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Abstract
Despite the increasing focus on target prevalence in visual search research, few papers have thoroughly examined the effect
of how target prevalence is communicated. Findings in the judgment and decision-making literature have demonstrated that
people behave differently depending on whether probabilistic information is made explicit or learned through experience,
hence there is potential for a similar difference when communicating prevalence in visual search. Our current research
examined how visual search changes depending on whether the target prevalence information was explicitly given to
observers or they learned the prevalence through experience with additional manipulations of target reward and salience. We
found that when the target prevalence was low, learning prevalence from experience resulted in more target-present responses
and longer search times before quitting compared to when observers were explicitly informed of the target probability. The
discrepancy narrowed with increased prevalence and reversed in the high target prevalence condition. Eye-tracking results
indicated that search with experience consistently resulted in longer fixation durations, with the largest difference in low-
prevalence conditions. Longer search time was primarily due to observers re-visited more items. Our work addressed the
importance of exploring influences brought by probability communication in future prevalence visual search studies.

Keywords Visual search · The description-experience gap · Prevalence effect

Introduction

The effects of target prevalence are increasingly studied
topics within visual search research (Wolfe et al. 2005,
2007; Schwark et al. 2013, 2012; Peltier & Becker 2016,
2017a, b; Evans et al. 2013; Ishibashi & Kita 2014; Ishibashi
et al. 2012; Lau & Huang 2010; Rich et al. 2008; Van Wert
et al. 2009). While prevalence effects on visual search have
been widely discussed in some scenarios due to the practical
importance of understanding search processes when targets
are rare, such as medical image evaluation (Kundel
1982; 2000) and luggage screening (Wolfe et al., 2013),
there are limited discussions on how target probability is
understood and interpreted by observers in the unbalanced
search environment. Meanwhile, research in judgment and
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decision-making indicates that people treat information
about event probabilities differently depending on how that
probability information is communicated (Hertwig et al.,
2004; Hertwig & Erev, 2009). To jointly explore the two
related research areas, the goal of our current work is to
systematically examine how visual search is affected by
the way target prevalence information is given to observers,
specifically, whether they receive explicit information about
prevalence or learn the prevalence from experience. We
will first give a brief overview of the prevalence effect
in visual search and the description–experience gap in
decision-making, then discuss our approach to investigating
description–experience differences in visual search.

Induced prevalence visual search

Compared to a balanced present/absent context, observers
miss targets at much higher rates when targets are rare
(e.g., from 7% miss rate to 30% miss rate; Wolfe et al.
(2005)). This increase in missed targets with a decrease
in target prevalence is referred to as the prevalence
effect (see Horowitz (2017), for a review). These general
patterns have been found with both ways of communicating
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target prevalence information, learning the prevalence from
experience and explicit information.

In experimental settings, experience-based search can
either be based on learning during the main blocks, i.e.,
observers start searching without any prevalence informa-
tion (e.g., Wolfe and Van Wert (2010), Experiment 2) or
observers experience the target prevalence in practice tri-
als prior to the main data collection blocks (e.g., Peltier
and Becker (2016)). Experience-based prevalence knowl-
edge provides a clear analog to applied settings, and can
offer insight into those domains. For example, Evans et al.
(2013) demonstrated that radiologists have relatively higher
miss rates in contexts in which they rarely observe cancer
compared to contexts in which cancer is more commonly
observed. In a more extreme case, the “experience” effect
had influence on search performance even when the “actual”
prevalence is fixed; even when there were no targets at
all, observers still followed false feedback reporting more
frequently that target was present (Schwark et al., 2013).

In contrast to “experience”-based search, in some
research observers are given vague prevalence information,
e.g., that targets are “rare” or appear “often” (e.g., Wolfe
et al. (2005)). The evidence of the influence of this explicit
prevalence information visual search performance is more
divided. For example, some research found that trial-by-
trial indicators of whether targets were likely or not did
not significantly moderate the prevalence effect; instead,
observers relied more on their accumulated experience of
target prevalence (Lau & Huang, 2010; Ishibashi et al.,
2012). An additional study reported that the “incorrect”
number did not affect radiologists’ accuracy or efficacy on
reporting abnormal pulmonary nodular lesions (Reed et al.,
2011). Even though the influence of explicit prevalence
information on overall search accuracy was dominated

by experience, the scrutiny time and the number of
fixations increased with cues, indicating higher prevalence.
Moreover, the explicit information influence was more
apparent for target-absent images (Reed et al., 2014).
Therefore, descriptive cues were less effective in instructing
observers’ search outcomes, but potentially affect the
search process, which can be driven by expectations.
Nocum et al. (2013) tested “naı̈ve” observers on various
prevalence expectations and argued that sensitivity and
fixation time were changed due to the expectations. Recent
studies that framed the clinical information of images
into three different prevalence expectations context found
higher expectation for abnormal reading increased search
and dwell time and resulted in more false-positive reports
(Littlefair et al. 2016, 2017).

The description-experience gap

While evidence of influence of explicit information on
search outcomes is varied, whether or not probabilities
are communicated explicitly has a clear influence on
risky decision-making. This difference between choice
based on explicit probability instructions compared to
learned probability information is usually couched within
prospect theory (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1992), and particularly the implied mapping
between objective and subjective probabilities. Prospect
theory posits that decision-makers subjectively overweight
small probabilities and underweight moderate and high
probabilities (Fig. 1, left panel). This pattern allows
prospect theory to explain, among other things, choices in
extremely low probability events such as purchasing lottery
tickets, gambling, and insurance. In contrast, Hertwig et al.
(2004) demonstrated that decisions based on experienced
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Fig. 1 An illustration of subjectively weighted probability in the scenario of decision from description (left) and decision from experience (right)
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probabilities, rather than explicit probabilistic information,
followed a pattern opposite from prospect theory (Fig. 1,
right panel). In decisions from experience, observers behave
as if they underweight small probabilities and overweight
large probabilities.

