
An explicit investigation of the roles that feature distributions play
in rapid visual categorization

Hee Yeon Im1,2
& Natalia A. Tiurina3 & Igor S. Utochkin3

# The Psychonomic Society, Inc. 2020

Abstract
Ensemble representations are often described as efficient tools when summarizing features of multiple similar objects as a group.
However, it can sometimes be more useful not to compute a single summary description for all of the objects if they are
substantially different, for example when they belong to entirely different categories. It was proposed that the visual system
can efficiently use the distributional information of ensembles to decide whether simultaneously displayed items belong to single
or several different categories. Here we directly tested how the feature distribution of items in a visual array affects an ability to
discriminate individual items (Experiment 1) and sets (Experiments 2–3) when participants were instructed explicitly to catego-
rize individual objects based on the median of size distribution. We varied the width (narrow or fat) as well as the shape (smooth
or two-peaked) of distributions in order to manipulate the ease of ensemble extraction from the items. We found that observers
unintentionally relied on the grand mean as a natural categorical boundary and that their categorization accuracy increased as a
function of the size differences among individual items and a function of their separation from the grand mean. For ensembles
drawn from two-peaked size distributions, participants showed better categorization performance. They were more accurate at
judging within-category ensemble properties in other dimensions (centroid and orientation) and less biased by superset statistics.
This finding corroborates the idea that the two-peaked feature distributions support the “segmentability” of spatially intermixed
sets of objects. Our results emphasize important roles of ensemble statistics (mean, range, distribution shape) in explicit visual
categorization.
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Introduction

The visual system organizes complex scenes using strategies
for forming coherent and concise representations, rather than
passively receiving all (millions of) bits of information hitting
our retinas at any given moment. One powerful heuristic is

representing sets of similar objects as an ensemble using sum-
mary statistics. Ensemble coding provides global information
about a group of items in the entire image such as average
across multiple dimensions (Alvarez & Oliva, 2008; Ariely,
2001; Bauer, 2009; Chong & Treisman, 2003; Dakin & Watt,
1997; Haberman &Whitney, 2007, 2009), variance (Morgan,
Chubb, & Solomon, 2008; Solomon, 2010), or approximate
number (Chong & Evans, 2011; Feigenson, Dehaene, &
Spelke, 2004; Halberda, Sires, & Feigenson, 2006). Such
global information can be extracted through a pooling process
across multiple objects. It provides a quick and precise de-
scription about the image as a whole, even when the number
of objects to be averaged exceeds the cognitive capacity,
which is severely constrained by selective attention and work-
ing memory systems (e.g., Cowan, 2001; Luck & Vogel,
1997; Pylyshyn & Storm, 1988) and when little conscious
access or selective attention to the image is available (e.g.,
Alvarez, 2011; Alvarez & Oliva, 2008; Alvarez & Oliva,
2009; Ariely, 2001; Corbett & Oriet, 2011; Im & Halberda,
2013; Parkes, Lund, Angelucci, Solomon, & Morgan, 2001).

* Igor S. Utochkin
isutochkin@inbox.ru

1 Fetal-Neonatal Neuroimaging and Developmental Science Center,
Boston Children’s Hospital, Harvard Medical School, Boston, MA,
USA

2 Division of Newborn Medicine, Department of Medicine, Boston
Children’s Hospital, Harvard Medical School, Boston, MA, USA

3 Psychology Department, National Research University Higher
School of Economics, 4-2, Armyansky per, Moscow, Russia 101000

https://doi.org/10.3758/s13414-020-02046-7

Published online: 14 May 2020

Attention, Perception, & Psychophysics (2021) 83:1050–1069

http://crossmark.crossref.org/dialog/?doi=10.3758/s13414-020-02046-7&domain=pdf
mailto:isutochkin@inbox.ru


Ensemble coding is of great value in our daily perception
and cognition of visual scenes. If we look around, we always
find some redundancy and regularity in real-world images:
Buildings in a city, trees in a forest, and fruit in a bush, for
example, are often seen as groups of similar but not identical
objects. For most everyday needs, wemay not need to store all
individuating information from these scenes. We can instead
only extract summary statistics of a scene to make sense of the
overall layout, pattern, and gist concisely and compactly. Such
perceptual ability to extract ensemble representations allows
our brain to “do more with less” and better interact with the
complex, dynamic visual world. For example, representing
and storing an ensemble (e.g., average) of multiple objects
helps the visual system to maintain and recall an image better.
At the object level, only a few items (up to three or four) can
be remembered at a time; the rest may be missed entirely due
to the limited memory capacity. When attempting to recall
missed objects, one would have to make random guesses.
However, a higher-level representation of average extracted
from all the objects in the image can guide one to recall the
missed object to some extent by retrieving values biased to-
ward the average and reducing the overall expected errors
(Brady & Alvarez, 2011; Im & Chong, 2014). Say, you try
to remember different colors of six disks in an image and
report the colors you remember. If you remember that the
disks were in “cool” colors on average (even if you cannot
remember the exact colors for each disk), you will likely re-
duce the overall error by choosing six colors from only the
continuum of “cool” colors and avoid “warm” colors.
However, if you remember only the colors of three disks
and completely missed the others (without remembering av-
erage information), you cannot avoid making extreme errors
when you recall the color of one of the three forgotten colors
(e.g., by randomly choosing “red” for a disk that is turquoise).

Previous studies have demonstrated that multiple sets of
objects, up to three or four, can be extracted in parallel, as
higher-order units for perception and memory (e.g.,
Halberda et al., 2006; Im & Chong, 2014; Im, Park, &
Chong, 2015). The limit on the number of ensembles that
can be extracted and remembered at any given time also con-
verges with the well-documented three-or-four-object limits
of visual attention (e.g., Pylyshyn & Storm, 1988) and work-
ing memory (e.g., Luck & Vogel, 1997; Zhang & Luck,
2008). Such convergence illustrates how items in an image
can be represented hierarchically (e.g., as individuals or en-
sembles). Results of different units of visual processing can
allow complementary information about the image (e.g., local
vs. global) to be available to an observer at the same time. In a
display of 20 dots in four different colors (five red, five blue,
five yellow, and five green dots), for example, an observer can
represent 20 individual dots, ensemble features of four color-
sets, and even those of a superset. Previous work has empir-
ically investigated such a notion of hierarchical coding in

visual perception and memory (Brady & Alvarez, 2011;
Corbett, 2017; Halberda et al., 2006; Im & Chong, 2014;
Im, Zhong, & Halberda, 2016). This work collectively sug-
gests that the nature of visual representations in perception and
memory is constructive, hierarchical, and interactive across
multiple levels of abstraction. Hierarchical and constructive
visual representation in perception and memory can be made
possible when the extraction of ensemble features is as rapid
as those of individuals so that both levels of representation are
available to interact with each other. Indeed, previous studies
have shown that ensembles can be extracted from groups of
objects very rapidly (e.g., Im et al., 2016; Leib, Kosovicheva,
& Whitney, 2016). The question that remains to be addressed
is how the visual system utilizes ensemble features that are
rapidly extracted to facilitate perceptual and cognitive pro-
cesses underlying hierarchical coding of complex, cluttered
visual scenes. In the current study, we report three case studies
that empirically tested the roles global representation of en-
sembles created frommultiple items in a visual image plays in
rapid visual segmentation, categorization, and perceptual
grouping of visual arrays. New findings from the current study
will provide an insight into how ensemble representations can
be extracted from multiple sets of similar objects in a visual
array and serve as perceptual bases for hierarchical coding of
the scene to make sense of it.

In the context of texture perception and visual search, it has
been shown that the visual system can split multiple textons or
individual items into clearly distinguishable (e.g., pre-
attentive; Julesz, 1981) global subsets; and the roles of various
spatial factors are widely discussed as principal determinants
of subset formation: local proximity and local contrasts
(Bacon & Egeth, 1991; Bravo & Nakayama, 1992; Itti &
Koch, 2001; Treisman, 1988; Wolfe, 1994) as well as more
global factors, such as abrupt violation of spatial statistics over
a region (Nothdurft, 1992, 1993). As soon as spatial interac-
tions take an important part in these models, the explanations
for grouping and segmentation strongly rely on well-
established mechanisms of space-based, retinotopic interac-
tions akin to lateral inhibition (e.g., Knierim & van Essen,
1992). However, not much of the prior work was done to
examine how individual objects can be categorized into dis-
crete, higher-level sets when spatial layout does not support
strong organization of similar elements into compact patches
lying apart from dissimilar elements. Perceiving a set of apples
among leaves and branches is an example showing how com-
mon the categorization of spatially intermixed sets can be in
real-world perception.

