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Demystifying visual awareness: Peripheral encoding plus limited
decision complexity resolve the paradox of rich visual experience
and curious perceptual failures
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Abstract
Human beings subjectively experience a rich visual percept. However, when behavioral experiments probe the details of that
percept, observers perform poorly, suggesting that vision is impoverished. What can explain this awareness puzzle? Is the rich
percept a mere illusion? How does visionwork as well as it does? This paper argues for two important pieces of the solution. First,
peripheral vision encodes its inputs using a scheme that preserves a great deal of useful information, while losing the information
necessary to perform certain tasks. The tasks rendered difficult by the peripheral encoding include many of those used to probe
the details of visual experience. Second, many tasks used to probe attentional and working memory limits are, arguably,
inherently difficult, and poor performance on these tasks may indicate limits on decision complexity. Two assumptions are
critical to making sense of this hypothesis: (1) All visual perception, conscious or not, results from performing some visual task;
and (2) all visual tasks face the same limit on decision complexity. Together, peripheral encoding plus decision complexity can
explain a wide variety of phenomena, including vision’s marvelous successes, its quirky failures, and our rich subjective
impression of the visual world.
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1. Introduction

At any given moment, the human visual system clearly faces
limits, both in terms of the information available and the tasks
one can successfully perform. Because of these limits, real-
world vision involves an iterative process. We start with
some—possibly unconscious—task (i.e., some question about
the world). For instance, we might start by asking, “What is
the layout of this room?”We do our best to complete that task.
If necessary, we can gain more information by taking actions
such as moving our eyes. In the next instance, we shift to
another task to gain more understanding of the visual world.
For example, we might next query, “Are there any people
here?” Similarly, the contents of our awareness of the visual
world shift from moment to moment.

When we attempt to characterize our understanding and
awareness of the visual world, a fundamental puzzle arises.
On one hand, we subjectively experience a rich visual world,
effortlessly perceived (Dennett, 1991; Noë, 2002). However,
when probed on the details, observers know surprisingly little
(as reviewed in the next paragraph). The rich experience sug-
gests a highly capable visual system, whereas poor perfor-
mance when reporting details suggests that perception is
impoverished. For the purposes of this paper, I refer to this
puzzling combination of rich subjective experience and poor
objective task performance as the awareness puzzle—though
it is far from the only puzzle when it comes to understanding
awareness (Tononi, Boly, Massimini, & Koch, 2016).

For example, we subjectively experience real-world scenes
as rich and detailed (Dennett, 1991). However, change a por-
tion of that scene while masking transients that would provide
a cue, and observers have difficulty noticing what changed
(e.g., Rensink, O’Regan, & Clark, 1997). Similarly, while
we experience a rich percept of an ensemble of similar items,
observers perform poorly when asked to report the features of
a particular item (Ariely, 2001; Chong & Treisman, 2005;
Haberman &Whitney, 2009). Furthermore, it is often difficult
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to search for a particular target item unless it has a distinct
basic feature such as orientation, color, or motion (Wolfe &
Horowitz, 2004). Search can be difficult even when, upon
examination, target and distractors appear quite distinct (e.g.,
when searching for a “T” among “L”s). Difficult search, then,
suggests that the details that distinguish the search items must
be unavailable; otherwise, search would be easy.

An influential theory—feature integration theory, or
FIT (Treisman & Gelade, 1980)—proposed that poor
search performance arises from a particular kind of lim-
ited capacity: limited access to higher level processing.
According to this theory, observers can quickly and eas-
ily perform tasks that require only basic feature maps;
such tasks rely only on preattentive visual processing.
However, any tasks that rely on binding or conjoining
an object’s features, such as distinguishing a “T” from
an “L,” require selective attention. According to this
theory, attention serially selects what information travels
through the limited capacity channel to receive higher
level processing.

Attention, in turn, appears to have greatly limited capacity
(see Fig. 1). Multiple object tracking (MOT) tasks, for in-
stance, have been taken to suggest that observers can attend
to and track only about four objects at a time (e.g., Pylyshyn&
Storm, 1988; although for another view of MOT, see
Franconeri, Alvarez, & Cavanagh, 2013). Furthermore, there
is often a cost to performing more than one task at once (e.g.,
VanRullen, Reddy, & Koch, 2004), particularly when one of
the tasks is unknown to the observer, as in the phenomenon of
inattentional blindness (Mack & Rock, 1998).

If perception is poor without attention, and attention has
limited capacity, then at a given instant, we cannot perceive
very much. Furthermore, we cannot merely build up a rich
percept by rapidly shifting attention and remembering what
we have previously perceived because visual working memo-
ry itself appears to have a low capacity of approximately four
items (e.g., Luck & Vogel, 1997). While some researchers
have questioned this item limit account in favor of more flex-
ible resources (e.g., Fougnie, Cormiea, Kanabar, & Alvarez,
2016; Ma, Husain, & Bays, 2014; Palmer, 1990), this theoret-
ical difference does not obviously allow one to use memory to
build a richer percept. Arguably to make full use of a flexible
memory resource one first needs richer perception, perhaps
through a flexible attentional resource (e.g., Treisman, 2006).

This description of the awareness puzzle focuses heavily
on somewhat old-fashioned theories of attention and working
memory. Throughout this paper, I will refer to these theories of
selective attention (e.g., Treisman & Gelade, 1980; Wolfe,
Cave, & Franzel, 1989), multiple object tracking (e.g.,
Pylyshyn & Storm, 1988), and visual working memory (e.g.,
Luck & Vogel, 1997) as the classic theories. Considerable
work has gone into updating these theories, particularly in
the case of attention (Carrasco, 2011). The classic theories
may as a result appear to be straw men. However, they are
important because they lead to the awareness puzzle. With the
exception of a few theories developed to address this puzzle
(described next), the updated theories do not obviously solve
it.

Some philosophers and vision researchers have noted the
confusing collection of phenomenology described above and
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Fig. 1 Visual search, change detection, and perception of individual
items of a set suggest that perception is limited without attention.
Meanwhile, paradigms such as multiple object tracking, dual-task, and
inattentional blindness have suggested that attention is limited. Visual

working memory tasks, in turn, have suggested that memory has
limited capacity. In each paradigm depicted, time advances to the right,
as indicated by the arrow. This paper argues that these tasks are inherently
difficult.
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have proposed theories to address the underlying puzzles. The
first two theories are philosophical in nature and attempt to
make sense of the apparent contradiction between the rich
subjective experience and poor performance at a number of
objective tasks. The second set of theories, more vision sci-
ence than philosophy, suggest mechanisms to account for both
the awareness puzzle and for real-world vision.

The first philosophical theory, here referred to as the illu-
sion theory, suggests that the rich subjective impression is
merely an illusion and is therefore not incompatible with the
impoverished perception observed in behavioral experiments
(Blackmore, Brelstaff, Nelson, & Troscianko, 1995; Dennett,
1991, 1998; O’Regan, 1992; Rensink, O’Regan, & Clark,
1997).1 This theory must contend with empirical evidence in
favor of an objectively richer percept. Observers can rapidly
get the gist of a scene (e.g., Greene & Oliva, 2009; Loschky et
al., 2007; Loftus & Ginn, 1984; Potter, 1975; Potter & Fox,
2009; Rousselet, Joubert, & Fabre-Thorpe, 2005), and this gist
includes rich information about that scene (Fei-Fei, Iyer,
Koch, & Perona, 2007). Similarly, we can rapidly extract
properties of an ensemble (Alvarez, 2011; Ariely, 2001;
Chong & Treisman, 2003, 2005; Haberman & Whitney,
2009). Clearly, these results are, at minimum, problematic
for the original FIT, as noted in Treisman (2006), although it
remains unclear whether the details objectively available to
observers suffice to explain the subjective experience.

The second philosophical theory posits that we are aware
of more than we can act upon (Block, 2011; Lamme, 2010). In
this theory, here referred to as the inaccessibility theory, the
rich percept is real, but the information is perversely inacces-
sible when it comes to making decisions or otherwise taking
action. At face value, this proposal seems counterintuitive.
Visual awareness is likely more limited than perception, not
less. Organisms can carry out considerable visual processing
without awareness (Helmholtz, 1867; Koch & Crick, 2001).

It is not obvious how either philosophical theory would
lead to a working visual system. If perceptual richness is mere
illusion, how are we so successful at so many visual tasks? As
for the inaccessibility theory, generating a rich percept re-
quires significant processing on the part of the visual system;
why would an organism put energy and effort into awareness,
but not ensure the ability to act on the available information?

Vision science theories have attempted to account for the
awareness puzzle while also explaining how real-world vision
might work. One class of theories, for instance, focuses on the
question of how, if preattentive vision is so poor, and attention
so limited, we can intelligently shift attention to gather more
information. How can we reasonably form and test new

hypotheses to gain understanding about the visual world?
Suppose I want my coffee mug. To identify it, I need to attend
to it; where do I direct my attention? Knowing the gist and/or
the layout of the scene would help, but in the early, classic
theories of attention, it was not obvious how to get that infor-
mation from either the preattentive feature maps or limited se-
lective attention. It might help me to know that the mug sits on
the desk. However, this presents a chicken-and-egg problem: I
would have to attend to the desk to identify the desk. If it is my
desk, in my office, I might have prior knowledge of its location.
If it is someone else’s desk, but I know it is brown, I could use
crude preattentive features to filter for brown stuff (Wolfe,
Cave, & Franzel, 1989). What if I know neither piece of infor-
mation? For that matter, how do I ever perceive task-irrelevant
parts of the scene, such as a person sitting at the desk?

