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Abstract
Previously it has been theorized that differential functioning of the locus coeruleus–norepinephrine (LC–NE) system affects
people’s ability to regulate arousal, which has impacts on cognitive abilities. In the present study, we investigated three
potential mechanisms by which the LC–NE system can fail to regulate arousal appropriately: hypoarousal, hyperarousal,
and dysregulation of arousal. Each of these three could potentially account for why arousal affects cognition. To test the
contributions of these three mechanisms, the present study examined individual differences in working memory capacity
(WMC) and the regulation of arousal using pupillometry. Participants completed multiple complex span and visual arrays
change-detection measures of WMC. An eye-tracker recorded pupil diameter as participants completed the visual arrays
tasks. We found rather mixed evidence for the three mechanisms. Arousal dysregulation correlated with lower visual arrays
performance and more self-reported attentional lapses. However, arousal regulation did not correlate with complex span
performance. There was also some evidence for hypoarousal as an explanatory mechanism, as arousal correlated with
attentional lapses. We discuss the implications of the results for theories regarding the role of arousal regulation in cognitive
performance and individual differences in cognitive abilities.
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Working memory capacity (WMC), the ability to maintain,
manipulate, and retrieve goal-relevant information, is a core
cognitive construct. Decades of research have reinforced
this idea, demonstrating that individual differences in WMC
correlate with important outcomes like fluid intelligence
(Conway, Cowan, Bunting, Therriault, & Minkoff, 2002;
Engle, Tuholski, Laughlin, & Conway, 1999; Kane et al.,
2004; Kyllonen & Christal, 1990), reading comprehension
(Daneman & Carpenter, 1980; McVay & Kane, 2012b;
Unsworth & McMillan, 2013), learning (Kyllonen &
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Stephens, 1990; Unsworth & Engle, 2005), and academic
aptitude tests (Engle et al., 1999; Unsworth et al., 2012a,
b). A great deal of research has investigated precisely
why WMC predicts such a wide variety of outcomes.
According to the executive-attention account of WMC,
the predictive power of WMC derives from its substantial
overlap with attention control (Engle & Kane 2004; Kane,
Bleckley, Conway, & Engle, 2001; Kane & Engle, 2002).
Here, attention control is conceptualized as the set of
processes that allow for the selection and activation of
task goals and selection of task-relevant information in the
presence of internally and externally distracting sources of
information. Thus, WMC predicts outcomes (e.g., reading
comprehension) because both WMC and the respective
outcomes require a certain degree of attention control in
order to perform such tasks well.

Another conceptualization of WMC is the sheer amount
of information that individuals can maintain in a prioritized
state (Cowan, 2001; Luck & Vogel, 1997). This account
holds that people with high WMC tend to demonstrate
greater cognitive performance because they can manage
more information at one time (e.g., Fukuda, Vogel, Mayr, &
Awh, 2010; Cowan et al., 2005). Subsequent theories have
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argued that WMC is a constellation of attention control,
short-term memory capacity, and controlled retrieval from
long-term memory (Shipstead, Harrison, & Engle, 2015;
Shipstead, Lindsey, Marshall, & Engle, 2014; Shipstead,
Redick, Hicks, and Engle (Shipstead et al., 2012); Unsworth
2016, Unsworth & Engle, 2007a, b; Unsworth et al., 2014),
and each of these abilities separately account for the shared
variance between WMC and higher-order cognition (e.g.,
fluid intelligence). These lines of research have focused
heavily on cognitive mechanisms which account for WMC-
related differences in behavior. But aside from cognitive
mechanisms, another set of important and unanswered
question remains. Given there is such substantial variation
in WMC even among relatively healthy adults, where
does this variation come from? At the level of neural
mechanisms, what causes some people to have higherWMC
than others?

One prominent theory is that variation in WMC derives
from differences in the functioning of the prefrontal cortex,
specifically the dorsolateral prefrontal cortex (DLPFC).
Drawing upon an impressive array of research involving
human and animal lesion studies, individual differences
investigations, and human neuroimaging work, Kane and
Engle (2002) showed that the DLPFC is especially active
during tasks that require the putative cognitive mechanisms
required by the working memory system. Further, damage
to this area or temporary inactivation by external agents
inhibits an organism’s ability to perform such operations.
Thus, Kane and Engle (2002) theorize that the relative
functioning of the DLPFC underlies individual differences
in WMC and attention control.

Recently, Unsworth and Robison (2017a) proposed a
different neural mechanism: dysregulation of the locus
coeruleus–norepinephrine (LC–NE) system. The LC is a
brainstem nucleus whose neurons release the majority
of cortical NE (Berridge & Waterhouse, 2003). It has
dense projections into most of cortex, and it has both
afferent and efferent connections with areas that have
theoretical roles for attention and working memory (e.g.,
PFC). Historically, it has been argued that the LC has
a general role in promoting wakefulness, alertness, and
arousal, but more recently is has been shown that the
LC has more specific functional connections (see Berridge
and Waterhouse (2003), Samuels and Szabadi (2008), and
Szabadi (2013) for reviews).

Aston-Jones and Cohen (2005)’s influential Adaptive
Gain Theory of the LC–NE system argues for a rather
specific role of the LC in regulating attention. Aston-Jones
and Cohen note that the LC exhibits two modes of firing.
The first is a slow, rhythmic firing (1–3 Hz) that presumably
regulates a level of tonic arousal in the organism. The
second is a rapid, phasic burst of firing in response to the
perception of a goal-relevant stimulus in the environment.

Importantly, there is an interdependence between these two
aspects of activity. When tonic firing is low, the organism
is in a hypoaroused, drowsy state, and the system does not
demonstrate marked phasic firing to nearly any stimulus. At
an intermediate level of tonic firing, phasic firing is highest
and most selective. Thus, during goal-directed behavior,
it is often optimal for the organism to be in this mode,
which Aston-Jones and Cohen call the “exploitative” mode.
The organism selectively processes relevant stimuli in order
to achieve some goal (e.g., detect prey, avoid predators,
earn rewards). At even higher levels of tonic activity, the
organism is in a hyperaroused, overactive state. The system
responds to stimuli rather indiscriminately. In some cases,
this can be advantageous. Aston-Jones and Cohen refer
to this mode as “explorative”. It can allow the organism
to seek new environments and possibilities for rewards.
However, when there is a specific goal, hyperarousal can
be harmful. Thus, there is a trade-off between exploration
and exploitation, and the system must adapt to the situation
in order to match tonic activity with the environmental and
situational demands.

Aston-Jones and Cohen (2005) argue that the functional
consequence of phasic firing of the LC is to release NE
into the cortical regions responsible for the goal-relevant
computation. NE has a gain-modulating role on target
cortical neurons. It enhances firing among neurons that code
for goal-relevant stimuli and inhibits firing among neurons
that code for irrelevant stimuli, thus increasing the signal-to-
noise ratio. So in a way, the LC–NE system directs attention
and target cortical regions implement it.