Recently, Wulff et al. (2018) reviewed the potential
determinants of the description-experience gap in the
decision-making literature: Decision-makers may rely on
small samples, weight more on the recent observations
(i.e., recency), or subjectively reverse the probability
weighting. However, there was no single determinate that
can explain the “gap” (also see Hertwig and Erev (2009)).
Though there is a lack of evidence in the previous
visual search studies showing the difference between
the search with prevalence-learned experience and from
description, the core prevalence effect parallels the pattern
of choices from experience—rare events are treated as
though they were even more rare (higher miss rates).
The match between “prevalence effect” observation and
“decision from experience” motivates the systematical
investigation of whether the same “gap” exists in the
prevalence visual search as well. Second, we examine
the subjective interpretation of target prevalence—whether
observers relatively overweight or underweight target
probability depending on whether they are given explicit
prevalence information or infer prevalence from experience.
For example, if observers’ behavior follows the pattern of
behavior in risky choice, then when they are told the target
is highly prevalent, they will act as though it is slightly less
prevalent, and when they must learn the same prevalence
from experience they will act as though it is more prevalent
(even higher).

Current research

To summarize, our main goal in the present research
was determining whether the “description-experience gap”
is reflected in prevalence visual search performance.
We hypothesized that observers would treat probabilistic
information in accordance with prospect theory when
given explicit probability information. Thus, we predicted
observers would treat very low prevalence contexts as if
the target probability were higher and treat moderate and
high prevalence contexts as though the target probability
was lower. Second, we hypothesized that when observers
searched based on their accumulated experience, the same
mechanisms that lead to the description-experience gap in
decision-making would influence their search performance.
We predicted observers would underweight small target
probabilities and overweight moderate and high target
probabilities.

Theoretical analysis and prediction

In both the description conditions and experience condi-
tions, the true prevalence is determined, but it is not possible
to directly measure observers’ subjective prevalence. In the
decision-making literature, subjective probabilities are esti-
mated based on a modification of a normative model of
choice, i.e., if ui are the values of possible outcomes if
A is chosen, each of which would occur with subjective
probability πi , then,

Pr{Choose A} ∝
∑

i

uiπi .

We follow a similar approach by assuming that
observers’ search performance can be described by a
signal detection model with an optimal criterion for their
subjective utility (cf. Wolfe and Van Wert (2010) and
Wickens (2002)). A primary advantage of using the signal
detection model is that it redescribes patterns of accuracy in
terms of target discriminability and response bias. Briefly,
the signal detection model assumes that a stimulus induces
a random amount of evidence for the presence of a target,
where there is more information on average in favor of
a target when the target is present. In the model, an
observer responds “target-present” whenever the evidence
exceeds a criterion and absent whenever the evidence is
below the criterion. When the variation in the amount of
information induced by a stimulus is high enough, it is
possible that evidence will exceed the criterion when no
target is present and the observer will make a false-alarm
error, or possible that the evidence will be below criterion
when the target is present and the observer will have a miss
error. The difference in the average amount of information
indicating target presence when it is actually present,
and the amount of information when the target is absent
represents the overall target discriminability, and is labeled
d ′. The criterion represents the response bias; a lower
criterion implies relatively more target-present responses,
while a higher criterion corresponds to more target-absent
responses. There are different ways to parameterize the
response bias. For correspondence with previous prevalence
visual search studies (e.g., Wolfe and Van Wert (2010)
and Godwin et al. (2015)), we use c. Henceforth, unless
otherwise specified, we are referring to c whenever we refer
to criterion within the signal detection model. More details
are included in Appendix A.

The relationship between the observers subjective
interpretation of the prevalence, π , subjective values of
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correct rejections, uCR, false alarms, uFA, hits, uH, misses
uH, and the optimal criterion c is given by,

coptimal = 1

d ′

[
log

uCR − uFA

uH − uM
− logit π

]
. (1)

Equation 1 demonstrates that an optimal observer
would change its criterion based on changes in perceived
prevalence π . As π decreases, logit π decreases and hence
the optimal criterion increases, resulting in relatively more
misses. We expect the difference between prevalence from
experience and prevalence from description to selectively
influence π .

Equation 1 also indicates an effect of the response
rewards and costs (utilities). Assuming that the subjective
target prevalence π is fixed, if uCR − uFA < uH − uM,
i.e., target-absent responses are generally less valuable than
target-present responses, then the optimal criterion would be
lower, resulting in relatively fewer misses. In contrast, if the
values u· for correct and incorrect outcomes are balanced:
uCR − uFA = uH − uM; then the criteria for reporting
targets would be entirely driven by the (subjective) target
prevalence and discriminability. Researchers have found
effects of the relative response values on the prevalence
effect. For example, Navalpakkam et al. (2009) found that
with high penalty on misses of reporting targets, observers
were able to report more “target-present” when the target
prevalence was low and reached the optimal performance.
Thus, in addition to the target prevalence and how it is
communicated, we also manipulate the value, u·, associated
with each response.