Mack and Rock (1998), noting that their inattentional blind-
ness studies seemed to suggest little or no perception without
attention, proposed that some information must be capable of
capturing attention. They reviewed attempts to uncover the
rules of attentional capture. Stimulus-driven, or bottom-up, cap-
ture could occur if the information is sufficiently salient
(Theeuwes, 1992), though this might depend upon the task
set (Folk, Remington, & Johnston, 1992). Bottom-up saliency
(i.e., unusual features) could be computed from the hypothe-
sized preattentive features (e.g., Itti & Koch, 2001; Rosenholtz,
1999). Capture by salient items could help us notice interesting
parts of the scene even if they are not task relevant. Top-down
filters could also reveal task-irrelevant information. For in-
stance, Simons and Chabris (1999) noted that observers more
frequently notice an unexpected gorilla walking through a bas-
ketball game when counting passes of the team wearing black
jerseys. They suggested that the filter for “black” might acci-
dentally capture the gorilla, leading to identification (the capture
is accidental, even though the filter selected black as intended,
because the goal is to select teammates with black jerseys, not
gorillas). However, taking a step back, attentional capture
seems like an odd proposal for how vision might work: The
visual system makes up for poor preattentive processing both
by being easily distracted by irrelevant salient stuff and by
having top-down filters accidentally capture task-irrelevant
items with crude low-level similarity to the task-relevant items.
This is no way to design a visual system, and it seems unlikely
that capture can explain vision’s successes (Nakayama, 1990;
Rosenholtz, Huang, & Ehinger, 2012). (Mack and Rock (1998)
themselves instead came to support late selection rather than
attentional capture theory.)

A second class of vision theories has built on the observa-
tion that classic selective attention theory can account for
some of vision’s quirky failures (hard search, change blind-
ness, and inattentional blindness, to name a few), but is prob-
lematic when it comes to explaining vision’s marvelous suc-
cesses. This might suggest that the visual system augments the
selective attention pathway with additional information.

1 Note that while Rensink, O’Regan, and Clark (1997) interpret their results in
terms of an illusion (my word, not theirs) of rich detail, supported by rapid
switching of a low-capacity mechanism to provide details on demand,
Rensink’s (2000) theory better fits into the second set of vision science theo-
ries, described later in this section.
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Scenes and sets, for example, might be processed in a sepa-
rate, nonselective pathway (Cohen, Dennett, & Kanwisher,
2016; Rensink, 2000; Wolfe, Vo, Evans, & Greene, 2011).
Alternatively, different modes of attention might make avail-
able different information; diffusely attend to a scene as a
whole and get the gist, or attend to a set of items and gain
access to ensemble properties like the mean size (Nakayama,
1990; Treisman, 2006). In these latter theories, the system
switches between different attentional modes, as opposed to
having separate pathways running simultaneously. Both theo-
ries assume that the additional mechanisms (separate pathway
or different attentional modes) use a different sort of encoding,
unlike that for ordinary object recognition (Cohen, Dennett, &
Kanwisher, 2016; Nakayama, 1990; Treisman, 2006; Wolfe,
Vo, Evans, & Greene, 2011). Researchers have suggested that
mechanisms might encode some sort of summary statistics
that would support both scene and ensemble tasks (Cohen et
al., 2016; Haberman & Whitney, 2011; Oliva & Torralba,
2006; Treisman, 2006; Wolfe et al., 2011). Similarly,
Rensink (2000) describes an underlying representation not
of basic feature maps, but rather in terms of more complex
proto-objects, resulting from low-level computation of local
geometric and photometric properties. In his theory, summary
statistics of proto-objects support computation of gist and lay-
out of the scene.

This paper does not argue that these vision science theories
cannot solve the awareness puzzle, but rather that we can do
better, based first on a modern understanding of peripheral
vision. The second section of this paper, “An Efficient
Encoding in Peripheral Vision Explains Many of the Puzzles
of Vision,” reviews a concrete, testable hypothesis for the
encoding in peripheral vision, and argues that this encoding
can explain performance on several of the tasks critical to the
awareness puzzle. However, this is not to say that these phe-
nomena encounter no additional limits. Important as periph-
eral vision is, it cannot completely solve the awareness puzzle
on its own. However, by attributing as much as we can to
peripheral vision, we gain a clearer idea of what phenomenol-
ogy remain unexplained. In the third section, “A Proposal for
an Additional Capacity Limit: Limited Decision Complexity,”
I suggest that these remaining phenomenology follow a pat-
tern. Based on this pattern, I hypothesize that an additional
capacity limit on decision complexity will account for many
of the remaining phenomena. In the fourth section,
“Additional Comparison With Existing Theories,” I discuss
advantages of the proposed two-part hypothesis. Of course,
visual processing has additional mechanisms not discussed
here; the goal is to identify a minimal set of general-purpose
limits that, once understood, make sense of a wide range of
seemingly unrelated visual phenomena: our rich subjective
experience, the limited detail we can report, and the power
of real-world vision. If we can do this, then we can consider
ourselves to have made sense of the awareness puzzle.

This paper largely avoids the term attention throughout the
second and third sections. I do this for clarity, as the term has
an overloaded definition that means different things to differ-
ent people and in different contexts. The paper discusses
pointing one’s eyes at an object without reference to overt
attention, and it similarly discusses the task of monitoring a
subset of display items—for example, in response to a cue—
without raising the issue of an attentional mechanism for
performing that task. Most critically, I initially present the
hypothesized limit on decision complexity without reference
to attention, to avoid confusion with attention’s myriad defi-
nitions. That said, some readers may wish to make connec-
tions between the theory described in this paper and various
concepts of attention. I will later draw some of these parallels
and suggest advantages for reframing attention in terms of
limited decision complexity.

An efficient encoding in peripheral vision
explains many of the puzzles of vision

Change blindness and difficult search may illuminate
the limits of peripheral vision, not limits on attention

Change blindness refers to the difficulty detecting a change to
an image or scene. In the lab, a common experimental para-
digm alternates between two versions of an image while in-
troducing a brief blank frame between the pair in order to
disrupt motion cues (Rensink et al., 1997). The phenomenon
is related to difficulty spotting the differences between side-
by-side images in childhood puzzles (Scott-Brown, Baker, &
Orbach, 2000).

Many researchers have interpreted change blindness as
probing the limits of perception or memory without attention
(e.g.. Hollingworth & Henderson, 2002; O’Regan, 1992;
O’Regan, Rensink, & Clark, 1999; Rensink et al., 1997;
Scholl, 2000). Supposedly, the observer manipulates a spot-
light of attention, and perception is richer within that spotlight
than outside of it. The difficulty detecting a change appears to
imply that little perception occurs without attention.

However, others have suggested that change blindness
might be due in part to peripheral vision; visual processing
that occurs in the part of the visual field outside the foveola.
Peripheral vision is known to be poor relative to foveal vision;
visual acuity, contrast sensitivity, color vision, and motion
perception all vary with eccentricity (i.e., with distance from
the center of gaze; see Rosenholtz, 2016, for a review). A
more consequential difference concerns peripheral vision’s
degradation in the presence of clutter, known as crowding.
The phenomenon of visual crowding illustrates that loss of
information in the periphery is not merely due to reduced
acuity. In classic demonstrations, observers easily identify an
isolated target letter in the periphery, but have difficulty
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recognizing the target when flanked closely by other stimuli,
such as other letters. An observer might see the crowded let-
ters in the wrong order, they might not see the target at all, or
they might see a confusing jumble of shapes made up of parts
from multiple letters (Lettvin, 1976). Crowding occurs with a
broad range of stimuli (see Pelli & Tillman, 2008, for a re-
view). It need not involve an individuated “target” and
“flankers” per se, but rather can occur in peripheral perception
of complex objects and scenes (Martelli, Majaj, & Pelli,
2005). The degree of difficulty an observer has in making
sense of peripheral stimuli varies considerably with the stim-
ulus and task (Andriessen & Bouma, 1976; Kooi, Toet,
Tripathy, & Levi, 1994; Livne & Sagi, 2007; Manassi,
Sayim, & Herzog, 2012; Sayim, Westheimer, & Herzog,
2010), making it difficult to gain intuitions about the likely
impact of crowding in a given situation.

At any moment during a change-detection experiment, the
changed region likely lies in the peripheral visual field. This
raises the question of whether observers have difficulty detect-
ing changes primarily because of poor peripheral vision. Hard
changes might be difficult to perceive in the periphery, where-
as one might detect easy changes even without an eye move-
ment. If so, change blindness might not probe the mechanisms
of attention so much as it probes the limits of peripheral vi-
sion. Various researchers have found evidence for this hypoth-
esis. Henderson and Hollingworth (1999) showed that ob-
servers are more likely to detect the change once they have
fixated on or near it. O’Regan, Deubel, and Clark (2000) sim-
ilarly found that probability of detection depends upon the
distance between observer fixations and the change. Parker
(1978) and Zelinsky (2001) also found evidence that ob-
servers can notice at least some changes in the periphery,
and that salient changes can even be detected without fixation,
in line with the idea that peripheral vision might facilitate
detection of easy changes.

We have found additional evidence that peripheral vision is
a factor in change blindness. We first measured change-detec-
tion performance for a number of image pairs, using a stan-
dard flicker paradigm (Rensink et al., 1997). These pairs in-
cluded a number of examples from previous studies of change
blindness from Rensink and colleagues. Based on this data,
we categorized these change blindness stimuli as easy, medi-
um, and hard, based on the time needed to detect the changes.
We then showed observers the changes, and directly assessed
the difficulty detecting each change at various eccentricities.
As the observer knew each change, they presumably covertly
attended to the changed portion of the image when performing
this task (see Fig. 2a). We found that for the hard changes,
observers needed to fixate significantly closer to the change in
order to perceive it (see Fig. 2b; Smith, Sharan, Park,
Loschky, & Rosenholtz, 2019). Changes that are harder to
detect in a flicker paradigm are harder to see in the periphery,
even when observers know the change and its location, and

presumably attend to the change. These results suggest a more
tenuous connection between change blindness and attentional
limits; change blindness may have probed the limits of pe-
ripheral vision. Furthermore, they suggest that peripheral vi-
sion must guide search for changes. Some changes are easy to
detect because they are easily discriminable even at 10 de-
grees from fixation (Smith, Sharan, Park, Loschky, &
Rosenholtz, 2019). Other changes are hard to detect because
one must fixate close to the change to reliably discriminate it.
For the hard changes, one must move one’s eyes until they get
close enough, which will often be a slow process. If observers
were not using peripheral vision at all—they just scanned
without peripheral guidance until fixating the change—then
we would not have found an association between threshold
eccentricity for change discrimination and change detection
difficulty. In this sense, change detection must occur across
the visual field; in parallel, though the observer may not be
aware of looking for changes in the periphery. This is in
agreement with the suggestion from (Wilken & Ma, 2004)
that change detection occurs in parallel. As we will see, this
paradigm shift in thinking about change blindness has signif-
icant implications for the awareness puzzle.