Recently, Utochkin (2015) has suggested that ensemble
summary statistics can be a candidate representation that sup-
ports the rapid categorization of multiple objects into sets in a
visual image. Ensemble representation can be “spatially ab-
stract (or spatially blind in an extreme case),” in a sense that
extracted summary statistics do not have to retain an exact
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knowledge of how individual elements are located, once cre-
ated in another feature domain such as size, orientation, and so
on. Thus, it can be well suitable for the rapid categorization of
spatially intermixed items of different kinds. Human ob-
servers appear to be very sensitive to how features of individ-
ual items in a visual array are distributed, such that their per-
ceptual ability to segment and discriminate groups of items is
systematically influenced by the shape of the distribution of
features that are tested (e.g., Chetverikov, Campana, &
Kristjánsson, 2016, 2017; Chong & Treisman, 2003;
Corbett, Wurnitsch, Schwartz, & Whitney, 2012; Im &
Halberda, 2013; Oriet & Hozempa, 2016; Rosenholtz, 2000;
Utochkin, Khvostov, & Stakina, 2018; Utochkin & Yurevich,
2016).

According to Utochkin (2015; also see Utochkin &
Yurevich, 2016; Utochkin et al., 2018), the central concept that
is related to categorization is segmentability. Segmentability is
derived from the shape of a feature distribution – in particular,
from its peaks and pits. If individual features of all presented
items smoothly cover the entire range of displayed features, thus
forming either no sharp peak (as in the uniform distribution) or a
single peak (as in theGaussian distribution), such an ensemble is
non-segmentable and is likely to be categorized as consisting of
items of one kind. In contrast, if individual features are distrib-
uted unevenly, forming dense clusters (peaks) separated by rel-
atively large gaps within the range, then such an ensemble is
segmentable and is likely perceived as consisting of several
categorical groups. A similar idea of the distributional difference
as the determinant of efficient segmentation was suggested for
explaining pop-out visual search (Hochstein, Pavlovskaya,
Bonneh, & Soroker, 2018; Rosenholtz, 1999, 2001).

In their previous work, Utochkin and colleagues (Utochkin
& Yurevich, 2016; Utochkin et al., 2018) manipulated the
shape of ensemble distributions to empirically test whether it
supported categorical grouping in the manner predicted by the
segmentability hypothesis. To test the effects of distribution
shape, they used indirect measurements such as proportion
correct or response time (RT) using the visual search task or
texture discrimination task paradigms. In these task para-
digms, higher accuracy or faster RTs were considered to re-
flect greater segmentability between a target and distractors or
between two different texture patches. Yet, they have not ex-
plicitly asked or instructed human observers to report whether
they perceive objects in a visual array as belonging to the same
or different categories based on the perceived feature distribu-
tions. Therefore, the first aim of the current study was to ex-
amine how human observers use such feature distributions for
rapid categorization of individual objects into subsets in a
visual image (Experiment 1). The second aim is to examine
further how the rapid categorization based on one feature di-
mension (e.g., size) serves as the basis of segmenting subsets
of individual objects to mediate extraction of ensemble sum-
mary statistics in another feature dimension (e.g., location).

Experiment 1

Rapid categorization by size: Assigning individual
objects into subsets in a visual image

In Experiment 1, we first examined how human observers
segment objects in an image into categorical subsets relying
on feature distributions of the objects. Although previous
work has shown that human observers are sensitive to feature
distributions in a visual image, none of them has directly test-
ed how feature distribution is utilizedwhen observers perceive
“subsets” in the image and categorize individual items into the
subsets. Here we tested our hypothesis that human observers
can categorize individual objects into two subsets in an image
very rapidly, relying on summary statistics about the whole
image that describe how individual features of the objects are
distributed (e.g., mean, median, variability, and the shape of
distribution). We first conducted a simple study using a
straightforward and explicit approach by asking participants
to categorize an individual item into one of two subgroups in a
visual array based on a feature dimension of size (e.g., “does
this circle belong to a larger set or a smaller set in this
image?”). Although perceptual categorization by size (e.g.,
small vs. large sets) has not been tested yet in the context of
ensemble coding, it is a testable and viable category. It is easy
to imagine you are sorting out a pile of apples into two piles,
so that you can use the pile of small piles to make an apple pie
and the pile of large apples to eat them raw.We examined how
participants’ categorization performance was affected by the
shapes of feature distributions of individual objects in the
image. We predicted that participants’ ability to categorize
individual objects into subsets would be systematically varied
by the global properties of the feature distribution (e.g., mean,
variance, and the smoothness of the distribution presumably
affecting ensemble segmentability) and by the individual ob-
jects’ relative dispositions in the distribution.

Method

Participants Twenty undergraduate students (13 females; age
range: 18–27 years) of the Higher School of Economics took
part in the experiment for extra course credits. All reported
having normal or corrected-to-normal vision, normal color
vision, and no neurological problems. All were naïve as to
the purpose of the experiment. Written informed consent
was obtained for the experiment from the participants in ac-
cordance with the Declaration of Helsinki.

Apparatus and stimuli The stimulation was developed and
presented via PsychoPy v1.82 for Linux Ubuntu (Peirce
et al., 2019) on a standard VGA-monitor (screen diagonal 19
in., 75 Hz refresh rate, resolution of 1,200 × 800 pixels, which
was 30.65° × 20.43° in visual angle). Observers responded by
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pressing keys on a computer keyboard with their dominant
hand.

Each visual stimulus contained a set of 16 white circles
(superset) randomly positioned in a gray screen. The distribu-
tion of individual sizes of the white circles was divided into
two categories (subsets) containing eight items each: “small”
(ranging from ~.3° to ~1.3° in visual angle across all trials)
and “large” (ranging from ~.7° to ~2.3° across the entire ex-
periment). The overlap between the entire ranges of “small”
and “large” provided that the categorical belongingness of an
item with a particular size could change from trial to trial,
therefore encouraging participants to “calibrate” their impres-
sion of an item’s category only based on a current trial. Item
sizes in one-half of the circles were always smaller than the
median of the whole ensemble, and item sizes in the other half
of the circles were always greater than the median. The grand
mean diameter varied in a broad enough range (from 0.8° to
1.5°) across trials to ensure that the “categorical boundary”
varied unpredictably and observers relied on an impression
from the current trial only, rather than the memory of the
grand mean diameter of the whole ensemble from previous
trials. Individual sizes of the circles could be drawn from one
of three distributions varying in range and shape, detailed in
the following:

1) Two-peaked distribution: To generate a size distribution
that contains two thin distributions of highly separable
subsets, we used the large set:small set mean ratio of
3:1, where the gap between the smallest circle of set 1
and the largest circle of set 2 was as big as 100% of the
least mean. Within each subset, individual sizes differed
from the set mean by -21%, -15%, -9%, -3%, 3%, 9%,
15%, and 21%. It can be seen in Fig. 1A that size distri-
butions for each of the sets were relatively narrow, but
together they formed two clusters of sizes separated by a
substantial gap. We predicted that such size distributions
would make segmentation and categorization of two sub-
sets within a superset relatively easy.

2) Smooth narrow distribution: We generated a smooth
narrow distribution to provide the same relative range
within each category as in the two-peaked distribution
condition (from -21% to 21% of the set mean) but with
a smaller separation between the sets, not much ex-
ceeding the separation within each set. To generate
size distributions of the two sets, we used the large
set:small set mean ratio of 1.7:1. In this case, the tran-
sition between sets was just slightly bigger than the
transition within each set (Fig. 1B). We predicted that
this condition would make the segmentation of two
subsets more difficult based on the size distributions
than the two-peaked distribution condition since there
was no discontinuity in the overall distribution that
could support peak separation.

3) Smooth fat distribution: When we generated a smooth
distribution with a greater bandwidth from which individ-
ual sizes that belonged to both of the subsets were drawn,
we ensured that the overall range of the smallest and
biggest items of the superset was about the same as in
the two-peaked distribution. Here, the large set/small set
mean ratio was 2.4:1 and individual sizes within each set
differed from the set mean by -35%, -25%, -15%, -5%,
5%, 15%, 25%, and 35% (Fig. 1C). We predicted that
segmenting and categorizing two subsets in this condition
would be difficult since two distributions of the subsets
were not easily segmentable.

Figure 1 describes how individual sizes in the small and
large sets were generated and distributed based on our size-
generation algorithm. Because the actual mean sizes of the
small and large sets were varied in every trial, we plotted the
distributions of sizes as proportions to the mean sizes of small
and large subsets. As shown in Fig. 1, individual sizes were
spaced equally (by 6% from their adjacent neighbors) within
their categories (as they were scaled relative to categorical
mean sizes). On the other hand, the individual sizes ended
up being spaced unequally in terms of the entire ensemble
so that the absolute step size between items within the large
set was always bigger than that within the small set according
to the large set/small set mean ratio. Such asymmetry resulting
from our size generation algorithm, in fact, complied with
Weber’s law that perceived difference between two sizes is
approximately proportional to their sizes in the domains of
both individual size and mean size (e.g., Allik et al., 2013).
This way of size generation for individual circles in the small
and large sets was implemented in previous work and has
been shown to ensure that perceived variability of individual
members (e.g., variance or range) is roughly the same across
the categories (e.g., Khvostov & Utochkin, 2019).

