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Abstract
The task requirements during the course of category learning are critical for promoting within-category representations (e.g.,
correlational structure of the categories). Recent data suggest that for unidimensional rule-based structures, only inference
training promotes the learning of within-category representations, and generalization across tasks is limited. It is unclear if this
is a general feature of rule-based structures, or a limitation of unidimensional rule-based structures. The present work reports the
results of three experiments further investigating this issue using an exclusive-or rule-based structure where successful perfor-
mance depends upon attending to two stimulus dimensions. Participants were trained using classification or inference and were
tested using inference. For both the classification and inference training conditions, within-category representations were learned
and could be generalized at test (i.e., from classification to inference) and this result was dependent upon a congruence between
local and global regions of the stimulus space. These data further support the idea that the task requirements during learning (i.e.,
a need to attend to multiple stimulus dimensions) are critical determinants of the category representations that are learned and the
utility of these representations for supporting generalization in novel situations.
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Introduction

Categories are central to virtually all cognitive processes.
Much effort has been devoted to understanding how catego-
ries are represented and the particular training features that
might influence how they are learned (e.g., Markman &
Ross, 2003). Outside of the laboratory, however, learning a
category representation is not typically an end in and of itself.
Instead, the utility of category representations lies in their
ability to support other functions (e.g., decision making in
novel situations – Hoffman & Rehder, 2010; Markman &
Ross, 2003) and the generalizability of category representa-
tions depends upon the nature of the representation itself
(Carvalho & Goldstone, 2014; Ell, Smith, Peralta, & Helie,

2017; Hélie, Shamloo, & Ell, 2017; Hoffman&Rehder, 2010;
Levering & Kurtz, 2015). Thus, it is important to understand
the limits of different types of category representations and to
identify training features that promote those representations
that are most successful for generalization.

Category representations that focus on within-category
similarities (e.g., prototypicality, covariation/range of stimulus
dimensions within a category) have been argued to be more
versatile in supporting generalization than representations that
focus on between-category differences (e.g., learn what di-
mensions are relevant for classification, along with decision
criteria or category boundaries) (Chin-Parker & Ross, 2002,
2004; Ell et al., 2017; Helie, Shamloo, & Ell, 2018; Hélie
et al., 2017; Kattner, Cox, & Green, 2016; Yamauchi &
Markman, 1998). For instance, within-category representa-
tions can support both generalization to novel stimuli and
generalization to a novel task (Chin-Parker & Ross, 2002;
Ell et al., 2017). Furthermore, within-category representations
can be applied to novel categorization problems (Hélie et al.,
2017; Kattner et al., 2016) and be reconfigured to form new
category representations (Helie et al., 2018).

Although a number of methodological factors have been
identified as being important for promoting within-category rep-
resentations (e.g., blocked training – Carvalho & Goldstone,
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2014; concept learning – Hélie et al., 2017; observational train-
ing – Levering & Kurtz, 2015; family-resemblance category
structures –Markman & Ross, 2003), the emphasis of the pres-
ent work is on the goal of the task (Goldstone, 1996; Hoffman&
Rehder, 2010; Love, 2005; Markman & Ross, 2003; Minda &
Ross, 2004; Yamauchi & Markman, 1998). The task goal of
classifying a stimulus into one of a number of contrasting cate-
gories has been argued to lead to a between-category represen-
tation (Erickson & Kruschke, 1998; Hélie et al., 2017; Maddox
& Ashby, 1993; Nosofsky, Palmeri, & McKinley, 1994; Smith
& Minda, 2002), whereas the task goal of inferring a missing
stimulus feature from a partial stimulus and a category label has
been argued to lead to a within-category representation (Chin-
Parker & Ross, 2002; Ell et al., 2017; Markman & Ross, 2003).

The importance of classification versus inference in pro-
moting within-category representations has been argued to
depend upon the category structure (Ell et al., 2017; Hélie
et al., 2017). Information-integration category structures (in
which information from multiple dimensions needs to be in-
tegrated prior to making a categorization response) generally
promote within-category representations (Ashby & Waldron,
1999; Ell et al., 2017; Hélie et al., 2017; Thomas, 1998). In
contrast, although rule-based category structures (in which
logical rules are applied to the stimulus dimensions diagnostic
of category membership) can promote within-category repre-
sentations when learned by inference, rule-based structures
may be incapable of promoting within-category representa-
tions when learned by classification (Ell et al., 2017)1.

An inability to learn within-category representations, how-
ever, may not be a general feature of rule-based category
structures. Ell et al. (2017) used a unidimensional, rule-
based structure in which the stimuli varied along two
continuous-valued dimensions, but only a single stimulus di-
mension was diagnostic of category membership. Thus, suc-
cessful classification depended upon a single dimension, but
the within-category representation (i.e., knowledge of the cor-
relational structure of the categories) depended upon both
stimulus dimensions. The inability to learn and generalize
within-category representations when classifying a rule-
based structure was interpreted as reflecting a limitation
of the between-category representation (i.e., the logical
rule used for classification). While this may be true
when the classification rule depends upon a single stim-
ulus dimension, it is also possible that within-category
representations could be learned if the classification rule
depended upon the same number of dimensions as the
within-category representation.

The following experiments investigate this issue using a
two-dimensional, rule-based category structure (i.e.,
exclusive-or; Fig. 1, bottom). In this category structure, suc-
cessful classification (i.e., classifying stimuli as a member of
category A or B) requires attention to both stimulus dimen-
sions. Similarly, successful inference (i.e., inferring a missing
stimulus feature when given one feature and the category la-
bel) also requires attention to both stimulus dimensions.
Although the between-category representation (i.e., the logical
rule: members of category A either have larger circles and
steeper lines, or smaller circles and shallower lines, thanmem-
bers of category B) would convey some rudimentary informa-
tion about the within-category correlations, it is not at all clear
if this information would be sufficient to support generaliza-
tion from classification to inference.