We have similarly reexamined visual search. In the classic
view, search experiments probe limits of attention (Treisman &
Gelade, 1980). By comparing conditions that lead to difficult
versus easy visual search, we supposedly determine at what stage
selection occurs, and what processing is preattentive.
Experiments have generally shown that search is difficult when-
ever distinguishing the search target from other distractor items
requiresmore than a simple basic feature such as color ormotion.
On the other hand, easy search for simple 3-D shapes and direc-
tion of shadows has suggested that the notion of basic features
may be more complicated (Enns & Rensink, 1990a, 1990b;
Rensink & Cavanagh, 2004). This caveat aside, search results
have been taken to suggest that only basic features—often re-
ferred to as feature maps—can be computed preattentively, and
that selection occurs early in visual processing (Treisman &
Gelade, 1980). Basic feature maps, without correct binding,
and without access to higher level processing (Treisman &
Gelade, 1980), can neither obviously support the easewithwhich
vision understands complex scenes nor the power of real-world
vision. It is for just this reason that some researchers supplement-
ed their theories with additional pathways or modes for dealing
with scene processing (Nakayama, 1990; Treisman, 2006;Wolfe
et al., 2011).

However, considerable research has suggested that periph-
eral vision plays a significant role in search difficulty. If so, at
minimum, most search experiments have a peripheral vision
confound. Carrasco and colleagues found eccentricity effects
in search, leading them to question the role of attention: Both
feature and conjunction search deteriorate with increasing tar-
get eccentricity, and set size effects become more pronounced
(Carrasco & Frieder, 1997; Carrasco, Evert, Chang, & Katz,
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1995; Carrasco, McLean, Katz, & Frieder, 1998; Carrasco &
Yeshurun, 1998). These effects are eliminated or reduced
when the stimuli are M scaled to reduce peripheral factors
(Carrasco et al., 1995; Carrasco et al., 1998). Peripheral dis-
criminability of Gabors in noise predicts search for Gabor
targets (Geisler, Perry, & Najemnik, 2006). There have also
been hints that search difficulty stems from crowding in pe-
ripheral vision (Erkelens & Hooge, 1996; Gheri, Morgan, &
Solomon, 2007).

As in the case of change blindness, we have extended this
work on search and crowding by having observers attend to
the periphery and perform peripheral discrimination of a
crowded target-present from a target-absent patch. We have
shown that this peripheral discriminability predicts search per-
formance (see Fig. 3). Importantly, many of the phenomena
that originally motivated classic selective attention theory are
already present in peripheral vision under conditions of
crowding. Even when an observer attends to the periphery,
they have trouble distinguishing a crowded “T” from a
crowded “L.” They perceive illusory conjunctions, reporting
the presence of a white vertical when the display had only
white horizontals and black verticals. On the other hand, easy
search tasks correspond to easy peripheral identification.
Peripheral vision preserves the necessary information to iden-
tify unique basic features. Peripheral discriminability also ex-
plains results on the some of the cube search conditions of
(Enns & Rensink, 1990a), which were problematic for classic
FIT. The strong relationship between search performance and
peripheral discriminability, across a wide range of conditions,
suggests that relative search difficulty primarily pinpoints loss

of information in peripheral vision, rather than attentional
limits or the limits of preattentive processing (Chang &
Rosenholtz, 2016; Rosenholtz, Huang, Raj, Balas, & Ilie,
2012; Zhang, Huang, Yigit-Elliot, & Rosenholtz, 2015).

Neither search nor change blindness clearly support classic
selective attention theory. Rather, the differences between eas-
ier and more difficult conditions may arise from limits in pe-
ripheral vision. (This is not to say that search and change
blindness encounter no other limits, a point this paper returns
to later.) One might ask why this distinction matters, since
either explanation implies a loss of information, whether from
not attending to a region or from not fixating it. At first glance,
either theory would appear to suggest impoverished vision.
However, a peripheral vision explanation implies that percep-
tion is richer than previously thought. In the classic selective
attention explanation, unselected stimuli receive virtually no
further processing beyond the bottleneck of attention.
Attention, after all, supposedly gates access to higher level
processing (Treisman&Gelade, 1980). This means that many,
if not most, tasks are impossible without attention, because
they require more than the basic feature maps. It was precisely
the impoverished vision resulting from classic selective atten-
tion theory that led some researchers to add extra pathways
and modes to make vision work (Nakayama, 1990; Rensink,
2000; Treisman, 2006; Wolfe et al., 2011). On the other hand,
according to the peripheral vision account, difficult change
detection and search tasks have relied on information that
happens to be lost in peripheral vision; these tasks may be
especially difficult, and not imply impoverished vision over-
all. (This conclusion is in agreement with Rensink’s (2000)
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theory, which suggested that change detection might be espe-
cially difficult—in his case, due to the volatile nature of proto-
objects—and might not, as a result, point to impoverished
vision more generally.) Peripheral vision preserves much in-
formation, and critically, processing continues. Just what in-
formation is preserved, and what tasks that information sup-
ports, can best be answered with a model of peripheral vision
(see the following section).

A summary statistic encoding in peripheral vision
determines difficulty for a range of visual tasks

My lab has argued since 2007 that peripheral vision encodes its
inputs in terms of a rich set of image statistics. The term image
statistics refers to statistics either computed over the pixels of the
image or over the outputs of image processing operations, such
as filters and nonlinear operators applied to the image. These
statistics are summary statistics, meaning they pool information
over sizeable local regions. These regions growwith the distance
to the point of fixation (i.e., the eccentricity). For our candidate
model (Balas, Nakano, &Rosenholtz, 2009), we chose as our set
of image statistics those from a state-of-the-art model of texture
appearance from Portilla and Simoncelli (2000): The marginal
distribution of luminance; luminance auto correlation; correla-
tions of the magnitude of responses of oriented V1-like wavelets
across differences in orientation, neighboring positions, and
scale; and phase correlation across scale. This seemingly com-
plicated set of parameters is actually fairly intuitive. First, the
model computes a V1-like representation consisting of a number

of feature maps: response to horizontal, vertical, and oblique
feature detectors at a number of different scales. Then, in a sec-
ond stage, the model pointwise multiplies pairs of these feature
maps, and then averages over each local pooling region.
Essentially, instead of determining at each location in the visual
field whether, say, there is a corner composed of a horizontal and
a vertical orientation, the model summarizes a bigger area by
correlating horizontal and vertical over the entire pooling region;
it asks whether horizontal stuff tends to be near vertical stuff. We
call this model the texture tiling model.

This encoding leads to significant loss of information, and
we have accumulated extensive evidence that this loss of infor-
mation can predict difficulty recognizing peripheral objects in
cluttered displays or scenes (Balas, Nakano, & Rosenholtz,
2009; Chang & Rosenholtz, 2016; Freeman & Simoncelli,
2011; Keshvari & Rosenholtz, 2016; Rosenholtz, Huang, Raj,
Balas, & Ilie, 2012; Zhang, Huang, Yigit-Elliot, & Rosenholtz,
2015). The loss of information also predicts difficult search
conditions, while preserving the information necessary to pre-
dict easy pop-out search (Chang & Rosenholtz, 2016;
Rosenholtz, Huang, Raj, et al., 2012; Zhang et al., 2015).

In spite of the loss of information that leads to crowding,
this encoding preserves a great deal of information. To get a
sense of what information is encoded by a rich set of image
statistics such as those proposed, one can synthesize images
that contain the same statistics but are otherwise random
(Ehinger & Rosenholtz, 2016; Freeman & Simoncelli, 2011;
Rosenholtz, 2011; Rosenholtz, Huang, & Ehinger, 2012). We
have called these synthesesmongrels. Themeasured summary
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Fig. 3 Peripheral discriminability of a crowded target-present vs. target-
absent patch (x-axis) predicts search difficulty (y-axis, measured as the
slope of the function relating search reaction time to the number of dis-
play items). Target-present patches consist of a target flanked by a number
of distractors, whereas target-absent patches consist of a distractor flanked

by additional distractors. Each symbol represents a different search con-
dition, including both five conditions central to feature integration theory
and five problematic conditions showing unexpectedly easy search for a
shaded cube among differently shaded cubes. Figure reproduced with
permission from (Zhang, Huang, Yigit-Elliot, & Rosenholtz, 2015).
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statistics do not completely constrain the input, so each com-
bination of fixation and stimulus theoretically corresponds to a
number of mongrels, each with the same local summary sta-
tistics. One should not think of these images as “what the
world looks like to peripheral vision.” Rather, viewing the
mongrels (e.g., see Fig. 4), provides intuitions about the infor-
mation lost and maintained by the peripheral encoding. If
some information is clear in the mongrels, then according to
the model, that information should reliably be available in
peripheral vision. The encoding appears to preserve consider-
able information about the fact that the underlying image in
Fig. 4a is a street scene, with people waiting at a bus stop.
Detailed information survives about the appearance of the
buildings and trees, and about the general layout of the scene.
By asking observers to perform scene tasks with these mon-
grel images, we have demonstrated that the information
encoded quantitatively predicts human performance getting
the gist of the scene at a glance. This includes identifying
the scene category, upcoming turns, presence of a target object
like an animal or a stop sign, and what city appears in the
photograph (Ehinger & Rosenholtz, 2016; Rosenholtz,
Huang, & Ehinger, 2012).

It is not surprising that the encoding preserves so much
useful information, as this scheme involves measuring a large
number of image statistics—as many as 1,000 per pooling
region. Whereas a handful of summary statistics would not
support the richness of vision—consider how little one knows
about a scene from only, say, the mean size and color of its
items—the proposed encoding is no mere handful. Vision
science has done little to characterize our rich subjective im-
pression of the world, but it seems plausible that this encoding
scheme preserves enough information to support that percept.

By examining Fig. 4, however, it is clear that the encoding
does not preserve certain details. One cannot read the Thomson
Rd. sign, nor easily discriminate the number and types of vehi-
cles. This ambiguity of the details could underlie poor

performance in change-detection experiments (Cohen et al.,
2016; Freeman & Simoncelli, 2011; Smith et al., 2019).
Figure 5 shows a demo of this same synthesis technique applied
to a change-detection pair. When fixating 5 degrees away from
the change, the model predicts difficulty detecting that change.
However when fixating 1 degree away, the change becomes
clear, in agreement with our data on discrimination of this
change in the periphery (Smith et al., 2019).

