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Abstract
Most visual scenes contain information at different spatial scales, including the local and global, or the detail and gist. Global
processes have become increasingly implicated in research examining summary statistical perception, initially as the output of
ensemble coding, and more recently as a gating mechanism for selecting which information is included in the averaging process
itself. Yet local and global processing are known to be rapidly integrated by the visual system, and it is plausible that global-level
information, like spatial organization, may be included as an input during ensemble coding. We tested this hypothesis using an
ensemble shape-perception task in which observers evaluated the mean aspect ratios of sets of ellipses. In addition to varying the
aspect ratios of the individual shapes, we independently varied the spatial arrangements of the sets so that they had either flat or
tall organizations at the global level.We found that observers made precise summary judgments about the average aspect ratios of
the sets by integrating information from multiple shapes. More importantly, global flat and tall organizations were incorporated
into ensemble judgments about the sets; summary judgments were biased in the directions of the global spatial arrangements on
each trial. This global-to-local integration even occurred when the global organizations were masked. Our results demonstrate
that the process of summary representation can include information from both the local and global scales. The gist is not just an
output of ensemble representation – it can be included as an input to the mechanism itself.
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Introduction

Most visual scenes contain information at different spatial
scales (Palmer, 1977), including the local and global, or the
detail and gist. Curiosity about how information is processed
and perceived at these levels has been central to the study of
visual perception for just about as long as the field has existed.
This is evident in the early work of the Gestaltists (Köhler,
1930; Wertheimer, 1923), as well as in more modern research
on perceptual organization (Kimchi, 1994; Wagemans et al.,
2012), visual search (Wolfe et al., 2011), scene perception
(Brady & Shafer-Skelton, 2017; Oliva & Torralba, 2006),
and visual awareness (Hochstein & Ahissar, 2002). Local

and global information appear to be processed in parallel
(Gerlach & Poirel, 2020), and by distinct neural mechanisms
(Bijanzadeh et al., 2018; Liu & Luo, 2019) that operate at
different timescales. According to Reverse-Hierarchy
Theory, global information is made available to awareness
before local information (Campana et al., 2016; Hochstein
et al., 2015; Hochstein & Ahissar, 2002). And yet global
and local processing interact, with global information altering
more localized processing in early cortical areas (Altmann
et al., 2003), presumably via feedback connectivity
(Angelucci et al., 2017).

Recently, local and global processes have been implicated
in research examining summary statistical perception (Cohen
et al., 2016; Whitney et al., 2014; Whitney & Yamanashi
Leib, 2018). This visual mechanism, also known as ensemble
coding, enables perceivers to extract summary statistical in-
formation about sets of simple and complex objects (see
Whitney & Yamanashi Leib, 2018, for a review), in a fraction
of a second (Haberman & Whitney, 2009), with remarkable
precision (Alvarez, 2011; Baek & Chong, 2020; Sun &
Chong, 2019; Sweeny et al., 2013) and with limited demands

* Timothy D. Sweeny
timothy.sweeny@du.edu

1 Department of Psychology, University of Denver, 2155 S Race St,
Frontier Hall, Denver, CO 80210, USA

2 Department of Psychology, University of Colorado Denver,
Denver, CO, USA

https://doi.org/10.3758/s13414-020-02109-9

Published online: 20 October 2020

Attention, Perception, & Psychophysics (2021) 83:982–997

http://crossmark.crossref.org/dialog/?doi=10.3758/s13414-020-02109-9&domain=pdf
mailto:timothy.sweeny@du.edu


on attention (Ji et al., 2018). In the context of ensemble cod-
ing, it is often the case that local processes or analyses are
described as occurring first, pertaining to the encoding of in-
dividual set members. These local representations then pre-
sumably feed into a summary representation of the set via a
pooling mechanism, at which point local information is then
lost in favor of a percept or judgment at the gist level
(Haberman & Whitney, 2009, 2011). This characterization
of the ensemble mechanism is consistent with the feed-
forward architecture of the visual system, and simulations that
feature this type of approach are able to approximate human
perception quite well (Allik et al., 2013; Baek&Chong, 2020;
Ji et al., 2020; Sweeny & Whitney, 2014; Sweeny, et al.,
2015). In this characterization, global-level information is
the outcome of the ensemble process, not an input.

It is clear, however, that information at the global level can
have a profound impact on summary representation. Grouping
cues like color (Brady & Alvarez, 2011), similarity, proximi-
ty, and common region (Corbett, 2017), sharing a 2D surface
(Cha & Chong, 2018), and category membership (Elias &
Sweeny, 2020) appear to influence the computation of ensem-
ble codes. Indeed, summary judgments of emotional crowds
are known to be more accurate when their members express
emotion synchronously, as a collective (Elias et al., 2017). In
some cases, the average of a set can even bias the perception
(Ross & Burr, 2008) or memory of its constituents (Utochkin
&Brady, 2020). These studies demonstrate that information at
the global, grouped level, can act as a sort of gating mecha-
nism, influencing which features or objects are integrated into
summary representations. They also demonstrate that summa-
ry representations can influence how individuals within a set
are perceived. However, they do not necessarily indicate that
unique global-level information, like the spatial layout of a set,
can be included in summary representations.

All sets of objects must have some sort of spatial structure,
hierarchy, or global organization. In fact, any set of objects
that might be represented as an ensemble should carry some
information at the global level. Can information about a set’s
global organization be included in the summary representation
of that set? Might computations of ensemble properties in-
clude multiple spatial scales? There are several reasons to
predict that they should. First, information at the global scale
is known to take precedence in perception (Campana et al.,
2016; Kimchi, 2015; Navon, 1977; Nie et al., 2017), poten-
tially being processed more quickly than local information
(Gerlach & Poirel, 2020). Second, even though local and
global information are known to be processed separately
(Bijanzadeh et al., 2018; Hübner & Volberg, 2005; Liu &
Luo, 2019), their integration has been proposed to occur au-
tomatically, or pre-attentively (Gerlach & Poirel, 2020).
Third, information from both the local and the global scales
appear to be stored in visual working memory, simultaneously
(Brady & Alvarez, 2011), with the global scale being

prioritized (Nie et al., 2017). It therefore follows that when
individual objects appear in sets, or groups, their ongoing
visual representations should include information about both
their local properties and the global spatial organization in
which they appear. Consequently, we tested the hypothesis
that local and global information are available to the pooling
mechanism at the heart of ensemble coding, and that both can
be used, simultaneously, to form summary representations.