Moreover, this algorithm also made the whole feature dis-
tribution inherently skewed, resulting in asymmetric probabil-
ity density. As a result, the grand mean, suggested to be one of
the robust ensemble representatives (Alvarez, 2011; Ariely,
2001; Chong & Treisman, 2003; Khayat & Hochstein, 2018,
2019), was shifted to the right compared to the median (which
is defined as a categorical boundary in our task). In other
words, the smallest items from the large category were always
closer to the grand mean than the largest items of the small
category. As can be seen in Fig. 1B and C, the smallest items
of the large category were even smaller than the grand mean in
the smooth narrow and smooth fat conditions. As will be seen
later, this mismatch between the task-defined categorical
boundary (median) and the grand mean would provide a sen-
sitive case to query the type of the internal rule (e.g., whether
observers rely more on the median or the grand mean) for
establishing that perceptual boundary.
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Procedure Experimental sessions were run in a darkened room.
Participants were seated approximately 50 cm from a monitor.
On each trial, they were instructed to categorize a probed item
as small or large, depending on its relative size within the whole

set, including all the items presented briefly in the visual array.
The categorization rule was explicitly stated as median-based:
Participants were told to answer whether the probed item
belonged to the smallest or the largest half of the set.

Fig. 1 Histograms of size distributions used in Experiment 1: (A) two-
peaked distribution; (B) smooth narrow distribution; (C) smooth fat dis-
tribution. The shaded regions show the space between the large and small
subsets where the category changes. The solid vertical line depicts the

superset grand mean and the dashed lines depict subset mean sizes. Note
that, although in each subset the sizes cover the same relative range
(percentage of the subset mean size), the absolute ranges are different,
as they are scaled to fit Weber’s law

1054 Atten Percept Psychophys  (2021) 83:1050–1069



A sample trial of Experiment 1 is shown in Fig. 2. After a
ready signal, a stimulus image that contained all the 16 circles
was presented for 100 ms. After the stimulus image, only one
of the circles from the stimulus image remained, and the rest
of the circles disappeared to instruct participants to indicate
which of the subsets – either large set or small set – the re-
maining circle (a test circle) seemed to belong to. The partic-
ipant responded whether this object belongs to the “small” or
to the “large” category by pressing the “left” or the “right”
button, respectively. After their response was made, the feed-
back was provided. Participants completed a total of 576 trials
(16 relative sizes × 3 size distributions × 12 repetitions per
condition). Twelve trials were added at the beginning of the
experimental session for practice but were excluded for data
analyses.

Results and discussion

Trials with excessively fast responses (< 200ms) were exclud-
ed from the analysis. Data from one participant who made
such excessively fast responses ~56% of the time were also
excluded from the analysis. Therefore, the data from 19 par-
ticipants were analyzed. Overall, less than 0.3% of trials were
excluded from the data analysis of these participants due to
excessively fast responses.

Participants’ response accuracy for categorizing an item
into one of the two subsets showed the clear “v-shaped”
curves for all the three different types of the size distribution,
two-peaked, smooth narrow, and smooth fat distributions.
Figure 3A plots the participants’ percentage correct responses
as a function of the distance between the size of the single

circle to be categorized and the categorical boundary (median)
of the entire set of the circles shown in the visual image. Each
of the 16 items shown in the visual image had its unique size,
and the absolute distance from the categorical border strongly
depended on the type of the size distribution. To resolve and
control for such variations, we merged each of two neighbor
sizes starting with the smallest and ranked them: We assigned
ranks -4 to -1 to the items of the “small” category (with -4
being the smallest item) and ranks 1 to 4 to the “large” cate-
gory (with 4 being the largest item). Therefore, the ranks de-
fine the relative position of a probed circle, both within a
category (e.g., either a “small” or “large” category) and away
from the categorical boundary.

Not surprisingly, participants’ accuracy for the item cate-
gorization was the worst when the test circle to be categorized
was close to the categorical boundary (e.g., ±1), but system-
atically improved as the size of the circle became more devi-
ated from the categorical boundary. This observation was con-
firmed by the significant main effect of the size distance be-
tween the test circle and the superset (F(7,126) = 125.96, p <
0.001, η2G = 0.68) from the statistical test using the two-way
repeated-measures ANOVA with the two factors of the size
distance rank (eight levels: -4, -3, -2, -1, +1, +2, +3, and +4)
and the distribution types (three conditions: two-peaked,
smooth narrow, and smooth fat distributions).

From the same ANOVA test, we also found a significant
main effect of the distribution types (F(2,36) = 157.14, p <
0.001, η2G = 0.40). Specifically, the overall accuracy for cat-
egorization was better for the two-peaked distribution than the
other two conditions (smooth narrow and smooth fat), which
was further confirmed by the post hoc contrast analyses (two-

Fig. 2 An example of a trial in Experiment 1
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peaked vs. smooth narrow: t(18) = 14.39, p < 0.001,
Bonferroni-corrected α = 0.017, Cohen’s d = 3.3; two-
peaked vs. smooth fat: t(18) = 10.55, p < 0.001, Bonferroni-
corrected α = 0.017, Cohen’s d = 2.4). For the two-peaked
distribution, the categorization accuracy mostly reached near
the plateau except for the point at size rank +1. Conversely,
the other two conditions showed categorization accuracy that
strongly depended on the size difference between the test cir-
cle and the mean of the superset. In turn, in the smooth fat
distribution participants were overall more accurate than in the
smooth narrow one (t(18) = 9.99, p < 0.001, Bonferroni-
corrected α = 0.017, Cohen’s d =2.3), presumably because
the former one included some exemplars more distinct from
the categorical boundary (at least two extreme values at both
sides of the “tails” of the size distribution). This pattern of
results suggests that the ease of categorical parsing was sys-
tematically varied across the distribution types of the superset.
The participants appeared to be sensitive to size distributions
of circles and capable of categorizing individual members into
one of the subsets, based on the size distributions shown in
visual stimuli.

Moreover, both the range and smoothness of distributions
seemed to affect the accuracy of categorization systematically,
as supported by the significant interaction (F(14,252) = 33.06,
p < 0.001, η2G = 0.39) between the two factors – size distances
and the distribution types. This significant interaction suggests
increasing profoundness (e.g., depth) of the “dipper parts” of
the V-shapes across the distribution types (Fig. 3A). That is,
participants showed quite similar levels of accuracy for the
extreme items at the “tails” (e.g., ranks -4 and +4), whereas
decrement in the accuracy for the center of the distribution
(especially ranks -1 and +1) was much greater in the two
smooth distributions than in the two-peaked distribution.

This pattern is presumably because middle items of the
smooth distributions were closer to the boundary and
between-categorical gap was smaller than in the two-peak
distribution.

Finally, we found an interesting asymmetry in our V-
shaped functions. For all the three types of size distributions,
the worse categorization response was observed at +1, sug-
gesting that the participants made more errors when the
probed test circle was the smallest circle in the large category
(but slightly larger than the categorical boundary), by errone-
ously categorizing them into a small subset. As a result, the V-
shaped functions were all shifted to the right relative to the
task-defined categorical boundary. When collapsed across the
distribution types (Fig. 3B), this shift was most clear, with
rank -1 = rank +2, rank -2 = rank +3, and rank -3 = rank +4
(ps > 0.33, Cohen’s ds < 0.23) in the observed categorization
accuracies, whereas symmetrical ranks yielded strongly asym-
metrical results, with a systematic prevalence of the small
category (ps < 0.001, Bonferroni-corrected α = 0.002, ds >
1.1; except rank -4 = rank +4, p = 0.3, d = 0.25). These results
suggest that participantsmademore error responses when they
had to categorize items from the large category compared to the
small category, especially when these items were relatively
close to the categorical boundary. To recap, the way we gener-
ated individual sizes made the whole distribution skewed, such
that the grand mean was shifted towards smallest items of the
large category more, compared to towards largest items of the
small category. Importantly, in the smooth narrow and smooth
fat distributions, rank +1 itemswere greater than the median but
smaller than the grand mean. For these particular points, we
observed that the accuracy dropped to chance (smooth narrow:
accuracy = 0.52, smooth fat: accuracy = 0.41, Fig. 3A). At the
same time, in the two-peak distribution, where even the smallest

Fig. 3 Percent correct of the categorization task as a function of the
relative item size in Experiment 1: (A) for different types of the size
distribution and (B) overall performance (averaged across the

distribution types). The vertical dashed line shows the categorical
boundary (relative position 0) that has not been actually presented.
Error bars denote the standard error of the mean
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item of the “large” category was fairly greater the grand mean,
the drop in the accuracy at the rank of +1 was not that dramatic
(accuracy = 0.74, Fig. 3A). Therefore, the whole pattern of
asymmetry, with the “rank +1 effect” remarkably correlated
with an actual item position relative to the grandmean, suggests
that the internal categorical boundary was shifted in the direc-
tion of the grandmean of the superset. The finding that this shift
occurs despite the instruction to use the median criterion of
categorization can also suggest that people tend to rely on a
representation of the mean as a categorical boundary
automatically.