A summary statistic encoding in peripheral vision, then,
seems promising in terms of providing a coherent explanation
of a number of diverse phenomena that have previously defied
easy explanation. The same encoding predicts relative diffi-
culty of different visual search conditions, as well as scene
perception performance. Peripheral vision is clearly a factor
in change blindness. While further work (in progress) is nec-
essary to test to what degree the model can quantitatively
predict change-detection difficulty, demonstrations of the in-
formation available appear to be in line with difficult change
detection (see Fig. 5), and extensive work, cited above, vali-
dates the ability of this encoding to predict peripheral discrim-
inability for a considerable range of conditions.

Comparing the proposed encoding scheme to other
theories

At this point, it is worth revisiting some of the previous theo-
ries discussed in the first section. Several proposed an archi-
tecture with multiple pathways operating in parallel (see Fig.
6c)—one for selective attention, and one or more in which
summary statistics support scene and set perception (Alvarez
& Oliva, 2008; Cohen, Dennett, & Kanwisher, 2016;
Haberman & Whitney, 2011; Oliva & Torralba, 2006;
Rensink, 2000; Wolfe et al., 2011). Other theories (e.g.,
Treisman, 2006) posit flexible attentional modes, with diffuse
attention leading to computation of summary statistics to sup-
port scene and set perception (see Fig. 6b). These proposals

Fig. 4 Information encoded by a rich set of image statistics. A. Original
image, theoretical pooling regions superimposed. They grow linearly
with eccentricity. B. Image synthesized to have approximately the same

local image statistics as the original. This encoding captures a great deal
of information, although some of the details are unclear.
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should sound like (and in the case of Cohen et al., 2016, were
at least partially inspired by) our model of peripheral vision.
However, our work on peripheral vision suggests several im-
portant modifications to these theories.

Implications of the peripheral encoding: Rethinking
the architecture

The multiple pathway architecture implies that the scene/set
pathway(s) have access only to summary statistics, while se-
lective attention provides additional information. However,

our model predicts the peripheral information available when
covertly attending (Balas et al., 2009; Chang & Rosenholtz,
2016; Freeman & Simoncelli, 2011; Keshvari & Rosenholtz,
2016; Rosenholtz, Huang, Raj, et al., 2012; Zhang et al.,
2015). Covert attention does not provide information beyond
that available in the summary statistics. At minimum, the
summary statistic encoding stage must precede both selective
attention and scene/set pathways (see Fig. 6d). If one prefers a
single pathway architecture with different attentional modes
(see Fig. 6b), then the summary statistic encoding must un-
derlie all modes.

a b

Fixation 5 deg eccentricity

(above threshold)

Fixation 1 deg eccentricity

(at threshold)

Fig. 5 Summary image statistics lose information about the details,
which could make change detection difficult. A. Image pair. Red bars
indicate changed region: the airplane engine present in the upper image
but absent in the lower. B.Mongrel visualizes the information available in

a summary statistic encoding for a fixation 5 degrees (left) and 1 degree
(right) from the change, as indicated by the yellow cross. Note that the
change is clear in the latter pair, but not the former.
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Fig. 6 Architecture comparison. These diagrams illustrate only the main
blocks associated with hypothesized bottlenecks. A. FIT (Treisman &
Gelade, 1980). B. Theories with flexible allocation of attentional re-
sources or modes of attention, e.g. (Nakayama, 1990; Van Essen,
Olshausen, Anderson, & Gallant, 1991; Treisman, 2006; Franconeri,
Alvarez, & Cavanagh, 2013). C. Theories with separate pathways for

scene and set perception, e.g. (Rensink, 2000; Wolfe, Vo, Evans, &
Greene, 2011; Cohen, Dennett, & Kanwisher, 2016). D. At minimum,
research on peripheral vision indicates that the summary statistic
encoding underlies both the selective attention pathway and perception
of scenes and sets.
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Do scene or set processing belong in a special pathway?
The question is not whether at some point the visual system
carries out different computations when processing a scene
versus an individual object; in some sense, this must be true.
Visual attention researchers split scenes/sets into separate
pathways because those processes seemed subject to different
limits. Our results suggest, however, that scenes and sets do
not deserve special status. Researchers added an additional,
statistical pathway to account for good performance on scene
and set perception tasks, and in fact, a summary statistic
encoding does seem promising at predicting performance at
those tasks. However, that same encoding can also predict
easy versus difficult search, and likely change blindness; phe-
nomena that allegedly arose from limitations of the selective
pathway (Rensink, 2000; Wolfe et al., 2011), or from a fo-
cused attention mode (Treisman, 2006). It would seem that
search, change blindness, and scene perception might be sub-
ject to the same limitations, calling into question the need for
multiple pathways with different capacities (as in Fig. 6c–d).
Our new understanding of peripheral vision demands rethink-
ing capacity limits.

Summary image statistics versus ensemble statistics

The proposed encoding measures a large number of summary
image statistics, across the field of view, regardless of the
contents of the visual stimulus (see also Freeman &
Simoncelli, 2011; the texture descriptors of Wolfe et al.,
2001; the receptive field-based computation of summary sta-
tistics described in Utochkin, 2015; and the large number of
image statistics hypothesized to underlie the gist of a scene in
Oliva and Torralba, 2006). At minimum, a number of previous
proposals have lacked clarity on these points. First, summary
image statistics are not the same as ensemble properties of a
set of items (Ariely, 2001; Cohen et al., 2016; Haberman &
Whitney, 2011; Treisman, 2006). Ensemble properties refer to
summary statistics such as the mean size of a set of items.
Summary image statistics, on the other hand, refer to summary
statistics computed over the outputs of image processing op-
erations such as filters and non-linear operators applied to the
image. Second, some researchers have proposed that ensem-
ble properties represent only certain portions of the visual
world (Cohen et al., 2016)—for example, only sets of similar
items, or only textures, broadly construed (Haberman &
Whitney, 2011; Treisman, 2006; Whitney & Leib, 2018).
Third, some previous proposals have implied that the
encoding involves only a small number of summary statistics
(e.g., Ariely, 2001; Cohen et al., 2016; Haberman &Whitney,
2011; Treisman, 2006).

Though summary image statistics and ensemble properties
of a set of objects are often confused, there exists an important
asymmetry between the two. A large set of image statistics can
support not only a variety of scene-perception tasks (Ehinger

& Rosenholtz, 2016), but also plausibly form the basis for
ensemble perception tasks (see Fig. 7a; although see Balas,
2016, for questions of whether our particular candidate
encoding can quantitatively predict judgments of numerosity).
In contrast, a handful of ensemble statistics cannot obviously
support rich scene perception, and without specifying the sta-
tistics, it is not even clear that they can support the rich per-
ception of ensembles. As Huan, Tononi, Koch, and Tsuchiya
(2017) point out, referring to an array of letters (see Fig. 7b),
observers likely know quite a bit about ensembles:

Is that really all they see, [3–4 items] perhaps augmented
by some summary statistics? A moment’s reflection indi-
cates that, if only they were asked, subjects could report
much more—one certainly perceives that there are many
black marks, that they are arranged in rows and columns,
in a rectangular array, . . . against a bright homogeneous
background . . . [these percepts are] typically taken for
granted rather than included in the catalog of conscious
contents. . . . While subjects may not be able to recognize
specific identities, . . . they can effortlessly report that
what they saw were letter-like figures. p. 3.

A critical point here, however, is that while “some [unspec-
ified] summary statistics” cannot obviously predict this rich
percept, a set of many summary statistics can. As the mongrels
in Fig. 7a show, the proposed encoding clearly preserves suf-
ficient information to answer questions about the distribution
of line orientations, including the mean and variance. In addi-
tion, it preserves enough information to tell that the stimulus is
composed of black marks on a light background. The sizes
and orientations of items are also largely preserved, but loca-
tion information is lost; the lost information perhaps partially
explains the difficulty reporting the features of a particular
item (e.g., in Fischer & Whitney, 2011; Parkes, Lund,
Angelucci, Solomon, & Morgan, 2001). The mongrels of the
letter arrays (see Fig. 7b) similarly indicate that the encoding
preserves precisely the sort of information enumerated by
Huan, Tononi, Koch, and Tsuchiya (2017). In addition, it ap-
pears that sufficient information survives to recognize 10–12
of the letters—far greater than the average 4.3 items available
for immediate report, but comparable to the 9.1 letters estimat-
ed to be available by partial report (Sperling, 1960).

Perhaps some previous theories have described the
representation of ensemble statistics instead of image
statistics as merely a rhetorical figure of speech. It is
probably easier to get intuitions about and to enumerate
the mean size and orientation of a set of items than to
think about more abstract image statistics. In addition,
researchers may have inadvertently implied that their
theories required only a few statistics because of the
difficulty coming up with a long list of plausible ones.
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Both points, however—image statistics, and lots of
them—are critical to the argument that such an
encoding could underlie the richness of perception. It
is important to be explicit. When Cohen et al. (2016)
refer to a “single summary statistic” (p. 325), this could
refer to a single high-dimensional vector—which is, af-
ter all, what underlies their demos from Freeman and
Simoncelli (2011) and from Oliva and Torralba
(2006)—but if so, they risk confusing their readers.

Returning to the question posed in the second section of this
paper: Does it matter, when asking whether vision is
impoverished, if tasks like search and change blindness are
difficult because of the limits of attention or the limits of pe-
ripheral vision? Clearly it does. The classic selective attention
explanation requires an additional mechanism, such as an
added pathway or attentional mode, to explain why observers
easily get the gist of scenes and sets, whereas the peripheral
vision explanation does not. An added gist pathway or atten-
tional mode might have solved Mack and Rock’s (1998) chick-
en-and-egg problem of how one can successfully direct atten-
tion (Oliva & Torralba, 2006; Rensink, 2000; Wolfe et al.,
2011). However, with our model of peripheral vision in hand,
we can do better, by making concrete predictions of what infor-
mation is available. Consider looking for one’s mug in the

office scene in Fig. 8. Starting with a central fixation, the pro-
posed encoding scheme provides ample information for locat-
ing the desk and noticing salient pink sticky notes. It may pro-
vide enough information to notice the student sitting at the desk,
although perhaps not, since his shirt blends in with the chair.
The first glance may not preserve enough information to find
the mug (gray, on the desk behind the monitor). One cannot
recover the information lost in peripheral vision without an eye
movement, but the information that remains is capable of
supporting performance ofmany tasks, from guiding eyemove-
ments, through some object recognition tasks, to getting the gist
of a scene and navigating the world.