The use of signal detection theory in studying prevalence
visual search has some precedent. In particular, it is one
of two main components of the dual threshold model from
Wolfe and Van Wert (2010). Following the dual threshold
model (Wolfe & Van Wert, 2010), we extend the signal
detection model to include a random accumulation process
for quantifying the effects of varying target prevalence and
reward schemes on search strategy. When target prevalence
is low, observers tend to end their search sooner and thus
have fast target-absent responses. This effect has been
demonstrated in both behavioral studies (Lau & Huang,
2010; Ishibashi & Kita, 2014; Ishibashi et al., 2012) and eye
movements studies (Peltier & Becker, 2016; Godwin et al.,
2015). The dual threshold models this phenomenon as an
effect of a higher threshold for the random accumulation
process to reach for terminating. In addition to the effect
of prevalence on shifted criteria c, we expect the quitting
threshold to increase with higher penalties for misses
through the manipulation of reward scheme u· as observed
in Navalpakkam et al. (2009).

We expect that observers’ subjective weighting of target
probability thus can be observed through the measurement
of criteria shift and quitting threshold, as described
in the dual threshold model. As Fig. 2 sketches, we
hypothesized interaction between information manipulation
and prevalence on criteria (Fig. 2a) and quitting threshold
(Fig. 2c)—e.g., observers search in low prevalence with
explicit experience would have faster and more “target-
absent” responses (the black line on the left end). Second,
the penalty on the missed target reports would ameliorate
the prevalence effect (Fig. 2b and d). We will elaborate on
our manipulation implementations in the following section.

Methods

Participants

We targeted 20 observers for analysis in this study
whose performance is above chance—50% overall accuracy
averaged across all prevalence levels—based on sample
sizes in Wolfe and Van Wert (2010) and the intention of
examining individual participant level performance of small
number of group over large number of observations(cf.
Smith and Little (2018)). Ultimately, we collected data
from 22 observers (age: 18–59; female: 13). Two observers
whose performance was lower than 50% accuracy and
were excluded from further analyses. All observers reported
normal or corrected to normal visual acuity and no difficulty
understanding English. Observers were reimbursed $40 for
finishing the entire task and were motivated by receiving
$20 as an extra bonus for being in the top 15% for search
performance based on points they achieved defined by the
overall reward schemes.

Experimental design

The study consisted of four fully crossed design sessions,
combining two different search conditions (i.e., experi-
ence/description) and two different reward schemes (i.e.,
penalty/neutral; see Table 1). Each session was expected to
last about 1 h 15 min including breaks during the exper-
iment, and observers were expected to complete no more
than one session per day and scheduled to finish all four
session within a week.

Each session consisted of four blocks with target
prevalence at 0.1, 0.35, 0.65, and 0.9 in random order.
Each block included 80 trials. Given that observers may
be sensitive for short-term runs in prevalence (e.g., Fox
and Hadar (2006)), we used a fixed random distribution of
target-present trials within a block. That is, the sequence of
“target-present” trials are same for all different information
by session conditions—e.g., for an observer, “trial 2” always
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Fig. 2 Experimental predictions on hypothetical analysis

includes a target in 0.9 condition for both experience and
description conditions.

Although target/distractor discriminability is not the
primary focus of our research, we also included this
manipulation to verify that changes in our interpretation of
variation in subjective probability was not due to variation
in d ′ (cf. Eq. 1). To manipulate discriminability, we used
two levels of distractors defined by how close they were
to the targets. Rather than having homogeneous distractors,
the discriminability level for a trial was determined by the
proportion of distractors that were more and less similar to
the target in the search field. In a high salience trial, the high
perceptually discriminable distractors were twice as likely
to show up as the low perceptually discriminable distractors,
and vice versa for a low salience trial.

In summary, our current design deployed four different
manipulations to influence search performance: information
(description/experience), prevalence (high/low), reward
(penalty/neutral), and salience (high/low). We observe
the manipulations through dependent various of behavior
responses and eye movements.

Figure 3 depicts the basic trial structure. Each trial began
with a cross in the middle of the screen. The stimulus was

Table 1 Reward schema adapted from Navalpakkam et al. (2009)

CR FA Miss Hit

Neutral +1 −50 −50 +1

Penalty +1 −50 −900 +100
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Fig. 3 Structure of a single trial. See text for details

presented on the screen and observers were asked to respond
by clicking the mouse to indicate if the target was present
or not. If observers responded that the target was present,
they were then asked to verify the location of the target by
clicking on the item position. If observers responded that
target was absent, then the trial ended. Observers received
feedback and reward outcomes in points after each trial. In
particular, observers were given details of their incorrect
responses: responding target present in a target-absent trial
or identifying the wrong item in a target-present trial (i.e.,
false alarm),1 or responding target-absent in a target-present
trial (i.e., miss). Observers were instructed to respond as
fast and accurately as possible and were told that the trial
would end after 15 s. To encourage timely responses, not
responding within the 15 s resulted in a high penalty—twice
the “miss” points.

Materials

The experiment was programmed using PsychoPy (Peirce,
2007). Stimuli were a field of T-shaped items randomly
placed on the screen. An example search field is shown
in Fig. 4. Each search array consisted of 25 items.
Each item subtended 1◦ × 1◦ visual angle (VA). The
perceptual discriminability between targets and distractors
was controlled by distance of the crossbar away from
the center (offset 0.08–0.2◦VA). The larger the VA, the
more dissimilar the item was from the target and more

1The reward schemes took responses of identifying a wrong item in
the target present trials as false alarms. We also analyzed the case
when the responses were considered as hits (consistent with previous
studies where observers did not need to verify the target position) or
misses (failed to report a target), and there were no qualitative changes
relevant to our conclusion.