Experiment 2

Categorization in the domain of size and ensemble
extraction in the domain of location

In Experiment 1, we have shown that participants could cate-
gorize an individual object very rapidly into one of the two
subsets based on the average size of the superset. The ease of
such segmentation and categorization was systematically var-
ied both by the size difference between the individual object to
be categorized and the mean of the superset and by the shape
of the feature distribution of all the items shown in a visual
array. In Experiment 2, we extended the findings from
Experiment 1 and further tested how participants use the dis-
tributional properties of an ensemble in one feature dimension
(e.g., size) to parse items into categories and make task-rele-
vant, category-specific judgments in another feature dimen-
sion. Returning to the farmer’s market example, you might
also want to make sure you choose apples that are ripe enough
as well as big enough. You will first compare the overall size
of each pile of apples to check which pile is relatively larger,
but then also compare other qualities such as the overall color
or hue of the two piles (smaller and larger sets) for the final
decision. Experiment 2 sought to characterize such a process:
ensemble-based segmentation in one feature dimension (e.g.,
size) for extraction of ensembles in the other feature dimen-
sion (e.g., centroid).

In many previous studies, ensemble extraction in a partic-
ular feature domain (e.g., average size, numerosity, and so on)
has been tested independently from other features. For exam-
ple, estimation of the average size or numerosity of multiple
subsets was tested by using different color cues that are dis-
crete and separable enough for each of the subsets (e.g.,
Chong & Treisman, 2005; Halberda et al., 2006; Im &
Chong, 2014, Utochkin & Vostrikov, 2017, etc.). In other
studies, location (e.g., spatial separation between subsets of
circles) was utilized for segmentation of subsets (e.g., left vs.
right sets; Chong & Treisman, 2003; Corbett, Wurnitsch,
Schwartz, & Whitney, 2012; Epstein & Emmanouil, 2017).
Many of these studies assume that multiple subsets can be

(almost) perfectly segmented based on the color or spatial cues
prior to ensemble extraction. Although the results collectively
suggest that human observers are capable enough of
segmenting subsets by color cues or spatial separation, this
process is not necessarily “cost-free,” given that combining
color and location cues for segmentation can significantly im-
prove participants’ performance on ensemble extraction from
multiple subsets, compared to when only one feature is pro-
vided as a segmentation cue (e.g., Im, Park, & Chong, 2015).

It has been shown that within-subset ensemble judgments
can be penetrable for the influence of another, irrelevant sub-
set (Inverso, Sun, Chubb, Wright, & Sperling, 2016; Oriet &
Brand, 2013; Utochkin et al., 2018). Here, we hypothesize
that the degree of such penetrability should depend on the ease
and robustness of segmentation of subsets based on the shape
of the distribution in the feature domain of categorization.
That is, if the estimated summary differs between two subsets
and these subsets can be segmented into two different catego-
ries quite easily (e.g., as in the two-peaked distribution in
Experiment 1), then the extracted ensemble representation
by participants would be closer to the genuine summary of
the subsets. In contrast, if subsets are hardly distinguishable
and less separable as two categories, then participants’ ensem-
ble estimation of subsets should be reported with a greater
error, biased towards the common summary of all subsets
(e.g., grand mean), possibly because some elements of the
irrelevant subsets are confused with relevant elements.
Furthermore, we predict that the ease of subset segmentation
determined by the shape of the distribution in one feature
domain (e.g., size) would systematically modulate the preci-
sion of ensemble extraction in another visual feature domain
(e.g., location).

Participants Twenty-one students (16 females; age range: 19–
24 years) of the Higher School of Economics took part in
Experiment 2. All reported having normal or corrected-to-
normal vision, normal color vision, and no neurological prob-
lems. All were naïve as to the purpose of the experiment.
Written informed consent was obtained for the experiment
from the participants in accordance with the Declaration of
Helsinki.

Apparatus and stimuli In Experiment 2, participants
responded by using a mouse cursor connected to the computer
to indicate the position in the display with their dominant
hand. As in Experiment 1, each stimulus included white cir-
cles with different sizes, presented on a gray background. As
in Experiment 1, a superset contained 16 circles that were
divided into two categories (subsets; large and small) based
on their sizes, such that the “large” subset contained eight
larger circles in the superset, whereas the “small” subset
contained eight smaller circles in the superset. Grand mean
sizes and size range for the “small” and “large” subsets were
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generated the same way as in Experiment 1. The detailed
procedures and parameters for creating the three different size
distributions (two-peaked, smooth narrow, and smooth fat)
was identical to those described in Experiment 1.

The locations of individual circles were pre-generated for
all the stimuli using the following algorithm (also see Fig. 4
for visual illustration). First of all, all the (x, y) coordinates for
the center locations of circles were randomly chosen within
the central display area (1,100 × 700 in pixels, and 28.05° ×
17.85° in visual angle), which was surrounded by the margin
of 2.55°. Next, the 16 randomly chosen locations were then
assigned to one of the three imaginary parts (left, middle, and
right) based on their x-coordinates. Specifically, if the x-
coordinates were within the range of [1–280], the (x, y) coor-
dinates were assigned to circles of subset 1 (which could be
either large or small subset), so that the centroid of subset 1
was slightly shifted towards the left. If the x coordinates were
within the range of [821–1,100], on the other hand, the loca-
tions were assigned to circles of subset 2, so that its centroid
was slightly shifted towards the right. Because we wanted to
ensure that circles of both subsets were spatially intermixed in
the center of the display, the half of the (x, y) coordinates
within the center area (with the range of [301–900] for the x
coordinates) were randomly chosen and allocated to the subset
1 and the rest was allocated to the subset 2. This spatial ar-
rangement allowed us to ensure that some of the circles of the
two subsets were spatially intermixed so that simply clicking
somewhere in the left visual field for one subset and the right
visual field for the other subset would not systematically im-
prove participants’ centroid extraction. This spatial arrange-
ment also ensured that the stimulus always appeared to occu-
py locations randomly chosen from the same designated area
across conditions and over the trials.

Procedure Experimental sessions were run in a darkened
room. Participants were seated approximately 50 cm from a
monitor. Prior to the experiment, participants received six

demo trials that were intended to provide them with a sense
of “centroid.” In these trials, we showed them groups of cir-
cles for an unlimited time, giving an opportunity to estimate
the centroid of the circles in a completely visible stimulus. To
report the estimated centroid, the participants moved a mouse
cursor (small black cross) around the screen and clicked a left
mouse button to make their response. Immediately after the
click, the cursor stayed on the screen, and a red cross appeared
to mark the position of the correct answer, so the distance
between the locations of two crosses served as feedback about
response precision. Each experimental trial (shown in Fig. 5)
began with a pre-cue that informed participants of which set
(small subset, large subset, or all items) they had to attend to.
The stimulus image was presented for 500 ms. Immediately
after the stimulus, an empty screen was presented with a
mouse cursor to adjust the centroid of the pre-cued set. The
initial location of the mouse cursor was randomly determined
so that it would not systematically bias participants’ re-
sponses. After a response was made, a feedback display was
presented with the original image returned and a red cross
indicating the correct centroid location. The pre-cued set of
circles were shown solid on the feedback screen, whereas the
irrelevant circles (if any) were shown as outlines.

There were three conditions in Experiment 2: attended-sub-
set, half-set-only, and superset conditions. In the attended-
subset condition, participants were instructed by a pre-cue to
attend to either a large set or a small set (defined by a median,
as in Experiment 1) in the following stimulus image, then
report an average location (centroid) of the attended set only.
In the half-set-only condition, only one subset (either small or
large subset) was presented such that participants were not
required to segment or parse any subsets from the display.
Finally, the superset condition did not require participants to
segment any subsets, either, even though both small and large
subsets were presented in the stimulus image. Thus, the par-
ticipants’ performance on the attended-subset condition would
reflect their perceptual ability to categorize individuals into

Fig. 4 Visual illustration of the areas (left, middle, and right) for assigning locations of circles. The (x,y) coordinates that were first randomly generated
were assigned to one of these areas based on the x coordinates
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two subsets and extract ensemble representation from the sub-
sets. Their performance on the half-set-only condition would
reflect their ability to extract centroid from a subset when there
is no need to segment subsets at all. Finally, the performance
on the superset condition would tell us whether the shape of
the size distribution of all the individual objects still influences
participants’ perceptual ability to extract centroid from the
superset, even when they did not need to segment subsets.
In both the half-set and the superset conditions, participants
were pre-cued that they would have to attend all the circles,
then report the centroid of them. The trials of all the conditions
(attended-subset, half-set-only, and superset conditions) were
randomly interleaved, rather than being blocked, to ensure that
participants would not consistently employ any different strat-
egies across the conditions. In each condition, we used the
three different types of size distributions for individual circles
as in Experiment 1: two-peaked, smooth narrow, and smooth
fat distributions. Thus, we had a 3 (three conditions: attended-
subset, half-set-only, and superset) × 3 (three types of size
distributions: two-peaked, smooth narrow, and smooth fat dis-
tributions) experimental design.