Briefly, across three experiments, participants were trained
on classification or inference and subsequently tested on in-
ference. If it is not possible to learn within-category represen-
tations when classifying a rule-based structure, only partici-
pants trained by inference should evidence knowledge of the
within-category correlations at test. In contrast, if attending to
multiple stimulus dimensions during training is a critical fac-
tor promoting the learning of within-category representations,
participants in both conditions should evidence knowledge of
the within-category correlations at test. To foreshadow, the
results support the latter hypothesis suggesting that within-
category representations can be learned in a rule-based task
and generalized to a novel task (i.e., from classification to
inference).

Experiment 1

Method

Participants and design

One-hundred and nineteen participants were recruited from
the University of Maine student community and received par-
tial course credit for participation. Sample size (approximately
30 participants/condition) was estimated based upon a similar
experiment in our lab (Ell et al., 2017). Data collection was
continued beyond this target (until the end of the semester) in
order to provide sufficient research opportunities for
participants in an introductory psychology research pool.
Participants were randomly assigned to one of two ex-
perimental conditions: classification or inference train-
ing. A total of nine participants were excluded from
analyses: seven due to a software error and two partic-
ipants did not complete the task within the hour-long
experimental session, resulting in sample sizes of 55
in each condition. All participants reported normal (20/
20) or corrected-to-normal vision.

1 Although logical rules can be based on either within- or between-category
representations (e.g., large or larger than), the subset of logical rules learned
when classifying rule-based structures tends to depend upon between-category
representations (Casale, Roeder, & Ashby, 2012; Ell & Ashby, 2012; Ell, Ing,
& Maddox, 2009; Hélie et al., 2017).
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Stimuli and apparatus

The stimuli comprised circles (varying continuously in diam-
eter) and an attached line (varying continuously in orientation
from horizontal) (Fig. 1, top). The category structures were
created using a variation of the randomization technique
(Ashby & Gott, 1988) in which the stimuli were generated
by sampling from bivariate normal distributions defined in a
diameter × angle (from horizontal) space in arbitrary units.
The category means for the stimuli in each of the four quad-
rants of Fig. 1 (two per category) wereμA1 = [650, 250],μA2 =
[350, -50], μB1 = [350, 250], and μB2 = [650, -50]. The co-

variance matrices were ΣA ¼ 3875 3625
3625 3875

� �
and ΣB ¼

3875 −3625
−3625 3875

� �
(i.e., a correlation of 1 between diameter

and angle for each quadrant assigned to category A and -1 for
each quadrant assigned to category B).

On each trial a random sample (x, y) was drawn from
category A or B and used to create a stimulus with a circle

of x
2 pixels in diameter and a line 180y

800 degrees (counterclock-
wise from horizontal) with a length of 200 pixels. The line was
always connected to the highest point of the circle. For the
training phase, 80 stimuli (40 from each category, 20 from
each quadrant) were generated for each of the four blocks of
trials (black symbols in Fig. 1). For the test phase, 56 stimuli
(28 from each category, 14 from each quadrant) were used for
the single test block (red circles in Fig. 1). The experiment was
run using the Psychophysics toolbox (Brainard, 1997; Kleiner
et al., 2007; Pelli, 1997) in the Matlab computing environ-
ment. Each stimulus was displayed on a 1,600 x 1,200 pixel
resolution 20-in. LCD with a viewing distance of 20 in.

Participants were expected to use a conjunctive strategy in
the classification task (e.g., the solid black decision bound-
aries plotted in Fig. 1: If the circle is large and high on orien-
tation or if the circle is small and low on orientation, respond
A; otherwise respond B), but given the large separation

between stimuli in the four quadrants, other strategies could
also result in high levels of accuracy. For instance, a strategy
assuming participants integrate the stimulus values prior to
any decision process would also predict high levels of perfor-
mance during training (e.g., the linear classifier plotted as
dashed black boundaries in Fig. 1; see Appendix for more
details). To address this issue, probe stimuli (16 total) were
included in the final block of classification training, resulting
in a total of 96 trials during the final block (light blue squares
in Fig. 1; Table 1). The example conjunctive and linear clas-
sifiers plotted in Fig. 1 would predict different categorization
responses for a subset of the probe stimuli. For instance, for
the two circled probe stimuli, the conjunctive classifier (solid)
would predict a category A response whereas the linear clas-
sifier (dashed) would predict a category B response. In order
to equate the similarity between conditions, probe stimuli
were also included in the inference condition. The probe

Table 1 Probe stimuli
coordinates (arbitrary units) Diameter Angle

650

650

650

650

560

526

491

457

350

350

350

350

560

526

491

457

40

74

108

142

250

250

250

250

40

74

108

142

-50

-50

-50

-50

Fig. 1 (Left) Example displays for the two training methodologies.
(Right) Rule-based category structure used in Experiments 1 and 3.
Category A (crosses) and B (circles) stimuli used during the training
phase. The insets are example stimuli. The solid black boundaries repre-
sent the optimal conjunctive decision strategy. The dashed black

boundaries represent an alternative decision strategy. Stimuli used during
the test phase are plotted as filled red circles. Probe stimuli used during
the final block of training are plotted as blue squares. See text for details
(color figure is provided online)
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stimuli were not members of either category, thus there is no
correct or incorrect response to these stimuli. Thus, no feed-
back was provided on probe trials and the probe stimuli were
excluded from accuracy analyses. Probe trials were only used
to estimate individual participant decision strategies in the
classification condition.

Procedure

Each participant was run individually. At the beginning of the
training phase, participants were informed that stimuli would
comprise a circle with a line connected at the top, and that the
stimuli would be presented individually, but would vary
across trials in circle diameter and line angle. In the classifi-
cation condition, participants were instructed that their goal
was to learn to distinguish between members of category A
and B by trial and error. On each trial, participants were shown
a stimulus and prompted with “Is this image a member of
category ‘A’ or category ‘B?’” and instructed to select a cate-
gory for each stimulus by pressing a button labeled ‘A’ or a
button labeled ‘B’ on the keyboard to indicate which category
was selected.