We focused on the perception of shapes, and the computa-
tion of the ensemble aspect ratio in particular, for a few rea-
sons. First, all global organizations have aspect ratios. For
example, a set of square windows might be stacked into a tall
organization on a skyscraper. Second, ensemble coding is
known to operate for perception of aspect ratio (Elias &
Sweeny, 2020). Third, global-to-local interactions occur dur-
ing the perception of shape (e.g., the spatial organization of a
set of objects can bias perception of individual aspect ratios in
the set) (Sweeny et al., 2011a; Sweeny et al., 2017). Fourth,
interesting local distortions emerge during the perception of
aspect ratio. In particular, during brief viewing, the perceived
aspect ratios of individual shapes tend to be exaggerated away
from the null-point (i.e., a circle or square) toward extreme
values (Dickinson et al., 2017; Elias & Sweeny, 2020; Suzuki
& Cavanagh, 1998; Sweeny, Grabowecky, Kim, et al.,
2011b), such that flat shapes are reported as being flatter than
they are, and vice versa. Examining judgments of shape, or
aspect ratio, thus provided us with a means to (1) test our
hypothesis that information about a set’s global organization
can be included in an ensemble code, and (2) determine
whether this occurs in conjunction with computations known
to occur at the local or individual-object level.

Our investigation featured two identical experiments, both
of which featured a design in which observers viewed sets of
six briefly presented shapes, and on each trial used the
method-of-adjustment to report the mean aspect ratio of the
entire set. The local aspect ratios of individual shapes within
each set varied on each trial, but on average each set had a
relatively flat or tall aspect ratio. The six shapes in each set
were always spatially distributed such that, overall, the set had
either a flat or a tall spatial arrangement. This global organi-
zation was always independent of the local aspect ratios of the
individual shapes within each set (e.g., a set of tall shapes
could have been arranged in a globally flat arrangement).
This allowed us to separately measure the extent to which
observers incorporated local and global information about as-
pect ratio into their ensemble judgments.

We also included a masking condition so that we could
examine whether global organizations could permeate ensem-
ble representations even when those global patterns were dif-
ficult or impossible to see. In this condition, we used four-dot
masks to disrupt perception of the two most peripheral shapes
in each set. The placement of these two peripheral shapes
provided our sets with global flat or tall organizations. By
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masking these, but not the other four shapes, we aimed to
disrupt perception of global organizations, more generally,
and then determine whether these hidden global organizations
could nevertheless influence local estimates of ensemble as-
pect ratio. This question is worth asking – information about
global form is known to be processed even when it is sup-
pressed from awareness (Chung & Khuu, 2014; Mudrik et al.,
2011), masked global organizations can bias perception of
individual shapes (Sweeny et al., 2017), and ensemble repre-
sentations may include visual information about which a per-
ceiver is unaware (Fischer & Whitney, 2011; Parkes et al.,
2001). We note that this question was of secondary interest
to us, since answering it would only be of value if we first
found an effect of global integration without masking (our
primary aim).

We made the following predictions: First, observers’ esti-
mates of average aspect ratio should be tightly correlated with
the actual means of the sets. These estimates of local mean
shape should reflect the operation of ensemble representation,
including information from multiple set members. Second,
estimates of set means should be exaggerated away from the
null (circular) value, reflecting a perceptual effect of local
repulsion from the category boundary. Such a finding for sets
of shapes would dovetail with previous work on judgments of
individual shapes (Dickinson et al., 2017; Elias & Sweeny,
2020; Suzuki & Cavanagh, 1998; Sweeny, Grabowecky,
Kim, et al., 2011a). Third, we predicted that estimates of set
averages should be biased toward the aspect ratio at the global
level on each trial. For example, the mean of a set of tall
shapes should be reported as even taller when seen in a glob-
ally tall spatial configuration. Fourth, we speculated that sets
of tall shapes might be most susceptible to influence from the
global spatial organizations. This may seem like a surprising
prediction, but in fact we found in a previous investigation that
global organizations only distorted perception of individual
shapes when those shapes had tall aspect ratios (Sweeny,
Grabowecky, & Suzuki, 2011b). Finally, in our previous work
we found that global organizations biased perception of indi-
vidual shapes even when they were not visible (Sweeny et al.,
2017). We thus predicted that, here, global aspect ratio would
still bias perception of a set’s average shape in the masked
condition, but potentially with reduced strength compared to
the unmasked condition.

Experiments 1 and 2

We conducted two identical experiments, both of which fea-
tured the same design and analysis, to test our predictions and
then examine replicability. Rather than report each experiment
separately, we instead present one common Methods section,
and then one Results section with analyses from Experiments
1 and 2 presented side-by-side. Our intention was to facilitate

comparisons across the Experiments and focus the narrative
only on the findings that replicated.

Materials and methods

ObserversWe selected the sample size for Experiment 1 based
on results of our previous investigation examining effects of
global organization on the perception of an individual shape’s
aspect ratio (Sweeny, Grabowecky, & Suzuki, 2011b). In this
previous work, we replicated an effect whereby global orga-
nization was assimilated into the perception of tall but not flat
shapes, using a sample size of eight in two experiments. The
effect size for this result was quite large in both experiments
(ηp

2 = 0.403 and 0.272), but in the current investigation we
aimed to examine potential interactions with masking, and our
analytical approach was different as well. We thus took a
conservative approach and ran 50 observers in Experiment 1
and then ran 50 new observers in Experiment 2 (we had to
drop one observer from each experiment due to failure to
follow instructions). Observers were undergraduates at the
University of Denver and participated for course credit.

This study was approved by the Institutional Review Board
at the University of Denver, and all participants gave informed
consent before participating in the study.

Stimuli The stimulus set included 27 ellipses (0.2° thick lines)
drawn in Adobe Photoshop CS6 v. 13.0 x64, each rendered in
dark gray (luminance: 19 cd/m2) (Fig. 1A). Circular shapes
subtended a visual angle of 1.77°. The aspect ratios were
symmetrically distributed (in log scale) around the circular
value ranging from flat to tall (−.602, −.556, −.510, −0.463,
−0.417, −0.371 −0.324, −0.278, −0.232, −0.185, −0.139,
−0.093, −0.046, 0.00 (circle), 0.046, 0.093, 0.139, 0.185,
0.232, 0.278, 0.324, 0.371, 0.417, 0.463, 0.510, 0.556,
0.602). Note that the appearance of unequal changes in aspect
ratio across the stimulus range is due to rounding error. The
incremental change between adjacent aspect ratios across the
stimulus set was equated, in log units, past the tenth decimal.
The areas of all ellipses were equated to the second decimal,
and the edges of each ellipse were blurred in Adobe
Photoshop using the Gaussian blur tool with a 2-pixel radius.