The LC–NE account of individual differences in WMC
draws upon many of the assumptions and theoretical mech-
anisms proposed by Aston-Jones and Cohen. Additionally,
it draws upon work on large-scale brain networks, specifi-
cally the fronto-parietal control network (FPN), the salience
network (SN), and the default-mode network (DMN). As
the name suggests, the FPN is a collection of cortical
areas that are particularly active during a wide variety of
cognitively demanding tasks that require maintenance of
task goals in the presence of interference and distraction
(Cohen, Aston-Jones, & Gilzenrat, 2004; Corbetta & Shul-
man, 2002; Dosenbach, Fair, Cohen, Schlaggar, & Petersen,
2008; Fox et al., 2005; Miller & Cohen, 2001; Petersen
& Posner, 2012; Vincent, Kahn, Snyder, Raichle, & Buck-
ner, 2008). The default-mode network (DMN) consists of
a broad collection of brain regions, including the medial
prefrontal cortex, lateral frontal cortex, medial parietal cor-
tex, medial temporal lobe, and lateral temporal cortex. Of
note is the fact that the DMN becomes particularly active
during periods of internally directed cognition, such as
mind-wandering and autobiographical retrieval (Andrews-
Hanna, Smallwood, & Spreng, 2014; Raichle et al., 2001).
Thus when the task calls for internally directed cognition,
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the DMN and FPN work in concert. However, during
effective execution of externally directed tasks requiring
attention control, the FPN and DMN are anticorrelated
(Konishi, McLaren, Engen, & Smallwood, 2015; Small-
wood et al., 2013; Spreng et al., 2014; Vatansever, Menon,
Manktelow, Sahakian, & Stamatakis, 2015). The salience
network (SN) comprises the dorsal anterior cingulate cortex
and the frontal operculum/anterior insula cortex. Theoreti-
cally, the SN is responsible for identifying motivationally
salient and goal-relevant stimuli (Menon & Uddin, 2010;
Seeley et al., 2007). Importantly, one if its functions appears
to be the marking of stimuli for further processing by other
cortical regions (e.g., the FPN) while disengaging cortical
regions that process goal-irrelevant information (e.g., the
DMN).

The theory posits a role of the LC in the functional
relationship of these large-scale networks. Specifically,
it argues that consistent and appropriate release of NE
from the LC activates the FPN and deactivates the DMN
so task-relevant computations can be performed without
interference. When the SN detects an error or a particularly
slow response, it sends a signal to the LC to adjust tonic
activity accordingly. Unsworth and Robison propose that
one source of variation in WMC is thus a breakdown of this
system. When the system does not function optimally, the
LC does not regulate arousal levels properly. States of hypo-
or hyperarousal allow the DMN to become active, resulting
in attentional lapses. Evidence for the theory comes from
both behavioral and physiological measures.

Behaviorally, people with low WMC tend to experience
more attentional lapses during tasks that require a consistent
allocation of attention. Indeed, this is one of the central
aspects of the executive-attention account of WMC. For
example, during simple reaction time tasks, high- and low-
WMC participants perform equally on the majority of
trials. However, people with low-WMC tend to experience
occasional trials where they respond particularly slowly
(Unsworth, Redick, Lakey, & Young, 2010). Similar
results are found with choice reaction time tasks, as the
relationships between WMC and speed are largest for
the slowest trials (Schmiedek, Oberauer, Wilhelm, Süß,
& Wittmann, 2007). Theoretically, these instances reflect
lapses of attention. Furthermore, a growing literature has
demonstrated that people with relatively low WMC tend
to report more attentional lapses in the form of mind-
wandering and distraction, especially during cognitively
demanding tasks (Kane et al., 2016, 2007; McVay & Kane,
2012a, b; Robison et al. ,2017; Robison & Unsworth, 2015,
2018; Unsworth & McMillan, 2013, 2014). Thus, there
is converging evidence that one central aspect of WMC-
related variation is the ability to consistently apply attention
toward externally directed tasks. Unsworth and Robison
argue that this variation arises because of a breakdown in the

LC–NE system’s ability to keep a person in an intermediate
state of arousal. As described earlier, Aston-Jones and
Cohen (2005) argue that both hyper- and hypoarousal can
cause indiscriminate or very little overall responding to
stimuli, respectively. Thus, when people cannot maintain
a consistent level of tonic arousal, they will experience
attentional lapses (e.g., mind-wandering and distraction),
and thus experience poor cognitive performance.

For reasons that are still not entirely mapped out, pupil
diameter can be used as a close temporal correlate of the
firing of LC neurons. Decades of research using direct
recordings from animals, including non-human primates,
has demonstrated this link (Aston-Jones & Cohen, 2005;
Eldar, Cohen, & Niv, 2013; Gilzenrat, Nieuwenhuis, Jepma,
& Cohen, 2010; Joshi, Li, Kalwani, & Gold, 2016; Samuels
& Szabadi, 2008; Varazzani, San-Galli, Gilardeau, &
Bouret, 2015). Importantly, pupil diameter can be used
to measure both tonic and phasic activity of the LC. In
the present study, we leverage this connection by using
pupil diameter as an indirect measure of tonic activity
in the LC (i.e., arousal). Our primary dependent measure
was pretrial pupil diameter, which presumably reflects a
momentary state of arousal. From this trial-by-trial measure,
we examined mean levels of arousal and intraindividual
variability in arousal.

The LC–NE account makes several predictions regarding
individual differences in task performance, self-reporting
of attentional lapses, and pupillary measures. First, it
makes the prediction that individuals with low WMC
will show worse performance on tasks that require a
consistent allocation of externally directed attention toward
a goal. Second, it makes the prediction that participants
with low WMC will report more attentional lapses (e.g.,
mind-wandering, external distraction) during such tasks.
Third, it makes the prediction that people with low WMC
will experience more fluctuations in arousal (i.e., higher
intraindividual variability) during such tasks. Fourth, it
makes the prediction that low WMC people will exhibit
lower task-evoked (i.e., phasic) pupillary responses, on
average.

In prior work, Unsworth and Robison have found
evidence for these relationships. In one study, Unsworth
and Robison (2015) examined pretrial and phasic pupillary
measures while participants completed a visual arrays task.
Participants who performed well on the visual arrays task
exhibited less variability in pretrial pupil diameter and
greater phasic responses. Mean pretrial pupil diameter
did not correlate with WMC (k estimate from the visual
arrays task). Variability in arousal and average phasic
responding both accounted for significant portions of
variance in k, suggesting these are dissociable individual
differences that both have implications for WMC. In a
second study, participants in several different experiments
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completed various versions of visual arrays tasks (Unsworth
& Robison, 2018). Although the individual experiments
did not have enough participants for an adequate analysis
of individual differences, Unsworth and Robison combined
data across experiments to do so. They estimated k
for each participant based on their performance on the
tasks. Then, they examined correlations between k and
changes in phasic pupillary responses as a function of set
size. High-k individuals showed larger changes in phasic
pupil responses as set size increased. In a third study,
Robison and Unsworth examined pupillary measures during
the course of a visual arrays task in three experiments
(Robison & Unsworth, 2019). Again, they did not have
sufficient power to examine individual differences in
each individual experiment. But combining data across
experiments, they examined correlations among k, pretrial
pupil diameter, and phasic pupillary responses. High-
k participants exhibited less variability in pretrial pupil
diameter, greater overall phasic pupillary responses, and
less variability in phasic pupillary responses. Mean pretrial
pupil diameter did not correlate with k. In a fourth
study, participants completed a battery of complex span
working memory and attention control tasks during a single
laboratory session (Unsworth & Robison, 2017b). They
measured pupil diameter while participants completed the
attention control tasks. Using confirmatory factor analysis,
they derived latent variables for WMC, attention control,
average tonic arousal, variability in tonic arousal, average
phasic responses, and variability in phasic responses. WMC
positively correlated with attention control and negatively
correlated with attentional lapses, average pretrial pupil
diameter, and variability in pretrial pupil diameter. Further,
WMC negatively correlated with variability in phasic
pupillary responses (but not average phasic responses).