In the inference condition, participants were instructed that
their goal was to learn to draw the missing stimulus compo-
nent by trial and error (Fig. 1). On each trial, either a circle or a
line was presented with the category label. Participants were
instructed to draw the missing stimulus component. On half of
the trials they were asked to “Draw the circle that goes with
this line angle” and on the other half they were asked to “Draw
the line that goes with this circle.” To draw the circle, partic-
ipants used the mouse to indicate the location of the bottom of
the circle (indicating the diameter of the circle relative to the
dot at the beginning of the line). To draw the line, participants
used the mouse to indicate the location of the end of the line
(indicating the orientation of the line relative to horizontal).
The circle or line was then drawn to match the participant’s
selection with a line beginning at the dot at the top of the circle
(at a constant length of 200 pixels). Subsequently, participants
were able to fine-tune the circle diameter or the line angle
using the arrow keys on the keyboard. Any selected stimulus
values outside the allowable range (diameter 10–600 pixels,
angle: 50–110°) were reset to the nearest allowable value.

Stimulus presentation was response terminated with an up-
per limit of 60 s. After responding, feedback was provided. In
the classification condition, the screen was blanked and the
word “CORRECT” (in green, accompanied by a 500-Hz tone)
or “WRONG” (in red, accompanied by a 200-Hz tone) was
displayed. In the inference condition, the correct circle or line
was overlaid upon the participant’s response (in black). In all
conditions, feedback duration was 2 s and the screen was then
blanked for 1 s prior to the appearance of the next stimulus.

In addition to the trial-by-trial feedback, summary feed-
back was given at the end of each training block. For the

classification condition, proportion correct for the block was
shown (participants were informed that higher numbers are
better) and for the inference condition the root-mean-square-
error between the drawn and correct stimulus was shown (par-
ticipants were informed that lower numbers are better). The
presentation order of the stimuli was randomized within each
block, separately for each participant. Participants completed
several practice trials prior to beginning the training phase to
familiarize themselves with the task using stimuli randomly
sampled (with equal probability) from the training categories.

During the test phase, all participants performed the infer-
ence task (one block of 56 trials). Instruction was provided to
all conditions and participants completed several practice tri-
als using stimuli randomly sampled from the test phase stimuli
(with equal probability). No feedbackwas provided during the
test phase.

Results

Training phase: Performance on classification and inference

In the inference condition, the diameter-angle correlations
within each quadrant were in the appropriate direction (i.e.,
positive for the upper right and lower left, negative for the
lower right and upper left), thus the following analyses aver-
age across the quadrants.2 Data were also averaged across
quadrants in the classification condition, and for all subse-
quent analyses, unless otherwise noted.

The dependent measure was different for the classification
(proportion correct) and the inference (correlation between the
given and produced stimulus values) conditions, therefore the
data from each condition were analyzed separately.
Performance generally improved across blocks for both con-
ditions (Fig. 2, Table 2). Consistent with this observation,
separate paired-samples t-tests indicated significant increases
from block 1 to block 4 in proportion correct for the classifi-
cation condition: [t(54) = -4.491, p < .001, d = .72] and the
diameter-angle correlation for the inference condition: [t(54) =
-4.454, p < .001, d = .52].

Training phase: Classification decision strategy

Participants were expected to learn conjunctive strategies in
the classification condition. In order to confirm this, a number
of decision bound models (Ashby, 1992a; Maddox & Ashby,
1993) were fit to the individual participant data from the clas-
sification condition. Four different types of models were

2 For inference training, and the test phase, the observed diameter-angle cor-
relations for the category with the negative within-category correlation (i.e.,
category B in Experiments 1 and 3, category A in Experiment 2) was multi-
plied by -1. This was done in order to allow for the aggregation with the data
from the category with the positive within-category correlation. For presenta-
tion purposes, the training data are plotted prior to multiplying by -1.
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evaluated in order to assess an individual’s strategy during the
final training block. Unidimensional models assume that the
participant sets a single decision criterion on one stimulus
dimension (e.g., if the circle is large, respond A; otherwise
respond B). Conjunctive models assume separate decision
criteria on both dimensions (e.g., If the circle is large and
high on orientation or if the circle is small and low on
orientation, respond A; otherwise respond B. Fig. 1).
Information-integration models assume that the participant in-
tegrates the stimulus information from both dimensions prior
to making a categorization decision (Fig. 1). Finally, random
responder models assume that the participant guessed. Each
model was fit separately to the final block of training (includ-
ing the probe stimuli), for each participant, using a standard
maximum likelihood procedure for parameter estimation
(Ashby, 1992b; Wickens, 1982) and the Bayes information
criterion for goodness-of-fit (Schwarz, 1978) (see Appendix
for a more detailed description of the models and fitting
procedure). Based upon our previous work (Ell et al., 2017),
participants using information-integration strategies during
classification training, but not unidimensional strategies or
guessing, would be expected to promote within-category rep-
resentations that could be used to support performance on the
test phase inference task. If simply attending to both stimulus
dimensions during classification training is sufficient to

promote within-category representations, then participants
using conjunctive strategies would also be expected to per-
form well during the test phase inference task. Consistent with
expectations, the majority of participants learned a task-appro-
priate, conjunctive strategy (64%), with the remaining partic-
ipants being best fit by either the unidimensional (9%) or
random responder (27%) models.

Test phase

Initial inspection of the correlations during test phase suggests
the learning of the correlational structure of the categories in
both the inference and classification training conditions (Fig.
3). To analyze these data, one-sample t-tests (within each con-
dition), an independent-samples t-test comparing the condi-
tions, and the scaled JZS Bayes Factor, B01 (Jeffreys, 1961;
Kass & Raftery, 1995; Rouder, Speckman, Sun, Morey, &
Iverson, 2009) were computed. Consistent with the inspection
of the Fig. 3 data, the correlation during test was significantly
greater than zero in both the inference [t(50) = 6.22, p < .001,
d = .87; B01 = 142785.4 to 1 in favor of the alternative hy-
pothesis] and classification [t(53) = 5.88 p < .001, d = .80; B01

= 53171.69 to 1 in favor of the alternative hypothesis] condi-
tions.3 For the classification condition, this result was driven
primarily by participants using a task-appropriate, conjunctive
strategy (conjunctive: M = .28, SD = .21; unidimensional:

3 Given the considerable individual variability in the change in performance
during training, we conducted a follow-up analysis focusing on participants
who performed above chance during the final block of training (i.e., accuracy
> 60% correct for classification; correlation > .11 or < -.11 for inference). This
subgroup of participants evidenced stronger knowledge of the within-category
correlations in both the classification [n = 38,M = .25, SD = .22, t(37) = 7.08, p
< .001, d = 1.15; B01 = 608390.3 to 1 in favor of the alternative hypothesis] and
inference [n = 24, M = .53, SD = .37, t(23) = 6.99, p < .001, d= 1.43; B01 =
41629.9 to 1 in favor of the alternative hypothesis] conditions. Performance in
the two conditions was significantly different [t(60) = 3.63, p < .001, d = .95;
B01 = 48.27 to 1 in favor of the alternative hypothesis]

Fig. 2 Training performance in the classification (proportion correct) and inference (correlation between the given and produced stimulus values)
conditions of Experiment 1

Table 2 Training and test phase performance in Experiment 1

Training Block 1 Training Block 4 Test

M SD M SD M SD

Classification .58 .10 .71 .14 .19 .23

Inference .12 .29 .27 .45 .32 .40

Note: Performance during classification is indexed by proportion correct
whereas performance during inference training, and test, is indexed by the
diameter-angle correlation
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M= -.10, SD = .11; random responder:M= .05, SD = .17). An
independent-samples t-test comparing the two conditions,
however, indicated superior test-phase performance in the in-
ference condition [t(103) = 2.26, p = .03, d = .44; B01 = 1.96 to
1, weakly favoring the alternative hypothesis].

If test-phase performance is driven by learning during the
training phase, the amount of learning during the training
phase should be predictive of test-phase performance. To as-
sess this, in the classification condition, the Pearson correla-
tion was computed between the change in accuracy across
blocks (block 4 minus block 1) and the observed
diameter-angle correlation during the test phase. In the
inference condition, the Pearson correlation was comput-
ed between the change in the observed diameter-angle
correlation (block 4 minus block 1) and the observed
diameter-angle correlation during the test phase. There
was a significant positive relationship between learning
during training and test-phase performance in both the
classification: [r(52) = .57, p <.001] and inference:
[r(49) = .62, p<.001] conditions. The strength of this
relationship, however, did not differ between the classi-
fication and inference conditions [Fisher’s z = 0.36, p =
.72]. In sum, these data suggest learning of the within-
category representations for both the classification and
inference conditions, with a possible advantage for par-
ticipants in the inference condition.

Summary

The goal of Experiment 1 was to determine if classification of
a two-dimensional, rule-based category structure was suffi-
cient to support the learning of within-category representa-
tions or if an inability to learn within-category representations
is a more general feature of rule-based structures (Ell et al.,
2017). Consistent with the former, participants demonstrated
knowledge of the within-category correlations at test in both
the inference and classification conditions, although test phase

performance in the inference condition was superior.
That being said, training phase performance was posi-
tively associated with test phase performance to a sim-
ilar extent in both conditions. In sum, these data suggest
that learning to classify a rule-based structure that re-
quires attention to multiple stimulus dimensions is suf-
ficient to support the learning of within-category repre-
sentations that can be generalized to a novel task (i.e.,
from classification to inference).

Experiment 2

The results of Experiment 1 suggest that inference training
may be superior to classification in promoting the learning
of within-category representations, but there was evidence
that within-category representations were learned in the clas-
sification condition as well. This latter result may be a conse-
quence of the need to attend to both stimulus dimensions for
successful performance during training, but there is another
possible explanation. The Experiment 1 analysis computed
the observed diameter-angle correlation within each quadrant
of the stimulus space, and then averaged these results across
the two quadrants assigned to each category, in order to esti-
mate the within-category representations. There was, howev-
er, a congruence between the local diameter-angle correlation
within each quadrant and the global correlation within each
category (e.g., positive within the two quadrants assigned to
category A and positive within category A, across the stimu-
lus space). Thus, another possibility is that this local-global
congruence facilitated learning of the within-category repre-
sentations. Experiment 2 investigates this question using a
category structure in which the local diameter-angle correla-
tion within each quadrant is incongruent with the global
within-category correlation (e.g., negative within the two
quadrants assigned to category A and generally positive with-
in category A, across the stimulus space – see Fig. 4). If

Fig. 3 Performance on the inference task during the test phase (left). Note
that the diameter-angle correlations from category B are multiplied by -1
prior to averaging with the diameter-angle correlations from category A,
thus positive values suggest learning of the within-category correlations.

Relationship between learning during training and test phase performance
in the classification (middle, r = .57) and inference (right, r = .62) con-
ditions. The grey areas represent 95% confidence intervals
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learning within-category representations in the classification
condition is dependent solely upon a need to attend to both
stimulus dimensions, participants should still evidence
knowledge of the within-category correlations at test.
If, instead, the local-global congruence is critical, it
should be difficult for participants to learn the within-
category correlations. It is expected that participants in
the inference condition will still be able to learn the
within-category correlations with the Fig. 4 structure,
but it is possible that inference too would be sensitive
to a local-global incongruence.

Method

Participants and design

Seventy-four participants were recruited from the
University of Maine student community and received
partial course credit for participation. Participants were
randomly assigned to one of two experimental condi-
tions: classification or inference training. Two partici-
pants were excluded from analyses due to software er-
ror, resulting in sample sizes of 34 (classification) and
38 (inference). All participants reported normal (20/20)
or corrected-to-normal vision.

Stimuli, apparatus, and procedure

The stimuli and procedure were identical to Experiment 1 with
one exception. The stimuli within each quadrant of the stim-
ulus space were rotated 45° (about the quadrant mean) in order
to reduce the congruence between the diameter-angle correla-
tionwithin each quadrant and diameter-angle correlation with-
in each category (Fig. 4).

Results

Training phase

Only participants in the classification training condition
showed learning of the category structures as accuracy was
higher in block 4 than in block 1: [t(33) = -4.36, p < .001, d =
.76] (Fig. 5, Table 3). There was no significant increase in the
correlation learned from block 1 to block 4 in the inference
condition: [t(37) = -0.28, p > .78, d = .06].

The decision-bound models described in Experiment 1
were fit to the final training block in the classification training
condition. A majority of the participants in the classification
condition learned a task-appropriate, conjunctive strategy
(53%) with the remaining participants being best fit by the
unidimensional (10%), information-integration (3%), or ran-
dom responder (33%) models.