Flat ellipses present in set displays included the following
aspect ratios: −0.463, −0.417, −0.371 −0.324, −0.278, −0.232,
−0.185, −0.139, −0.093, −0.046, and 0.00 (circle).
Additionally, at the response stage only, three extremely flat
ellipses (−.602, −.556, and −.510) were available as response
options in addition to the rest of the flat ellipses. Tall ellipses
present in set displays included the following aspect ratios:
0.00 (circle), 0.046, 0.093, 0.139, 0.185, 0.232, 0.278,
0.324, 0.371, 0.417, and 0.463. Again, at the response stage
only, three extremely tall ellipses (0.510, 0.556, and 0.602)
were available as response options in addition to the rest of the
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tall ellipses. This prevented compression in the response stage
(see Procedure).

Procedure Each observer was seated in a dimly lit cubicle after
providing consent. A researcher then demonstrated a few ex-
ample trials to the observer in order to illustrate the experi-
mental design. Next, observers were allowed to complete an
unlimited number of practice trials until they felt comfortable
with the task. The instructions were to “Estimate the average
shape. Maintain your gaze on fixation at all times. Move the
mouse L or R to adjust response.”

There were nine trial types. Some trials featured the pre-
sentation of flat ellipses from the flat range of aspect ratios and
the circular value, but not the most extreme values (−0.463,

−0.417, −0.371 −0.324, −0.278, −0.232, −0.185, −0.139,
−0.093, −0.046, 0.00). We refer to these as local-flat trials.
Other trials included only ellipses from the tall range of aspect
ratios and the circular value, but not the most extreme values
(0.00, .046, 0.093, 0.139, 0.185, 0.232, 0.278, 0.324, 0.371,
0.417, 0.463). We refer to these as local-tall trials. For each of
these trials (i.e., local-flat or local-tall), the aspect ratios of the
six ellipses in the set were randomly selected from the ranges
listed above (i.e., six aspect ratios were randomly selected
from the flat and circular values for a given local-flat trial).

These local-flat and local-tall trials were fully crossed with
flat and tall global organizations, producing four trial types.
Local-tall/Global-tall trials included six ellipses with tall as-
pect ratios arranged in a globally-tall spatial organization (see

Fig. 1 (A) The full stimulus set of twenty-seven ellipses. (B) Sets of six
ellipses depicting the four combinations of local flat or tall average aspect
ratios and global flat or tall organizations. For example, in the bottom left
display, the individual shapes have flat aspect ratios (although they vary
in the extent of their flatness) and they are organized in a global-tall

organization. Note that the arrangement of the shapes produces the global
organization; all four quartets of masking dots were presented on each
trial, always in a diamond configuration, meaning they never provided
information about the global organization or location of the shapes. Thus,
only the shapes produced global tall and flat organizations
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the top-left panel of Fig. 1B). Local-flat/Global-tall trials in-
cluded six ellipses with flat aspect ratios arranged in a
globally-tall spatial organization (bottom-left panel of Fig.
1B). Local-flat/Global-flat trials included six ellipses with flat
aspect ratios arranged in a globally flat spatial organization
(bottom-right panel of Fig. 1B). Local-tall/Global-flat trials
included six ellipses with tall aspect ratios arranged in a glob-
ally flat organization (top-right panel of Fig. 1B). Each of
these four trial types was crossed with our masking manipu-
lation (which included masked and unmasked conditions),
producing eight trial types in what we refer to as the multi-
ple-shape condition.

We also included a single-shape condition, which featured
the presentation of a single ellipse. On these trials, a set of six
ellipses was generated as if for a multiple-shape trial, but only
a single ellipse was randomly selected from this set and then
displayed on the screen at a random location. This single-
shape condition served as a control condition that allowed us
to examine whether observers used ensemble coding, averag-
ing information from more than one shape, to make estimates
of the sets, or if they based estimates on multiple-shape trials
from one shape in a given set (see Results). Each observer
completed 50 trials from each of the nine trial types, and
450 trials overall.

Each trial began with the presentation of a blue fixation
circle (0.31° visual angle) at the center of the screen.
Observers were instructed to keep their eyes fixed at this point,
but to let their attention spread across the entire screen. On
each trial from the multiple-shape condition, six ellipses ap-
peared on the screen for 60 ms. Four shapes were presented
around the fixation circle, with locations to the upper left,
upper right, bottom right, and bottom left, with the centroid
of each ellipse 7.15° from the fixation circle (Fig. 1B). The
centroids of each of these four shapes were 9.9° from each
other. The fifth and sixth shapes in a set could appear at two of
four peripheral locations, each of which was 8.98° from fixa-
tion. These locations included positions directly above, to the
right, below, and left of fixation, with the centroid of each
shape 12.1° from each other, and 6.12° from the shapes in
the central locations. Crucially, the fifth and sixth shapes al-
ways appeared in the top and bottom locations or the left and
right locations. In this way, when combined with the four
central shapes, the six shapes formed a globally flat or tall
organization (Fig. 1B). On trials from the single-shape condi-
tion, the one visible shape appeared randomly at any of the
locations.

All trials from the multiple-shape and single-shape condi-
tions included the presentation of quartets of black masking
dots surrounding the four peripheral locations, regardless of
whether shapes appeared at those locations (see Fig. 2). We
elected to use object-substitution masking (i.e., OSM; Enns,
2004; Enns & Di Lollo, 1997; Goodhew et al., 2013) because
it was useful for disrupting visual awareness of our shape

stimuli in a previous investigation (Braun & Sweeny, 2019;
Elias et al., 2018), but we acknowledge that other forms of
masking (e.g., metacontrast or backward masking) could have
met our needs as well. We note that this was not an investiga-
tion of OSM, sowe limit our discussion of its mechanisms and
simply note that we selected dot sizes, distances, and timing
parameters based on values that produced effective masking
in our previous work (Braun & Sweeny, 2019; Elias et al.,
2018).