A proposal for an additional capacity limit:
Limited decision complexity

Other difficult tasks may be inherently difficult

Given the strengths of peripheral vision, it is not surprising that
observers can easily get the gist of a scene or set. The limita-
tions of peripheral vision, on the other hand, can explain many
of the phenomena previously taken as evidence that perception
is poor without attention. This paper began, however, by also

slergnoMegamilanigirO

a

b
Fig. 7 The proposed set of summary image statistics encode considerable
information about sets of similar items. A. Original set of oriented lines
(left), and two mongrels visualizing the information available (right).
Modeled with the fixation 10 degrees to the right of the central target,
where each line is 1 degree in length. B. Array of letters (left) like that in

Sperling (1960). Mongrels (right) predict that peripheral vision can dis-
cern the structure and appearance of the array, and even support identify-
ing the majority of the letters. In the mongrel on the right, reproduction is
almost perfect. Fixation on the letter “I”, as indicated by the red circle.
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enumerating a second set of phenomena that suggest that atten-
tion itself is limited, as is visual working memory (see Fig. 1).
One cannot explain these phenomena using peripheral vision
alone. Peripheral vision could be a factor—inattentional blind-
ness, multiple object tracking (MOT), and visual working
memory (VWM) tasks often use crowded displays, and typical
dual-task experiments assign one task to peripheral vision.
However, a number of inattentional blindness studies (Levin
& Simons, 1997; Mack & Rock, 1998) have enforced fixation
and have found that knowing the task matters. Visual working
memory studies (e.g., Adam, Vogel, & Awh, 2017; Tamber-
Rosenau, Fintzi, &Marois, 2015) have controlled for peripheral
crowding and found similar memory limits. Typical dual-task
experiments (e.g., VanRullen et al., 2004) hold fixation and the
display constant, and vary the number of tasks; though periph-
eral discriminability does appear to be a factor in the relative
difficulty of a given dual task (Rosenholtz, Huang, & Ehinger,
2012), it cannot explain why many dual tasks are more difficult
than their component single tasks. Other tasks may also en-
counter additional limits; search and change detection, for in-
stance, may be more difficult than predicted from peripheral
vision alone, due to the need to perform peripheral discrimina-
tion of a number of different items (Rosenholtz, 2017). There
must be some other capacity limit(s).

It may be tempting, at least in the case of dual-task perfor-
mance, inattentional blindness, and MOT, to fall back on se-
lective attention theory to explain these results. However,
quite a bit of the evidence for the classic selective attention
theory had a peripheral vision confound, and peripheral vision
offers a more parsimonious account, since it predicts easy
scene perception as well as difficult search and change blind-
ness. Given that search difficulty may have pinpointed mech-
anisms of peripheral vision rather than of early selective atten-
tion and preattentive processing (Treisman & Gelade, 1980),
we must reconsider the need for preattentive maps of basic
features and for a serial selective mechanism to bind them
(Chang & Rosenholtz, 2016; Rosenholtz, Huang, Raj, et al.,

2012; Zhang et al., 2015). Even given a need for a serial
mechanism of some sort, at minimum it would seem a useful
exercise to start from scratch in examining the remaining ca-
pacity limit(s). For further arguments for why we need to look
for a different sort of capacity limit, and for different mecha-
nisms for dealing with that limit, see Rosenholtz (2017).

Of course, there could be no unifying explanation for
MOT, VWM, dual-task performance, and inattentional blind-
ness. MOTmight face limits on, say, the number of attentional
spotlights, VWM on the number of memory slots, dual-task
performance and inattentional blindness on the simultaneous
tasks one can perform. However, perhaps we can arrive at a
unifying explanation by noting commonalities among these
tasks that suffer additional limits.

Consider a typical VWM task. An observer views an
array of k items, such as colored disks (see Fig. 1, lower
right). After a delay, the experimenter then presents another
array that either duplicates the original, or differs in the
color of one of the k disks. (The VWM paradigm sometimes
instead asks the observer to specify the features of a partic-
ular postcued item. For the sake of argument, I assume that
changing the task in that way does not fundamentally
change its difficulty nor the mechanisms involved.) This
task would be easy if the brain were like a computer, storing
either the pixels from the previous stimulus, or each item in
its own memory slot; the observer would simply compare
the later display to the stored representation to detect that
one of the items had changed. However, performance suf-
fers when displays contain more than a few items, leading to
the traditional interpretation that observers only have access
to about four slots, suggesting a very limited VWM capacity
(Luck & Vogel, 1997).

This logic, however, makes strong assumptions about the
mechanisms underlying VWM. More generally, one might
think of the VWM task as setting up a classifier to distinguish
between the remembered stimulus and all other similar arrays
in which one item differs. If we more generically think of the

Fig. 8 Looking for one’s mug on the desk, the same peripheral encoding that predicts difficult search and change blindness provides ample information
to locate the desk, notice salient objects, and guide eyemovements to gather additional information. Fixation as indicated by the red cross at image center.
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representation of the observed array of items as some noisy
high-dimensional feature vector, one could imagine that the
task might be difficult to perform using, say, a simple linear
classifier. A very similar story applies to tasks such as
reporting a postcued member of an ensemble—essentially a
VWM task, and likely hard at least in part for the same reason.

Similarly, MOT tasks (see Fig. 1, upper left) might be easy
if the brain were like a computer. If the brain stored one point-
er per display item, observers would just need to update the
pointer for each target with its location in each subsequent
frame. However, observers generally have difficulty tracking
more than four targets, leading to the traditional interpretation
that the visual system only has about four attentional spot-
lights to deploy, suggesting that attention has limited capacity
(Pylyshyn & Storm, 1988).

However, as with VWM, this account makes strong as-
sumptions about the mechanisms involved. More generally,
if the observer must track k of n items, then on each frame they
must distinguish the actual k targets from n–choose–k other
possible combinations of k items. Again, one might imagine
that this discrimination might require a complex classifier. In
the case of tracking 4 of 9 items, for instance, the observer
must distinguish the actual four targets from 125 other possi-
bilities! In the abstract, this sounds inherently difficult,
though, of course, motion cues make the task more tractable.

Consider also typical dual-task experiments (e.g.,
VanRullen et al., 2004; see Fig. 1, upper right). The observer
is asked either to complete a single peripheral task or to per-
form that task as well as a central task. For instance, the ob-
server might specify whether a peripheral cube is upright or
inverted, while also indicatingwhether a central array contains
all the same letter (all “L”s or all “T”s) or different letters (both
“L”s and “T”s). Both the central and peripheral task involve
distinguishing between two alternatives. The dual task in-
volves distinguishing between four possibilities (see Fig. 9).
This renders the classifier needed to perform dual tasks inher-
ently more complex than that needed for the component single
tasks. The boundary needed to separate the classes is inher-
ently more complex.

The previous discussion suggests a commonality that—
viewed in terms of classification of a noisy feature vector
representing the stimulus—MOT, VWM, and dual tasks all
appear complex. Nonetheless, observers might be able to per-
form the tasks, if the visual system could build classifiers of
arbitrary complexity. Instead, observers appear limited in the
number of items they can encode in VWM, the number of items
they can track, and the tasks they can simultaneously perform.
This suggests a limit on decision complexity (Rosenholtz,
2017), affecting all of these tasks. Limits on decision complex-
ity might originate at a late, decision-level processing stage.

The exact nature of the limit remains unclear. It appears to
be a limit on complexity, rather than on task difficulty. Dual-
task experiments have varied the display time so as to make all

component tasks equally difficult (e.g., VanRullen et al.,
2004); as a result, task difficulty, per se, cannot be the deciding
factor for which dual tasks are easy or hard (Rosenholtz,
2017). A limit on task complexity could take different forms
(Rosenholtz, 2017). Our cognitive processes might be limited
in the number of dimensions (or neurons) one could use to
make a decision, in the number of linear hyperplanes out of
which one could form a decision boundary, or in the curviness
of that boundary. Such a complexity limit might exist for the
usual reasons given for capacity limits (e.g., limits on the size
of the brain; Tsotsos, 1990). In addition, in learning to perform
a classification task, limiting the complexity of the decision
boundary might be a way to avoid overfitting.

In fact, some difficult dual-tasks do seem particularly com-
plex, given what we know about peripheral encoding. For ex-
ample, it is difficult in a dual-task paradigm to judge whether a
cube is upright or inverted (VanRullen, Reddy, & Koch, 2004).
According to our peripheral vision model, this judgment cannot
be made on the basis of a single pooling region, as that repre-
sentation cannot distinguish between the two orientations; mul-
tiple pooling regions are required (Zhang et al., 2015). For the
sake of argument, one can loosely think of this as
though one pooling region detects the top of the cube,
another the bottom, and the two regions together can
determine the orientation. This raises the obvious ques-
tion of why two pooling regions are necessary; can one
not just detect the top of the cube with a single pooling
region at the location of the top of an upright cube? But
that would not suffice if the observer had uncertainty as
to the location of the cube. In fact, in the experiment,
the cube location varied trial by trial. (Attempting to
guess experimental details from the results plus a model
provides a useful test of the model.) Either the visual
system must make a complicated decision, attempting to
detect the top of the cube throughout the visual field
and comparing its location to the detected cube bottom,
or it must hope that the presentation time is long
enough to allow wiring up a cube-orientation classifier
on the fly, once its location is surmised.

Not all dual-tasks are so complex. Although they are inher-
ently more complex than their component single tasks, some
dual tasks might nonetheless be sufficiently simple that they
would be largely unaffected by the complexity limit. This
could explain easy (previously dubbed preattentive; e.g.,
VanRullen et al., 2004) dual tasks.

Limited decision complexity: Implications for a rich
subjective impression and real-world vision

Let us consider a couple of related examples, both to get used
to thinking about decision complexity and to tie this proposal
back to the awareness puzzle and to the success of real-world
vision.
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Is getting a rich subjective impression less complex than
remembering four items?