Test phase

Inspection of the test phase data revealed that participants
often mis-estimated the direction of the diameter-angle corre-
lation across quadrants of the stimulus space in both condi-
tions (Table 4). Due to this issue, the correlations were not
averaged across quadrants. Instead, diameter-angle correla-
tions were evaluated within each quadrant against the critical
value M = +/-.11 [estimated using α = .05 two-tailed, t(33) =
2.04 and an average SD = .31]. The diameter-angle correla-
tions in the lower left quadrant (classification) and the upper
left quadrant (inference) were significantly different from 0
and in the opposite direction of the actual correlation. The
correlations in the remaining quadrants were not significantly
different from 0. In sum, there was no evidence that partici-
pants were able to learn the within-category correlations with
the Fig. 4 category structures.

Summary

The goal of Experiment 2 was to investigate if the learning of
within-category representations while classifying was depen-
dent upon a congruence between the local, diameter-angle
correlations within each quadrant and the global diameter-
angle correlations within each category. The results suggest
that this was the case. Although participants learned to classify
the Fig. 4 structure, there was no evidence that within-
category representations were learned at test. Unexpectedly,
this was also true in the inference condition. The results of
Experiment 1, along with previous work from our lab (Ell
et al., 2017), suggested that inference training facilitated the
learning of within-category representations regardless of the
category structure. The results of Experiment 2 suggest that
even for inference training, there is a limit to the learning of
within-category representations. In sum, the learning of

Fig. 4 Conjunctive category structure used in Experiment 2. Category A
(crosses) and B (circles) stimuli used during the training phase. Stimuli
used during the test phase are plotted as filled red circles. Probe stimuli
used during the final block of training are plotted as blue squares (color
figure available online)
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within-category representations, with the rule-based structures
investigated here, is dependent upon a local-global congru-
ence regardless of the task goal.

Experiment 3

The results of Experiments 1 and 2 suggest that inference
training more strongly promotes the learning of within-
category representations, at least when there is a congruence
between local and global regions of the stimulus space. This
advantage may be driven by a practice effect given that par-
ticipants in the inference condition performed the same task
during the training and test phases whereas participants in the
classification condition performed different tasks during the
training and test phases. Experiment 3 addresses this issue
using a two-alternative, forced-choice version of inference
training that more closely matches classification training and
enables the investigation of generalization to a novel task in
the inference condition (i.e., from forced-choice to a produc-
tion task). In addition, the forced-choice procedure in
Experiment 3 is more similar to inference training procedures
used in previous work (e.g., Yamauchi & Markman, 1998).
The vast majority of previous work with the forced-choice
procedure, however, has used discrete-valued dimensions
with a small number of stimuli. Experiment 3 extends this

work to a category structure to continuous-valued dimensions
with a large number of stimuli.

Method

Participants and design

Seventy-one participants were recruited from the University
ofMaine student community and received partial course credit
for participation. Participants were randomly assigned to one
of two experimental conditions: classification or inference
training. One participant was excluded from analyses due to
software error. The resulting sample sizes by condition were
classification: 37; inference 33. All participants reported nor-
mal (20/20) or corrected-to-normal vision.

Stimuli and apparatus

The stimuli were identical to Experiment 1 with the exception
of the inference condition. Two response alternatives were
presented 325 pixels below the stimulus, one offset 325 pixels
left of center and the offset 325 pixels right of center (Fig. 6).
One of the response alternatives was correct. The incorrect
alternative was generated by selecting the corresponding val-
ue for the missing dimension from the contrasting category.
The location of correct/incorrect alternatives were
counterbalanced.

Procedure

The procedure was identical to Experiment 1 with the excep-
tion that during training, participants in the inference condi-
tion were asked to choose from one of the two response alter-
natives rather than drawing the missing stimulus dimension.
In addition, trial-by-trial feedback in the inference condition
was presented in the same way as in the classification condi-
tion. The test phase was identical to Experiment 1 (i.e., all

Fig. 5 Training performance in the classification and inference conditions of Experiment 2

Table 3 Training and test phase performance in Experiment 2

Training Block 1 Training Block 4 Test

M SD M SD M SD

Classification .54 .11 .63 .19 .10 .24

Inference .03 .20 .04 .22 .04 .30

Note: Performance during classification is indexed by proportion correct
whereas performance during inference training, and test, is indexed by the
diameter-angle correlation
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participants were instructed to draw the missing stimulus di-
mension and no feedback was provided).

Results

Training phase

Learning was evident in both conditions (Fig. 7, Table 5).
Although the dependent measure (proportion correct)
was now the same across conditions, training perfor-
mance was analyzed separately for the two conditions
to maintain consistency with the analyses in the previ-
ous experiments. Separate paired-samples t-tests indicat-
ed significant increases from block 1 to block 4 in pro-
portion correct for the classification condition: [t(36) = -4.163,
p < .001, d = .87] and for the inference condition: [t(32) = -
2.920, p = .006, d = .56].

The decision-bound models described in Experiment 1
were fit to the final training block in the classification training
condition. Consistent with expectations, the majority of par-
ticipants learned a task-appropriate, conjunctive strategy
(57%) with the remaining participants being best fit by the
unidimensional (5%), information-integration (5%), or ran-
dom responder (33%) models.

Test phase

Participants in the classification condition evidenced knowl-
edge of the within-category correlations [t(36) = 3.53, p =
.001, d = .58; B01 = 1/27.44, favoring the alternative hypoth-
esis], whereas participants in the inference condition per-
formed marginally better than chance [t(32) = 1.99 p = .06,
d = .35; B01 = 1.07, equivocal support for the null and alter-
native hypotheses]. The two conditions, however, were not
significantly different from each other [t(68) = .53, p = .60,
d = .13; B01 = 3.6 in favor of the null hypothesis] (Fig. 8).4 For
the classification condition, this result was driven primarily by
participants using a task-appropriate, conjunctive strategy
(conjunctive: M = .23, SD = .24; unidimensional: M = .05,
SD = .14; random responder: M = .003, SD = .16).