By placing masking dots at all four peripheral locations, we
ensured that these dots did not contribute to a globally flat or
globally tall organization on any trial (only the shapes pro-
duced these organizations). On unmasked trials in the
multiple-shape condition, these masking dots were displayed
on the screen for the same amount of time as the ellipses, on-
setting and off-setting simultaneously. On masked trials in the
multiple-shape condition, the masking dots onset with the
ellipses, but then remained on the screen for an additional
100 ms after the ellipses disappeared. All trials from the
single-shape condition were unmasked. Each masking dot
subtended a visual angle of 0.63° and appeared 1.82° from
the centroid of each shape. Masking dots were 2.6° apart from
each other.

At the end of each trial, participants used the method-of-
adjustment to adjust a response ellipse presented at the center
of the screen to report the average aspect ratio of the entire set
of ellipses on multiple-shape trials (which we refer to as the
local mean), or the aspect ratio of the single ellipse on single-
shape trials. Observers moved a mouse leftward and rightward
to adjust the aspect ratio of the response ellipse. The starting
aspect ratio of the response ellipse was randomly selected
from the 27 values in the stimulus set on each trial. The aspect
ratio of the response ellipse was free to cycle across the entire
range of 27 aspect ratios, and it stopped adjusting once each
observer reached either the lower or the upper limit of the
range. The range of response aspect ratios was greater than
the range of actual shape values on any trial so that observers
would be free to overestimate perceived shape values, and
thus avoid compression (artificial clumping of responses away
from the endpoints of the range) in the response stage. After
the observer reported the average aspect ratio of the set or
single shape by clicking a button on the mouse, the response
ellipse disappeared and was replaced by a backward mask,
which was an image of the circular shape divided into a 54
× 54 grid, scrambled, and shown for 250 ms. A blank screen
then appeared for a duration between 800 ms and 1,200 ms,
randomly selected from a uniform distribution.

Experiments were conducted on a CRT monitor with a
refresh rate of 100 Hz at a viewing distance of 55 cm.
Observers were given two breaks at the one-third and two-
thirds marks of the experiment. Stimuli were presented against
a uniform gray background (RGB value = 170, 170, 170;
luminance = 41.5 cd/m2). Experiments were coded and run
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using MATLAB (Release 2014b; The MathWorks, Natick,
MA, USA)with the Psychophysics Toolbox (Brainard, 1997).

Results

Multiple regression analysis Our primary analysis featured
one multiple regression (conducted using R) on data from
trials with sets of flat shapes and another multiple regression
on data from trials with sets of tall shapes (see rationale for
separating these analyses below). Each regression equation
predicted perceived-aspect-ratio-of-the-set with fixed effects
of intercept, local-mean-aspect-ratio-of-the-set, global organi-
zation, and masking (y = int + mean*global*mask).

The means of the local aspect ratios of the sets in our design
were not evenly distributed across the full range of aspect
ratios available in our stimulus range (i.e., there were no
trials in which the means were at or close to the circular
value; see the top density panels in Fig. 3). Rather, the means
of the local aspect ratios of the sets were clearly bimodally
distributed. This was intentional, because recent evidence in-
dicates that the precision of ensemble coding is lower for sets
of shapes with aspect ratios that cross the flat-tall category
boundary than for sets that do not, and the perception of var-
iance of such sets is also greater (Elias & Sweeny, 2020).
However, this meant that it would have been inappropriate
to run a single multiple regression on the full dataset. If we
had done so, for example, a single linear fit would have had an
intercept close to zero, running through the middle of the data
and clearly missing the offsetting intercepts evident in Fig. 3,
obtained by running regressions separately for trials with sets
of flat and tall shapes. We thus conducted separate multiple
regressions for trials with sets of flat shapes and trials with sets
of tall shapes.

Mostly for illustration purposes, we depicted every data
point from all observers from the multiple-shape condition

in Fig. 3, with reported aspect ratio of the set (our dependent
variable) shown as a function of mean of the local aspect ratio
of the set. A few things are notable even from a quick visual
inspection. First, observers were clearly able to perform the
task (the two variables were positively correlated). Second,
the distribution of reported aspect ratios was bimodal (al-
though observers did report some sets with means around
zero). Third, reported average aspect ratios appear to have
been exaggerated, especially for trials in which the local mean
aspect ratio of the set was close to the flat/tall category
boundary.

The regression weights (or ß values) for our model fits
indicated the extent to which the set’s actual local mean aspect
ratio, the set’s global organization, the presence of masking, or
their interactions, influenced judgments of the set’s average
aspect ratio. Values near zero would indicate no influence,
whereas positive (or negative) values would indicate a posi-
tive (or negative) relationship between any variable and re-
ported aspect ratio of the set. Tables 1 and 2 report the ß
values, p-values, and 95% confidence intervals for these esti-
mates, for each variable and interaction, for both Experiment 1
and Experiment 2, separately for flat sets (Table 1) and tall sets
(Table 2). In the interest of simplicity and avoiding over-
explaining our data, we now describe in more detail only the
ß values that were statistically significant in both experiments.
For flat sets, we found significant effects of intercept and
local-mean-aspect-ratio-of-the-set across both experiments
(see Table 1). For tall sets, we found significant effects of
intercept, local-mean-aspect-ratio-of-the-set, as well as global
organization across both experiments (see Table 2).

The effects of intercept (also evident in Fig. 3) reflect a
phenomenon of exaggeration. That is, the average aspect ra-
tios of flat sets were reported to be flatter than they actually
were, and the average aspect ratios of tall sets were reported to
be taller than they actually were. The effects of mean (local

Fig. 2 A typical trial sequence. In this example, a set of six shapes is shown in the context of a masking trial, but the stimulus array could have included
just one shape on single-shape trials, and on no-masking trials the masking dots would not have been shown after the offset of the stimulus array
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mean of the aspect ratios of the set) are reassuring, although
not surprising, and simply reflect the fact that as the average
aspect ratios of sets became flatter (or taller), so too did judg-
ments of those set’s aspect ratios. Flat and tall global organi-
zations biased judgments of set means in these same direc-
tions, but only when the individual shapes within those sets
had tall aspect ratios. Although the specificity of this effect to
tall shapes may seem surprising, we did, in fact, suspect that it

would occur based on our previous work, and it replicated
across two experiments here. Finally, we note that we did
not expect a main effect of mask in our multiple regression
because the presence (or absence) of masking should not have
made shapes appear to be flatter or taller. We included this
variable in the multiple regression mainly to determine if it
consistently interacted with the effect of global organization,
which it did not.