Fig. 4 Stimuli were a field of T-shaped items randomly placed on
the screen. The example given was a target present trial in which the
target was circled for displaying purpose. The trial was also featured as
low salience that more low salience discriminability distractors were
presented

easily being identified as a distractor. High perceptually
discriminable distractors (offset 0.125 – 0.2◦VA) and
low perceptually discriminable distractors (offset 0.08 –
0.11◦VA) were sampled to compose high/low salience
search scenario for each trial. The stimuli were presented
on a 20” Sony Trinitron CRT monitor with a resolution of
1600 × 1200 pixels and a refresh rate of 85 Hz. Observers
viewed the screen at a distance of 90 cm.

Eye movements were tracked using an EyeLink 1000
eye-tracker at a 500-Hz sampling rate and only the right eye
was recorded. Observers were required to use a chin rest
to stabilize head position and asked to move their heads as
little as possible.

Procedure

Information condition (description/experience) and reward
(penalty/neutral) were fully crossed and each combination
was administered on a different day. All subjects followed a
pattern experience–description–experience–description for
the information condition. Being given explicit prevalence
information in the description condition first might offer
observers an expectation of prevalence in the subsequent
experience condition in which they were supposed to
accumulate target prevalence information.2 The reward
condition was counterbalanced across participants.

2Though we did not counterbalance all order effects, we limited
participants to one session per day to mitigate carry-over effects.
Our further test on learning effects and effects of exposure to the
description condition indicated there was no discernable difference
between the first and second experience session at any level of
prevalence.
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Before the experiment started, the eye-tracker was
calibrated using a nine-point calibration routine. After the
calibration, observers were given the instruction about
the task. Observers were instructed to find the target
symmetrical T among various asymmetrical distractors
T’s as accurately and quickly as possible. Additionally,
the instruction also gave observers an illustration of all
possible distractors showing that some distractors were
more difficult to identify.

In the experience session, the experimenter told the
participant that there would be four blocks and some blocks
included more targets than other blocks. The experiment
then began with a block indicator—i.e., “Block 1”. In the
description sessions, the experimenter told the participant
that there would be four blocks, but the probability of
target was display with the block indicator—i.e., “Block 1
0.35”. Though not explicitly described in the experimental
instruction, observers were given a verbal example to help
them understand the interpretation of target prevalence—
e.g., “35% means there are 35 trials that include a target in
every 100 trials on average”.

Each block lasted 80 trials. To maintain consistent
starting points for the visual search and to check for drift in
the eye-tracking measurements, each trial started only after
the observer fixated a cross (2.5◦ VA of center) at the center
of the screen (Fig. 3). After each block, observers were
required to take a break and then performed the calibration
routine again before returning to the task for next block.

Bayesian analyses

We report our results in terms of the posterior distribution
of the appropriate model (signal detection or generalized
linear model) parameters and in terms of Bayes factors (BF).
When the models were available in the BayesFactor package
(Morey & Rouder, 2018), we used it for both posterior
estimation and Bayes factor estimation. For models that are
not included in that package, we implemented the model in
Stan (Stan Development Team, 2018) to estimate posterior
distributions and fed results into the bridgesampling
package (Gronau & Singmann, 2018) to estimate Bayes
factors.

We used BF in a manner similar to the Bayesian ANOVA
tests implemented in R (Morey & Rouder, 2018). The
Bayes factor indicates the relative support likelihood of the
observed data under two alternative models. For example,
if BF = 4, the observed data are four times more likely
to have occurred under one model relative to the other
model. For qualitative interpretation of the Bayes factor
scale, we use (Jeffreys, 1961). Thus, we would state that
there is moderate evidence for that model if BF = 4 (see
also Lee and Wagenmakers (2014)). This approach reframes
the traditional null-hypothesis testing question of whether a

factor is significantly different from zero as a question of
whether the data are more likely under a model that includes
the factor. For example, rather than testing if the variance
across levels of an interaction is higher than within, our
analysis compares how likely the data are under a model
with the interaction to a model with only the main effects.
In analyses with many different possible models (e.g., all
subsets of main effects and interactions), we report only the
top models, i.e., those models that have the highest relative
likelihood among the possible models. This allows us to
focus on discussing the factors and interactions that are most
likely given the observed data.

The posterior distribution describes the estimation of
the relative plausibility of different parameter values,
conditional on our observed data and model (cf. McElreath
(2018)). For each posterior distribution, we present the 95%
credible interval that was a range of posterior distribution,
indicating that the interval was 95% likely to contain the
true value of the parameter (Lee, 2018).

Results

We collected observers, accuracy, response time, and eye-
movement trajectories for each trial. We first verify that
the standard prevalence effect was replicated, then present
analyses for each of the three data types. In addition to
the simple effect of the prevalence, we are interested in the
interaction with the two different information conditions:
description and experience. To measure this difference, we
focus on shifts in signal detection criteria and response
times (dual threshold model; Wolfe and Van Wert (2010)),
item fixation during (Peltier & Becker, 2016), and number
of fixated and re-fixated items (Godwin et al., 2015).