Results and discussion

For each trial, the correct answer for centroid was calculated
as an average Euclidean distance between the locations of all
the set members. As a measurement for error, we calculated
the distance between the actual centroid of the set to be ex-
tracted and the location at which the participants pointed by
using the mouse cursor. Figure 6A summarizes the mean error
for each condition (attended-subset, half-set-only, or superset)

and each type of size distribution (two-peaked, smooth nar-
row, or smooth fat distributions). We first observed that the
attend-subset condition showed greater response errors than
the other two conditions for all three distribution types. A
statistical test using the two-way repeated-measures
ANOVA with the two factors of the task conditions (three
levels: attended-subset, half-set-only, and superset) and the
distribution types (three levels: two-peaked, smooth narrow,
and smooth fat distributions) confirmed this observation with
the strong main effect of the task conditions (F(2,40) = 94.45,
p < 0.001, η2G = 0.50). Further contrast analyses showed that
when the participants did not have to segment subsets of cir-
cles as in the half-set-only and superset conditions, their ac-
curacy was significantly better for all the three distribution
conditions (attend-subset vs. half-set: t(20) = 11.56, p <
0.001, Bonferroni-corrected α = 0.017, Cohen’s d = 2.52;
attend-subset vs. superset: t(20) = 9.12, p < 0.001,
Bonferroni corrected-α = 0.017, Cohen’s d = 1.99). We also
found a significant but weak main effect of the distribution
types (F(2,40) = 15.02, p < 0.001, η2G = 0.02), and a signif-
icant but weak interaction between the two factors (F(4,80) =
5.19, p < 0.001, η2G = 0.04).

The finding that the half-set-only and the superset tasks
were performed better than the attend-subset tasks indicates
that there was a cost of subset selection for later extraction of
ensembles. This finding is in line with previous evidence that
segmenting subsets of items based on size or orientation is a
strong limiting factor for ensemble tasks (Inverso et al., 2016;
Oriet & Brand, 2013; Utochkin et al., 2018; however, the cost
may be minimal in the domain of color – see Sun, Chubb,
Wright, & Sperling, 2016a). Note that in previous studies,

Fig. 5 An example trial of Experiment 2 demonstrating the “attend-subset” task
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category-defining features could be both extremely distinct
between categories and homogeneous within the category to
make segmentation easy (e.g., strictly vertical and strictly hor-
izontal lines – Inverso et al., 2016; Oriet & Brand, 2013; or
extremely short and extremely long lines – Utochkin et al.,
2018). Even in these cases, however, observers were imper-
fect at reporting subset summaries. Compared to the previous
studies, category-defining features in the current study (e.g.,
size) were distributed in a more heterogeneous and continuous
manner; thus, observers were more frequently confused over-
all when segmentation of subsets was required.

Of principal interest to us, we observed that when partici-
pants had to segment one of the categories to extract and
report the centroid of the category in the attend-subset condi-
tion, their accuracy for the two-peaked distributions was better
than the other two distributions (two-peaked vs. smooth nar-
row: t(20) = 3.96, p < 0.001, Bonferroni-corrected α = 0.017,

Cohen’s d = 0.86; two-peaked vs. smooth fat: t(20) = 4.25, p <
0.001, Bonferroni-corrected α = 0.017, Cohen’s d = 0.93).
There was no difference, however, between the two smooth
distributions – narrow versus fat (t(20) = 0.68, p = 0.51,
Cohen’s d = 0.15). This result suggests that enhanced peak
separat ion of the feature distr ibution (i .e. , good
segmentability) facilitates the extraction of ensemble features
from the two independent categories. The two-peaked distri-
butions with larger separation yielded the best accuracy for the
attend-subset task, presumably providing the best categorical
separation.

In the superset condition in which the participants were to
extract the centroid of all the circles, without any segmentation
of subsets of circles, we found that their precision for displays
that contained the smooth fat distributions of circles was better
than in the two other distributions (smooth fat vs. two-peaked:
t(20) = 3.62, p < 0.001, Bonferroni-corrected α = 0.017,

Fig. 6 (A) Centroid positioning error as a function of the task and the size distribution in Experiment 2. Error bars denote the standard error of the mean.
(B) The spatial distribution of correct answers (large dots) and participants’ responses (small dots) on a screen in the various conditions of Experiment 2
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Cohen’s d = 0.79; smooth fat vs. smooth narrow: t(20) = 6.78,
p < 0.001, Bonferroni-correctedα = 0.017, Cohen’s d = 1.48).
On the other hand, for the half-set-only condition, in which
only a subset of circles sampled from one single subset was
presented, we found that the smooth narrow distribution
yielded an impaired precision compared to the two other dis-
tributions (smooth narrow vs. two-peaked: t(20) = 3.89, p <
0.001, Bonferroni-corrected α = 0.017, Cohen’s d = 0.85;
smooth narrow vs. smooth fat: t(20) = 3.14, p = 0.005,
Bonferroni-corrected α = 0.017, Cohen’s d = 0.69). This re-
sult suggests that the participants were still sensitive to the
distribution of the subsets of circles even when segmentation
of subsets was not required or helpful for them to extract the
centroids of the entire sets. Moreover, the fact that the two-
peaked distribution was not any better than the other two
distribution types in the superset condition suggests that the
two-peaked distribution improved participants’ performance
on ensemble extraction only when subset categorization was
necessary. Further research beyond the main focus of the cur-
rent article is necessary to understand the nature of these
effects.

Although the centroid task has been utilized as a useful tool
to measure ensemble perception in many previous studies
(Alvarez & Oliva, 2008; Inverso et al., 2016; Sun et al.,
2016a, b; Rodriguez-Cintron, Wright, Chubb, & Sperling,
2019), the use of this task in our experiment revealed some
practical challenges that are worth noting. The first reasonable
point is that participants’ accuracy for extracting centroids in
the three different (attended-subset, half-set-only, and
superset) conditions could be affected differently by the over-
all spatial arrangements of objects in these conditions, not
solely by how the objects were categorized in the size domain.
This is particularly the case because the physically limited
display was already quite packed and occupied by multiple
circles, which inevitably resulted in the superset condition
including all the circles in the visual array (thus twice as many
circles compared to the pre-cued subset condition) to have
centroids more toward the center of the screen, compared to
the attended subset and half-set-only conditions (see Fig. 6B).
However, our current findings cannot be merely explained by
the concentrated pattern of centroids in the superset condition:
If this was the case, participants would have beenmore precise
in the superset condition than in both the attend-subset and
half-set-only conditions by simply choosing just around the
center. Instead, we did observe that participants’ accuracy for
centroid extraction in the superset conditions was somewhat
comparable to that in the half-set-only subset condition de-
spite their different profiles of centroid concentration (see
Fig. 6A).

One might argue that the greater error in the attend-subset
condition reflected the possibility that participants had just
reported the centroid of everything (e.g., superset) instead of
trying to categorize items to determine the centroid of the

attended subset only. To evaluate this possibility, we tested
whether participants’ centroid extraction in the attend-subset
trials could lie in the same area as their estimated centroids in
the superset trials. We found that the estimated centroid loca-
tions in the attend-subset trials were almost twice as far from
the superset centroid as in the genuine superset trials (7.6° vs.
4°, respectively; comparison: t(20) = 7.31, p < 0.001, Cohen’s
d = 1.6). This result suggests that, in the subset trials, ob-
servers did not merely report the centroid of all the items
(e.g., superset), but marked locations toward the extracted
centroid of the pre-cued subset by categorizing individual
items and segmenting subsets. The following analysis further
shows that the greater errors in the attend-subset conditions
are more likely to reflect the additional processing noise and
cost resulting from incomplete segmentation of the pre-cued
subset from the superset, which is shown as a mixture of the
centroid of the pre-cued subset and global centroid of the
superset.