Other researchers have also investigated the link between
pupil measures and WMC. For example, Heitz, Schrock,
Payne, and Engle (2008) measured pupil diameter for high-
and low-WMC participants. The high-WMC participants
(upper quartile of distribution) had larger pre-experimental
pupil diameters and higher baseline pupil diameter across
trials than low-WMC participants (lower quartile of distri-
bution). Even after an incentivization manipulation, low-
WMC participants showed smaller pupil diameters than
their high-WMC counterparts. In a recent study, Tsuka-
hara, Harrison, and Engle (2016) examined relationships
between baseline (pre-experimental and pretrial) pupil
diameter and WMC. Across several experiments, Tsuka-
hara et al. observed significant differences between high-
and low-WMC individuals, as well as people who differed
in fluid intelligence, in pupil diameter. They interpreted
their findings to indicate that people vary in cognitive ability
because of differences in the functional organization of the
resting-state brain arising from the neuromodulatory role of

the LC–NE system. Specifically, they argue that a disruption
of the functional connectivity between the LC, the DMN,
and FPN is one cause of poor cognitive performance dur-
ing situations that require an external allocation of attention
(e.g., WMC and fluid intelligence tasks). Although Tsuka-
hara et al. (2016) do not make this specific claim, this
finding would be consistent with people low in cognitive
ability being relatively hypoaroused (see also Heitz et al.,
2008).

Another possibility is that low-WMC individuals tend
to be hyperaroused. Via this explanation, low-WMC
individuals’ higher arousal leads to lapses of attention, and
their cognitive performance suffers as a consequence. If
this is the case, we should observe a negative correlation
between WMC and pretrial pupil diameter. In their
latent variable analysis, Unsworth and Robison (2017b)
observed a negative correlation between mean baseline
pupil diameter and WMC. So there is some evidence
for this account. Finally, the LC–NE account of WMC
discussed above (Unsworth & Robison, 2017a) argues that
dysregulation of arousal is the major factor linking LC–
NE system functioning to cognitive ability. The hypoarousal
and hyperarousal accounts are not necessarily mutually
exclusive with the dysregulation account. That is, it is
possible that low-WMC individuals tend to be hypoaroused
(or hyperaroused) and experience more volatility in arousal.
Using structural equation modeling, we will be able to test
for these possibilities. Table 1 summarizes the predictions
that each plausible mechanism makes for the present
study, and Fig. 1 shows a graphical depiction of the
hypotheses.

The present study

In many ways, the present study was designed as a follow-
up and extension to Unsworth and Robison (2017b). In that
study, Unsworth and Robison (2017b) measured WMC and
attention control with a battery of tasks. During the attention

Table 1 Theoretical mechanisms and their empirical predictions

Mechanism Prediction

Hypoarousal Average pretrial pupil diameter will positively

WMC correlate with and negatively correlate

with attentional lapses.

Hyperarousal Average pretrial pupil diameter will negatively

correlate with WMC and positively correlate

with attentional lapses.

Dysregulation Variability (CoV) in pretrial pupil diameter

will negatively correlate with WMC and positively

correlate with attentional lapses.
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Fig. 1 Three potential mechanisms by which individual differences
in working memory capacity (WMC) could be associated with
arousal. Low-WMC participants could a be chronically hypoaroused,
b be chronically hyperaroused, or c experience more volatility in
arousal

control tasks, they recorded pupil diameter to measure
both tonic (pretrial) and phasic (task-evoked) arousal. They
also added thought probes to the attention control tasks
to measure subjective states of inattention (e.g., mind-
wandering and external distraction). Importantly, the pupil
and thought probe measures were all collected during the
attention control tasks. Here, we wanted to assess whether
the pattern of findings would hold if the same measures
were included during tasks that are designed to measure
WMC. Unsworth and Robison (2017b) used three complex
span tasks to measure WMC. There are several elements of
complex span tasks that make it difficult to measure and
interpret pupil and thought probe data during them. First,
“trials” consist of lists that alternate between encoding of
memoranda and a distractor task. Thus, any task-evoked
pupillary responses will be heavily influenced by changes
in luminance across screens and list items. Second, there
are relatively fewer trials in which something like pretrial
pupil diameter can be measured. Third, inserting thought

probes is not as straightforward as it is in attention control
tasks because it is unclear exactly where these probes
should be included to catch people in off-task attentional
states. This would allow us to extend the methodology of
measuring attentional lapses and arousal regulation during
situations that primarily engage attention control (Unsworth
& Robison, 2017b) to situations that engage an individual’s
working memory system, as well. Thus, the present study
was intended to replicate the pattern of relations observed in
Unsworth and Robison (2017b) and extend the methodology
to measuring arousal during working memory tasks.

For all these reasons, we decided to include thought
probes and pupil measurement during visual arrays (change-
detection) working memory tasks, while also measuring
WMC with complex span tasks. Prior work has used these
visual arrays tasks to examine the pupillary correlates of
WMC, but these studies (Robison & Unsworth, 2019;
Unsworth & Robison, 2015, 2018) had several weaknesses
that we aimed to address in the present study. First, the
prior studies used single tasks to measure WMC and
they did not have externally validating measures. Second,
because we used single tasks, we could not assess whether
the behavioral and pupillary measures were task-general
or task-specific. Third, in several studies, we make the
claim that variability in pupil diameter (i.e., arousal) is
indicative of attentional lapses. However, in most of those
studies we did not measure such lapses. Thus, the current
study is a combination of the latent-variable approach
taken by Unsworth and Robison (2017b) with the pupillary
approaches taken to studying working memory with visual
arrays tasks (Robison & Unsworth, 2019; Unsworth &
Robison, 2015, 2018).

We continuously recorded pupil diameter during the
visual arrays tasks. Each of the visual arrays tasks took
about 25 min to complete, allowing us to examine variability
in arousal across time. Additionally, we included thought
probes to measure attentional lapses throughout the visual
arrays tasks. For the reasons described above, we only
included thought probes and measured pupil diameter
during the visual arrays tasks. For each participant and
for each task, we computed mean pretrial pupil diameter
(in millimeters) and the coefficient of variation (CoV)
in pretrial pupil diameter. Then, we used confirmatory
factor analysis and structural equation modeling to estimate
relationships among latent factors representing complex
span WM, visual arrays WM, average arousal, variability
in arousal, and attentional lapses. This allowed us to
accomplish several goals: 1) examine the relationships
among WMC and pupillary indices of arousal at the
latent level, 2) examine relationship between WMC and
the tendency to experience attentional lapses, and 3) test
predictions made by the LC–NE account of individual
differences in WMC (Unsworth & Robison, 2017a).
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Method

Participants and procedure

A sample of 213 participants (109 women, 104 men,
Mage = 18.71, SDage = 1.06) from the human subject
pool at Arizona State University completed the study in
exchange for partial course credit. Our goal was to achieve
a minimum sample size of 200 participants, and we used
the end of the academic term as our stopping rule for
data collection. Participants completed all the tasks within
a single 2-h session. At the beginning of the session,
participants completed informed consent and demographics
forms. Participants completed the tasks in the following
order: color change-detection, operation span, orientation
change-detection, symmetry span, letter change-detection,
and reading span. At the end of the session, participants
completed a computerized self-report measure of attention-
deficit/hyperactivity disorder symptoms (Kessler et al.,
2005). However, these data were collected as pilot data for
a separate project, and they are not analyzed in the present
study. All participants were treated according to the ethical
principles of the American Psychological Association.