In both conditions, however, greater learning during the
training phase was associated with higher performance during
the test phase [classification: r(36) = .47, p = .003; inference:
r(32) = .67, p < .001]. A re-analysis of the data from the
inference condition excluding five potential multivariate
outliers [robust Mahalanobis squared distances were cal-

culated and values that exceeded x 1ð Þ2critical ¼ 5:02;α ¼ :

025 were considered outliers] indicated an association
identical in magnitude to that of the classification con-
dition [r(25) = .47, p = .01].

4 Participants who performed above chance during the final block of training
(i.e., accuracy > 60% correct) evidenced stronger knowledge of the within-
category correlations in both the classification. [n = 24, M = .20, SD = .24,
t(23) = 4.09, p < .001, d = .83; B01 = 70.87 to 1 in favor of the alternative
hypothesis] and inference [n =15,M = .25, SD = .34, t(14) = 2.08, p = .014, d=
.72; B01 = 1.4 weakly favoring the alternative hypothesis] conditions.
Performance in the two conditions, however, were not significantly different
[t(37) = -.52, p = .60, d = .17; B01 = 2.82 to 1 in favor of the null hypothesis].

Table 4 Within-category correlations by quadrant

Quadrant Classification Inference

M SD B01 M SD B01

Upper right 0.08 0.33 2.32, null 0.03 0.35 4.92, null

Lower right -0.05 0.27 2.91, null 0.01 0.34 5.61, null

Lower left 0.18 0.35 8.21, alternative -0.01 0.43 5.79, null

Upper left -0.08 0.28 1.52, null -0.15 0.33 8.98, alternative

Note. B01 is the JZS Bayes Factor for the one-sample t-test comparing the mean in each quadrant to 0. “null” and “alternative” refer to the hypothesis
favored by B01

Fig. 6 Example display for the inference training methodology (color
figure available online)
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Summary

The primary goal of Experiment 3 was to investigate the ex-
tent to which a two-choice version of inference training would
support the learning of within-category representations.
Participants in the classification condition were able to learn
the test-phase correlations. Participants in the two-choice in-
ference condition, however, performed only marginally better
than chance. That being said, test phase performance was not
significantly different in the classification and inference con-
ditions. Similar to Experiment 1, there was a positive correla-
tion between training and test phase performance which did
not differ by condition. Taken together, these results suggest
that by eliminating a potential practice effect by intro-
ducing a two-choice version of the inference task, par-
ticipants in both conditions learned the within-category
correlations equally well.

General discussion

Previous research suggests that the between-category represen-
tations (i.e., logical rules) thought to support the learning of
rule-based tasks do not also support the learning of within-
category representations (Ell et al., 2017). This work, however,

focused on a rule-based structure for which learning required
attention to a subset of the stimulus dimensions that were crit-
ical for the within-category representation. The present work
investigated the extent to which an inability to learn within-
category representations is a general limitation of rule-based
structures or a more specific limitation resulting from a mis-
match between the information necessary for learning between-
and within-category representations. The results of Experiment
1 were consistent with the latter hypothesis. More specifically,
participants were able to learn to classify a two-dimensional,
rule-based structure and this knowledge was able to support the
learning of within-category representations that could be gen-
eralized to a novel task (i.e., inference). This result was depen-
dent upon a congruence between local and global features of
the category structure (Experiment 2). Although participants
who learned by inference in Experiment 1 demonstrated stron-
ger knowledge of the within-category representations at test,
this advantage seems to have reflected a practice effect
(Experiment 3). In sum, these results suggest that a task goal
thought to promote the development of between-category rep-
resentations (i.e., classification) can promote the development
of within-category representations, but such learning is sensi-
tive to characteristics of the category structure.

Learning and generalization of within-category
representations

Consistent with previous work (Anderson & Fincham, 1996;
Ell et al., 2017; Thomas, 1998), within-category correlations
could be learned during categorization. These representations
could also be generalized across tasks with knowledge of the
within-category correlations learned during classification
training being able to support inference at test. Both learning
and generalization, however, depended upon a congruency
between the local, diameter-angle correlations within each
quadrant and the global diameter-angle correlations within

Fig. 7 Training performance in the Classification and (forced-choice) Inference conditions of Experiment 3

Table 5 Training and test phase performance in Experiment 3

Training Block 1 Training Block 4 Test

M SD M SD M SD

Classification .58 .11 .69 .19 .13 .23

Inference .52 .09 .60 .18 .10 .28

Note: Performance during classification and inference training is indexed
by proportion correct whereas performance during test is indexed by the
diameter-angle correlation
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each category (Experiment 2). Disrupting this congruency
seems to have impaired the ability to learn within-category
representations while sparing category learning, suggesting a
different type of category representation may have supported
the learning of the Experiment 2 categories. Although we do
not have a direct measure of the category representation
learned in Experiment 2, the model-based analyses suggest
that nearly half of the participants learned a between-
category representation (i.e., logical rules) and previous work
suggests that rule-based strategies are used with other
exclusive-or category structures (Kurtz, Levering, Stanton,
Romero, & Morris, 2013; Nosofsky et al., 1994).
Nevertheless, we cannot rule out the possibility that partici-
pants learned a different type of within-category representa-
tion (e.g., exemplars, prototypes, within-category range).

A related, and important, question is how exactly are
within-category representations learned from classification
(Experiments 1 and 3)? If most participants are learning
between-category representations during classification of the
Fig. 1 category structure, as suggested by the model-based
analyses, are these between-category representations facilitat-
ing the development of within-category representations? The
optimal conjunctive rule (i.e., members of category A either
have larger circles and steeper lines, or smaller circles and
shallower lines, than members of category B.) conveys some
basic information about the within-category correlations. It
may be the case that this information was sufficient to support
generalization from classification to inference. The results of
Experiment 2 suggest, however, suggest that this is unlikely.
In Experiment 2, the optimal rule was the same, but partici-
pants only learned within-category correlations consistent
with this rule in one quadrant of the stimulus space. That being
said, our method does not allow for distinguishing between
participants that are good at using this rule to perform infer-
ence versus participants that have a richer knowledge of the
within-category correlations, thus more work is needed to ad-
dress this possibility.