Fig. 3 Raw data from Experiment 1 (A) and Experiment 2 (B) depicting
the relationship between the mean of the local aspect ratio of each set (x-
axis) and reported average aspect ratio (y-axis). Data are from the
multiple-shape condition (trials from the single-shape condition are not
included here). All trials from all observers are shown at once, as if from a
single observer. Trials from sets with flat shapes are depicted in dark blue,
and trials from sets with tall shapes are depicted in light blue. Red lines

depict separate linear fits to the data from trials with flat and tall shapes.
The density panels above and to the right of each scatterplot depict the
distributions of displayed and reported aspect ratios, respectively. The
offsetting intercepts of the linear fits clearly illustrate the fact that the
reported average aspect ratios of the sets tended to be exaggerated from
their actual mean aspect ratios

Table 1 Regression weights (i.e.,β values), p-values, and 95% confidence intervals for fixed effects and their interactions from our multiple regression
examining data from trials with sets of flat shapes, from both Experiment 1 and Experiment 2

Flat sets

Experiment 1 Experiment 2

IV β p-value 95% CI β p-value 95% CI

Intercept -.131 *<.001 -.147 -.114 -.117 *<.001 -.135 -.099

Mean .619 *<.001 .551 .687 .663 *<.001 .589 .737

Global -.023 *.004 -.04 -.007 .0002 .812 -.015 .02

Mask -.0009 .42 -.03 -.01 -.03 *.008 -.05 -.008

Mean × Global -.1 *.003 -.17 -.03 -.004 .901 -.07 .069

Mean × Mask .05 .25 -.03 .15 -.03 .543 -.13 .07

Global × Mask .001 .9 -.02 .02 -.03 *.019 .05 -.004

Mean × Mask × Global .01 .76 -.08 .11 .01 *.043 -.21 -.003

Note: Significant effects are noted by an asterisk (*) next to the corresponding p-value. Effects that were significant in both experiments are in bold type
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Alternative analyses – local and global distortion The β
weights listed above describe how strongly, and in which
direction, each variable influenced perception of set means.
Yet these sorts of results can sometimes feel opaque, or less
accessible than the sorts of results one finds when collapsing
across conditions and running simple contrasts. We now pres-
ent a subset of our data using this latter approach in order to
provide a different (yet consistent) perspective on some of our
findings. Specifically, we focused on the signed error (i.e., too
flat or too tall) on multiple-shape trials (each observer’s judg-
ments of the set mean as a function of the combination of local
aspect ratio and the global configuration of the set; the

combinations are depicted in Fig. 1B, like local-flat/global-
flat, etc.). These difference scores are depicted in Fig. 4.
First, we examined the extent to which perception of the set
was exaggerated away from the category boundary of null
aspect ratio (e.g., a circle). For each combination of local
and global aspect ratios, the average error relative to the true
set mean was significantly different from zero (Experiment 1:
all t-values > 4.63, all p-values for one-sample t-tests < .001,
all Cohen’s d values > .66; Experiment 2: all t-values > 3.29,
all p-values for one-sample t-tests < .002, all Cohen’s d values
> 0.47). More important, perceived aspect ratio was always
distorted in the direction of the local aspect ratios in the set.

Fig. 4 Average error of judgments relative to the mean aspect ratio as a
function of local and global aspect ratio combinations from Experiment 1
(A) and Experiment 2 (B). Values represent data collapsed across
masking conditions. Each gray dot in each condition represents average
signed error from one observer. Each boxplot shown behind the dots

depicts the median and interquartile range. We elected to present our
data in this format in order to be as transparent as possible, even though
their appearance may not necessarily convey the significance of the
within-observer comparisons. * indicates p < .05, ** indicates p < .01

Table 2 Regression weights (i.e.,β values), p-values, and 95% confidence intervals for fixed effects and their interactions from our multiple regression
examining data from trials with sets of tall shapes, from both Experiment 1 and Experiment 2

Tall sets

Experiment 1 Experiment 2

IV β p-value 95% CI β p-value 95% CI

Intercept .096 *<.001 .07 .11 .123 *<.001 .103 .142

Mean .713 *<.001 .64 .78 .597 *<.001 .51 .67

Global .026 *.003 .008 .04 .019 *.04 .002 .039

Mask .029 *.018 .005 .05 -.005 .71 -.032 .02

Mean × Global -.105 *.004 -.17 -.03 -.053 .204 -.13 .02

Mean × Mask -.01 .77 -.11 .08 -.012 *.03 -.012 .24

Global × Mask -.004 .69 -.02 .01 -.003 .82 -.024 .03

Mean × Mask × Global .05 .33 -.05 .15 .026 .649 -.14 .08

Note: Significant effects are noted by an asterisk (*) next to the corresponding p-value. Effects that were significant in both experiments are in bold type
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So, for example, if a set contained flat shapes, regardless of the
global organization (flat or tall), the perceived mean aspect
ratio of the set was perceived to be flatter than it was (e.g.,
the LFGF and LFGT conditions in Fig. 4A). This effect oc-
curred in both Experiment 1 and Experiment 2, and it occurred
in addition to the effect of global organization. These effects
reflect the same underlying mechanism behind the effects of
intercept in the multiple regressions described above.

Next, we examined the effect of global organization.
Signed errors in the local-tall/global-tall condition (LTGT)
were greater than those in the local-tall/global-flat condition
(LTGF) both in Experiment 1, t(48) = 2.46, p = .01, d = .35,
and in Experiment 2, t(48) = 3.36, p < .01, d = 0.47 (Fig. 4).
Comparisons between the LFGF and LFGT conditions were
non-significant in Experiment 1, t(48) = 0.72, p =.46, d = .1,
and in Experiment 2, t(48) = 0.34, p = .74, d = 0.04. These
effects reflect the same underlying mechanism behind the
global effects in the multiple regressions described above.
These effects may appear subtle in the overlapping distribu-
tions in Fig. 4, but the differences within observers were none-
theless real and reliable.