Tasks

Visual arrays

Color change-detection In this task, participants were
required to remember the colors of squares in various spatial
locations (Luck & Vogel, 1997). Each trial began with a
2000-ms fixation screen upon which a black fixation cross
was centered on a light grey background. There were three
trial types: precue, retrocue, and neutral. On precue trials,
the fixation screen was followed by a 250-ms blank screen,
then a 250-ms directional cue (< or >), then another 250-
ms blank screen. Then, an array of six colored squares (each
20 x 20 pixels; 1◦ visual angle) appeared within a 540 x
402 pixel region centered on the screen for 250 ms. The
spatial location of items was random, with the requirement
that no item appear within a 100-pixel distance of any other
item (measured from each item’s upper-leftmost point). The
colors of the items were sampled from a list of seven
possible colors (red, blue, violet, green, yellow, black, or
white). Colors did not repeat within a trial. On retrocue
trials, the fixation screen was followed by a 750-ms blank
screen, then the stimulus array for 250 ms. After 1750 ms,
a directional cue (< or >) appeared for 250 ms. The test
array then appeared after another 2000-ms delay. On precue
and retrocue trials, three items always appeared on each
hemifield of the screen. Cues were 100% valid. On neutral
trials, the fixation screen was followed by a 750-ms blank
delay, then the stimuli appeared for 250 ms, then there was

a 4000-ms delay before the test. On the test screens for all
trial types, the stimuli reappeared with one of the squares
surrounded by a black circle. The participant’s task was to
decide whether that square was the same color or a different
color as it had been during the first presentation of the array.
Participants pressed a key marked “S” to indicate same or a
key marked “D” to indicate different (the F and J keys on the
keyboard, respectively). For this task and the other change-
detection tasks, we collapsed across trial types to obtain a
single accuracy estimate for the task which was then used
as the dependent variable in all analyses. Participants first
completed five practice trials of each trial type. They then
completed 126 experimental trials (42 of each trial type).
Thought probes followed 16 randomly sampled trials. The
pre- and retrocueing manipulations were included as part
of a larger individual differences investigation (Robison,
Brewer, & Unsworth, 2020). This task took about 25 min
to complete. See Fig. 2 for a visualization of the trial
sequences. Accuracy across the three trial types showed a
high level of internal consistency (α = 0.86), so we felt
comfortable collapsing across trial types to obtain a single
accuracy measure for the task. Also, k scores (set size x [hit
rate - false alarm rate]) highly correlated with the accuracy
measure (r = 0.85). So we believe these two ways of scoring
the data indicated largely the same individual difference.

Orientation change-detection In this task, participants
were required to remember the orientations of colored
bars in various spatial locations (Vogel, McCollough, &
Machizawa, 2005). The task included three randomly
interleaved trial types: neutral trials, precue trials, and
retrocue trials. Each trial began with a 2000-ms fixation
screen upon which a black fixation cross was centered on a
light grey background. On precue trials, the fixation screen
was followed by a 250-ms blank screen, then a 250-ms
cue (“blue” in blue font or “red” in red font) centered on
the screen. After another 250-ms blank screen, the stimuli
appeared. In the neutral and retrocue trials, the prestimulus
period was a 750-ms blank delay screen. The stimuli were
an array of six oriented rectangles (each 20 x 60 pixels; 3◦
visual angle) that appeared within a 540 x 402 pixel region
centered on the screen. The spatial location of items was
random, with the requirement that no item appear within a
100-pixel distance of any other item (measured from each
item’s upper-leftmost point). On every trial, there were three
red bars and three blue bars. Each bar could be one of four
possible orientations: vertical, horizontal, tilted 45◦ right,
or tilted 45◦ left. Orientations could repeat within a trial.
In the neutral and precue trials, the stimuli were followed
by a 4000-ms blank delay screen. In the retrocue trials,
the cue (red or blue) appeared after 1750 ms and stayed
on-screen for 250 ms. There was then another 2000-ms
blank delay screen. See Fig. 3 for a visualization of the
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Fig. 2 Trial sequences for three trial types of color change-detection task. The top row shows neutral trials, the middle row shows precue trials,
and the bottom row shows retrocue trials. Note: figure is drawn for illustrative purposes and not precisely to scale

trial sequences. At test, the items reappeared. One bar had a
white dot on it. The participant’s task was to decide whether
that bar was the same orientation or a different orientation
as it had been during the first presentation of the array.
Participants pressed a key marked “S” to indicate same or
a key marked “D” to indicate different (the F and J keys
on the keyboard, respectively). The next trial immediately
began after participants made their response. Participants
completed five practice trials of each trial type. They then
completed 126 experimental trials (42 of each trial type).
Thought probes followed 16 randomly sampled trials. This
task took about 25 min to complete. Accuracy across the
three trial types showed a high level of internal consistency
(α = 0.87), so we felt comfortable collapsing across trial
types to obtain a single accuracy measure for the task. K
scores also highly correlated with the raw accuracy measure
(r = 0.79).

Letter change-detection In this task, participants were
required to remember the identities of letters that appeared
in six fixed spatial locations. Each trial began with a 2-
s fixation screen upon which a black fixation cross was
centered on a light grey background. The stimuli were
six randomly sampled consonants. Letters did not repeat
within a trial. The stimuli always appeared in the same six
spatial locations, spaced equally around an invisible circle.
In this task the pre- and retrocues highlighted three locations
by flashing a black box around them. At test, the items
reappeared. One letter was outlined by a black box. The
participant’s task was to decide whether that letter was the
same letter or a different letter as it had been during the
first presentation of the array. Participants pressed a key
marked “S” to indicate same or key marked “D” to indicate
different (the F and J keys on the keyboard, respectively).
The next trial immediately began after participants made

Fig. 3 Trial sequences for orientation change-detection task. The top row shows neutral trials, the middle row shows precue trials, and the bottom
row shows retrocue trials. Note: figure is drawn for illustrative purposes and not precisely to scale

3279Atten Percept Psychophys (2020) 82:3273–3290



their response. Participants completed five practice trials of
each trial type first (neutral, precue, then retrocue). They
then completed 126 experimental trials (42 of each trial
type). Thought probes followed 16 randomly sampled trials.
This task took about 25 min to complete. See Fig. 4 for a
visualization of the task sequences. Performance across the
three trial-types showed a high-level of internal consistency
(α = 0.86), so we were comfortable collapsing across trial
types for a single accuracy measure. K scores for the task
also showed a high correlation with raw accuracy (r = 0.82).

Thought probes

In order to measure tendencies to experience attentional
lapses, we included thought probes in the color, orientation,
and letter change-detection tasks. The thought probes asked
participants, “What were you thinking about just prior to
when this screen appeared?” The screen had five response
options: 1) I was totally focused on the current task, 2)
I was thinking about my performance on the task or how
long it is taking, 3) I was distracted by sights/sounds
around me or by physical sensations (e.g., hungry/thirsty),
4) I was thinking about things unrelated to the task (i.e.,
mind-wandering), 5) I wasn’t thinking about anything/my
mind was blank. Participants were instructed to press the
key that best described their preceding thoughts. During
the instructions to the tasks, participants were told that
it is perfectly normal to mind-wander, zone out, or get
distracted from time to time on tasks like these, and that
they should answer the questions honestly and accurately.
For the correlational analyses, we summed reports of mind-
wandering, external distraction, and mind-blanking and
divided by 16 (the total number of probes) into a lapse rate
variable.