Accuracy analysis

Among the 20 observers who reached the accuracy criteria
(i.e., 50% accuracy and better), three additional observers
were excluded from the analysis due to their failure to
discriminate targets from distractors for any given block
(i.e., d ′ ≤ 0), which left 17 observers in total in our
behavior analyses. We analyzed the remaining 17 observers
using a Bayesian hierarchical signal detection model, based
on Rouder and Lu (2005), and implemented in Stan (Stan
Development Team, 2018).

Figure 5 gives a general description of observers’
accuracy when the target was present. As Fig. 5 indicates,
we find the same pattern as previous studies reporting
“prevalence effect”—as the target prevalence decreases
from high to low, observers missed more targets.

Given that the basic effect was replicated, next we
applied the Bayesian signal detection analysis. For a
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Fig. 5 The accuracy when the target was present across over the different prevalence, reward, and information conditions. The error bar indicates
standard error within each group

baseline of comparison, we estimated a model that assumed
only main effects of information, prevalence, reward, and an
individual subject variance factor. We then evaluated Bayes
factors for a model that included all two- and three-way
interactions among prevalence, information, and reward for
estimating posterior distributions and evaluating evidence
for our hypotheses. Compared to the baseline model, there
was extreme evidence in favor of the full model that
included all main factors and interactions (BF > 1.45 ×
1023).

Figure 6 shows violin plots of the posterior distribution
of group-level criteria across reward levels and information
levels for the best model. The 95% high-density intervals
(HDI; cf. Meredith and Kruschke (2018)) are indicated with
a line and the full distribution is indicated with filled shapes.
The main effect of reward is clear evidence in the posterior
distribution. Overall, as prevalence increased, the criterion
decreased, indicating participants became relatively more
biased toward responding target-present. There was also an
evident effect of the reward manipulation: Criteria were

Fig. 6 Violin plot depiction of the posterior distribution of the group-level criteria parameter from the hierarchical signal detection model over the
different prevalence, reward, and information conditions
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higher in the neutral condition than in the penalty condition,
indicating that participants were more biased toward target-
present responses in the penalty condition.

The interaction between prevalence and information
condition is indicative of a description-experience gap.
Figure 6 shows that criteria tended to be more biased
toward target-present in the experience condition for low
prevalence. This discrepancy diminished when the target
prevalence increased to moderately low (s = 0.35) and
moderately high (s = 0.65) prevalence conditions. In
the high-prevalence condition, the effect of the “gap” was
reversed: the criteria in the description were more biased
toward target-absent responses.

In decision-making literature, the description-experience
gap is framed in terms of the mapping between true
probabilities and subjective probabilities (i.e., Fig. 1). To
highlight the relationship between our results of subjective
probability weighting and true target probability, we used
the posterior estimates of the SDT model to predict the
subjective prevalence used by participants in our study. This
translation rests on two assumptions: First, participants set
their criterion optimally given their subjective utility; and
second, they used the true point value as the utility.3 More
succinctly, we calculated subjective probability π in Eq. 1
assuming that observers performed on optimal criteria c.

Figure 7 shows the posterior group-level subjective
probabilities. Contrary to the weighted probability illustra-
tion in decision-making literature, as described in Fig. 1
that observers’ performance deviated from the true target
probability by either subjectively overweighting or under-
weighting probability, our results indicated that observers
underweighted the target probabilities across all sessions.4

Nonetheless, the cross-over interaction between prevalence
and information condition is again evident in these posterior
distributions: In the low prevalence condition, search based
on experience resulted in observers weighted probability
larger compared to when they were given explicit informa-
tion about the probability; in the high prevalence condition,
the description-guided search led to observers have larger
weighted probability than in the experience-based search.

Expectation and experience In the experience conditions,
participants had less experience when responding to trials
early in a block. Similarly, in the description condition, the
participants had the opportunity to gain a lot of experience

3These assumptions are almost certainly false, but does not have an
effect on the qualitative relationship between subjective probability
and information condition across prevalence levels and hence is
less important for our purposes. In future research, we plan to add
conditions that will allow for estimating subjective utility as well
subjective prevalence. See Appendix A for further discussion.
4Note that this consistent underweighting may be due to our
simplifying assumption about the subjective utility mapping.

Fig. 7 Implied probability weighting assuming optimal criteria
(neutral reward condition); the lines indicate the median of the
distributions

of the prevalence by the later trials in a block. Thus, to
examine whether the effects hold when comparing the trials
with the most experience in the experience condition and
least experience in the description condition, we ran the
same signal detection analysis applied to the first half of the
trials from each of the description blocks and the latter half
of trials from each of the experience blocks. The analysis
indicated extremely strong evidence in favor of the full
model that included all main factors and interactions (BF =
1.91 × 1018).

Figure 8 demonstrates the evidence for differences in bias
between the early trials in the description block and the late
trials in the experience block with the posterior distribution
of the criterion differences. The posterior difference is not
clearly different from zero at low and moderate prevalence
levels (Fig. 8 left three columns), indicating that the
difference is less likely between 2nd half the experience
blocks and 1st half of description blocks. Therefore, in
these prevalence search blocks, learning from “experience”
through trials resulted in similar search behavior as
explicitly given the target probability information. However,
the difference is still likely (HDIs below zero) in the high
prevalence levels. The comparison between expectation and
experience indicated that even with more experience where
the target is present, informing observers that the target
probability is 90% produced more “target-present” reports.