It is worth considering that the effects of exaggeration away
from the category boundary (described at the beginning of this
section) may not have reflected a true perceptual distortion.
After all, if observers had simply noted whether shapes were
flat or tall in a given set and then correctly responded with an
aspect ratio from the middle of the flat or tall response range
(which was in fact more extreme than the average flat or tall set,
because the response range was extended), then, artifactually,
errors relative to the true set mean could have appeared exag-
gerated, like the patterns in Fig. 4. This would have not been the
case, however, for trials in which the mean aspect ratios of the
sets were very flat or very tall. On these trials, responding from
the middle of the flat or tall range would have produced a
pattern of data consistent with perceptual attraction, with posi-
tive errors for flat trials and negative errors for tall trials. We
thus re-examined error-relative-to-the-mean only for trials in
which the mean aspect ratio was very flat (less than -.324) or
very tall (greater than .324). We found the same pattern of
results for both Experiment 1 and Experiment 2 (Fig. 5), where-
by aspect ratios were numerically exaggerated from the circular
value, albeit not significantly (Experiment 1; flat trials, t(48) = -
1.08, p = .284, d = .15, and tall trials, t(48) = 1.75, p = .08, d =
.25, Experiment 2; flat trials, t(48) = -1.28, p = .2, d = 0.18, and
tall trials, t(48) = 1.87, p = .067, d = 0.27). Thus, the effects of
perceptual exaggeration described above appear not to have
been due to a response artifact.

Mean versus median We now describe the results of planned
comparisons designed to reveal insights about what kind of
summary information observers used to make their judgments
about average aspect ratio. First, we examined whether re-
sponses more closely reflected the mean or median aspect

ratio of the sets. For each observer, we recorded the signed
error of their estimate relative to the mean and median of the
set on each trial, and then recorded the standard deviation of
each distribution across all trials. We then compared the aver-
age standard deviation of these error distributions, across ob-
servers, when made relative to the mean or the median.
Figure 6 illustrates that errors calculated relative to the mean
were lower than those calculated relative to the median, both
for Experiment 1, t(48) = -14.91, p < .001, d = 2.13, and for
Experiment 2, t(48) = -17.11, p = < .001, d = 2.44.

Ensemble codingNext, we examinedwhether responses about
the set means were arrived at by considering the aspect ratios
of multiple shapes at once (i.e., ensemble coding) or if instead
they simply reflected a process of randomly selecting and
reporting the aspect ratio of one shape from each set. Recall
that we included a control condition – the single-shape
condition. We included this condition specifically for this
analysis because it allowed us to determine what performance
would have looked like had observers evaluated the sets based
on a single randomly selected shape. On these trials, we gen-
erated sets of six shapes just as in the multiple-shape condition
(and recorded the actual mean aspect ratio of the set), but then
displayed only one randomly selected shape (and recorded
that single shape’s aspect ratio as well).

We analyzed the data from trials in the single-shape condi-
tion in two ways. In the crowd-via-subset analysis (CvS), we
recorded the difference between each observer’s response
(which could only have been based on the single visible shape)
and the mean of the set of six shapes (even though observers
could see only one shape from the set) on that trial. Then for
each observer, we calculated the standard deviation of their
distribution of errors across all trials in the single-shape condi-
tion. This calculation simulated what performance would have
looked like in the multiple-shape condition if observers had
based their responses on a single shape from each set. Of
course, we could not have expected observers to make judg-
ments about sets that they could not see. Rather, this analysis
was analogous to an empirical simulation of what performance
in the multiple-shape condition would have looked like had
observers not engaged ensemble coding, and insteadmade their
judgment based on one random shape per set.

In the single-via-single analysis (SvS), we recorded the
difference between each observer’s response and the aspect
ratio of the single visible shape on every trial. We then calcu-
lated the standard deviation of their distribution of errors
across all trials. This calculation allowed us to measure base-
line sensitivity for estimating aspect ratios of individual
shapes.1

1 Scatterplots depicting the relationship between actual aspect ratio and per-
ceived aspect ratio for the single-shape trials, from Experiments 1 and 2, are
available in the Online Supplemental Materials.
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Finally, we performed a crowd-via-crowd analysis (CvC)
using data from the multiple-shape condition. Here, we recorded
the difference between each observer’s response and the mean
aspect ratio of the entire set (which was visible, in this case) on
every trial. We then calculated the standard deviation of each
observer’s distribution of errors across all trials.

For illustration purposes, distributions of errors from these
three analyses (using data from all observers pooled into one

distribution per condition) are shown in the top panels of Fig.
7. Recall that these distributions were built from the errors
observers produced on each trial – each value reflected the
difference between each observer’s response and the mean
of the set of six shapes (or the single shape’s aspect ratio),
with negative values indicating a response that was too flat,
and positive values indicating a response that was too tall.
Narrow error distributions, of course, indicate sensitive

Fig. 5 Average error of judgments relative to the mean aspect ratio
calculated only using trials with extremely flat (XLF) or extremely tall
(XLT) sets from Experiment 1 (A) and Experiment 2 (B). Each gray dot
in each condition represents average error from one observer. Each
boxplot shown behind the dots depicts the median and interquartile range.

If observers had simply responded using the middle of the flat and tall
response ranges on flat and tall trials, respectively, then errors on XLF
trials would have been positive, and errors on XLT trials would have been
negative. Instead, observers produced the same overall pattern of exag-
geration away from the actual aspect ratio of each set

Fig. 6 Standard deviations (SDs) of distributions of error of judgments
calculated relative to the mean or median of sets from Experiment 1 (A)
and Experiment 2 (B). Each gray dot in each condition represents the

average error from one observer. Each boxplot shown behind the dots
depicts the median and interquartile range. ** indicates p < .01
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perception or shape, and distributions centered on zero indi-
cate lack of bias in reporting flat or tall aspect ratios. Most
important, if observers utilized ensemble coding, their distri-
butions of errors from the multiple-shape trials (the CvC anal-
ysis) should have been narrower than their distributions from
the crowd-via-subset analysis from the single-shape trials (the
CvS analysis). This should have occurred despite high base-
line sensitivity for perceiving aspect ratio, and very narrow
error distributions, in the single-via-single (SvS) analysis.
And indeed, this is exactly what we found.