Bias towards the center Note that the unidimensional
Euclidean distance as the measurement of the centroid local-
ization errors does not necessarily capture the whole spectrum
of changes in the two-dimensional space of the screen.
Specifically, it does not introduce a single measurement of
directionality that would still be useful to unambiguously es-
timate the trend of the bias: either towards or away from a
certain location. In fact, the same quantitative change in the
Euclidean distance can be caused either by attraction in one
dimension or by repulsion in another. Therefore, here we used
a “triangular” algorithm to evaluate the directionality of the
bias. We calculated (1) the mean of the distances between
participants’ responses and the correct answers (the actual
centroids of the attended subsets), here termed Response-
Subset distance (mean = 7.3°, SD = 5.3°), (2) the mean of
the distances between participants’ responses and the cen-
troids of the supersets, here termed Response-Superset dis-
tance (mean = 7.6°, SD = 5.0°), and (3) the mean of the dis-
tances between the correct answers (actual centroid locations
of the attended subsets) and the centroid of the superset, here
termed Subset-Superset distance (mean = 10.2°, SD = 3.2°).
We found that both Response-Subset distance and Response-
Superset distance were shorter than Subset-Superset distance
(Response-Subset vs. Subset-Superset: t(19) = 5.60, p <
0.001, Cohen’s d = 1.2; Response-Superset vs. Subset-
Superset: t(19) = 6.44, p < 0.001, Cohen’s d = 1.4). This
suggests that average response lies roughly in an area between
the subset centroid and the superset centroid. In other words,
participants marked the subset centroid in its real neighbor-
hood but with a substantial shift towards the superset centroid.
If we imagine a triangle with aspects corresponding to Subset-
Superset, Response-Subset, and Response-Superset distances,
then the aspect ratios found corresponds to a disposition of
when the observer’s response apex is projected onto the
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Subset-Superset segment: This is a rough geometrical approx-
imation of what the bias towards the superset centroid is. As a
counter-example, if our observers had guessed random loca-
tions around the superset centroid, then Response-Subset dis-
tance would have been greater than or equal to Subset-
Superset distance. As another counter-example, if our ob-
servers had been unbiased, then Response-Superset distance
would have been equal to Subset-Superset distance. Finally, if
our observers had been biased away from the superset (repul-
sion), then Response-Superset distance would have been
greater than Subset-Superset distance.

One more reservation that can be made regarding
Experiment 2 is that objects from the large and small catego-
ries were not mixed in space entirely randomly, unlike
Experiment 1. To recap, two subsets had centroids that were
manipulated to be significantly shifted such that some catego-
ry members were intermixed within subset overlap, whereas
others, outside the overlap, were not. This inherently resulted
in a size gradient that could be used to judge the category
center without category parsing (Rodriguez-Cintron et al.,
2019). We acknowledge that this can be a plausible, alterna-
tive strategy. However, this does not undermine our main
findings. We found that centroids of subsets drawn from
two-peaked distributions were localized more precisely than
those drawn from smooth distributions, regardless of the
ranges of the feature distributions (narrow or fat). This pattern
cannot be fully explained by the alternative strategy of
gradient-based centroid localization because the smooth fat
distributions provide a much stronger gradient (and therefore
more efficient gradient-based centroid localization) than
smooth narrow distributions. Rather, it seems to reflect the
fact that the efficiency of centroid localization was dependent
on how abrupt the difference between different subsets was, as
defined by the shape of the feature distribution. Such an ability
to see an abrupt transition between subsets in an uncertain
spatial structure (like the overlapped region of both subsets
in our experiment) is exactly what is meant by the concept of
feature-based segmentability (Utochkin et al., 2018).

Experiment 3

Categorization in the domain of length and ensemble
extraction in the domain of orientation

Given the practical limitations of the centroid paradigm (such
as limited screen space or an inherent size gradient when the
small and large subsets are shifted to provide a substantial
centroid difference), we conducted Experiment 3 to further
test our hypothesis that ensemble distributional properties de-
termine segmentability of subsets for categorization and
category-specific ensemble extraction in different feature do-
mains. Here we used orientation instead of the centroid to

minimize the challenges caused by the limited space in the
display and to replicate and generalize the previous findings
of Experiment 2. Orientation and size are traditionally as-
sumed to be separable feature dimensions, at least with a very
weak interaction (e.g., Ashby & Lee, 1991; Garner &
Felfoldy, 1970; Shepard, 1964; Ward, 1985; but also see
Potts, Melara, & Marks, 1998). Unlike the centroid task, there
is no need to create an arbitrary spatial shift between subsets to
make subsets separable in the domain of orientation, unlike
the domain of spatial location. Therefore, different subsets can
be spatially intermixed completely, and no gradient cues are
available. If we can replicate the effects of the types of size
distributions on the precision and the bias in extracting aver-
age orientation, we can conclude that the segmentability of a
subset based on a different feature dimension modulates the
ease of extraction of ensemble representation from the subset.

Participants

A new group of 20 undergraduate students (17 females; age
range: 18–28 years) of the Higher School of Economics took
part in the experiment for extra course credits. All reported
having normal or corrected-to-normal vision, normal color
vision, and no neurological problems. Written informed con-
sent was obtained for the experiment from the participants in
accordance with the Declaration of Helsinki.

Apparatus and stimuli

The apparatus used was the same as in Experiment 2. Sets of
16 white lines were presented as stimuli within a 16° × 16°
square visual array. This visual array was divided into 16 cells
(4 × 4) with an invisible grid (each cell subtending 4° × 4°).
Each cell contained a single item of a set. In each cell, an item
could be randomly jittered within ± 0.8° in both the horizontal
and vertical directions. All lines had a fixed width of 0.16°.
Lengths of the lines varied from 0.6° to 3.7° and were drawn
from one of the length distributions described below. Overall,
these distributions followed the three types from Experiments
1 and 2 (two-peaked, smooth narrow, and smooth fat).
However, since our stimuli in Experiment 3 were the lines
characterized by lengths rather than circles characterized by
diameters, we changed specific values. These values were
adjusted from the study by Utochkin et al. (2018), where
length distributions were manipulated to provide high or low
levels of segmentability of subsets.

1) Two-peaked distribution (i.e., bimodal distribution with
larger separation). The mean length of lines in the “long”
subset was 3.35°, and the mean length of the “short”
subset was 0.7°. For each subset of eight lines, individual
lengths were approximately ± 3% and ± 9% of the subset
(categorical) mean, each size assigned to two lines.
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2) Smooth narrow distribution. The mean length of lines in
the “long” subset was 2.4°, and the mean length of the
“short” subset was 1.7°. For each subset of eight lines,
individual lengths were approximately ± 3% and ± 9% of
the subset (categorical) mean. Therefore, each subset had
the same relative range as the categories of the two-
peaked distributions, but the overall superset range was
much smaller.

3) Smooth fat distribution. The mean length of lines in the
“long” subset was 2.8°, and the mean length of the “short”
subset was 1.24°. For each subset of eight lines, individ-
ual lengths were approximately ± 10% and ± 35% of the
subset (categorical) mean. Therefore, each category had a
greater relative range compared with the previous two
distributions, but the overall superset range was compa-
rable with the two-peaked one.

The grand mean orientation was randomly chosen in each
trial from the range between 1° and 180°. The difference in the
mean orientations between the “long” and “short” subsets was
fixed to be 30°. Whether the average orientation of one subset
would be more tilted than the other to a clockwise direction or
counter-clockwise direction was randomly determined on
each trial. Thus, the grand mean orientation of the
superset always was ± 15° away from the mean orientation
of each subset. The range of orientations within each subset
was 60°, such that individual orientations were separated by ±
30°, ± 22°, ± 14°, and ± 5° from the subset mean. Within each
subset, lengths and orientations of individual members formed
random conjunctions, such that there were no strict and pre-
dictable correlations between these two features in a subset.
As in Experiment 1, items from the two subsets were posi-
tioned randomly and spatially intermixed.

Procedure

The overall design and procedure of Experiment 3 were sim-
ilar to those of Experiment 2, except that participants had to
report the mean orientation, instead of the centroid, of a spe-
cific set, depending on the cue provided before each trial.
Here, we also had three conditions asking participants to at-
tend to a subset of lines based on a median length (pre-cued
with either “Long” or “Short”), attend to the superset of all the
16 lines, or attend to a half-set presented alone (both superset
and half-set were pre-cued with “All”). A sample trial of
Experiment 3 is illustrated in Fig. 7. After the pre-cue presen-
tation for 1 s, a stimulus containing lines was presented for
500 ms. The stimulus was followed by a response display
where observers were instructed to adjust the orientation of a
probe stimulus to report the mean orientation of the pre-cued
set. A probe stimulus was a line in its length of 1.6°, with an
orientation that was randomly determined presented in the
center of the empty screen. The circle was surrounded by a

black ring with a white slider. By dragging the mouse around
the ring, participants could turn the line (which was accompa-
nied by the slider moving along the ring) to choose any ori-
entation between 1° and 180°. To record the answer, partici-
pants pressed a space bar and immediately got feedback show-
ing their adjusted orientation and the correct answer.
Experiment 3 consisted of 540 trials: 3 distributions (Two-
peaked, Smooth narrow, and Smooth fat) × 3 conditions
(attended-subset, half-set-only, and superset) × 60 repetitions.
At the beginning of the experiment, participants completed 15
practice trials.