Response times

Based on Wolfe and Van Wert (2010), we expected
observers would search longer in higher prevalence con-
ditions. Therefore, observers would have higher response

3348 Atten Percept Psychophys  (2020) 82:3340–3356



Fig. 8 Violin plot depiction of the posterior distribution of the difference (gap) between the criterion for trials in the second half of the experience
blocks (most experience) and first half of the description condition (least experience)

times reporting “target-present” with higher target preva-
lence, regardless of whether the target was present or not. In
accordance with this expectation, we examined the effects
of information, reward, prevalence, and distractor salience
on target-absent response times, regardless of whether the
target was present, using a Bayesian ANOVA (Morey &
Rouder, 2018).

Compared to the baseline model that only included
variability across subjects’ as a factor, our results indicated
that the model with the highest BF included the main effects
of information, reward, prevalence, salience manipulation,
and an interaction between information and prevalence
(BF > 7.62 × 10324). To test how strong the observed
data evidence supporting the best model in favor of the
other models that also covered these factors, we compared
the best model to the second and third best model. The
comparisons indicated that the best model was only slightly
better than the next best model, which excluded the effects
of information and the interaction between information
and prevalence (BF = 2.06), and moderately better than
the third best model, which added the interaction between
reward and salience (BF = 4.16).

Figure 9 gives the posterior means and HDIs from
the full model including all factors and interactions. As
expected from the prevalence effect: response times were
higher in higher prevalence blocks—the response time
increased from the left panel to the right panel. Figure 9
also reveals the effect of the salience manipulation that

more discriminable distractors led to lower response times
(the side-by-side violin distribution comparison in the same
color), confirming our assumption that these trials were
easier. In addition, there was only anecdotal evidence
supporting the effect of information and the interaction
between information and prevalence when comparing the
best and second-best model, conditional on our observation.
We found that if the prevalence-information interaction
in RT exists, it falls into the same pattern of criteria
as described in the previous section: when the target
was in lower prevalence, observers had lower response
times in the experience conditions; in the higher target
prevalence scenario, observers had higher response times in
the description condition.

Eyemovement

To further understand the visual search process, we
examined fixation duration and patterns of the 17 observers
who had positive d ′. We explored fixation duration on trials
where observers correctly responded target-present (i.e., hit;
Peltier and Becker (2016)). Moreover, to be consistent with
our SDT analysis and quitting threshold as discussed in
Wolfe and Van Wert (2010), we included all trials when
observers responded target-absent for analysis of number
of fixated items—that is both correct rejection and miss
rather than only correct rejection as Godwin et al. (2015).
Only fixations between the onset of the search array and the
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Fig. 9 The posterior distribution for group-level target-absent response times

response were used in these analyses. Fixations that were
shorter than 50 ms were excluded from the data analysis
(Rich et al., 2008).

A fixation was classified as being on a particular element
in the display if the fixation fell within 120 × 120 pixel
(about 2◦ × 2◦+ visual angle) of the center of the item.
Trials were marked as invalid if the proportion of invalid
samples from the eye-tracker exceeded 50%. For example,
observers had too many or too long eye blinks, or the eye-
tracker failed during the trial. Two additional observers were
excluded from the eye movement data analysis for having
an excessive number of invalid trials (i.e., > 40 trials) in
a block. For the remaining 15 observers, from about 0.5%
of trials were removed from further analysis based on this
criterion.

Item fixation duration We predicted that in the high
prevalence condition, observers fixated shorter on targets
and longer on distractors compared to the low prevalence
conditions. In addition, we assumed that the “gap” we
observed in the behavioral data analysis had an effect on
the fixation time as well—overweighting target probability
would lead observers to fixate on the item longer.

For both fixation duration on targets and distractors,
we used the Bayesian ANOVA (Morey & Rouder, 2018)
to compare the full model to our baseline model that
only included subjects’ variance. For targets fixation
duration, the most likely model included all main effects
of information, reward, prevalence, salience, and the
interactions between prevalence and reward, and prevalence
and salience (BF > 7.73×1045). The most likely model was
favored over the next best model (BF = 4.47) and third best
model (BF = 5.62) with moderate evidence, which did not

included both salience and its interaction with prevalence,
or only the interaction, respectively. For distractors fixation
duration, the most likely model included the main effects
of information, prevalence, salience, and the interaction
between prevalence and salience (BF > 5.97 × 1028). It
was favored over the next model with moderate evidence
(BF = 3.75) that did not include the information effect,
and stronger evidence (BF = 25.50) with the additional
interaction between salience and information.

Figures 10 and 11 describe the posterior means and HDIs
from the full model, including all factors and interactions for
observed item fixation duration. Consistent with previous
findings on the prevalence effect, the Bayesian analysis
indicated that there was a main effect of prevalence
on the fixation duration of both targets and distractors.
Additionally, the results also indicated the effect of reward
on target fixation times and the effect of information on
distractors fixation times. Contrary to our expectations, we
failed to find evidence showing that there was an interaction
between the prevalence and information.

Visited/re-visited items To further examine the nature of the
changes in search duration, we analyzed the total number
of fixated items and the number of fixations on previously
fixated items. Recall that we predicted that increases in
search time were driven by an increase in the number of
fixated and re-fixated items. Specifically, a re-visitation is
counted when an item is fixated again after observer fixating
on another item.