The reader could, at this point, have an important ques-
tion: I have argued that VWM is limited because it is
an inherently complex task; how complex, then, is scene
perception? In both cases one might think of the implic-
it task as distinguishing between seen and not seen—
essentially as localization in some perceptual encoding
space (see Fig. 10). In the proposed theory, what the
observer knows about the stimulus as a result of
pe r fo rming th i s loca l i za t ion t a sk—wha t they
perceive—is determined by the classification into seen
and not seen. If the classification boundary confuses
two images then from this classification task alone (a
point we will consider shortly), the observer cannot per-
ceive the differences between them. Lower precision at
this task might require less effort, but at the cost of
confusing more unseen stimuli with the one actually
seen; with lower precision, the observer knows less.
With more effort, the observer might be able to utilize
a more complex—higher curvature—classification
boundary between seen and unseen stimuli, making few-
er errors. However, if there exists a limit on decision
complexity, that means that precision and knowledge
about the stimulus are limited.

When we speak of a limit, this implies the existence of a
single cap that all visual tasks must obey. I have been

assuming that VWM tasks encounter this limit, making it
appear that we can remember only about four items at a time.
If our scene perception encounters the same limit, how rich
should we expect that percept to be? The answer depends
fundamentally on the underlying perceptual encoding, which
remains essentially unknown. However, we can get a hint of
the answer from the following mini experiment.

Let us take our candidate perceptual encoding from a
convolutional neural network (CNN), known as VGG-16,
which was trained to perform invariant object recognition in
real-world scenes (Simonyan&Zisserman, 2014).2 CNNs have
recently become very popular, as for the first time they allow
computer vision to approach human performance on certain
proscribed visual tasks. Researchers have also shown certain
similarities between the representations learned by CNNs and
those found in monkey physiology (Yamins et al., 2014). On
the other hand, issues clearly remain, as CNNs behave differ-
ently from humans in a number of ways (e.g., Dodge &Karam,
2016; Geirhos et al., 2019; Geirhos et al., 2018)

We took a set of arrays of eight colored squares against a
gray background and fed them into the network to generate a
feature vector for each image. For the feature vector, we used
the last representational layer (the last fully connected layer)

2 Note that this encoding is not foveated. Despite the importance of peripheral
vision for understanding many relevant perceptual phenomena, for this mini
experiment we use an encoding that does not depend upon distance from the
point of gaze.

All Ts,
no animal

Ts and Ls,
no animal

All Ts,
animal

Ts and Ls,
animal

dual task

No animal

Animal

single task #1

All Ts

Ts and Ls

single task #2

simplified dual task

Fig. 9 Dual tasks are inherently more complex than their component single tasks. Here, two 2AFC tasks (top) become a 4AFC dual task (bottom left). If
there exists a limit on task complexity, the observer will have to simplify this task (bottom right, solid lines), making errors.
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of the network; it is common in computer vision to use this
layer as the input to classifiers.

These images are confusable in a standard VWM task; we
can measure the distance between their VGG-16 feature vec-
tors to give us an estimate of the available precision for local-
izing any image in perceptual encoding space. Given that
same uncertainty, how well could we instead pinpoint a natu-
ral scene? We took a set of similar street scenes, computed
their VGG-16 feature vectors, and then asked what scenes
would be difficult to discriminate, given the same precision
inferred from the VWM stimuli. The top left of Fig. 11 shows
a set of three confusable scenes, according to this metric.
However, by this metric these scenes are discriminable from
those in the top right.

The first thing to note is that a distancemetric applied to the
last fully connected layer of VGG-16 seems to give us a rea-
sonable measure of perceptual similarity (at least in this ex-
ample; given the limitations of CNNs, I would be surprised if
this demo worked in general). It is difficult to distinguish
arrays of randomly colored squares from each other (see Fig.
10), and analogously difficult to distinguishing the confusable
scenes in Fig. 11. Those scenes do differ: The camera angle
has changed somewhat, and the location and number of vehi-
cles and pedestrians has changed. The less confusable scenes
in the top right appear more readily discriminable. So, the mini
experiment is a good first attempt. More importantly, note that

for the same amount of uncertainty that makes an eight-item
VWM task hard, one can pinpoint a scene fairly well. The gist
resulting from performing this task appears quite rich and goes
far beyond merely categorizing the scene. No doubt the visual
system developed to make this so. In a plausible perceptual
encoding space, the same precision can specify either “an
array of about eight items of random color and position,” or
mostly determine the scene, plus or minus some small chang-
es. This suggests there is real hope for a unified explanation.
The same inference limits that make VWM difficult allow a
rich subjective experience of the real world.

Changing the task makes real-world vision work

In real-world vision, we often need to know more about the
scene; for example, when driving, we must estimate the 3-D
location of the pedestrians in order to judge whether we can
turn left. Thankfully, our perception is not limited to the results
of performing the gist task just described. In the next instant,
the observer can perform a different task, i.e., pose another
question and make a new inference. In this case, the observer
might next ask about the location of the pedestrians (e.g.,
classify the scene into those containing near vs. far pedes-
trians). The layout information gained from the gist task pro-
vides likely pedestrian locations. The pedestrian localization
task, because it does not require detailed knowledge of the rest

In perceptual-encoding feature space

Less precision

Easier, but make errors

More precision

Harder, fewer confusions

Not that?

Saw this?

Fig. 10 At a basic level, we can think of visual working memory tasks as
distinguishing between the observed stimulus and all similar stimuli that
differ in one of the items (upper left). If we think of each stimulus image
as represented by a high-dimensional vector in some perceptual encoding
space (shown here with only two dimensions for simplicity), then we can
think of this discrimination as a classification. Dashed lines indicate two
possible classification boundaries. The boundary on the right is more

precise, distinguishing the observed array (blue) from most other arrays,
except those with small color differences. Capacity limits may prohibit
such a precise classification, perhaps because they limit complexity, e.g.
curvature of the decision boundary. Instead, the brain may be forced to
use a less precise decision boundary, such as that shown on the left. This
may require less effort, but leads to more significant confusions between
the seen and unseen arrays.
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of the scene, could be less complex. As a result, it might
discriminate between near and far pedestrians even if, because
of complexity limits, the gist task could not. The observer
gains additional understanding about the pedestrians at the
expense of comprehension of the scene as a whole. Many
typical real-world tasks probably have low complexity relative
to the limit—again, the brain has likely developed its repre-
sentation to make this the case. The visual systemmay use the
excess resources to perform a dual-task: Judge the distance to
pedestrians while also getting an impression of the scene as a
whole. As a result, an observer estimating the 3-D position of
the pedestrian may not completely lose the gist, but may just
become more imprecise at localizing the scene in the

perceptual encoding space. Nonetheless, observers may not
generally run at full capacity, using all the available decision
complexity, as doing so may require noticeable effort.

Similarly, in the VWM task, the lack of precision when
trying to remember the entire array does not imply that the
observer cannot discriminate whether a particular square is red
or blue. If that is the task—for instance, if one of the squares is
precued (“remember this one”)—then the observer can set up
a relatively simple classifier to discriminate the color of that

0 Of course, one does not require such a mechanism to explain why observers
perform better with a valid cue, as even a parallel, unlimited-capacity model
predicts the existence of cueing effects. See, for example, Palmer, Ames, and
Lindsey (1993).

Seen vs. not seen

Near pedestrian

vs. not near

Fig. 11 (top) The three confusable images on the left have similar mean
discriminability as arrays of 8 colored squares, given the perceptual
encoding space of the VGG-16 neural network. The three images on
the right are less confusable with these images, according to discrimina-
bility in that feature space. (bottom) Switching to a different task can lead

to new understanding of the scene. At the next moment, the visual system
might attempt to discriminate scenes with nearby pedestrians (right) from
those for which the pedestrians were absent or farther away (left).
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square, again likely at the expense of some details about the
set as a whole.3 Thinking of visual working memory as a task
for which one has flexibility in how to draw the decision
boundaries distinguishing seen from not seen clearly has par-
allels with flexible resource theories of VWM (Fougnie,
Cormiea, Kanabar, & Alvarez, 2016; Ma, Husain, & Bays,
2014; Palmer, 1990).

Short-term learning, such as learning to forage for mush-
rooms, might involve a subtle change in task; fine-tuning of
the classifier when one learns to distinguish edible from poi-
sonous, without a change in complexity. Overlearned tasks
like reading, on the other hand, might lead to development
of representations that simplify those tasks.

All perception results from a task, and all tasks encounter
the same limits

We should emphasize several important points about visual
tasks, from the discussion earlier in this section. First, to talk
about decision complexity, there must be a decision.
Throughout this discussion of decision complexity, I have
assumed that all visual perception arises as a result of
performing some visual task; the observer poses a query and
makes an inference. Both the query and the inference may be
unconscious (Helmholtz, 1867); if the latter is, then perception
occurs without awareness. The task may not be the nominal
task specified by the experimenter, and, in fact, many real-
world visual tasks likely consist of a series of simpler tasks.
For a unifying explanation, all visual tasks must face the same
limit on decision complexity.

This paper proposes a number of ways of thinking about
visual tasks. Many visual tasks, such as visual working mem-
ory tasks, can be thought of as distinguishing seen from not
seen, which we might think of as a classification task, or as
localization in some perceptual encoding space. It may be
helpful to think of our “rich subjective experience” as
resulting from performing such a localization task. Similarly,
it can be useful to think of dual tasks as a single, more com-
plex task. Cueing, different strategies, and knowledge may all
lead the observer to pose a somewhat different query—that is,
to perform a different task.

Peripheral vision plus limited decision complexity:
Making sense of other phenomena

With a model of peripheral encoding plus a hypothesized limit
on decision complexity, to what degree can we understand
other phenomena? Of course, a full model of vision requires
mechanisms specific to particular tasks and stimuli, but the
challenge is to explain as much as possible with minimal
additional components.

Reframing attentional strategies in terms of decision
complexity

In the traditional account, attention allows us to deal with the
vast amount of information that confronts us, by prioritizing
some aspects of that information at the expense of others.
Attention might range in breadth from a focal mode that pro-
vides object properties, to a diffuse mode that leads to scene
and set properties; it might operate in a single spotlight or with
a small number of foci; and observers might attend to a par-
ticular object, color, or location (Rensink, 2015). These are
intuitive notions of how humans prioritize visual information;
how, then, do we think about these concepts in terms of deci-
sion complexity?