Results and discussion

Precision On each trial, we calculated the circular error, the
angular difference between participant’s response, and the
correct response (Error = Response – Correct), with the circu-
lar error of 0° corresponding to the perfectly correct answer
and the circular error of ± 90° corresponding to maximum
possible error. From the distribution of errors, we calculated
the standard deviation (SD) to use it as an estimate for the
precision of orientation averaging such that a greater SD indi-
cates less precise averaging.

First of all, we observed that the half-set condition showed
better performance (i.e., decreased standard deviation) than
the other two conditions for all three distribution types. In
support of this, a statistical test using the two-way repeated-
measures ANOVA with the two factors of the task conditions
(three levels: attended-subset, half-set-only, and superset) and
the distribution types (three levels: two-peaked, smooth nar-
row, and smooth fat distributions) showed a significant main
effect of the task conditions (F(2,38) = 83.17, p < 0.001, η2G =
0.28). The main effect of the distribution type was non-
significant (F(2,38) = 1.30, p = 0.28, η2G = 0.004). We also
found a significant, though small, effect of the interaction
between the two factors (F(4,76) = 5.91, p < 0.001, η2G =
0.03). The effect of the task conditions on the SD of the cir-
cular error distribution was further tested using contrast anal-
yses, with the half-set-only condition (average SD = 21°) be-
ing more precise than the attend-subset and superset condi-
tions (average SDs = 28° in both; comparisons: half-set vs.
subset: t(19) = 14.19, p < .001, Bonferroni-corrected α =
0.017, Cohen’s d = 3.17; half-set vs. superset: t(19) = 11.71,
p < 0.001, Bonferroni-corrected α = 0.017, Cohen’s d = 2.62,
Fig. 8A). It is not surprising that the mean orientation of the
half-set was estimated more precisely than the mean orienta-
tion of the superset because the physical orientation range of
half-sets was smaller than that of supersets (60° vs. 90°). This
is also consistent with previous reports of averaging error
increasing with the range of feature values (Corbett et al.,
2012; Dakin, 2001; Fouriezos, Rubenfeld, & Capstick,
2008; Im & Halberda, 2013; Marchant, Simons, & de
Fockert, 2013; Maule & Franklin, 2015; Utochkin &
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Tiurina, 2014). On the other hand, the precision in the attend-
subset condition was worse than in the half-set-only condition,
although the physical range of the relevant category was the
same. This result replicates the findings reported in
Experiment 2, suggesting that the ensemble extraction of a
subset is noisy due to the imperfect selection and segmenta-
tion process.

We next examined the effects of shapes of feature distribu-
tions. We found that when observers had to report the mean
orientation of the attend-subset, their SD was smaller in the

two-peaked distributions (average SD = 27°) than in the
smooth narrow distributions (average SD = 30°; comparison:
t(19) = 4.01, p < 0.001, Bonferroni-corrected α = 0.017,
Cohen’s d = 0.90), although it did not reach a significant
difference with the smooth fat distribution.

Bias towards the mean of the superset To examine whether
participants’ mean orientation estimation of the attend-subset
was biased towards the grand mean of the superset, we con-
ducted an additional test by adjusting the error distributions.

Fig. 7 An example trial of Experiment 3 demonstrating the “Superset” task

Fig. 8 The results of Experiment 3: (A) error standard deviation (SD) in
the average orientation-adjustment task as a function of condition and
length distribution; (B) bias towards the grand mean orientation as a

function of the length distribution in the “attend-subset” condition.
Error bars denote the standard error of the mean
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This adjustment was performed to evaluate the directionality
of the mean orientation of the subset relative to the superset.
We flipped the signs of raw error values (e.g., Error =
Response – Correct answer) for the trials where the mean
orientation of the subset was greater than the mean of the
superset. Through this transformation, any responses that
were biased towards the mean of the superset had a positive
error value, whereas any responses that deviated from the
mean of the superset had a negative error value. We then
calculated the mean of the distribution of these transformed
error values to quantify the magnitude of the systematic bias
towards or away from the grand mean of the superset. The
signed error values are particularly informative for our pur-
pose because they could indicate both the directionality of the
bias (e.g., towards/against) relative to the mean of the superset
and the magnitude of the bias (if present).

Figure 8B summarizes the mean biases in the three differ-
ent types of distributions. Overall, we found considerable pos-
itive biases in all these distributions (mean = 7–10°, one-
sample t-tests for differences from 0°: all ts(19) > 6, all ps <
0.001, Bonferroni-corrected α = 0.017, all Cohen’s ds > 1.3).
Because the physical distance between the correct answer
(true mean of the subset) and the mean of the superset was
15°, these biases were smaller than the distance between the
correct answer and the grand mean (one-sample t-tests for
differences from 15°: all ts(19) > 4, all ps < .001,
Bonferroni-corrected α = 0.017, all Cohen’s ds > 0.9).
Therefore, we can conclude that participants’ estimation of
the mean orientation of the subset was highly biased towards
the mean of the superset, although their estimation was not
completely based on the grand mean itself. This result is con-
sistent with our finding in Experiment 2. Moreover, the par-
ticipants’ biases in mean orientation estimation were greater
when the shape of the length distribution was smooth narrow
(mean = 10.5°, SD = 5.4°) thanwhen it was two-peaked (mean
= 7.3°, SD = 4.8°; comparison: t(19) = 4.01, p < 0.001,
Bonferroni-corrected α = 0.017, Cohen’s d = 0.90).
However, a significant difference was not observed between
the smooth fat distribution and the two-peaked distribution.

It is worth highlighting that there was a notable difference
in participants’ performance for the superset conditions of
Experiment 3 compared to that of Experiment 2. In
Experiment 3, we observed that the response accuracy for
the superset condition was comparable to that for the attend-
subset condition, although worse than for the half-set condi-
tion (Fig. 8A). In Experiment 2, however, participants’ cen-
troid positioning errors in the superset condition were consis-
tently comparable to those in the half-set-only condition, sig-
nificantly better than the attend-subset condition (see Fig. 6A).
One reasonable consideration regarding this discrepancy is
related to the practical limitations of the centroid paradigm
we acknowledged in Experiment 2. Due to the limited space
of the screen size, the centroids of superset condition tended to

be centralized, compared to the positions of centroids in the
attend-subset condition in which the locations of two subsets
were spatially separated (see Fig. 6B). In Experiment 3 in
which this limitation in accommodating all the lines with
enough distances in the same visual area was resolved, partic-
ipants’ response accuracy for the superset condition was
equivalent to the attend-subset condition, rather than the
half-set condition. Therefore, when the distribution of the
superset was controlled better to be equated to the other two
conditions as in Experiment 3, the half-set condition showed a
clear advantage over the attend-subset and the superset
conditions.

Our main finding of Experiment 3 was that the two-peak
distribution in the domain of length allowed for more precise
and easier segmentation than the smooth narrow distribution,
which in turn resulted in more precise and less biased (al-
though not perfect) ensemble estimates in another feature do-
main (e.g., orientation) from the segmented subsets. From this
point of view, our results replicate the results of Experiment 2,
providing generalizable results across different visual features.

General discussion

The primary goal of this study was to test how the statistical
structure of multiple intermixed objects (mean, median, range,
and the shape of the feature distribution) affects the ease of
making categorical discriminations (e.g., segmentation or
parsing) between groups of objects and modulates the extrac-
tion of overall ensemble statistics from these groups. Instead
of estimating categorical effects using indirect or implicit ma-
nipulations (e.g., Khayat & Hochstein, 2019; Utochkin et al.,
2018; Utochkin & Yurevich, 2016), the current study strived
to make the categorization task as explicit and direct as pos-
sible. Here participants were engaged in the categorization
component more directly, following our instruction for them
to use an overt categorization rule (half-split by size). Here we
report threemain novel findings: First of all, participants could
categorize individual objects into categories (subsets) – large
versus small subsets or long versus short subsets – based on
the ensemble central tendency (presumably the grand mean
extracted from the superset, Experiment 1) and use these seg-
mentation rules for ensemble extraction in another feature
domain: segmentation by size and ensemble extraction by
location (Experiment 2) or segmentation by length and ensem-
ble extraction by orientation (Experiment 3). Second, partici-
pants’ categorization performance was sensitive to and depen-
dent on the shape of the distribution in the feature domain to
be used for segmentation. Finally, the ease of segmenting and
categorizing subgroups based on one feature dimension also
systematically affected the precision of extraction of ensemble
summary statistics from the subgroups in another feature di-
mension (e.g., centroid or orientation).
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The mean value as a categorical boundary

In their recent work, Khayat & Hochstein (2018, 2019) made
an insightful statement that an ensemble’s central tendency
(e.g., the mean feature) can be implicitly extracted from a
series of briefly shown items and used as the best representa-
tive of the set most likely reported as having been presented
(even if it actually has not). There is a great resemblance
between the retrieval of the ensemble mean and the object
with high typicality in a categorization task (e.g., Khayat &
Hochstein, 2019). This resemblance is suggestive of demon-
strating that ensemble statistics indeed can be naturally related
to categorization and that the mean object can be considered a
“prototype” of ensemble members.