Complex span

Operation span In this task, participants solved a series of
math operations while trying to remember a set of unrelated
letters (Unsworth et al., 2005). Participants were required
to solve a math operation, and after solving the operation,
they were presented with a letter for 1 s. Immediately after
the letter was presented the next operation was presented.
At recall participants were asked to recall letters from the
current set in the correct order by clicking on the appropriate
letters. For all of the span measures, items were scored
correct if the item was recalled correctly from the current
list in the correct serial position. Participants were given
practice on the operations and letter recall tasks only, as well
as two practice lists of the complex, combined task. List
length varied randomly from three to seven items, and there
were two lists of each length for a total possible score of
50. The score was total number of correctly recalled items
in the correct serial position. The task took about 12 min to
complete.

Symmetry span Participants recalled sequences of red
squares within a matrix while performing a symmetry-
judgment task (Unsworth, Redick, Heitz, Broadway, &
Engle, 2009). In the symmetry-judgment task, participants
were shown an 8 X 8 matrix with some squares filled in
black. Participants decided whether the design was symmet-
rical about its vertical axis. The pattern was symmetrical
half of the time. Immediately after determining whether the
pattern was symmetrical, participants were presented with a
4 X 4 matrix with one of the cells filled in red for 650 ms.
At recall, participants recalled the sequence of red-square
locations by clicking on the cells of an empty matrix. Par-
ticipants were given practice on the symmetry-judgment

Fig. 4 Trial sequences for letter change-detection task. The top row shows neutral trials, the middle row shows precue trials, and the bottom row
shows retrocue trials. Note: figure is drawn for illustrative purposes and not precisely to scale
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and square recall task as well as two practice lists of the
combined task. List length varied randomly from two to
five items, and there were two lists of each length for a
total possible score of 28. The task took about 10 min to
complete.

Reading span While trying to remember an unrelated set
of letters, participants were required to read a sentence and
indicated whether or not it made sense (Unsworth et al.,
2009). Half of the sentences made sense, while the other half
did not. Nonsense sentences were created by changing one
word in an otherwise normal sentence. After participants
gave their response, they were presented with a letter for 1
s. At recall, participants were asked to recall letters from
the current set in the correct order by clicking on the
appropriate letters. Participants were given practice on the
sentence judgment task and the letter recall task, as well as
two practice lists of the combined task. List length varied
randomly from three to seven items, and there were two lists
of each length for a total possible score of 50. We used the
same scoring procedure as we used in the operation span
and symmetry span tasks. The task took about 12 min to
complete.

Pupillometry

A Tobii T-1750 eye-tracker continuously recorded pupil
diameter and gaze position from both eyes at 60 Hz during
the three change-detection tasks. Participants sat with head
position fixed in a chinrest positioned 60 cm from the
screen. Participants completed the complex span tasks on a
separate computer in the same room. The only light in the
room came from the light produced by the two computer
monitors. Because we did not have any a priori predictions
regarding eye-movements, we did not restrict eye movement
other than instructing participants to bring their eyes to
fixation during the fixation screens, and we did not analyze
eye movements.

To obtain the primary dependent variable of pretrial pupil
diameter, we first averaged pupil diameter across the right
and left eyes. Then, we computed the average of this value
across the 2-s fixation period for each trial. Missing data due
to blinks and off-screen fixations were linearly interpolated
unless all data points were missing for the trial. In that case,
we excluded that trial from the analyses. If a participant was
missing more than 50% of trials for a task, we excluded
pupil data from that task from the analyses. Prior exami-
nations have also examined phasic (task-evoked) pupillary
responses (Robison & Unsworth, 2019; Unsworth & Robi-
son, 2015, 2017b, 2018). But because the pre- and retrocue-
ing trial types produced substantially different task-evoked
pupil diameters with luminance confounds, and because
participants made eye movements due to the spatial cues we

restricted our analysis in the present study to pretrial (i.e.,
tonic) pupil diameter. see Supplemental Materials

We only included eye-tracking during the change-
detection tasks for several reasons. First, these tasks
have a relatively simple fixation-stimulus-delay-response
sequence, allowing for a more straightforward analysis of
pretrial pupil diameter and trial-to-trial changes therein. The
complex span tasks have a rather complicated sequence
of stimulus encoding periods, distractor task periods, and
response screens, providing fewer “trials” within which
we could examine moment-to-moment changes in arousal.
However, we included both change-detection and complex
span measures to generate a rather general estimate of
WMC. We alternated between the change-detection and
complex span tasks to give participants a break from being
seated in the chinrest.

Data analysis

We used R (R Core Team, 2017) for all our analyses.
Pupillometry data were aggregated offline to the level of
analysis. We used several packages for data aggregation
and analysis, including the tidyverse (Wickham, 2017),
data.table (Dowle & Srinivasan, 2018), zoo (Zeileis
& Grothendieck, 2005), lavaan (Rosseel, 2012), and
apaTables (Stanley, 2018) packages. The manuscript was
written in R Markdown using the papaja package (Aust &
Barth, 2018). All analysis scripts, data, and the script used
to write the manuscript can be found on the Open Science
Framework at the following url: https://osf.io/rhwqs/.

We screened the data for outliers by excluding any data
points that fell outside +/- 3 standard deviations of the
mean. These data points were treated as missing in the
descriptives, correlations, and factor analyses. One partici-
pant was removed listwise because the fire alarm sounded
several times during their experimental session. A relatively
larger number of participants are missing data for the Read-
ing Span task because this task came last in the session and
some participants ran out of time before reaching this task.
This occurred for several reasons (e.g., arriving to the ses-
sion late, taking longer than average to complete each task).

Results

Table 2 lists descriptive statistics, and Table 3 lists zero-
order correlations among all dependent measures. All
measures were rather normally distributed (Kline, 2015)
and had acceptable reliabilities. To estimate reliability for
data from the visual arrays tasks, we used a Spearman–
Brown split-half correlation. For the complex span tasks, we
estimated a Cronbach’s alpha from average number correct
on each set size.
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Table 2 Descriptive statistics

N Mean SD Skew Kurtosis Reliability

Operation span 212 35.42 9.56 −0.68 0.07 0.75

Symmetry span 209 18.43 5.86 −0.61 0.14 0.71

Reading span 194 34.48 9.12 −0.76 0.20 0.73

Accuracy - color 213 0.77 0.12 −0.85 0.20 0.91

Accuracy - orientation 208 0.72 0.12 −0.28 −0.75 0.89

Accuracy - letter 203 0.71 0.12 −0.34 −0.79 0.89

Mean pretrial pupil diameter - color 193 4.68 0.68 0.26 −0.48 1.00

Mean pretrial pupil diameter - orientation 178 4.58 0.70 0.22 −0.53 1.00

Mean pretrial pupil diameter - letter 180 4.62 0.69 0.28 −0.34 1.00

CoV pretrial pupil diameter - color 192 0.07 0.02 0.68 0.29 0.92

CoV pretrial pupil diameter - orientation 177 0.08 0.02 0.61 −0.14 0.93

CoV pretrial pupil diameter - letter 179 0.08 0.02 0.46 −0.12 0.93

Lapse rate - color 213 0.39 0.22 0.51 −0.32 NA

Lapse rate - orientation 208 0.46 0.29 0.31 −1.13 NA

Lapse rate - letter 203 0.42 0.31 0.42 −1.07 NA

Note. SD = standard deviation, CoV = coefficient of variation. Pupil diameter is in units of millimeters

In the following set of analyses, we specify several latent
variable analyses to examine relationships among WMC,
attentional lapse rate, and pupillary measures for average
arousal and intraindividual variability in arousal. First, in a
confirmatory factor analysis, we allowed the three complex
span tasks to load onto a factor, the three visual arrays tasks

to load onto a factor, mean pretrial pupil diameter from the
three visual arrays tasks to load onto a factor, variability
in pretrial pupil diameter from the visual arrays tasks to
load onto a factor, and lapse rate from the visual arrays
tasks to load onto a factor. The model fit the data well
(χ2(80) = 159.49, CFI = 0.96, NNFI = 0.95, RMSEA = 0.07,