Alternatively, perhaps there is a learning system operating
that is acquiring within-category representations that could be
used to support both classification and inference. For instance,
the DIVA (Kurtz, 2007) and SUSTAIN (Love, Medin, &
Gureckis, 2004) models of category learning, other kinds of
models that learn multiple category prototypes (e.g., Ashby &
Waldron, 1999), or hybrid models that combine exemplar and
prototype processes (Minda & Smith, 2001; Smith & Minda,
1998) would, in principle, be able to estimate within-category
correlations. Indeed, SUSTAIN has been successful in ac-
counting for different patterns of performance across linearly
separable and nonlinearly separable category structures in in-
ference versus classification (Love et al., 2004). Given that
within-category representations can be used to mimic rule-
like behavior (e.g., Hélie, Ell, Filoteo, & Maddox, 2015), this
would provide a possible means by which within-category
representations could support a wide range of observable
behavior.

Boundary conditions on the learning
of within-category representations

The aim of Experiment 2 was to determine if disrupting the
congruence between the local, diameter-angle correlations
within each quadrant and the global diameter-angle correla-
tions within each category would impair the learning of
within-category representations with classification training.
Participants were able to learn during classification training,
albeit at lower levels of accuracy than in Experiment 1, where
there was local-global congruence. Unlike Experiment 1,
however, this learning did not promote the knowledge of
within-category representations that could be used to support
inference during the test phase. Surprisingly, the local-global
incongruence also impaired the learning of within-category
representations with inference training, suggesting the learn-
ing of within-category representations may be generally sen-
sitive to characteristics of the category structure. That being

Fig. 8 Performance on the inference task during the test phase (left). Note
that positive values suggest learning of the within-category correlations.
Relationship between learning during training and test phase performance
in the classification (r = .47) (middle) and inference (r = .67) conditions.

Note that the diameter-angle correlations from category B are multiplied
by -1 prior to averaging with the diameter-angle correlations from cate-
gory A. The grey bars represent 95% confidence intervals
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said, we cannot rule out the possibility that our approach to
introducing incongruence altered some other factor that may
be critical for learning within-category representations. For
instance, although there is minimal overlap between the cate-
gories, the overlap occurs in different parts of the stimulus
space in Experiments 1 (center of the stimulus space) and 2
(edge of the stimulus space), but it is not clear why this would
make it impossible to learn the within-category correlations
with inference training while preserving learning during clas-
sification training.

The results of Experiment 1 suggest that inference may be
superior to classification for promoting the learning of within-
category representations. In the inference condition, the train-
ing and test phases were identical with the exception of the
removal of feedback during the test phase. Thus, the test phase
advantage in the inference condition may reflect a practice
effect. The goal of Experiment 3 was to address this issue
using a two-alternative, forced-choice version of inference
training that more closely matches classification training and
is more similar to inference training procedures used in previ-
ous work (e.g., Yamauchi & Markman, 1998). Test phase
performance in the inference and classification conditions
did not significantly differ in Experiment 3 suggesting that
the Experiment 1 inference advantage may reflect a practice
effect. In comparison to the Experiment 1 inference task, the
Experiment 3 inference task discretized the response and feed-
back. Although these methodological changes increased the
similarity between the classification and inference conditions,
it is possible that they contributed to the relatively weak test
phase performance in the inference condition of Experiment 3.
This is somewhat surprising given the success of two-alterna-
tive, forced choice inference tasks (Markman & Ross, 2003).
The vast majority of previous work, however, has used
discrete-valued dimensions with a small number of stim-
uli. It is possible that forced-choice inference works
well in promoting within-category representations hav-
ing discrete-valued dimensions with a small number of
stimuli, but is not well suited to a category structure
having continuous-valued dimensions with a large num-
ber of stimuli.

A common theme in the research on the kinds of category
representations learned during training is that participants
learn what is necessary to perform the task at hand (Ell
et al., 2017; Hélie et al., 2017; Love, 2005; Markman &
Ross, 2003; Pothos & Chater, 2002; Yamauchi & Markman,
1998). For example, with the rule-based structure used by Ell
et al. (2017), successful performance during classification
training did not depend upon learning the relationship be-
tween diameter and angle. Instead, participants needed only
to attend selectively to a single, diagnostic stimulus dimension
in order to achieve perfect classification performance. The
present results suggest that selective attention to a single stim-
ulus dimension may hinder the ability to learn the two-

dimensional, within-category correlations. Attention to multi-
ple stimulus dimensions would seem to be a necessary, but not
sufficient to promote the learning of this kind of within-
category representation.

That being said, it is possible to learn and generalize other
types of within-category representations when learning to cat-
egorize based upon a single stimulus dimension. A seemingly
minor tweak of the typical classification instructions (i.e., con-
cept training – participants learn categories by classifying
stimuli as a member/nonmember of a target category;
Maddox, Bohil, & Ing, 2004a; Posner & Keele, 1968;
Reber, 1998; Smith & Minda, 2002; Zeithamova, Maddox,
& Schnyer, 2008) shifts the emphasis from between-
category differences to within-category similarities (Casale
& Ashby, 2008; Hélie et al., 2017). In Hélie et al. (2017),
participants learned two rule-based category structures
(simultaneously) along a single diagnostic stimulus dimension
(category A vs. category B and category C vs. category D).
Participants were subsequently tested on a novel categoriza-
tion problem using the same categories (i.e., category B vs.
category C). Participants were successfully able to generalize
the knowledge when receiving concept training, but not when
receiving traditional classification training, suggesting that
concept training promoted a representation based on the cate-
gories themselves rather than between-category differences
(see also Hoffman & Rehder, 2010; Kattner et al., 2016).
Thus, it may be the case that concept training promotes a
minimal within-category representation that is sufficient to
support classification on a novel rule-based categorization
problem (e.g., the range of values on the stimulus dimen-
sions), but not so rich so as to include knowledge that was
not required during training (e.g., the correlational structure of
the categories).