We suggest that our findings (especially from Experiment
1) demonstrate the flip-side of the effects found byKhayat and
Hochstein (2018, 2019). The most typical representative of all
items is, at the same time, the point of maximum ambiguity
(boundary) when you need to parse these items into separate
categories. Whereas Khayat and Hochstein demonstrated that
the probability of an item to be recognized as a set member
decreases as a function of its distance to the mean in the fea-
ture space (or along a typicality scale), we demonstrated that
the probability of accurate categorization increases as a func-
tion of the distance to the mean. We consider that our findings
mirror the patterns observed in Khayat and Hochstein’s (2018,
2019) with a reversal, possibly because of the different nature
of the tasks used.

Although we explicitly used the median size as a boundary
in our categorization rule, our stimulation with skewed
superset distributions and the resulting asymmetry of the cat-
egorization function (see Fig. 3, and also Experiment 1 for a
detailed explanation) showed that observers rather relied on
the grand mean as a more natural representation of the cate-
gorical boundary. The fact that they did it unintentionally,
contrary to the task instruction, and without extended practice,
extends our idea of the functionality of ensemble mean not
only as an explicit approximate of summarized ensemble
properties (Chong & Treisman, 2003) but also as a powerful
tool of “naturally” organizing visual and cognitive represen-
tations for many tasks.

Role of feature distribution: Ensemble categorization
as a probabilistic process

Our results showed that the distance effects on the categoriza-
tion are strongly modulated by the shapes of feature distribu-
tions of the stimuli that differed in the range and shape (e.g.,
smoothness). In addition, Experiments 2 and 3 consistently
showed two-peaked distributions facilitated the precision of
ensemble estimates of segmented, two-peaked subsets com-
pared to the smooth narrow distributions (note that there was
no consistency in the smooth fat distributions). This finding

suggests important properties of ensemble-based categoriza-
tion. First of all, ensemble-based categorization does not rely
on the all-or-none process of definitive classification based on
the boundary rule. Rather, it is a probabilistic and integrative
decision that is strongly dependent on many factors including
the resemblance of the items within the same subset, deviance
from the items that belong to other subsets, and the disposition
of the overall group that includes all the items (e.g., superset
that provides their common mean “prototype”). This idea is
not novel in the categorization literature (e.g., Rosch &
Mervis, 1975). Second, the probability of categorizing items
as large or small depended both on absolute and relative dis-
tance from the item to the categorical boundary. The role of
absolute distance was supported by the following findings.
The smooth narrow distributions, including only sizes densely
distributed around the grand mean, yielded the lowest catego-
rization accuracy, whereas the two-peaked distributions, in-
cluding only sizes substantially separated from the grand
mean, yielded much better categorization accuracy. A similar
pattern was also found in subset summary judgments in
Experiments 2 and 3. The smooth fat distribution containing
both middle and extreme sizes yielded an intermediate cate-
gorization rate. The effect of relative distance from the cate-
gorical boundary can be demonstrated by the fact that items
with extreme sizes (smallest or largest) were categorized al-
most with the same accuracy regardless of the distribution
range and shape.

Our findings on the roles of deviations of individual items
from the grand mean in determining the ensemble-based cat-
egorization also provide insights into the concept of
segmentability. Previous work of Utochkin and colleagues
(Utochkin, 2015; Utochkin et al., 2018; Utochkin &
Yurevich, 2016) has suggested that the shape of the feature
distribution – whether it is smooth/single-peak (non-
segmentable) or bumpy/several-peaks (segmentable) – is crit-
ical for determining whether all items belong to the same or
different categories. Such a segmentability “rule” can be a
useful heuristic for categorization as it plausibly conveys the
distributional properties of objects of the same and different
kinds in the real world (Utochkin, 2015). However, our new
data show that ensemble categorization can be based not only
on the analysis of peaks and gaps in the feature distribution,
but rather can be explained by the occurrence of elements
similar to a common “prototype” (ensemble mean) and, thus,
causing a lot of categorical confusion. There are many such
elements in smooth distributions, especially in narrow-
range ones, which makes categorization into two groups
more difficult. In contrast, there is less categorical confu-
sion in the two-peaked distribution because they do not
contain a lot of “prototypical” elements: Moreover, the
common “prototype” in the form of the grand mean might
not be encoded at all in such ensembles (see Treue, Hol,
& Rauber, 2000).
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Categorization and segmentation of spatially
intermixed subsets based on size

In Experiments 2 and 3, we found that an ability to accurately
extract ensemble statistics was significantly impaired and bi-
ased when the items from two subsets were presented and
intermixed together, compared to when a set was presented
in isolation (e.g., half-set-only condition). Our results suggest,
in line with a number of other studies (Inverso et al., 2016;
Oriet & Brand, 2013; Utochkin et al., 2018), that many feature
dimensions such as size, length, or orientations are not perfect
bases for global attentional “filtering” possibly due to the in-
herent noise. On the other hand, many other studies demon-
strating a much better ability to compute ensemble statistics
independently within spatially intermixed subsets (e.g.,
Chong & Treisman, 2005; Halberda et al., 2006; Im &
Chong, 2014, etc.) used color segmentation. The visual sys-
tem appears to be better tuned to even tiny color differences to
use them for global selection of spatially intermixed subsets
(Sun et al., 2016a, b), although there is also an indication that
parsing solely by color is still imperfect and can be improved
by an additional cue such as spatial separation (see Im, Park,
& Chong, 2015). Various sensory and perceptual dimensions
may differ in their potential to drive global segmentation and
categorization in complex scenes. To better understand the
hierarchical nature of visual grouping and scene perception
of more complex and realistic images, future research will
need to investigate how feature-based attention in various do-
mains guides segmentation and categorization of objects, sets,
and scenes. One promising direction is to establish effective
measurements that quantify how imperfect segmentation leads
to noisy ensemble representations of subsets. One potential
attempt would be to rely on modeling approaches and simu-
lations (e.g., Sun et al., 2016a, b) and evaluate how ensemble
representations of subsets in a visual array are degraded by
mistakenly including members of the distractor set, omitting
members of the target set, or occurrence of both.

In Experiments 2 and 3, we observed that the superset
condition in which participants did not have to categorize
individual objects into subgroups at all also showed the effects
of the shapes of distribution in another feature dimension.
Although the specific patterns were not completely identical,
both superset conditions in Experiments 2 and 3 showed that
the two-peaked distribution of irrelevant feature to the ensem-
ble extraction task (e.g., size in Experiment 1 and length in
Experiment 2) was not helpful or even detrimental, relative to
one fat distribution and two-peaked distributions. This finding
suggests that even when they did not have to, participants’
ensemble representations were sensitive to the shape of the
feature distribution of objects in a visual image. Previous work
has only examined the effects of the shape of feature distribu-
tion within the feature. For example, the size variance of
Gaussian distribution from which sizes of individual objects

were drawn systematically affected the precision of extracting
mean size (Im & Halberda, 2013) and the magnitude of adap-
tation aftereffect to the mean size (Corbett, Wurnitsch,
Schwartz, & Whitney, 2012); and discrimination threshold
for mean size increased when the two sets to be compared
had different size distributions (e.g., one set of objects from
two-peaked distribution vs. the other set of objects from a
uniform distribution), compared to when the two sets had
the same size distributions. Thus, the current finding on the
systematic modulation by the distribution shape of objects of
an ensemble across the two different features is novel.

Hierarchical coding empowered by rapid categorization for
ensembles of objects We propose that the segmentability
found in our experiments can have more far-reaching impli-
cations for understanding the organization of visual percep-
tion. Segmentability reflects a biologically justified strategy of
perceiving heterogeneous items, depending on the perceptual
context. When highly dissimilar and, hence, segmentable
items are mixed together, the visual system tends to emphasize
their differences, given that it is more likely that they represent
different types of objects. However, when a smooth transition
is provided between the same dissimilar features, it is likely
that they are merely extreme variants of the same object type.
This perceptual principle tends to reproduce the principle of
physical feature distribution among natural objects. Therefore,
segmentability can be considered to be a somewhat low-level
basis for the rapid perceptual categorization of multiple ob-
jects (Utochkin, 2015). Each such segmentable category also
can be an appropriate unit of global scene analysis.
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