Table 3 Zero-order correlations

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Operation span –

2. Symmetry span .45* –

3. Reading span .55* .33* –

4. Color accuracy .25* .35* .26* –

5. Orientation accuracy .34* .39* .28* .63* –

6. Letter accuracy .27* .31* .33* .62* .69* –

7. M pupil color .08 −.04 .10 .00 .07 .07 –

8. M pupil orientation .05 −.07 .06 −.01 .05 .03 .95* –

9. M pupil Letter .05 −.04 .01 .04 .12 .06 .92* .97* –

10. CoV pupil color .01 .09 −.10 −.07 −.16* −.13 −.24* −.24* −.19* –

11. CoV pupil orientation −.10 .05 −.07 −.06 −.29* −.19* −.20* −.23* −.23* .69* –

12. CoV pupil letter −.08 .02 −.14 −.12 −.29* −.32* −.20* −.21* −.24* .65* .74* –

13. Lapse color −.06 −.17* −.09 −.33* −.35* −.30* −.14* −.14 −.10 .12 .07 .10 –

14. Lapse orient −.03 −.17* −.12 −.17* −.32* −.26* −.15* −.15* −.21* .03 .22* .12 .62* –

15. Lapse letter −.10 −.18* −.16* −.23* −.31* −.38* −.17* −.16* −.17* .01 .10 .18* .60* .76*

Note. M pupil = mean pretrial pupil diameter, CoV pupil = coefficient of variation of pretrial pupil diameter, Lapse = proportion of trials where
participants reported an attentional lapse (external distraction, mind-wandering, or blank-mindedness). *indicates significant correlation at p <

.05.
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Fig. 5 Confirmatory factor analysis with working memory capacity, mean pretrial pupil, CoV of pretrial pupil, and lapse factors. Solid lines
indicate significant paths at p < .05. Dotted lines indicate non-significant paths

SRMR = 0.04)1,2 and is shown visually in Fig. 5. Several
aspects of the model are notable. First, the complex span and
visual arrays factors correlated, replicating prior research
(Shipstead et al., 2014; Unsworth et al., 2014). However,
these factors shared only about 31% of their variance.
So while the complex span tasks and the visual arrays
tasks tapped into some overlapping sources of variance,
they also require some rather different abilities, as well.
Second, the measures for mean pretrial pupil diameter and
variability (CoV) in pretrial pupil diameter loaded well
onto their respective factors. This suggests that there is a
task-general source of variance in these measures. Third,
the complex span and visual arrays factors both negatively
correlated with the Lapses factor. Thus people with higher
WMC reported a lower rate of attentional lapses. Third,
the mean pretrial pupil factor negatively correlated with the
Lapses factor, suggesting people with higher overall arousal
reported a lower rate of attentional lapses, consistent with
a hypoarousal account. But this factor did not significantly
correlate with either WM factor. Finally, the CoV pupil
factor positively correlated with the Lapse factor and

1CFI = comparative fit index, NNFI = non-normed fit index, RMSEA
= root mean squared error of approximation, SRMR = standardized
root mean residual.
2The pattern of correlations among factors is largely the same when
using k as the manifest variable for the change-detection tasks rather
than raw accuracy.

negatively correlated with the visual arrays factor. But it
did not significantly correlate with the complex span factor.
The fact that the visual arrays and CoV factors negatively
correlated is consistent with the dysregulation account.
However, the fact that the CoV and complex span factors
did not correlate is inconsistent with this account, and does
not replicate prior research (Unsworth & Robison, 2017b).3

In the LC–NE account of individual differences in WMC
and attention control, Unsworth and Robison argue that
dysregulation of arousal manifests as attentional lapses that
cause poor cognitive performance. To test this account,
we specified two structural equation models in which
dysregulation of arousal (pretrial pupil CoV) and low
arousal (mean pretrial pupil diameter) predict attentional
lapses, which predicts visual array WM. Mean pupil and
pupil CoV were allowed to have both direct and indirect
effects on WMC.We specified separate models for complex
span and visual arrays. The models are depicted in Figs. 6
and 7. CoV had a direct effect on visual arrays, but only

3Whereas Unsworth and Robison (2017b) used standard deviation as
their measure of intraindividual variability in pretrial pupil diameter,
we used coefficient of variation in the present study. Standard
deviation and coefficient of variation are highly correlated measures
(color: r = 0.86, orientation: r = 0.87, letter: r = 0.88). If used in the
latent variable analysis, the pattern of correlations remains the same,
but the correlation between mean pretrial pupil diameter and standard
deviation of pretrial pupil diameter switches sign from negative to
positive.
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Fig. 6 Structural equation model testing the mediating effect of attentional lapses between arousal (mean pupil) arousal dysregulation (CoV
pupil) and working memory capacity estimates from visual arrays tasks. Solid lines represent significant paths at p < .05. Dotted lines indicate
non-significant paths

a marginally significant indirect effect through lapses (b =
-.07, p = .05). Thus, attentional lapse rate only partially
mediated the relation between arousal variability and visual
arrays. Neither the direct effect of mean pupil diameter
nor the indirect effect through lapses on visual arrays were
significant. Collectively lapses, mean pretrial pupil diameter
and variability in pretrial pupil diameter accounted for
27% of the variance in visual arrays performance. In the
model predicting complex span (Fig. 4), none of the direct
or indirect effects were significant, and collectively, the
predictors only accounted for 3% of the variance in complex
span performance.

Whereas Unsworth and Robison (2017b) used standard
deviation as their measure of intraindividual variability in
pretrial pupil diameter, we used coefficient of variation
in the present study. Standard deviation and coefficient of
variation are highly correlated measures (color: r = 0.86,
orientation: r = 0.87, letter: r = 0.88). If used in the
latent variable analysis, the pattern of correlations remains
the same, but the correlation between mean pretrial pupil
diameter and standard deviation of pretrial pupil diameter
switches sign from negative to positive.

Blink rate and eyemovements

We additionally addressed two potential reasons for rela-
tions among variability in pretrial pupil diameter, visual
arrays performance, and lapse rate. Specifically, it is possi-
ble that variability in pupil diameter is caused by individual
differences in blink rate or eye movements.4 Thus, vari-
ability in pupil diameter may not be due to variation in
arousal, but rather to the degree to which people move their
eyes and blink during the tasks, both of which can affect
pupillometry (Mathôt, Fabius, Van Heusden, & Van der
Stigchel, 2018). To examine this possibility, we computed

4We would like to thank an anonymous reviewer for pointing us to this
potential confound.

eye blink rate and fixation instability measure for each task.
We categorized blinks as any period of data for which pupil
diameter and gaze position for both eyes were missing for
a time period of 100 to 500 ms (Jongkees & Colzato, 2016;
Peckham & Johnson, 2016; Smilek, Carriere, & Cheyne,
2010; Unsworth, Robison, & Miller, 2019). We summed the
number of blinks and divided by the task duration (in min-
utes) to compute a blink rate variable for each participant.
For fixation instability we used intraindividual variability
in gaze deviation from the center of the screen. Specifi-
cally, for each participant, we computed the instantaneous
deviation from fixation using the x- and y-coordinates of
the right eye’s gaze position at each sample. Then, we
computed the standard deviation of these values across
the 2000-ms fixation screen (higher standard deviation =
greater fixation instability). We averaged this value across
trials for each participant for each task. Then, we specified
a confirmatory factor analysis similar to that in Fig. 5,
but we added factors for blink rate and fixation instability.
We allowed blinks from the color, orientation, and letter
change-detection tasks to load onto a Blink Rate factor, and
we allowed fixation instability estimates from those tasks
to load on a Fixation Instability factor. We allowed these
factors to correlate with the other factors in the model.