Paired-samples t-tests confirmed that, on average, the SDs
of error distributions from the crowd-via-crowd (CvC) analy-
sis were narrower than those from the crowd-via-subset (CvS)
analysis. This was true for both Experiment 1, t(48) = -3.97, p

< .001, d = 0.56, and Experiment 2, t(48) = -4.06, p < .001, d =
0.57. This suggests that observers used the aspect ratios of
multiple shapes to make evaluations about the means of the
sets in the multiple-shape condition. Furthermore, perfor-
mance in the single-shape condition was quite good, with
observers producing narrower error distributions in the
single-via-single (SvS) analysis than in the crowd-via-crowd
(CvC) analysis in Experiment 1, t(48) = -4.33, p < .001, d =
0.61. The same pattern emerged in Experiment 2, but it did not
reach statistical significance, t(48) = -1.56, p = .12, d = 0.23.

Scope of integration and masking We examined two ques-
tions in our final analysis. First, having now confirmed that
observers used multiple shapes to estimate the set means, we

Fig. 7 Standard deviations (SDs) of distributions of error of judgments
from Experiment 1 (A) and Experiment 2 (B). In the CvC analysis, errors
were calculated by comparing estimates of the set of six shapes’ mean
aspect ratios with the actual means of those sets. In the CvS analysis,
errors were calculated by comparing estimates of single visible shapes’
aspect ratios with the actual means of the full (albeit hidden) sets of six. In
the SvS analysis, errors were calculated by comparing estimates of the

single shape’s aspect ratio with the actual aspect ratio of that single shape.
The histograms at the top of each panel illustrate the distributions of errors
that resulted from these analyses collapsed across all observers, for each
condition. The boxplots at the bottom of each panel illustrate the SDs that
resulted from these analyses with each gray dot representing an SD cal-
culated for each observer. Each boxplot shown behind the dots depicts the
median and interquartile range. ** indicates p < .01
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asked: did observers arrive at these summary representations
by integrating the aspect ratios of all six shapes in each set, or
did they instead base their judgments exclusively on the cen-
tral four shapes? Second, if observers were able to integrate
information from all six shapes, did this depend on whether
the fifth and sixth shapes in the set were masked? We ad-
dressed these questions directly, and simultaneously, by
conducting paired-samples t-tests among four conditions, with
means defined by the following approach. For each observer
and for each trial from the multiple-shape condition, we cal-
culated the error of their response relative to the mean of the
set as determined by the central four shapes or the mean as
determined by all six shapes. We did this separately for trials
from the masked and unmasked conditions. As in our previous
analyses, we then calculated the standard deviation of the
distribution of errors from each of these four types of analyses.
We thus obtained a single value of error distribution SD for
each observer for the following four conditions: error-versus-
central-four/peripheral-masked (4-M), error-versus-central-
four/peripheral-unmasked (4-UM), error-versus-all-six/pe-
ripheral-masked (6-M), and error-versus-all-six/peripheral-
unmasked (6-UM).

We found that, regardless of masking, and in both experi-
ments, errors were smaller (i.e., SDs of error distributions were
lower) when calculated relative to the mean of all six shapes
than when calculated relative to the mean of the central four
shapes (Fig. 8). In Experiment 1, SDs from the 6-M condition
were lower than the SDs from the 4-M condition, t(48) = -
6.18, p < .001, d = 0.88, and SDs from the 6-UM condition
were significantly lower than SDs from the 4-UM condition,
t(48) = -4.72, p < .001, d = 0.67. Likewise, in Experiment 2,
SDs from the 6-M condition were lower than the SDs from the
4-M condition, t(48) = -5.86, p < .001, d = 0.84, and again,
SDs from the 6-UM condition were significantly lower than
SDs from the 4-UM condition, t(48) = -3.58, p < .001, d =
0.51. These data suggest that observers used information from
all six shapes to estimate the mean of a set, and that this
occurred even though the fifth and six shapes in each set were
in the visual periphery, and in some cases masked.

Discussion

Local analyses of individual objects and global analyses of
spatial organization co-occur during the perception of sets
and groups. Here, we have shown that these local and global
analyses are incorporated into summary representations about
those sets. Replicating our recent work (Elias & Sweeny,
2020), we found that observers were adept at summarizing
the average aspect ratios of sets of shapes. These estimates
followed the means of the sets more closely than the medians,
and they reflected information from multiple shapes in each
set. Again, replicating our recent work, estimates of mean
aspect ratio were distorted away from the category boundary,

making tall sets appear taller than they actually were, and vice
versa. Most important, though, was our novel finding that
estimates of average aspect ratio were biased toward the glob-
al spatial organizations of the sets. This effect of global inte-
gration did not depend on whether the spatial organization of
the set as a whole was masked, or unmasked.

We have shown that ensemble codes can include informa-
tion from multiple spatial levels of analysis. This finding is
important, but not because global organizations always carry
meaningful information for making summary judgments (the
shape of a crowd of faces is unlikely to have any relevance for
a judgment about their average emotion, for example). Rather,
our findings pertain more broadly to the ensemble mechanism
itself – they clarify what kinds of visual information can be
included in ensemble codes, and they reposition the mecha-
nism more comfortably with decades of work indicating that
local and global processing interact, with global- or gist-level
information taking precedence (Kimchi, 2015; Navon, 1977;
Nie et al., 2017) or being available to awareness first (Gerlach
& Poirel, 2020). Our results suggest that summary represen-
tations are formed at a timepoint after the parallel and distinct
processing of local and global information is complete
(Flevaris & Robertson, 2016; Hübner & Volberg, 2005).
Finally, our work adds to recent findings indicating that infor-
mation at the global level, or the “gist,” is not just the output of
ensemble coding. Grouping appears to gate the process of
selecting which objects contribute to summary representations
(Brady & Alvarez, 2011; Cha & Chong, 2018; Corbett, 2017;
Elias & Sweeny, 2020), or the precision of those representa-
tions (Elias et al., 2017). We have demonstrated something
novel – holistic information at the global level can serve as an
input for, and be included within, the ensemble computation
as well.