We analyze the number of fixations across target
present and target absent trials when observers quit
the search, i.e., responded target-absent, using Bayesian
Poisson regression implemented in the R package BRMS
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Fig. 10 The posterior distribution of the group-level target fixation duration

(Bürkner 2017, 2018). Following the analysis procedure
from the BayesFactor package (Morey & Rouder, 2018), we
computed models that included all possible combinations
of manipulations and compared them to the baseline
model that only included subject variance. The best
model included only main effects of prevalence and
reward levels (BF = 3.19 × 1021). There was very
strong evidence (BF = 49.46) relative to the next
best model, which included an additional main effect of
salience and the third best model (BF = 66.09), which
included an additional main effect of information level. For
re-fixations items, the best model included all main

effects—information, reward, prevalence, salience—with
the three-way interaction of information, reward, and
prevalence and the two-way interaction between each two
of them (BF > 3.59 × 10305). There was strong evidence of
it against the next best model (BF = 14.31), which included
the additional interaction between salience and information,
and stronger evidence (BF = 22.28) relative to the third best
model, which included the interaction between salience and
reward.

Figures 12 and 13 reveal the posterior means and HDIs
from the full model including all factors and interac-
tions for the number of visited and revisited items. Our

Fig. 11 The posterior distribution of the group-level distractor fixation duration

3351Atten Percept Psychophys  (2020) 82:3340–3356



Fig. 12 The posterior distribution of the group-level number of fixated items in target-absent trials

analysis showed the basic effect of prevalence on both
number of visitations. However, for the number of vis-
ited items, there was no other effects other than the
prevalence except for the reward manipulation. Our find-
ings in the number of visited items may be due to that
observers already put much effort into examining each
item—note that there were 25 items in each search field
and about 20 of them were visited. The results of revisited
items indicated a more interesting pattern: the three- and

two-way interactions in our manipulations of informa-
tion, reward, and prevalence. Therefore, we find cross
interaction between the prevalence effect and infor-
mation in the re-visited items: Fig. 13 shows that
“description” information produced more number re-visited
items when the target prevalence is high. More impor-
tantly, there were other factors that influence preva-
lence effect on revisited items for more detailed future
exploration.

Fig. 13 The posterior distribution of the group-level number of re-fixations target-absent trials
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Discussion

We systematically examined whether receiving explicit
information about prevalence or learning prevalence from
experience had an influence on observers’ performance.
Consistent with most previous research on prevalence
effects in visual search (e.g., Wolfe and Van Wert (2010)
and Ishibashi et al. (2012)), we found that observers become
more biased towards answering target-present as target
prevalence increased from low to high. Furthermore, we
found a pattern suggesting a “description-experience gap,”
which is frequently studied in decision-making literature,
but has not yet been examined in the context of visual
search: Observers in our study were more biased toward
target-present responses with low target prevalence when
they learned prevalence from experience compared to when
they were informed of the prevalence; whereas in the high
prevalence condition, observers were more biased toward
target-present responses when they were informed of the
prevalence compared to when they learned the prevalence
from experience.

Our core analysis was based on a hierarchical Bayesian
signal detection model, which we used to estimate biases
and subjective prevalence levels, but we also examined the
variation using a number of measures commonly used in
the prevalence visual search literature. The bias parameter
in the signal detection model clearly showed the cross-over
interaction between the way prevalence was communicated
and the block prevalence indicative of the description-
experience gap. Target-absent response time patterns, which
reflect how quickly an observer is willing to stop searching
for a target (Wolfe et al., 2013), showed a similar pattern
to the signal detection analysis. As prevalence increased,
observers were slower to respond target-absent when targets
were more prevalent and there was a cross-over interaction
such that when prevalence was low observers were slower
in the experience condition than the description condition,
but when prevalence was high observers were slower in the
description condition.

The eye-tracking also indicated increased bias toward
target-present response with increased prevalence.
Observers spent less time fixating targets with the increased
prevalence conditions and more time fixated on distractors,
consistent with Peltier and Becker (2016). There was not as
clear evidence for the cross-over interaction associated with
a “description-experience gap”, however fixation times on
targets were slightly longer in the experience condition.
Both the total number of fixated items and the number
of re-fixated items increased with increased prevalence,
following the signal detection and RT patterns and simi-
lar to the findings of Godwin et al. (2015). There was no

evidence of a description-experience gap in the number of
fixated items, but the number of re-fixations did indication
a cross-over interaction.

Within the decision-making literature, three categories
of explanation have been posited for the cause of the
description-experience gap: While making choices based
on experience, decision-makers may explore only a small
sample of trials from the whole distribution, focus more
on the recent observed outcomes or subjectively weight
the probability in a different way (Wulff et al., 2018;
Hertwig & Erev, 2009). These mechanisms can lead
to the decision-experience gap because decision-making
behavior differs from classic description-based paradigm
in which preference is measured for a choice once
and in isolation (e.g., Tversky and Kahneman (1992)).
Results from previous visual search studies indicate that
both small-samples and recency can influence prevalence
effects in experience-based prevalence search. For example,
Horowitz (2017) reviewed previous research and noted
that knowledge of target prevalence develops over a
window of approximately 20-50 trials. Thus, observers
may rely on the “local prevalence” to expect whether
the target shows up subsequently or not (e.g., Ishibashi
et al. (2012) and Wolfe and Van Wert (2010)). Horowitz
(2017) also proposed that the discrepancy in findings about
prevalence effect between medical image perception (e.g.,
Reed et al. 2011, 2014) and other psychological studies
(e.g., Lau and Huang (2010)) was that the small samples
in medical image perception studies were not sufficient for
building explicit expectations. Our current results on the
description-experience gap add additional explanations on
the prevalence effect, showing that observers’ subjective
interpretations on target-probability can play a role in
addition to the controlled effects of “small samples” and
“recency”. Therefore, future research on prevalence effect
should investigate probability learning (e.g., Estes (1976))
in further as well as other effects such as “small sample”
and “recency” that might lead to the prevalence effect.