At a given moment, the complexity of our nominal
task may exceed our complexity limit. If the ideal clas-
sifier required an overly sinuous decision boundary, the
visual system would instead have to perform a simpler
task. It could, theoretically, make the task simpler (e.g.,
the boundary straighter) in many different ways, but
would make errors as a result (see Fig. 9, bottom right).
Simplifying strategies might include setting up a classi-
fier to give preference to identifying only one object,
only objects with a certain color, or only the object at
a particular location. The visual system could choose to
perform a task that preferentially understands a small set
of items at the expense of others; intuitively, the ability
to do so would depend on the complexity of the per-
item task, the number of items, and their layout. The
observer could give preference to understanding an item
that lay outside of the fovea. In addition to these strat-
egies, with obvious parallels to object-based, feature-
based, spatial, multifocal, and covert attention, respec-
tively, the visual system may have available additional
strategies not so easily described in words; ways of
cutting corners—literally (see Fig. 9)—in order to sim-
plify an overly complex decision boundary.

One can also draw connections to the role of task diffi-
culty in theories of attention. Flexible resource theories
suggest that, for instance, the number of items that one
can track depends on the resources needed to track each
one (i.e., on the difficulty of that subtask; Alvarez &
Franconeri, 2007). Similarly, cognitive load—overall dif-
ficulty of the current tasks—matters for task performance.
In the decision complexity framework, when an experi-
menter makes a task harder, they often make it more com-
plex. (However, this is not always the case, as a task can be
harder by being data limited, which should not increase
complexity.) Similarly, we can think of cognitive load ma-
nipulations as changing the complexity of the task as a
whole. In decision complexity theory, difficulty –in par-
ticular, complexity– has a starring role as the limited
resource.
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Surprising failures in cueing tasks

Many lab tasks explicitly ask observers to selectively process
a target. For instance, task instructions may ask observers to
identify or report a change only to a cued display item, while
ignoring distractors (e.g., Lavie, Hirst, de Fockert, & Viding,
2004; Posner, 1980). Selective attention is the task, regardless
of the underlying mechanisms. Such cueing tasks often dem-
onstrate a failure to respond only to the target. Lavie et al.
(2004), for instance, find significant distractor compatibility
effects when the task requires observers to respond as to the
identity of the target while also remembering a single digit.
This failure to select would be surprising if selective attention
were really the main mechanism that the visual system uses to
deal with limited capacity; why would such an important
mechanism be so flawed? However, completely ignoring the
distractors may require a complex classifier, which in turn
might require considerable effort. Observers can probably
identify the target without completely ignoring the distractors.
Why should they put in the effort, if the cost of the distractor
compatibility effects is only about 140 ms? The observer may
not even realize that they are slower on compatible trials.

Blindness to continuity errors in motion pictures and to slow
changes

A number of change blindness studies have explicitly studied
change to attended and presumably fixated objects (I use
“attended” here in the lay sense of “paid attention to”).
Levin and Simons (1997) showed subjects movies in which
several objects changed between scene cuts and examined
how well observers could detect these continuity errors both
in normal viewing and when explicitly looking for the errors.
In one example, a pair of women sat at a table talking, and
between cuts, one woman’s scarf disappeared, the other’s
armsmoved, and the women’s plates changed. Observers like-
ly paid attention to both of the women; how then, did they not
notice changes to the women?

In the first condition, observers did not know that they
needed to detect continuity errors. If all perception is the result
of some inference, then having a “surprise” task like this can
interfere with setting up the “right” classifier, and as a result
can reduce the likelihood, in this case, of noticing an unex-
pected change.When attending to the women, observers prob-
ably fixated some part of their faces. The scarf was closest to
fixation, followed by arms and then plates. Despite the close-
ness of the scarf, when the observer does not know about the
possibility of continuity errors, they may set up a classifier to
get a general awareness of the scene. The result of this task
may be a great deal of information about the scene, and yet it
may not be sufficient to distinguish between scenes with a
scarf and without a scarf. Put another way, to detect the chang-
es one needs to set up a task to discriminate between what one

has seen and not seen. Since the observer does not know what
details are important, their classifier might not catch the right
information. The situation may actually be worse because the
observers were told to “pay close attention,” perhaps causing
them to choose a more specific task at the expense of under-
standing the scene as a whole. One would expect that the scarf
change would be most noticeable once the observer knows the
real task of detecting continuity errors, since it is probably
most visible when fixating the face. This is in fact what
Levin and Simons (1997) found. The plates may be too far
away from fixation to easily notice the change. The arm posi-
tion, while closer to fixation on the face, may suffer a question
of definition: while the experimenters may interpret no time as
having passed during the frame cut, the observers may have a
different (likely unconscious) understanding. Perhaps ob-
servers thought that enough time had passed to allow an arm
movement.

One would correctly expect that observers would have
even more difficulty detecting gradual changes (Simons,
Franconeri, & Reimer, 2000). The observer in this paradigm
has the usual problem of setting up a seen versus not seen
classifier that happens to distinguish a given change. In addi-
tion, the difficulty is amplified by the fact that such changes
are gradual enough that it likely takes a significant amount of
time for the region to change by more than a just-noticeable
difference, and that amount of time is likely longer in the
periphery. Most observers probably naturally make several
saccades during that time. This gives the observers a difficult
task of discriminating what they see in one region of the visual
field from what they saw some time before in a different re-
gion of the visual field, adding complexity to the task.

Inattentional blindness

Again, a surprise task, as in inattentional blindness paradigms,
can interfere with setting up the right classifier for that task,
and as a result can reduce the likelihood of noticing an unex-
pected stimulus. Mack and Rock’s (1998) standard paradigm
had a hard central task of distinguishing between the lengths
of two orthogonal lines.Wemight presume that this task alone
was complex, though perhaps below the complexity limit. As
in the previous pedestrian example (see “Changing the Task
Makes Real-World Vision Work”), the observer likely at-
tempts to do a dual task that also gets a crude gist of the
display. As a result, they may notice some unexpected stimuli,
but not all. We would expect that a foveal inattentional blind-
ness task would be even worse, which is, in fact, what Mack
and Rock found. They gave the observer the same line-length
comparison task, only in the periphery. This task is certainly
harder, and probably more complex because of the oddities of
the peripheral encoding. Even though noticing an unexpected
foveal stimulus should be easy if it were the only task, a more
complex primary task in the periphery leaves the observer
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with fewer resources to devote to the gist of the display, mak-
ing noticing less likely. With a known dual task, the observer
can more appropriately distribute these resources between the
two tasks and may even put in more effort to use more of the
available decision complexity.

Illusory conjunctions

As discussed in the second section, many illusory conjunc-
tions occur in peripheral vision simply due to the nature of the
peripheral encoding (see Chang & Rosenholtz, 2016, for an
explanation). But what about foveal illusory conjunctions?
Treisman and Schmidt (1982) show a list of three colored
letters at the fovea, flanked by black digits. Observers must
first identify the numbers, and then report the position, color,
and identity of the letters. They often make illusory conjunc-
tion errors, even though the letters lie in the fovea. From the
point of view of peripheral vision alone, this is surprising.
Treisman and Schmidt interpret their results in terms of a
requirement for attention to correctly integrate features, and
the task overloading attention. In the decision complexity ex-
planation, the observer also lacks resources, but of a different
kind; the task of simultaneously identifying the central and
peripheral symbols is too complex to perform all at once.
The observer will make errors. We should not make too much
of the tendency to report illusory conjunctions. The re-
searchers varied the display time to set the difficulty level.
Make the peripheral task too easy and the observer makes
no errors. Make it too hard and they merely guess.
Somewhere in between, the difficulty seems just right, and
the observer will make the most obvious sorts of errors:
reporting an item at the wrong position, and reporting illusory
conjunctions.

Why are there no tasks that do not require attention?

Under classic selective attention theory, tasks that required
only preattentive information were presumed not to require
attentional resources. However, researchers have identified
few tasks that consistently appear not to require attention.
By some accounts, noticing an oddball item (e.g., a moving
item among stationary) or getting the gist of a scene might not
require attention (Li, VanRullen, Koch, & Perona, 2002;
Otsuka & Kawaguchi, 2007; Rousselet, Fabre-Thorpe, &
Thorpe, 2002; Treisman & Gelade, 1980). However, even
these results have been called into question. Detecting a
change has long been considered easy if observers have access
to a sufficiently salient motion transient. However, Matsukura,
Brockmole, Boot, and Henderson (2011) showed that when
performing a secondary task, observers miss changes even
when the motion transient is present. Similarly, Cohen,
Alvarez, and Nakayama (2011) have shown that getting the

gist of a scene becomes difficult in a dual-task paradigm, so
long as the secondary task is sufficiently hard (see also Joseph,
Chun, & Nakayama, 1997; Larson, Freeman, Ringer, &
Loschky, 2014; Mack & Clarke, 2012; Rousselet, Thorpe, &
Fabre-Thorpe, 2004). It seems that no tasks categorically re-
quire no attentional resources.

These results make sense if we think in terms of decision
complexity limits, and consider the two subtasks in a dual-task
paradigm as a single, more complex task. If one adds a suffi-
ciently complex task to oddball detection or getting the gist of
a scene, one can always make the dual task as a whole en-
counter complexity limits.

Additional comparison with existing theories

The section titled “Comparing the Proposed Encoding
Scheme to Other Theories” compared our proposed periph-
eral encoding to previous solutions to the awareness puzzle.
The next section compares switching tasks in the decision
complexity framework to the concept of changing the allo-
cation of attention from focal to diffuse. The section titled
“A Predictive, Testable Theory” discusses an important
benefit of the proposed two-part theory. The section
“Revisiting Illusion and Inaccessibility Theories” revisits
these theories of the awareness puzzle in light of the present
hypothesis.

Comparing limited decision complexity to theories
with flexible modes of attention

Treisman (2006) suggested that attention is a limited resource
with some flexibility in how diffusely it can be allocated.
Attending to a scene or a set yields holistic properties without
the details, whereas object-based attention yields understand-
ing of the object at the expense of the scene. Other researchers
have made related proposals (e.g., Nakayama, 1990; Van
Essen, Olshausen, Anderson, & Gallant, 1991). It requires
little effort to see relationships between switching tasks be-
cause of limited decision complexity and switching mode be-
cause of limited attention. In drawing this connection, one
might say that if all vision results from performing a task, then
in some sense one is always attending.