How might global organizations be included in summary
computations? One possibility is that spatial organizations are
incorporated into the sensory representations of individual
shapes, subsequently distorting their perception, but only after
information from each spatial scale is processed separately.
Indeed, this type of global-to-local distortion was recently
demonstrated for the perception of orientation (Campana
et al., 2016), and we previously verified that this can occur
during perception of shape (Sweeny, Grabowecky, & Suzuki,
2011b), presumably via the operation of feedback connectiv-
ity from higher-to-lower visual areas. Individual cells’ re-
sponses can be driven by stimulation outside their classical
receptive fields (Allman et al., 1985), and high-level areas like
LOC, which are sensitive to global shapes, appear to provide
information about spatial organization to retinotopic areas like
V1-V4 via feedback connectivity (Altmann et al., 2003). It
may be the case, for example, that separate encoding of the
global and local properties of our sets occurred initially via
analysis of lower- and higher-spatial frequency-tuned chan-
nels, prior to integration at a later point in time (e.g.,
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Flevaris & Robertson, 2016). A second possibility is that in-
formation about the local aspect ratios and the global organi-
zations in our sets were encoded simultaneously, perhaps even
by the same population of neurons. Individual cells in the
inferotemporal cortex can be tuned to respond to particular
aspect ratios, especially extremely flat and tall aspect ratios
(Kayaert et al., 2005; Op de Beeck et al., 2003; Stankiewicz,
2002). At the neural population level, aspect ratio may be
represented by an opponent-coding scheme (Regan &
Hamstra, 1992; Suzuki, 2005), although recent work suggests
a multi-channel approach may be more appropriate
(Dickinson et al., 2017; Storrs & Arnold, 2017). Crucially,
aspect ratio-tuned cells are also relatively invariant to an ob-
ject’s size (Regan & Hamstra, 1992). So theoretically, a cell
tuned to taller aspect ratios could respond to both the tall items
in a set and the tallness of the set at the global level, at the
same time, obviating the need for feedback. Finally, global
organizations may have biased the local representations of
individual shapes in visual working memory (Brady &
Alvarez, 2011). Indeed, local and global-level information
from hierarchical stimuli have been shown to be stored in
visual working memory, simultaneously, with a bias for glob-
al features (Nie et al., 2017). None of these explanations are
mutually exclusive, although they carry different implications
for when global information is incorporated into summary
representation. It may be the case that when perceivers are
asked to make summary judgments about sets of objects, they
base these judgments on a single ensemble computation pro-
duced after the set has disappeared, drawing from lingering
representations in visual short-term memory. Or, they may
produce multiple ensemble computations (Yashiro et al.,

2020), with some occurring closer to initial sensory encoding,
and some including more emphasis on the global properties of
the set.

We found no evidence that the integration of global orga-
nizations into ensemble representations depended on whether
those global organizations were masked. This is consistent
with recent findings that information about global form can
be processed even when it is suppressed from awareness
(Chung & Khuu, 2014; Mudrik et al., 2011), as well as our
previous work in which we found that global organization
biased perception of individual shapes, even when they were
masked out of awareness (Sweeny et al., 2017). Ensemble
representations have been shown to sometimes include visual
information about which a perceiver is unaware (Fischer &
Whitney, 2011; Parkes et al., 2001). If global information is
indeed processed more quickly than local information, and
then integrated with local information automatically, or pre-
attentively (Gerlach& Poirel, 2020), then global organizations
should penetrate ensemble representations quickly and easily,
as we found here, and when awareness is impoverished or
disrupted. However, we want to point out that we cannot be
certain that our masking manipulation prevented observers
from becoming subjectively aware of the global organizations
of the full sets, at least not on every trial. When designing our
task we elected not to ask observers to report on their aware-
ness of the peripheral shapes because this could have changed
the way observers distributed their attention on each trial,
potentially disrupting their attention to global organization
and integration of global and local cues (Flevaris &
Robertson, 2016). Based on our previous work with similar
stimuli and a nearly identical masking procedure (Braun &

Fig. 8 Standard deviations (SDs) of error distributions of judgments cal-
culated relative to the mean of the central four shapes (4) or all six shapes
(6) in each set as a function of whether the fifth and sixth shapes were
masked (M) or unmasked (UM). Data are shown separately from

Experiment 1 (A) and Experiment 2 (B). Each gray dot in each condition
represents average error from one observer. Each boxplot shown behind
the dots depicts the median and interquartile range. ** indicates p < .01
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Sweeny, 2019), it is in fact likely that observers were some-
times aware of the masked shapes. However, a post hoc ex-
amination of our results suggested that the global effect we
report here truly appears to owe little to visual awareness.2 It is
also notable that we never asked observers to make judgments
about the global organizations or even to pay attention to
them. This suggests that, l ike distr ibution shape
(Chetverikov et al., 2016), global organizations may influence
ensemble judgments quite easily and without explicit knowl-
edge about them.

Our investigation did feature a few limitations. First, we
produced a peculiar effect whereby global organizations only
biased the perception of sets with tall shapes. This was not
unexpected; in a previous investigation, we showed that when
a pair of ellipses was seen side-by-side (producing a globally
horizontal organization), or one-above-the-other (producing a
globally vertical organization), the perception of the individ-
ual shapes in each pair was biased toward these global aspect
ratios, but only when the individual shapes were tall (Sweeny,
Grabowecky, & Suzuki, 2011b). Yet the mechanisms of this
effect are just as unclear now as they were in our previous
investigation. Cells tuned to aspect ratio do provide the basic
input for visual representation of faces (Tsao et al., 2006;
Young & Yamane, 1992), which tend to have tall aspect ra-
tios. It may be that expertise discriminating faces facilitates
integration of global-to-local information, but only for tall
shapes. This is, of course, speculation. Second, we only ex-
amined perception of aspect ratio. It is unclear if the pattern of
results we found here would occur for other visual features
that are likewise ensemble coded and capable of producing
conflicting information at the local and global levels, like ori-
entation (Campana et al., 2016). Examining how the current
findings compare to those with other visual features could
shed additional light on mechanisms. Finally, even the local
elements in our sets had global shapes. That is, the individual
shapes in each set were closed contours, and thus has global
organizations. It would thus be appropriate to say that we
examined global information at two levels of organization,
with the more global of the two levels obtaining its holistic
aspect ratio via grouping. The same critique can of course be
made about classic hierarchical stimuli, and in any case, this
should not be a concern. Perceptual organization is hierarchi-
cal (Palmer, 1977), and we have demonstrated that so too is
ensemble representation.

Local and global information can be found in almost
any visual scene. Integration across these levels of anal-
ysis provides perceivers with information about individ-
ual objects as well as the contexts in which they appear.
We thus speculate that the biases we demonstrated here
may serve to normalize or correct the perception of
objects to account for the three-dimensional contexts in
which they appear. More generally, we have shown that
the process of summary representation is inclusive of
local and global information, consistent with the visual
system’s goal of constructing integrated and cohesive
percepts. The gist is not just an output of ensemble
representation – it can be included as an input to the
mechanism itself.
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