Conclusions

In sum, taken together with previous work, the current results
suggest that the demands of learning may be the most critical
factor in promoting within-category representations. If the
task requires participants to learn about the relationship be-
tween dimensions, they can learn within-category representa-
tions. Such demands can be imposed by the nature of the
category structure (e.g., the exclusive-or structure used here,
the information-integration structure used by Ell et al., 2017)
or by the goal of the task (e.g., inference with unidimensional
rule-based structures). These data also suggest important
boundary conditions on the learning of within-category repre-
sentations. For instance, even when learning about the rela-
tionship between stimulus dimensions, incongruency between
local and global regions of the stimulus space can disrupt the
learning of within-category representations. Knowledge of
this limitation may be an important factor to consider when
developing training regimens to promote the knowledge of
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within-category representations. These results complement
the growing body of work highlighting the impact of category
structure and task goal on category representations (Carvalho
& Goldstone, 2015; Hammer, Diesendruck, Weinshall, &
Hochstein, 2009; Levering & Kurtz, 2015). These results also
build upon previous work by investigating the relationship
between these factors and the generalization of categorical
knowledge (Carvalho & Goldstone, 2014; Chin-Parker &
Ross, 2002; Hoffman & Rehder, 2010), thereby providing a
window into the cognitive utility of category representations
in novel situations.
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Appendix

Model-based analyses

To get a more detailed description of how participants catego-
rized the stimuli, a number of different decision bound models
(Ashby, 1992a;Maddox&Ashby, 1993) were fit separately to
the final block training data for each participant in the classi-
fication conditions. These data included 80 stimuli from cate-
gories A and B as well as 16 probe stimuli that were used to
help differentiate between the models described below.
Decision-bound models are derived from general recognition
theory (Ashby & Townsend, 1986), a multivariate generaliza-
tion of signal detection theory (Green & Swets, 1966). It is
assumed that, on each trial, the percept can be represented as a
point in a multidimensional psychological space and that each
participant constructs a decision bound to partition the percep-
tual space into response regions. The participant determines
which region the percept is in, and thenmakes the correspond-
ing response. While this decision strategy is deterministic,
decision-bound models predict probabilistic responding be-
cause of trial-by-trial perceptual and criterial noise (Ashby &
Lee, 1993).

This Appendix briefly describes the decision bound
models. For more details, see Ashby (1992a) or Maddox and
Ashby (1993). The classification of these models as either
rule-based or information-integration models is designed to
reflect current theories of how these strategies are learned
(e.g., Ashby, Alfonso-Reese, Turken, & Waldron, 1998) and

has received considerable empirical support (see Ashby &
Valentin, 2017 for a review).

Rule-based models

Unidimensional classifier (UC). This model assumes that the
stimulus space is partitioned into two regions by setting a
criterion on one of the stimulus dimensions. Two versions of
the UC were fit to the data. One version assumes that partic-
ipants attended selectively to diameter and the other version
assumes participants attended selectively to angle. The UC
has two free parameters, one corresponds to the decision cri-
terion on the attended dimension and the other corresponds to
the variance of internal (perceptual and criterial) noise (σ2). A
special case of the UC, the Optimal Unidimensional
Classifier, assumes that participants use the unidimensional
decision bound that maximizes accuracy. This special case
has one free parameter (σ2)

Conjunctive classifier (CC). An alternative rule-based
strategy is a conjunction rule involving separate decisions
about the stimulus value on the two dimensions with the re-
sponse assignment based on the outcome of these two deci-
sions (Ashby & Gott, 1988). The CC assumes that the partic-
ipant partitions the stimulus space into four regions. Based on
an initial inspection of the data, two versions of the CC were
fit to these data. One version assumes that individuals
assigned a stimulus to category A if it was either low
on diameter and low on angle or high on diameter and
high on angle; otherwise the stimulus would be assigned
to category B. The other version assumes that individ-
uals assigned a stimulus to category B if it was high on
diameter and low on angle or low on diameter and high
on angle; otherwise the stimulus would be assigned to
category B. An example of a conjunctive classifier is
plotted in Fig. 1 (solid black lines). The CC has three
free parameters: the decision criteria on the two dimen-
sions and a common value of σ2 for the two
dimensions.

Information-integration models

The linear classifier (LC). This model assumes that two linear
decision boundaries partition the stimulus space into four re-
gions (see Fig. 1 for an example). The LC differs from the CC
in that the LC does not assume decisional selective-attention
(Ashby & Townsend, 1986). This produces an information-
integration decision strategy because it requires linear integra-
tion of the perceived values on the stimulus dimensions prior
to invoking any decision processes. An example of a linear
classifier is plotted in Fig. 1 (dashed black lines). The LC
assumed two linear decision bounds of opposite slope (five
parameters, slope and intercept of each linear bound and a
common value of σ2).
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The minimum distance classifier (MDC). This model as-
sumes that there are a number of units representing a low-
resolution map of the stimulus space (Ashby & Waldron,
1999; Ashby, Waldron, Lee, & Berkman, 2001; Maddox,
Filoteo, Hejl, & Ing, 2004b). On each trial, the participant
determines which unit is closest to the perceived stimulus
and produces the associated response. The version of the
MDC tested here assumes four units because the category
structures were generated from two multivariate normal dis-
tributions. Because the location of one of the units can be
fixed, and because a uniform expansion or contraction of the
space will not affect the location of the minimum-distance
decision bounds, the MDC has six free parameters (five deter-
mining the location of the units and σ2).

Random responder models

Equal response frequency (ERF). This model assumes that
participants randomly assign stimuli to the two response fre-
quencies in a manner that preserves the category base rates
(i.e., 50% of the stimuli in each category). This model has no
free parameters.

Biased response frequency (BRF).This model assumes that
participants randomly assign stimuli to the two response fre-
quencies in a manner that matches the participant’s categori-
zation response frequencies. This model has one free
parameter, the proportion of stimuli in category A.
Although the ERF and BRF are assumed to be consis-
tent with guessing, these models would also likely pro-
vide the best account of participants that frequently shift
to very different strategies.

Model fitting

The model parameters were estimated using maximum likeli-
hood (Ashby, 1992b; Wickens, 1982) and the goodness-of-fit
statistic was

BIC ¼ r lnN−2lnL;

where N is the sample size, r is the number of free
parameters, and L is the likelihood of the model given
the data (Schwarz, 1978). The BIC statistic penalizes a
model for poor fit and for extra free parameters. To find
the best model among a set of competitors, one simply
computes a BIC value for each model, and then chooses
the model with the smallest BIC.
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