The model fit the data well (χ2(168) = 337.45, CFI
= 0.94, NNFI = 0.92, RMSEA = 0.07, SRMR = 0.05).
Neither the blink rate factor nor the fixation instability
factor correlated significantly with the pupil variability
factor (see Table 4). Thus, it did not appear that one
of these factors was driving the relations among visual
arrays performance, arousal variability, and lapse rate. But
interestingly, the blink rate and fixation instability factors
did significantly correlate with some other factors in the
model. For example, blink rate positively correlated with
visual arrays (r = .28) and negatively correlated with lapse
rate (r = -.25). This suggests that people who blinked more
often had higher estimates of visual working memory and
reported fewer instances of task-unrelated thoughts. This is
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Fig. 7 Structural equation model testing the mediating effect of attentional lapses between arousal (mean pupil) arousal dysregulation (CoV
pupil) and working memory capacity estimates from complex span tasks. Solid lines represent significant paths at p < .05. Dotted lines indicate
non-significant paths

not a pattern that we predicted, but it begs replication and
future investigation. Fixation instability also correlated with
some of the other factors. It negatively correlated with both
complex span (r = -.21) and visual arrays (r = -.50), and it
positively correlated with lapse rate (r = .25). Thus people
whose eyes tended to stray from fixation during the fixation
screen tended to show lower working memory capacity and
more attentional lapses. Although we did not predict this
pattern, this finding is consistent with prior research that
has suggested that fixation stability might be an indicator
of poor attention control (Munoz, Armstrong, Hampton, &
Moore, 2003; Unsworth et al., 2019). These findings were
exploratory, and not the purpose of the present paper. But
they offer interesting questions for future work.

Discussion

Recently, Unsworth and Robison (2017a) proposed a theory
that one underlying source of variation that leads to
individual differences in WMC is the relative functioning of
the LC–NE system. They theorized that when this system
breaks down, people have a tendency to fluctuate between
states of arousal more readily, which can cause attentional
lapses and poor cognitive performance. Unsworth and

Table 4 Interfactor correlations for model including blink rate and
fixation instability

1 2 3 4 5 6

1. Complex span –

2. Visual arrays .56* –

3. Pupil mean .02 .03 –

4. Pupil CoV −.08 −.33* −.26* –

5. Lapse rate −.21* −.44* −.20* .21* –

6. Blink rate −.04 .28* −.07 −.13 −.25* –

7. Fixation instability −.21* −.50* .16 .12 .25* −.11

Note. CoV = coefficient of variation

Robison identified three potential mechanisms by which
dysfunction of the LC–NE system could impact arousal
and thus cognitive performance. The first is hypoarousal.
It could be the case the low-WMC individuals are simply
underaroused. If that were the case, people with low WMC
should show smaller pupil diameters. Previously, Heitz
et al. (2008) and Tsukahara et al. (2016) observed such
a relationship. We did not observe that relationship in the
present study. However, there was a significant negative
correlation between attentional lapses and average pretrial
pupil diameter, indicating that low-arousal participants did
tend to experience more attentional lapses. Thus, there
was one piece of evidence consistent with a hypoarousal
hypothesis.

The second potential mechanism is hyperarousal. One
piece of evidence consistent with this hypothesis was the
fact that mean pretrial pupil diameter negatively correlated
with WMC in Unsworth and Robison (2017b) latent
variable analysis. Thus, low-WMC participants tended
to have higher arousal overall in that study. However,
we observed no evidence consistent with a hyperarousal
hypothesis in the present study.

The third potential mechanism is dysregulation of
arousal. If low-WMC people experience more shifts
between states of low, intermediate, and high arousal more
readily, then we should observe a negative correlation
between intraindividual variability in pretrial pupil diameter
and WMC and a positive correlation between intraindivid-
ual variability and attentional lapses. Here, we used the
coefficient of variation (CoV) as a measure of intraindi-
vidual variability. Indeed, the CoV factor negatively corre-
lated with a factor representing performance on the visual
arrays task and positively correlated with an attentional
lapses factor. However, the CoV factor did not correlate
with the complex span factor. Therefore, we observed sev-
eral pieces of evidence consistent dysregulation hypothe-
sis, but the fact that complex span did not correlate with
the arousal regulation factor was inconsistent with this
account.
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In our final analysis, we tested one specific prediction of
the LC–NE account of working memory and attention—that
the regulation of arousal affects cognition via attentional
lapses (Unsworth & Robison, 2017a). To do so, we specified
two structural equation models in which attentional lapses
were allowed to mediate the relations between the mean
arousal and arousal dysregulation and WMC. Mean pretrial
pupil diameter had neither a direct nor an indirect effect
on either visual arrays or complex span factors. Thus,
global arousal levels did little to explain variance in WMC.
Dysregulation had a direct effect on the visual arrays factor,
but not the complex span factor. Finally, the mediating effect
of dysregulation on visual arrays via attentional lapses was
not significant. Therefore, there was only partial support for
that specific prediction.

At the outset, we had hoped to bring more data to
light regarding one yet-unanswered research question. Why
do people differ so substantially in WMC? What are the
physiological and neural mechanisms by which the natural
variation arises? To this end, we have made some strides.
Prior work has examined the role of arousal regulation
during measures of attention at the latent level (Unsworth
& Robison, 2017b), and other studies have examined
arousal regulation during working memory tasks at the
single-task level (Robison & Unsworth, 2019; Unsworth &
Robison, 2015, 2018). This study served as an attempted
replication and extension of the latent-variable approach
taken by Unsworth and Robison (2017b) to examining
relations among WMC, arousal regulation (measured via
pupillometry), and attentional lapses. One weakness to this
study is that we did not have any measures of higher-order
cognition (e.g., reading comprehension, fluid intelligence)
in order to test whether dysregulation of arousal also
affects such abilities. In their study, Tsukahara et al.
(2016) observed a relationship between fluid intelligence
and baseline pupil size even after controlling for WMC
and other potentially important variables (e.g., age, caffeine
intake, sleep, etc.).

One major difference between the present study and
Tsukahara et al. (2016) is that here and in Unsworth
and Robison (2017b), pupil diameter was measured via
pretrial measurements inserted into tasks. Tsukahara et al.
(2016) measured pupil diameter during a task-free, pre-
experimental resting measurement. These are substantially
different situations, and might account for why we did
not observe an association between WMC and mean pupil
diameter in the present study (but see Unsworth et al., 2019).
In ongoing work, we are including both pre-experimental
and pretrial measurements to see whether these two
measures differentially correlate with cognitive abilities.