Treisman’s proposal of additional attentional modes
seemed to resolve problems with earlier versions of selective
attention theory. It paved the way to further studies on what
information becomes available upon diffusely attending to a
scene or a set (Alvarez, 2011; Fei-Fei, Iyer, Koch, & Perona,
2007; Greene & Oliva, 2009; Leib, Kosovicheva, & Whitney,
2016). However, this proposal also raises several questions
that I will now address.
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How dynamic is visual processing?

What, for instance, are the mechanisms associated with dif-
fuse attention? How does the brain switch attentional modes,
and how do upstream processes deal with changes in the
encoding of available information? Different attentional
modes suggest that from moment to moment the information
encoded by the visual system can change dramatically with
the focus and type of attention. To set up a classifier to perform
a task, the visual systemmust know and adapt to the particular
encoding that results from the current attentional state. Later
processes must somehow deal with the highly dynamic nature
of the encoded information.

Changing the task to accommodate limited decision com-
plexity does not raise the same issues. Rather, each new task
requires a late mechanism to set up a new classifier and inter-
pret its results (though one may perhaps see effects of this
mechanism early in visual processing as well). This theory
presumes that, to a first approximation, changing the task
changes neither the encoding nor the available information.
Rather, each new query changes what we know. In our earlier
example, the answer to the question of whether the pedestrians
are near or far gives us new understanding of the scene.

What is the limit?

If diffuse attention and focal attention both satisfy a single ca-
pacity limit, then how should we conceptualize that capacity
limit? In other words, in what sense might these two attentional
modes be equivalent in terms of use of available resources?
Understanding the answer would seem to be critical for charac-
terizing, and thus predicting, howmuch detail is available under
diffuse attention to a scene. Several researchers have speculated
about the answer to this question (Franconeri, Alvarez, &
Cavanagh, 2013; Nakayama, 1990; Van Essen, Olshausen,
Anderson, & Gallant, 1991). Van Essen et al. (1991), for in-
stance, suggested that the visual system might always have
access to an approximately 25 × 25 array of feature vectors.
These feature vectors could be spread either over an object or
over the entire scene and might derive from any layer in the
visual processing hierarchy. While this proposal is intriguing, it
has not been obvious how to advance this theory.

On the other hand, while the exact nature of the decision
complexity limit remains unclear, there would appear to be a
viable path forward. We could use vision science’s consider-
able understanding of human behavioral limits to look for a
consistent complexity limit such as those described above:
number of hyperplanes, number of dimensions, curvature of
the decision boundary, and so on. The limit might take other
forms more specific to the physiology of the brain (VanRullen
et al., 2004); if, for instance, the brain implemented classifi-
cation tasks using center-surround mechanisms operating in
some feature space, then the limit could instead be on the

number or density of those mechanisms (Franconeri et al.,
2013). Machine learning also has a concept of decision com-
plexity and can provide other forms that this limit might take
(e.g., Vapnik & Chervonenkis, 1971). Of course, looking for a
consistent limit requires a model of the perceptual encoding
space, but vision research has advanced to the point where one
may feasibly use either computational models, such as trained
CNNs, or rich, high-dimensional data from physiology, such
as from fMRI. An understanding of possible decision limits,
in turn, should make testable predictions of what tasks ob-
servers can and cannot do.

A predictive, testable theory

The proposed theory—that peripheral encoding plus limited
decision complexity explain the awareness puzzle and support
real-world vision—has advantages over previous explana-
tions simply in that it is predictive, and testable. Ask theories
with pathways or modes for processing scenes to predict what
scene tasks will be easy or hard, and researchers will run scene
perception experiments to find out the answer. Ask what in-
formation the visual system encodes in a proto-object repre-
sentation, and one can conduct experiments to find out. What
detail is available? Run an experiment and find out. (Note,
however, the potential for peripheral vision confounds in all
of these experiments.) Though in some sense these theories
provided a solution to the awareness puzzle and to how real-
world vision works, they are essentially descriptive rather than
predictive.

The proposed theory, on the other hand, has a concretely
defined peripheral encoding. This specificity provides testable
predictions about what details will be available at a glance,
what search tasks will be easy or hard, and what scene and set
tasks are possible, given the information that survives or is lost
in peripheral vision. My lab has already demonstrated that this
peripheral encoding predicts performance on a wide range of
such tasks (Balas et al., 2009; Chang & Rosenholtz, 2016;
Ehinger & Rosenholtz, 2016; Keshvari & Rosenholtz, 2016;
Rosenholtz, Huang, & Ehinger, 2012; Rosenholtz, Huang,
Raj, et al., 2012; Zhang et al., 2015).

Furthermore, the section “What Is the Limit” sketches a
path toward fleshing out and testing the decision complexity
part of the proposed theory. If there proves to be a consistent
limit on decision complexity, this has additional implications.
First, simplicity: This theory would unify understanding of
different modes and types of attention via a single complexity
limit, perhaps replacing a number of distinct limits and mech-
anisms. This may provide insight not only into vision per se,
but also into visual working memory. Second, if correct, this
theory should someday allow us to predict task difficulty
based on a combination of peripheral factors and decision
complexity.
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Revisiting illusion and inaccessibility theories

In the proposed theory, the perceptual encoding has more
information than one can implicitly or explicitly understand
at a given moment, because understanding only results from
performing a task. Similarly, in Rensink’s (2000) theory, the
proto-object representation contains more information than
one can access at a given moment. Likely, all vision science
theories have this kind of inaccessibility; there no doubt exist
plenty of visual tasks humans perform poorly even though the
retina has the necessary information.

However, the proposed theory is not an inaccessibility
theory, in the sense that it does not use inaccessibility to ex-
plain the awareness puzzle. Rather, all tasks, including both
traditional tasks and awareness tasks, encounter the same de-
cision limits. Some tasks simply fare better under these limits
than others. There is no need to postulate that awareness has
access to information that is inaccessible to action and deci-
sion-making.

That perception results from inference suggests that there is
some truth to the illusion theories of awareness. One perceives
the results of inference, not some image captured by the eye-
as-camera, and projected onto an internal screen for viewing
by the homunculus. In this sense, perception is inherently
something of an illusion. However, the illusion is not as ex-
treme as previously thought, because vision is less
impoverished than it would be if the classic theories about
selective attention were correct. Thus, the rich percept is less
surprising.

Conclusions: A proposed explanation

I have argued that the strengths and limitations of visual per-
ception result from constraints on both perceptual encoding
and decision complexity. Avisual task can be difficult because
of either or both of these causes (see Fig. 12).

First, a striking number of puzzling visual phenomena can
be explained by the information preserved and lost in periph-
eral vision. This paper discusses a concrete model of periph-
eral encoding; peripheral vision appears to encode its inputs in
terms of a rich set of summary image statistics, computed by
pooling image measurements across sizeable regions of the
visual field. These regions grow—and the resulting summary
statistics become increasingly less informative—with distance
from the point of gaze. At a givenmoment, the current fixation
largely determines the information available across the field of
view. If a task needs information that does not survive the
peripheral encoding, that task will be difficult. To gather more
information, observers must move their eyes. This model has
produced testable predictions showing that losses of peripher-
al information lead to poor performance on a number of visual
tasks (difficult search, change blindness), while preserving
sufficient information tomake other tasks relatively easy (easy
search, easy change detection, and getting the gist of a scene
or set), and to support our rich percept of the world.

However, some tasks are difficult even if the necessary
information survives both peripheral vision and the perceptual
encoding stages more generally. I have argued that the second
big piece of the solution has to do with decision limits, and in
particular with limits on decision complexity. Dual tasks may
be more difficult than single tasks because they are inherently
more complex. Inattentional blindness—the inability to per-
form a task when it is unexpected—may occur when limits on
decision complexity preclude performing both the nominal
task and, by chance, also the unexpected task. MOT and
VWM may both be inherently complex tasks, leading to ap-
parent limits on the number of items that can be tracked or
remembered.

Even if one thinks of the proposed decision complexity
limit as a mere reframing of different attentional modes in
terms of switching tasks to deal with limited decision com-
plexity (the block diagrams certainly look similar; compare
Fig. 6b with Fig. 12), the present hypothesis has a number

input
summary

statistics

encoding flexible decision

major limit: 

peripheral vision

major limit: 

decision complexity

visual

perception

Fig. 12 Proposed architecture. All visual perception arises from flexible
decision mechanisms, operating on the perceptual encoding, to perform a
task. The major limit on available information arises from a summary
statistic encoding in peripheral vision, though other encoding losses

occur as well. Decision mechanisms, while flexible, cannot implement
arbitrarily complex decisions; a secondmajor factor limiting performance
of visual tasks.
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of advantages. The proposed theory replaces multiple kinds of
attention with a single complexity limit. It illuminates a path
forward to understanding that limit. If successful, it could
ultimately make testable predictions.

If attentional limits and mechanisms operated early in vi-
sual processing, then they would not obviously connect to
other, presumably later, limits on visual working memory
and cognition. However, if the limit is late, as is the case for
decision complexity, this raises the possibility that that limit
might be a general-purpose cognitive capacity limit. In fact,
there is some evidence for this, from analysis of individual
differences. Huang, Mo, and Li (2012) found correlated per-
formance at a wide range of tasks, including search, counting,
tracking, response selection, short-term memory, visual mark-
ing, task switching, and mental rotation.

Tasks that seem to show impoverished vision may simply
be difficult tasks, either due to the encoding or due to limits on
inference processes. On the other hand, perception is rich, and
real-world vision successful, because the information for
many tasks survives encoding losses, and that encoding
evolved to make those tasks relatively simple. Importantly,
to make sense of decision complexity, it helps to think about
all visual perception as arising from performance of a visual
task. This allows us to put all phenomena on the same footing;
search, set perception, scene perception, visual working mem-
ory, multiple object tracking, Posner cueing, dual-task, change
blindness, inattentional blindness, and visual awareness may
encounter the same limits on both the information encoded
and the complexity of decisions. Given those limits, some
tasks may simply be inherently difficult, and others easy. If
so, there is no need to ponder why, for instance, we get a rich
subjective impression and yet do poorly at certain tasks; no
need to postulate that the details are puzzlingly inaccessible
for decision and action. If a unifying explanation is possible,
there is no awareness puzzle.
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