation of preparation
towards the invalid location that scaled with certainty. In con-
trast, non-explicit spatial knowledge appears to cause a
strengthening of preparation towards the more likely location,
with no concomitant relaxation towards the unlikely location.
This suggests that spatial certainty influences visual selection
differently dependent on how it is learned. For example, a
long history of arrows serving as useful directional cues could
motivate a strong response to the directional stimulus, against
which other useful behaviours can be adapted. Therefore, it
appears that visual selection behaviours adapt to environmen-
tal information in relation to the most contextually relevant
baseline behaviour.

Conclusions

Over two experiments, we sought to arbitrate between com-
peting theories for how learned associations pertaining to in-
centive value and spatial certainty combine to influence visual
selection. Specifically, we asked whether this influence was
additive (Additive hypothesis), or multiplicative (Expected
Value hypothesis). We tested these hypotheses by pitting in-
centive values and spatial certainties against one another in a
spatial cueing task under conditions expected to challenge the
optimality of an additive operation. The data from two exper-
iments support the notion that visual selection mechanisms
show independent sensitivity to incentive value and spatial-

3 An alternate explanation for the observed additive relationship between spa-
tial certainty and incentive value on RT performance is that an expected value
operation is being performed by summation on a logarithmic scale. For exam-
ple, the expected utility of the scene (E(U)) could be computed as follows:

E Uð Þ ¼ SC Tð Þ*IV Tð Þð Þ þ SC Dð Þ*IV Dð Þð Þ ð3Þ
and

E0 Uð Þ ¼ log E Uð Þ ð4Þ
where SC is spatial certainty, IV is incentive value, T is the target location
and D is the distractor location. In this case, if the distractor location’s
priority was assigned a value of zero, E(U) would reduce to log(SC(T)) +
log(IV(T)), i.e., an additive relationship between spatial certainty and
incentive value. However, such an account hinges on the notion that the
distractor location is somehow assigned a value of zero. This interpreta-
tion seems unlikely given that the distractor location has value, and can
never be fully ruled out as a potential target location. Moreover, such a
computation should produce logarithmic, and not linear, relationships
between spatial certainty and RTs, when the latter was observed across
both Experiment 1 and Experiment 2.
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certainty information, and that both information sources are
converted to a common representational space, or unit, in
order to influence visual selection. We also interpret our re-
sults as suggesting that the mechanisms underpinning visual
selection dynamically leverage distinct information sources to
reflexively conserve effort within a range that allows accept-
able performance given the current task parameters.
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