Several our of findings replicate prior studies that have
demonstrated relations among arousal dysregulation and
performance in visual arrays tasks (Robison & Unsworth,

2019; Unsworth & Robison, 2015), and that arousal
dysregulation correlates with the tendency to experience
attentional lapses (Unsworth & Robison, 2017b). Therefore,
arousal dysregulation rather reliably predicts both visual
arrays working memory and the degree to which people
experience lapses. However, we did not replicate the finding
that measures of complex spanWM correlate with measures
of arousal dysregulation. Previously, Unsworth and Robison
(2017b) observed this relationship. Here there were no
significant associations between complex span WM and
arousal regulation. There are several reasons why this
could have been the case. First, Unsworth and Robison
measured arousal during attention control (psychomotor
vigilance and Stroop) tasks. Here, we measured arousal
during visual WM tasks. Perhaps the differences across
these two contexts lead to differential demands on arousal
regulation and substantially change the nature of the relation
between WMC and arousal regulation. The visual arrays
tasks have a repetitive stimulus-response (or stimulus-delay-
response) structure that repeats over many trials. Whereas
complex span tasks have a more complicated and less
repetitive structure. It is possible that arousal regulation is
more important for performance in situations that require
consistent attention to a repetitive task. Another possibility
is that visual arrays tasks, especially ones that add additional
selectivity requirements like those in the present study, lean
more heavily on an individual’s attentional system than their
memory system (Martin, Tsukahara, Draheim, Mashburn,
& Engle, 2019; Robison et al., 2018; Robison & Unsworth
2017; Shipstead et al., 2012, 2014, 2015). If that is the
case, then the present results largely replicate findings by
Unsworth and Robison (2017b) that variability in arousal is
an underlying difference that correlates with one’s ability
to control their attention. This hypothesis will require
future investigation. Second, the fact that we observed a
relationship between arousal dysregulation and visual arrays
performance, but not complex span, could be due to the
fact that arousal regulation was measured during the visual
arrays tasks. Therefore, there is shared method and temporal
variance between these measures. However, the complex
span and visual arrays tasks were completed during the
same session and in alternating fashion. Therefore, the
extent to which temporal factors (e.g., alertness, motivation)
affect arousal regulation, they should have affected visual
arrays and complex span tasks about equally. We chose
to measure arousal regulation during the visual arrays
tasks because they provide more “trials” by which we
can measure both mean arousal and variability in arousal.
Complex span tasks are just that—complex—and they
make the measurement of pupil diameter (i.e., arousal)
considerably less straightforward. Thus it is still not entirely
clear why arousal regulation should correlate with visual
arrays task performance, but less so with complex span task
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performance. We are currently following up on this finding
in ongoing research.

Earlier, we noted that one influential theory regarding
the cause of individual differences in WMC is differential
functioning of the DLPFC (Kane & Engle, 2002). We
should note that it is possible that this is indeed a source
of variation. While we posit a different mechanism—
arousal dysregulation via differential LC–NE functioning—
these mechanisms are not mutually exclusive. We cannot
rule out that individuals who experience more variability
in arousal do not also have relatively weaker DLPFC
functioning. It could also be the case that some people have
relatively low WMC because of poor arousal regulation,
whereas others have low WMC because of poor DLPFC
functioning. With the present data, we cannot specifically
address the DLPFC theory. But because we know there
are physiological links between pupil diameter and LC–
NE functioning, we can be relatively certain that the
inter- and intraindividual variability in pupillary measures
indexes, to a reasonable extent, differential activity of the
LC–NE system. It is also the case that NE is not the
only neuromodulator that affects cognition. Indeed, other
systems likely work in concert with the LC–NE system
(e.g., the dopaminergic and cholinergic systems) to give rise
to the complex set of computations required in any situation
that places demands on working memory and attention
(Cools & D’Esposito 2011, Sara, 2009; Sarter, Givens, &
Bruno, 2001; Sawaguchi & Goldman-Rakic, 1991.

Although it was not an aim of the present study at
the outset, an anonymous reviewer suggested we examine
whether other individual differences (eye blink rate, fixation
instability) might be driving the correlations we observed
with pupil diameter. Both blinking and eye movements
can affect pupillometry, so this is a valid concern (Mathôt
et al., 2018). Therefore, we computed an eye blink rate
measure for each task, as well as a measure of fixation
instability. Interestingly, we were able to specify factors for
these measures at the latent level, indicating there is some
degree of trait stability to the measures. But neither the blink
rate factor nor the fixation instability factor significantly
correlated with the pupil variability factor. Therefore, we
do not believe these other factors were driving our findings.
However, we did observe some significant correlations
among eye blink rate, fixation instability, and the other
factors. Specifically, eye blink rate positively correlated
with visual arrays performance, whereas fixation instability
negatively correlated with visual arrays. Eye blink rate and
fixation instability also correlated with lapse rate, but in
opposite directions. People who reported more attentional
lapses tended to blink less often but have more fixation
instability. Eye blink rate and fixation instability did not
significantly correlate.

It is important to note that we did not predict
these patterns, and these analyses were completed in an
exploratory manner. But they are consistent with some prior
work. For example, prior studies have shown that fixation
instability is higher among individuals with poor attention
control (Unsworth et al., 2019), individuals with attention
deficit-hyperactivity disorder (Munoz et al., 2003), autism
spectrum disorders (Shirama, Kanai, Kato, & Kashino,
2016), schizophrenia, and obsessive-compulsive disorders
(Barton, Pandita, Thakkar, Goff, & Manoach, 2008; Benson
et al., 2012; Damilou, Apostolakis, Thrapsanioti, Theleritis,
& Smyrnis, 2016), individuals high in trait anxiety
(Laretzaki et al., 2011), and individuals low in intelligence
(Smyrnis et al., 2004). Thus, if fixation instability is a
rather general indicator of poor cognitive control, that
would be consistent with our observation that it negatively
correlates with working memory capacity and positively
with attentional lapses. It has also been suggested that eye
blink rate can be used as an indirect measure of activity
in the dopaminergic system (Colzato, Wildenberg, Wouwe,
Pannebakker, & Hommel, 2009; Jongkees & Colzato,
2016; Peckham & Johnson, 2016), and dopamine has been
implicated in the regulation of working memory (e.g.,
Sawaguchi & Goldman-Rakic, 1991; Braver & Cohen,
2000; Cools & D’Esposito, 2011). Previously, Unsworth
et al. (2019) did not find any relations between spontaneous
eye blink rate and working memory capacity or attention
control abilities. However, their study used spontaneous
eye blink rate during a pre-experimental resting period,
whereas these measures came within the context of a
working memory task. If the relation between blink rate and
task performance can be replicated, and there is reason to
believe eye blink rate is an indirect yet valid measure of
dopaminergic system activity, this opens doors for future
research combining pupillometry and blink rate to study
the shared and unique influences of the dopaminergic and
noradrenergic systems on individual differences in working
memory capacity.

Conclusions

We sought to test whether three different mechanisms
would account for individual differences in working
memory capacity and the ability to resist attentional lapses.
However, we found only mixed evidence for the two of
the mechanisms (hypoarousal and arousal dysregulation).
Three major pieces of evidence were consistent with an
arousal dysregulation account: people who demonstrated
lower visual arrays performance showed more arousal
dysregulation, 2) people who self-reported more attentional
lapses showed more arousal dysregulation, and 3) people
who self-reported more attentional lapses demonstrated
lower visual arrays performance and lower complex span
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performance. These are all predictions made by Unsworth
and Robison (2017a) in their LC–NE theory of working
memory and attention control. However, one piece of
evidence was lacking in the current study. Complex span
performance did not correlate with arousal regulation, as
it did in one prior study Unsworth and Robison (2017b).
Despite a moderate latent correlation between complex span
and visual arrays in a factor analysis (r = .56), they showed
different correlations with an arousal regulation factor.
Thus, future research will necessary to further delineate the
nature of individual differences in various cognitive abilities
and how they are impacted by arousal, and under what
situations arousal regulation is most important for optimal
cognitive performance.

Open practices statement

We have made all of our data for the present study available
to the public on the Open Science Framework (https://osf.io/
rhwqs/). An R markdown document containing all analyses
is on the Open Science Framework under the same URL.
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