In addition to the “description-experience” gap, one
finding that diverged from previous results was the degree to
which participants underestimated the probability of a target
across a wide range of prevalence levels and conditions.
In the experiment settings, we adopted the manipulation
of payoff rewards that associated with different responses.
Our results indicated that observers behaved differently
when there was an extreme penalty with “missed target”,
e.g., when the target prevalence was high, observers were
much more likely to respond “target-present” based on the
criteria in signal detection analysis. However, in contrast
with Navalpakkam et al. (2009), observers were not able
to obtain the optimal criteria except the “neutral” reward
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in 0.1 condition (more details see Appendix A). One
possible reason was that our participants were generally
inexperienced (mostly undergraduate students) relative to
expert radiologists. Naı̈ve observers who are unfamiliar with
the search task may be more likely to be influenced by the
experienced target-present event. Expert radiologists, on the
other hand, have a thorough understanding on the target they
are searching for and could more influenced by the given
explicit information. A potential future direction related to
this finding is to explore the interaction between observers’
search experience with information discrepancy given by
the task. Our task also measures the difficulty of stimuli for
subjects to identify, which can also speak to the proposed
decision process model by Peltier and Becker (2016).

Conclusions

Our current study examined the influence of reward
schemes and information communication on observers’
search performance when observers were instructed to
search for a target in different target prevalence contexts.
Our results indicated that searches based on explicit target
prevalence knowledge differed from searches based on
accumulated information gained through experience. When
observers search in high prevalence conditions based on
explicit prevalence instructions, they are more biased toward
target-present response than when they search based on
experienced prevalence while it is the reverse when the
target prevalence is low. While there is a significant body
of research on prevalence effects in visual search, we
believe this is the first paper to connect these effects
to the description-experience gap in the decision-making
literature.

Open practice statement This study was not preregistered.
The data and analysis scripts are available upon request.

Appendix A: An optimal criteria in visual
search

Signal detection theory (SDT; Green and Swets (1966))
assumes that the internal response to a target/distractor
is sampled from an equal variance Gaussian distribu-
tion (Wickens, 2002). The perceptual discriminability
(d ′) between the two distributions determines how well
observers can discriminate targets from distractors—the
larger d ′ represents that observers can identify the targets
better. By setting up a perceptual criterion (λ), responses

can be categorized into four different types (Table 2): cor-
rectly identify a target (hit), falsely identify a distractor as
the target (false alarm), correctly reject a distract (correct
rejection), and fail to report a target (miss).

The dual-threshold model (Wolfe & Van Wert, 2010)
assumes that the criteria c shifts, where c is the distance
between λ and the center of the two distributions, d ′/2
(λcenter ):

c = −z(H) + z(FA)

2
= λ − 1

2
d ′

Therefore, c represents the relative bias of responding
“yes” (target-present) or “no” (target-absent), when c = 0,
the bias is equal. To optimize the accuracy, the ratio of
responding “yes” or “no” should depend on the likelihood
of target present s:

coptimal = − logit(s)

d ′
In a visual search study, when the target prevalence is

50%, the optimal strategy to maximize the accuracy is to
posit the criteria c at the center of the two distributions
where observers are expected to respond “yes” and “no”
equally. When the target prevalence drops down to a low
prevalence condition, coptimal is biased towards “no”, thus
producing more target-absent responses as described in
the dual threshold model (Wolfe & Van Wert, 2010). To
persuade more target-present responses, our current study
employed the reward schemes from the previous study by
Navalpakkam et al. (2009), thus instead of trying to the
maximize the accuracy, the observers were instructed to
maximize the payoff, which was given by

coptimal = 1

d ′

[
log

V (CR) − V (FA)

V (H) − V (M)
− logit(s)

]

As Table 1 indicates, in the neutral condition,[V (CR) −
V (FA)]/[(V (H) − V (M)] = 1. Thus coptimal is obtained
by −logit(s)/d ′. Observers are expected to shift their
criteria c accordingly with the target prevalence s changes
as observed in many previous studies (e.g., Ishibashi
et al. (2012)). In the penalty condition, [V (CR) −
V (FA)]/[(V (H) − V (M)] = 0.051, the influence of target
prevalence s on coptimal is attenuated by the reward scheme.
Thus, we hypothesized that observers were biased towards
responding target-absent to ameliorate the prevalence effect
as observed in Navalpakkam et al. (2009).

Table 2 Responses in signal detection theory

Target

Responses Present Absent

Present Hit (H) False alarm (FA)

Absent Miss (M) Correct rejection (CR)
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Fig. 14 Violin plot depiction of observed criteria and optimal criteria, sampled from the posterior distributions in the Bayesian SDT

As indicated in Fig. 14, observers shifted their criteria
as the penalty on miss errors, which was consistent with
the Navalpakkam et al. (2009). However, opposite from
the arguments by Navalpakkam et al. (2009), the penalty
condition created an even harder scenario for observers
to catch the optimal criteria. Instead, only part of the
posterior distribution in the neutral reward condition when
the prevalence was low captured the optimal criteria.
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